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Gelfand–Dickey hierarchy, generalized BGW

tau-function, and W -constraints

Di Yang, Chunhui Zhou

Abstract

Let r ≥ 2 be an integer. The generalized BGW tau-function for the Gelfand–Dickey
hierarchy of (r − 1) dependent variables (aka the r-reduced KP hierarchy) is defined as
a particular tau-function that depends on (r − 1) constant parameters d1, . . . , dr−1. In
this paper we show that this tau-function satisfies a family of linear equations, called the
W -constraints of the second kind. The operators giving rise to the linear equations also
depend on (r− 1) constant parameters. We show that there is a one-to-one correspondence
between the two sets of parameters.

1 Introduction

Let r ≥ 2 be an integer, and let n = r−1. The Gelfand–Dickey (GD) hierarchy with n unknown
functions is an infinite family of PDEs, defined by

∂L

∂ti
=

[

(

Li/r
)

+
, L

]

, i ∈ N\rN, (1.1)

where
L := ∂r + v1∂

r−2 + · · ·+ vr−1 (1.2)

is the Lax operator, Li/r, i ∈ N\rN, denote the fractional powers of L (cf. e.g. [14] for the
definition), and ∂ is understood as ∂t1 . This integrable hierarchy can also be viewed as a
reduction of the Kadomtsev–Petviashvili (KP) hierarchy (see e.g. [14] or Section 2).

There are many interesting solutions to the GD hierarchy. For example, in the study of
Witten’s r-spin invariants [23, 26, 41], the so-called topological solution [17, 19] to the GD
hierarchy plays an important role. For example, for the case r = 2, the GD hierarchy is the
celebrated Korteweg–de Vries (KdV) hierarchy, and the topological solution is famously known
as the Witten–Kontsevich solution (cf. e.g. [18, 19]), governing the integrals of psi-classes over
the moduli space of curves [34, 40]. The interest of this paper is on another solution to the GD
hierarchy again for any r. Unlike the topological solution, the solution of interest of this paper
will depend non-trivially on r − 1 arbitrary parameters. Again, let us look at the KdV case
first (i.e., the case with r = 2). For this case, it is known that there exists a solution to the
KdV hierarchy, called the generalized BGW solution, depending non-trivially on one arbitrary
parameter [3, 18], having bispectral properties [18, 20], and possessing enumerative meanings
[33, 38, 42]. This motivates us to generalize the generalized BGW solution to an arbitrary
r ≥ 2. Indeed, let d1, . . . , dn be arbitrarily given complex numbers, and define vBGW(t) as the
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unique solution in C[[t]]n to the GD hierarchy, satisfying the initial condition

vα,BGW

(

t1, t≥2 = 0
)

=
dα

(1− t1)α+1
, α = 1, . . . , r − 1, (1.3)

where t = (ti)i∈N\rN. We call vBGW(t; d1, . . . , dn) the generalized BGW solution to the GD
hierarchy. The Dubrovin–Zhang type tau-function of this solution (cf. [6, 8, 14, 18, 19]) will be
called the generalized BGW tau-function, denoted by τBGW = τBGW(t; d1, . . . , dn). We show
in Section 3 that the generalized BGW tau-function τBGW can be chosen such that

∑

i∈N\rN

it̃i
∂τBGW

∂ti
+
d1
r
τBGW = 0, (1.4)

where t̃i = ti − δi,1, moreover, it is unique up to multiplying by a nonzero constant.
The above definition of the generalized BGW tau-function for the GD hierarchy was given

in joint work by B. Dubrovin, D. Zagier and the first named author of the present paper in a
more general set up, i.e., for the Drinfeld–Sokolov (DS) hierarchy associated to a simple Lie
algebra [6], where certain analogues of the triangle numbers on the constants manifold were
observed. The GD hierarchy can be considered as the DS hierarchy associated to the An type
simple Lie algebra under the Wronskian gauge. In [35], certain generalized BGW tau-functions
were also given for the DS hierarchy associated to an affine Kac–Moody algebra (the simple Lie
algebra case corresponds to the untwisted affine Kac–Moody algebra under a particular choice
of vertex in the Dynkin diagram).

For r = 2, the generalized BGW tau-function can also be identified with the solution to
Virasoro constraints [3, 7, 9]. The goal of this paper is to show that for an arbitrary r ≥ 2, the
generalized BGW tau-function (defined above) satisfies a set of linear constraints, which will
be called W -constraints of the second kind. To be precise, define a family of operators W red

α,q ,
α = 1, . . . , n = r − 1, q ≥ 0, by

W red
α,q (t) := res λ λ

α+(q−α)r
(

∂α+1
µ

(

XGD(t̃;λ, µ)
)

)∣

∣

∣

µ=λ
dλ, (1.5)

where XGD(t;λ, µ) is given by

XGD(t;λ, µ) := e
∑

i∈N\rN ti(µi−λi) ◦ e
∑

i∈N\rN

(

1
iλi

− 1
iµi

)

∂
∂ti . (1.6)

These operators were given e.g. in [2]; according to [2, 4, 25], they can be expressed by operators
coming from the twisted module of the WAn-algebra [5]. We have the following theorem.

Theorem 1.1 There exist unique constants ρ1, . . . , ρr−1 ∈ C such that

W red
α,q

(

τBGW

)

= (−1)αραδα,qτBGW, α = 1, . . . , r − 1, q ≥ α. (1.7)

Moreover, these constants ρα are polynomials of d1, . . . , dn, having the form

ρα =
dα
r

+ ωα(d1, . . . , dα−1). (1.8)
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We refer to (1.7) as W -constraints of the second kind. We note that the W -constraints for
the topological tau-function [2, 4, 5, 9, 28, 44], being referred to as W -constraints of the first
kind, start with q = 0 instead of q = α and have the dilaton shift at tr−1 instead of at t1.

The W -constraints of the second kind seem to have common cases with the W -constraints
given in [9] in an equivalent way. For certain special common cases, the solutions to the W -
constraints of [9] were conjectured by Chidambaram, Garcia–Failde and Giacchetto in a recent
letter to the authors of the present paper to be tau-functions for the GD hierarchy. Theorem 1.1
(cf. also Theorem 4.5) should lead to this conjecture; still, it will be interesting to investigate
the explicit relationship between τBGW and the partition functions defined in [9].

In a subsequent publication, we will consider the analogous open extension of the generalized
BGW tau-function for arbitrary r ≥ 2 (see [43] for the r = 2 case; cf. also [8, 11]).

Organization of the paper. In Section 2 we review some basics on KP and GD hierarchies.
In Section 3 we give the definition of the generalized BGW tau-function τBGW in more details.
In Section 4 we prove Theorem 1.1. In Section 5 we present some examples.

Acknowledgements. We thank Gaëtan Borot and Xingjun Lin for helpful suggestions. The
work is partially supported by NSFC 12061131014.

2 Preliminaries

In this section we review tau-functions and wave functions for the KP hierarchy and for the
GD hierarchy.

Let LKP denote the pseudo-differential operator

LKP := ∂ +
∑

k≥1

uk∂
−k. (2.1)

Here ∂ := ∂x. Recall that the KP hierarchy [14] is the following commuting system of PDEs
for the infinitely many dependent variables u1(tKP), u2(tKP), . . . :

∂LKP

∂ti
=
[

(

Li
KP

)

+
, LKP

]

, i ≥ 1. (2.2)

Here tKP := (t1, t2, t3, . . . ) denotes the infinite vector of times. The first equation in (2.2) reads

∂uk
∂t1

=
∂uk
∂x

, k ≥ 1.

Therefore we identify the time t1 with x. We consider solutions to the KP hierarchy in C[[tKP]]
N,

i.e., uk(tKP) ∈ C[[tKP]], k ≥ 1. Denote for simplicity u := (u1, u2, · · · ). It is known (see for
example [14]) that for an arbitrary power series solution u(tKP) = (u1(tKP), u2(tKP), . . . ) to
the KP hierarchy, there exists a pseudo-differential operator

Φ(tKP) = 1 +
∑

k≥1

φk(tKP) ∂
−k, φk(tKP) ∈ C[[tKP]], (2.3)
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called a dressing operator, satisfying

LKP = Φ ◦ ∂ ◦ Φ−1, (2.4)

∂Φ

∂ti
= −

(

Li
KP

)

−
◦ Φ, i ≥ 1. (2.5)

The dressing operator Φ is uniquely determined by the solution u up to the right multiplication
by an operator of the form

1 +
∑

k≥1

ak∂
−k ∈ C[[∂−1]],

where ak, k ≥ 1 are constants. The wave and dual wave functions ψ(tKP;λ), ψ
∗(tKP;λ)

associated to the solution u(tKP) are elements in C
((

λ−1
))

[[tKP]] defined by

ψ(tKP;λ) := Φ(tKP;λ)
(

eξ(tKP;λ)
)

, ψ∗(tKP;λ) =
(

Φ∗(tKP;λ)
)−1
(

e−ξ(tKP;λ)
)

, (2.6)

where ξ(tKP;λ) :=
∑

i≥1 tiλ
i, and Φ∗ denotes the formal adjoint operator of Φ, i.e.,

Φ∗ := 1 +
∑

k≥1

(−∂)−k ◦ φk. (2.7)

They satisfy

LKP(ψ) = λψ,
∂ψ

∂ti
=
(

Li
KP

)

+
(ψ),

L∗
KP(ψ

∗) = λψ∗,
∂ψ∗

∂ti
=
(

(

L∗
KP

)i
)

+
(ψ∗)

with L∗
KP := −∂ +

∑

k≥1(−∂)
k ◦ uk. Introduce the following two operators:

X(tKP;λ) = e
∑

i≥1 tiλ
i

e−
∑

i≥1
1

iλi
∂i , X∗(tKP;λ) = e−

∑

i≥1 tiλ
i

e
∑

i≥1
1

iλi
∂i . (2.8)

It was proved in [14] that for an arbitrary solution u in C[[tKP]]
N to the KP hierarchy, there

exists a power series τKP(tKP) ∈ C[[tKP]], satisfying

ψ(tKP;λ) =
X(tKP;λ)(τKP(tKP))

τKP(tKP)
, ψ∗(tKP;λ) =

X∗(tKP;λ)(τKP(tKP))

τKP(tKP)
. (2.9)

We call τKP(tKP) the tau-function of the solution u for the KP hierarchy. We also call (Φ, τKP)
a dressing pair associated to u. The dressing pair is uniquely determined by the solution u up
to the transformation

(Φ, τKP) 7→
(

Φ ◦ e−
∑

i≥1 bi∂
−i

, τKPe
b0+

∑

i≥1 biti
)

, b0, b1, b2, · · · ∈ C.

Denote by Au := Au,0

[

∂i(uk)|i, k ≥ 1
]

the ring of differential polynomials of u, where
Au,0 denotes the ring of smooth functions of u. For a pseudo-differential operator of the form
a =

∑

i∈Z ai∂
i, define res ∂ a = a−1. Define a family of differential polynomials in u by [14]

ΩKP
i,j = ΩKP

i,j (u, ux, . . . ) := ∂−1

(

∂

∂tj
res ∂ L

i
KP

)

∈ Au, i, j ≥ 1, (2.10)

where ∂−1 is fixed by the no-integration-constant rule. We call Ωi,j the two-point correlations
functions for the KP hierarchy.
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Lemma 2.1 Let u be an arbitrary solution in C[[tKP]]
N to the KP hierarchy, and τKP ∈

C[[tKP]] the tau-function of u. Then the following formulae hold true:

∂2 log τKP

∂ti∂tj
= ΩKP

i,j , ∀ i, j ≥ 1. (2.11)

Proof Let (Φ, τKP) be the dressing pair associated to u, and ψ the corresponding wave function.
It was shown in [14] that for given i, j ≥ 1,

∂2 log τKP

∂ti∂tj
= res z z

i

(

−
∑

ℓ≥1

z−ℓ−1∂tℓ +
∂

∂z

)

(

−

(

Lj
KP

)

−
(ψ)

ψ

)

(2.12)

Note that
(

Lj
KP

)

−
can be rewritten into the form

(

Lj
KP

)

−
=
∑

k≥1

aj,kL
−k
KP, (2.13)

where aj,k ∈ Au satisfying aj,k|u=ux=uxx=···=0 = 0. Combining (2.12) with (2.13) we find that

∂2 log τKP

∂ti∂tj
= iaj,i +

i−1
∑

k=1

∂aj,k
∂ti−k

.

In particular, observing that aj,1 = res ∂ L
j
KP, we have

∂2 log τ

∂t1∂tj
= res ∂ L

j
KP.

Taking the derivative with respect to ti on the both sides of the above identity, and then by
using the definition (2.10), the lemma is proved. �

Introduce the following operator:

X (tKP;λ, µ) := e
∑

i≥1 ti(µi−λi) ◦ e
∑

i≥1

(

1
iλi

− 1
iµi

)

∂
∂ti . (2.14)

It is shown in [12] that

res ν
X(tKP; ν) ◦X(tKP;λ, µ) (τKP(tKP))

τKP(tKP)

X∗(t′KP; ν) (τKP(t
′
KP))

τKP(t′KP)
dν

=(λ− µ)ψ(tKP;µ)ψ
∗(t′KP;λ), (2.15)

where tKP = (t1, t2, . . . ) and t′KP = (t′1, t
′
2, . . . ).

Following [39] and [1], introduce the following operator:

M := Φ ◦

(

∑

i≥1

iti∂
i−1

)

◦ Φ−1 ∈ C[[tKP]]⊗C C((∂−1)). (2.16)

By using Lemma 3.2 of [1] we have

res ∂ M
i ◦ Lk

KP = res λ λ
kψ∗(tKP;λ)∂

i
λ(ψ(tKP;λ)), ∀ i, k ≥ 0. (2.17)
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Then it follows from (2.15) that

res ∂ M
i ◦ Lk

KP =
1

i+ 1
∂

(

res λ λ
k∂i+1

µ ◦X(tKP;λ, µ) (τKP(tKP)) |µ=λ

τKP(tKP)

)

. (2.18)

Denote by t = (ti)i∈N\rN the infinite time vector for the GD hierarchy.

For an arbitrary solution v(t) =
(

v1(t), . . . , vr−1(t)
)

in C[[t]]r−1 to the GD hierarchy, we
associate to it an infinite sequence of power series in C[[t]] defined by

uk = uk(t) := res ∂

(

L1/r ◦ ∂k−1
)

, k ≥ 1.

In other words,

∂ +
∑

k≥1

uk∂
−k = L1/r. (2.19)

Obviously, u = (u1, u2, . . . ) satisfies the KP hierarchy, namely, for all i ∈ N,

∂L1/r

∂ti
=

[

(

Li/r
)

+
, L1/r

]

. (2.20)

Let τKP be the tau-function of the solution u to the KP hierarchy. By the definition (2.10),
we know ΩKP

ir,jr = 0 for i, j ≥ 1 when LKP = L1/r. It then follows from Lemma 2.1 that τKP

satisfies
∂2 log τKP

∂tir∂tjr
= 0, i, j ≥ 1.

This means that, there exist constants a1, a2, . . . , such that

∂

∂tir





∑

j≥1

ajtjr + log τKP



 = 0, i ≥ 1.

Let τ = τ(t) := τKP(tKP) exp
(

∑

j≥1 ajtjr

)

. Then τ is still a KP tau function. We call this

particular chosen τ the tau-function of the solution v for the GD hierarchy reduced from the
KP hierarchy.

Let us proceed to give a second definition of tau-function for the GD hierarchy.

Lemma 2.2 For an arbitrary solution v = v(t) in C[[t]]r−1 to the GD hierarchy (1.1), there
exists a power series τDZ = τDZ(t) ∈ C[[t]] satisfying

∂2 log τDZ

∂ti∂tj
= ΩGD

i,j , ∀ i, j ∈ N\rN, (2.21)

where ΩGD
i,j are differential polynomials in v defined as

ΩGD
i,j = ΩGD

i,j (v, vx, . . . ) := ∂−1

(

∂ res ∂ L
i/r

∂tj

)

. (2.22)

Here ∂−1 is again fixed by the no-integration-constant rule. We call τDZ the Dubrovin–Zhang
type tau-function of the solution v for the GD hierarchy.
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Note that τDZ is uniquely determined by v up to multiplying by a factor the form

exp

(

b0 +
∑

i∈N\rN

biti

)

, (2.23)

where b’s are arbitrary constants.

Theorem 2.3 Let v be an arbitrary solution in C[[t]]r−1 to the GD hierarchy, and τDZ and τ
be the Dubrovin–Zhang type tau-function and the tau-function reduced from the KP hierarchy
of v, respectively. Then there exist constants b0, b1, b2, . . . such that

τ = τDZ exp

(

b0 +
∑

i∈N\rN

biti

)

. (2.24)

Proof It suffices to show τ satisfies (2.21). Let u be the solution to the KP hierarchy determined
by v via (2.19). By the definition of ΩKP

i,j and ΩGD
i,j , we have

ΩKP
i,j (u, ux, . . . ) = ΩGD

i,j (v, vx, . . . ), ∀ i, j ∈ N\rN.

On the other hand, by using Lemma 2.1 and using the definition of τ , we know τ satisfies

∂2 log τ

∂ti∂tj
= ΩKP

i,j (u, ux, . . . ), ∀ i, j ∈ N\rN,

where ΩKP
i,j is given by (2.10). �

3 The generalized BGW tau-function for the GD hierarchy

In this section we give more details about the definition of the generalized BGW tau-function.
Introduce a gradation on Av by assigning the degree:

deg ∂k(vα) = α+ 1 + k, α = 1, . . . , r − 1, k ≥ 0.

It is easy to verify that

deg res ∂

(

Li/r∂−k
)

= i− k, i ≥ 1, k ≤ i− 2. (3.1)

This implies the GD hierarchy (1.1) has the form

∂vα
∂ti

= Xi
α(v, vx, . . . ), α = 1, . . . , r − 1, i ∈ N\rN,

with Xi
α = Xi

α(v, vx, . . . ) ∈ Av having the degree

degXi
α = α+ i+ 1. (3.2)

Proposition 3.1 The generalized BGW solution vBGW satisfies the following linear equations:

∑

i∈N\rN

it̃i
∂vα,BGW

∂ti
+ (α+ 1)vα,BGW = 0. (3.3)
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Proof For simplicity, we denote vα = vα,BGW, and denote

fα(t) :=
∑

i∈N\rN

it̃i
∂vα(t)

∂ti
+ (α + 1)vα(t). (3.4)

We are to show fα = 0. Firstly, from the initial condition (1.3), it is easy to see that

fα(t1 = x, t2 = 0, . . . ) = (x− 1)∂x(vα(x,0)) + (α+ 1)vα(x,0) = 0. (3.5)

Taking the derivative of (3.4) with respect to tj, we have

∂fα
∂tj

=
∑

i∈N\rN

it̃i
∂2vα
∂ti∂tj

+ (α+ j + 1)
∂vα
∂tj

=
∑

i∈N\rN

it̃i

r−1
∑

β=1

∑

k≥0

∂k
(

Xi
β

) ∂Xj
α

∂v
(k)
β

+ (α+ j + 1)
∂vα
∂tj

=

r−1
∑

β=1

∑

k≥0

(

∂kx(fβ)− (β + k + 1)v
(k)
β

) ∂Xj
α

∂v
(k)
β

+ (α+ 1 + j)Xj
α

=

r−1
∑

β=1

∑

k≥0

∂kx(fβ)
∂Xj

α

∂v
(k)
β

.

Here, v
(k)
β = ∂k(vβ), k ≥ 0, the second equality is due to

∂

∂ti
=

r−1
∑

β=1

∑

k≥0

∂k
(

Xi
β

) ∂

∂v
(k)
β

,

the third equality can be obtained by applying ∂k to (3.4), and the last equality is due to (3.2).
Hence the identity (3.5) implies

∂fα
∂tj

(x,0) = 0.

By induction on m, we have for arbitrary j1, . . . , jm ∈ N\rN,

∂mfα
∂tj1 · · · ∂tjm

(x,0) = 0.

The proposition is proved. �

Theorem 3.2 The generalized BGW tau-function τBGW can be chosen to satisfy (1.4).

Proof By using (2.22) and (3.1), one can verify that

deg ΩGD
j1,j2 = j1 + j2, j1, j2 ∈ N\rN.

8



Then it follows from Proposition 3.1 that

∑

i∈N\rN

it̃i
∂ΩGD

j1,j2

∂ti
=
∑

i∈N\rN

it̃i

r−1
∑

α=1

∑

k≥1

∂ti
(

v(k)α

)∂ΩGD
j1,j2

∂v
(k)
α

=−

r−1
∑

α=1

∑

k≥1

(α+ k + 1)v(k)α

∂ΩGD
j1,j2

∂v
(k)
α

= −(j1 + j2)Ω
GD
j1,j2 .

Therefore, by using (2.21), we have

∂2

∂tj1∂tj2

(

∑

i∈N\rN

it̃i
∂ log τBGW

∂ti

)

= 0, j1, j2 ∈ N\rN.

Hence there exist constants a0 and ai, i ∈ N\rN, such that

∑

i∈N\rN

it̃i
∂ log τBGW

∂ti
=

∑

i∈N\rN

ai t̃i + a0.

Let us modify τBGW as τBGW exp
(

−
∑

i∈N\rN aiti
)

. Then τBGW is still a Dubrovin–Zhang type
tau-function, and satisfies

∑

i∈N\rN

it̃i
∂ log τBGW

∂ti
− a0 = 0. (3.6)

It remains to show a0 = −d1/r. The above (3.6) implies

∂2 log τBGW

∂t21

∣

∣

∣

∣

t=0

=
∂ log τBGW

∂t1

∣

∣

∣

∣

t=0

= −a0.

Hence by using (2.21), (2.22) and the initial condition (1.3), we have

∂2 log τBGW

∂t21
(0) = ΩGD

1,1 |t=0=
v1(0)

r
=
d1
r
.

The theorem is proved. �

4 W -constraints of the second kind

In this section, we show that the generalized BGW tau-function τBGW for the GD hierarchy
satisfies the W -constraints of the second kind. Let vBGW be the generalized BGW solution
to the GD hierarchy, and uBGW the corresponding solution to the KP hierarchy (cf. (2.19)).
By Theorem 2.3 we know that τBGW can be regarded as a tau-function of uBGW to the KP
hierarchy.

Let
LKP = ∂ + u1,BGW∂

−1 + u2,BGW∂
−2 + · · ·

be the Lax operator for uBGW, and let Φ be the dressing operator for uBGW such that Φ and
τBGW form a dressing pair. The identities in the following lemma are analogues of (2.18).
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Lemma 4.1 The following identities hold true: ∀ i, k ≥ 0,

res ∂(M − 1)i ◦ L
k
r =

1

i+ 1
∂

(

res λ λ
k∂i+1

µ ◦X(t̃KP;λ, µ) (τBGW)
∣

∣

µ=λ

τBGW

)

, (4.1)

where the operator M is given by (2.16), and t̃KP = (t1 − 1, t2, t3, . . . ).

Proof Recalling the definition (2.14), we have

∂i+1
µ ◦X

(

t̃KP;λ, µ
)

=
i+1
∑

j=0

(

i+ 1

j

)

(−1)i+1−j∂jµ ◦X(tKP;λ, µ). (4.2)

By using (2.18), one can then write the right-hand side of (4.1) into

1

i+ 1

i+1
∑

j=1

(

i+ 1

j

)

(−1)i+1−jjM j−1 ◦ Lk
KP = res ∂(M − 1)i ◦ Lk

KP. (4.3)

By noticing that LKP = L
1
r , the lemma is proved. �

Lemma 4.2 The following identities hold true:

(

(M − 1)i ◦ Lk+ i
r

)

−
= 0, ∀ i, k ≥ 0. (4.4)

Proof The case i = 0 is obvious. For i ≥ 1, let us first show
(

(M − 1)L1/r
)

−
= 0. Observe

that

∑

i≥1

iti
∂

∂ti
−

∂

∂t1
+
d1
r

= res λ

(

λ

2
∂2µX(tKP;λ, µ) − λ∂µX(tKP;λ, µ) +

d1
λr

)∣

∣

∣

∣

µ=λ

dλ =: G(tKP).

(4.5)
By identity (1.4), we have G(tKP)(τBGW) = 0. Therefore,

0 = res ν
X(tKP; ν) ◦G(tKP)(τBGW(tKP))

τBGW(tKP)

X∗(t′KP; ν) (τBGW(t′KP))

τBGW(t′KP)
dν

=− res λ
(

λ∂λ(ψ(tKP;λ))ψ
∗(t′KP;λ)− λψ(tKP;λ)ψ

∗(t′KP;λ)
)

dλ. (4.6)

Here the second equality used the identity (2.15). By using the facts

M(ψ) = ∂λ(ψ), LKP(ψ) = λψ,

as well as the following identity [12]: for arbitrary x, x′ and arbitrary t2 = t′2, t3 = t′3, . . . ,

(

U(tKP)V (t′KP)
)

−

(

δ(x − x′)
)

= − res z U(tKP)
(

exz+
∑

i≥2 tiz
i
)

V ∗(t′KP)
(

e−x′z−
∑

i≥2 tiz
i
)

dz H(x− x′) (4.7)
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with U(tKP), V (t′KP) being arbitrary pseudo-differential operators whose coefficients are power
series of their arguments, we have

0 = − res λ
(

λ∂λ(ψ(tKP;λ))ψ
∗(t′KP;λ)− λψ(tKP;λ)ψ

∗(t′KP;λ)
)

dλH(x− x′)

= (M ◦ LKP − LKP)−
(

δ(x − x′)
)

=
∑

i≥1

Coef∂−i

(

M ◦ LKP − LKP

)(x− x′)i−1

(i− 1)!
H(x− x′). (4.8)

Here δ(x) is the Dirac delta function, and H(x) is the Heaviside unit step function. Therefore,
(

(M − 1) ◦ LKP

)

−
= 0.

By using the fact that

(M − 1)i+1 ◦ Lk+ i+1
r =M i ◦ Lk+ i

r ◦ (M − 1) ◦ L− (kr + i) (M − 1)i ◦ Lk+ i
r , ∀ i, k ≥ 0,

we can prove by induction that identities (4.4) are true. �

From Lemmas 4.1 and 4.2, it follows that, for α = 1, 2, . . . , r − 1 and q ≥ α,

∂x







res λ λ
α+(q−α)r

(

∂α+1
µ ◦X

(

t̃KP;λ, µ
)

)

(τBGW(t))
∣

∣

∣

µ=λ

τBGW(t)






= 0. (4.9)

Denote

XGD(t;λ, µ) := e
∑

i∈N\rN ti(µi−λi)e
∑

i∈N\rN

(

1
iλi

− 1
iµi

)

∂
∂ti . (4.10)

We have that

∂α+1
µ ◦XGD(t;λ, µ) ◦ e

∑

j≥1
1
jr

(

1

λjr
− 1

µjr

)

∂
∂tjr

=∂α+1
µ ◦ e−

∑

i≥1 tir(µ
ir−λir) ◦X(tKP;λ, µ)

=

α+1
∑

k1=0

(

α+ 1

k1

)

∂k1µ

(

e−
∑

j≥1 tjr(µ
jr−λjr)

)

∂α+1−k1
µ ◦X(tKP;λ, µ)

=
α+1
∑

k1=0

∑

p≥1

fk1,pµ
pr−k1∂α+1−k1

µ ◦X(tKP;λ, µ),

where fk1,p = fk1,p(tr, t2r, . . . ) ∈ C[[tr, t2r, . . . ]]. By using this identity, one can obtain that

1

τBGW(t)
res λ=∞ λα+(q−α)r

(

∂α+1
µ ◦XGD

(

t̃;λ, µ
)(

τBGW(t)
)

)∣

∣

∣

µ=λ
dλ

=
1

τBGW(t)

α+1
∑

j=0

∑

p≥1

fj,p res λ=∞ λα−j+(q−α+p)r
(

∂α−j+1
µ ◦X

(

t̃KP;λ, µ
)(

τBGW(t)
)

)∣

∣

∣

µ=λ
dλ.

Together with (4.9), it follows that

∂x

(

W red
α,q (t) (τBGW(t))

τBGW(t)

)

= 0, α = 1, . . . , r − 1, q ≥ α, (4.11)

11



where the operators W red
α,q (t) are defined in (1.5).

We are ready to prove Theorem 1.1.
Proof of Theorem 1.1 From formula (4.11), we know that there exist power series cα,q(t),
independent of x = t1, such that

W red
α,q (t) (τBGW(t)) = cα,q(t)τBGW(t). (4.12)

By using Theorem 3.2 and the fact that W red
1,1 (t) =

∑

i∈N\rN it̃i
∂
∂ti

, we have ρ1 = d1/r. By the
definition (1.5), one can verify that

[

W red
1,1 (t),W

red
α,q (t)

]

= −(q − α)rW red
α,q (t).

Applying the both sides of this identity onto τBGW(t), we obtain that

W red
1,1 (t) (cα,q(t)) = −(q − α)rcα,q(t).

This implies that cα,q(t) are power series with non-positive degrees if we let the degree of ti be
assigned with i, i ∈ Z≥2\rN. So cα,q(t) must be constants, moreover, these constants vanish
if q > α.

Let us proceed to prove the property (1.8). To this end, we first prove the following lemma.

Lemma 4.3 Denote

Sα,q :=
1

α+ 1
res λ λ

α+(q−α)r :

(

∑

j∈N\rN

jλj−1t̃j +
∑

j∈N\rN

λ−j−1 ∂

∂tj

)α+1

: , (4.13)

where α = 1, . . . , n, q ≥ 0, and “: :” denotes the normal ordering (defined by putting the
operators ∂

∂tj
on the right of operators t̃i). The constraints (1.7) can be equivalently written as

Sα,q
(

τBGW

)

= (−1)ασαδα,qτBGW, α = 1, . . . , r − 1, q ≥ α, (4.14)

where σ1, . . . , σr−1 are certain polynomials of ρ1, . . . , ρr−1.

Proof We denote

a(t;λ) :=
∑

i∈N\rN

λiti, b(t;λ) := −
∑

i∈N\rN

1

iλi
∂

∂ti
,

and denote

Pi(t;λ) := ∂i+1
µ

(

ea(t;µ)−a(t;λ)eb(t;µ)−b(t;λ)
)

∣

∣

∣

∣

µ=λ

, i ≥ 0. (4.15)

It is easy to see that Pi(t;λ) satisfy following the recursion relations:

Pi(t;λ) =
∂a(t;λ)

∂λ
◦ Pi−1(t;λ) + Pi−1(t;λ) ◦

∂b(t;λ)

∂λ
+
∂Pi−1(t;λ)

∂λ
. (4.16)

By using the above (4.16), one can prove the following identity by induction:

Pi(t;λ) =
i−1
∑

j=0

∂j

∂λj

(

:
(

∂λ(a(t;λ)) + ∂λ(b(t;λ))
)i+1−j

:

)

, i ≥ 1. (4.17)
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Then we have that, for α = 1, . . . , r − 1 and q ≥ α,

res λ λ
α+(q−α)r : (∂λa(t;λ) + ∂λb(t;λ))

i+1 : dλ

=res λ λ
α+(q−α)rPα(t;λ)−

α−1
∑

j=1

res λ λ
α+(q−α)r : ∂jλ (∂λa(t;λ) + ∂λb(t;λ))

α+1−j : dλ

=res λ λ
α+(q−α)rPα(t;λ)dλ

−
α−1
∑

j=1

(−1)j(α+ (q − α)r)!

(α+ (q − α)r − j)!
res λ λ

α−j+(q−α)r : (∂λa(t;λ) + ∂λb(t;λ))
α+1−j : dλ.

By using the definition (4.13) and by noticing that W red
α,q (t) can be rewritten as

W red
α,q (t) =

1

α+ 1
res λ λ

α+(q−α)rPα(t;λ), (4.18)

we have

Sα,q =W red
α,q −

α−1
∑

j=1

(−1)j(α− j + 1)(α + (q − α)r)!

(α+ (k − α)r − j)!
Sα−j,q−j. (4.19)

Therefore, by using Theorem 1.1 we obtain (1.7), where the constants σ1, . . . , σr−1 can be
uniquely determined by

σα = ρα +
α!

α+ 1

α−1
∑

j=1

(−1)j

j!
σj , α = 1, . . . , r − 1. (4.20)

The lemma is proved. �

The following lemma will also be needed, and will also have other important applications.
For simplicity, we denote

〈τi1 · · · τik〉
• :=

∂kτBGW

∂ti1 . . . ∂tik

∣

∣

∣

∣

t=0

, 〈τi1 · · · τik〉 :=
∂k log τBGW

∂ti1 . . . ∂tik

∣

∣

∣

∣

t=0

.

Lemma 4.4 The system (1.7) (or equivalently (4.14)) has a unique solution in C[[t]] with
initial value 1.

Proof The existence of the solution is already proved. To show the uniqueness, we use the
argument similar to that in [2, 9, 36]. By (4.13), we know that

Sα,q =

α
∑

j=0

α!

j!(α + 1− j)!

∑

kj+1+···+kα+1
−k1−···−kj=(q−α)r

k1 · · · kj t̃k1 · · · t̃kj
∂α−j

∂tkj+1
· · · ∂tkα+1

=

α
∑

j=0

(−1)j
(

α

j

) α−j
∑

p=0

∑

kp+1+···+kα−j+1
−k1−···−kp=(q−α)r+j

k1 · · · kptk1 · · · tkp
∂α−j−p

∂tkp+1 · · · ∂tkα−j+1

,
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where α = 1, . . . , r − 1 and q ≥ α. Hence equations (4.14) can be recast to

∂τBGW

∂tα+(q−α)r
=σαδq,ατBGW +

α
∑

j=0

(−1)α−j

(

α

j

) α−j
∑

p=0

∑

kp+1+···+kα−j+1
−k1−···−kp=(q−α)r+j

∂α−j−pτBGW

∂tkp+1 · · · ∂tkα−j+1

p
∏

a=1

katka.

(4.21)

In terms of 〈τi1 · · · τik〉
•, we have the recursion relations:

〈τAτα+(m−α)r〉
•

=〈τA〉
• +

α
∑

j=0

(−1)α−j

(

α

j

) α−j
∑

p=0

∑

kp+1+···+k(α−j)+1
−k1−···−kp=(m−α)r+j

p!k1 · · · kp〈τA\{k1,...,kp}∪{kp+1,...,kα−j+1}〉
•.

(4.22)

Here τA := τa1 · · · τaN for A = {a1, . . . , aN}. In this way it is clear that all the coefficients of
〈τi1 · · · τik〉

• can be uniquely determined. The lemma is proved. �

(The uniqueness statement in the above Lemma 4.4 can also be proved directly from (1.7).)
By using Lemma 4.3 and formula (4.22), we obtain that

〈τ1τα〉 = 〈τα〉 = cα(σ1, . . . , σα) = σα + γα (σ1, . . . , σα−1) , (4.23)

where cα are certain polynomials of σ1, . . . , σα. The property (1.8) then follows from (4.20)
and the relation

∂ log τBGW

∂t1∂tα
= Ω1,α(vBGW, vx,BGW, . . . ) = res ∂ L

α
r . (4.24)

The theorem is proved. �

We note that, the constants cα in the above proof are initial values of the normal coordinates
Ω1,α = res ∂ L

α/r for the GD hierarchy, i.e., of the corresponding Dubrovin–Zhang hierarchy [19]
(cf. also [8]).

By using Theorem 1.1, Lemma 4.3 and 4.4, we arrive at the following theorem.

Theorem 4.5 A power series τ ∈ C[[t]] satisfies (1.7) if and only if τ is the tau-function for
the Gelfand–Dickey hierarchy satisfying (1.4).

5 Examples

In this section, we use Theorem 1.1 (in particular Lemma 4.3) to compute τBGW and log τBGW.

Example 5.1 For the case with r = 2, the constraints (4.14) give the following relations:

〈

N
∏

i=1

τ2ai+1τ2m+1〉
• =

N
∑

i=1

(2ai + 1)〈τ2ai+2m+1

∏

j 6=i

τ2aj+1〉
• +

1

2

∑

k1+k2=m−1

〈τ2k1+1τ2k2+1

N
∏

i=1

τ2ai+1〉
•

+ δm,0c1〈

N
∏

i=1

τ2ai+1〉
•,
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where N, a1, . . . , aN ,m ≥ 0. The constants c1, d1, σ1, ρ1 are related by

ρ1 = σ1 = c1, d1 = 2c1. (5.1)

We have

〈τ1〉
• = c1, 〈τ21 〉

• = c1(c1 + 1), 〈τ3〉
• =

1

2
c1(c1 + 1), 〈τ31 〉

• = c1(c1 + 1)(c1 + 2),

〈τ1〉 = c1, 〈τ21 〉 = c1, 〈τ3〉 =
1

2
c1(c1 + 1), 〈τ31 〉 = 2c1, 〈τ3τ1〉 =

3

2
c1(c1 + 1).

Example 5.2 For the case with r = 3, the constants cα, dα, σα, ρα are related by

ρ1 = σ1 = c1, d1 = 3c1,

ρ2 = c2 +
2

3
c1, σ2 = c2, d2 =

3

2
c2 + 3c1.

We have

〈τ1〉
• = c1, 〈τ2〉

• = c2, 〈τ21 〉
• = c1(c1 + 1),

〈τ2τ1〉
• = (c1 + 2)

c2
2
, 〈τ31 〉

• = c1(c1 + 1)(c1 + 2),

〈τ4〉
• = c2(c1 + 2), 〈τ22 〉

• = c22 − 2c1(c1 + 1),

〈τ2τ
2
1 〉

• = c2(c1 + 2)(c1 + 3), 〈τ41 〉
• = c1(c1 + 1)(c1 + 2)(c1 + 3),

〈τ1〉 = c1, 〈τ2〉 = c2, 〈τ21 〉 = c1, 〈τ2τ1〉 = 2c2, 〈τ31 〉 = 2c1,

〈τ4〉 = c2(c1 + 2), 〈τ22 〉 = −2c1(c1 + 1), 〈τ2τ
2
1 〉 = 6c2, 〈τ41 〉 = 6c1.

Example 5.3 Similarly, for the case with r = 4, we have

ρ1 = σ1 = c1, d1 = 4c1,

ρ2 = c2 +
2

3
c1, σ2 = c2 d2 = 4c2 + 8c1,

ρ3 = c3 −
3

4
c2 −

3

2
c21, σ3 = c3 −

3

2
c21 −

3

2
c1 d3 =

4

3
c3 + 3c2 + 2c21 + 10c1,

and

〈τ1〉
• = c1, 〈τ2〉

• = c2, 〈τ21 〉
• = c1(c1 + 1), 〈τ3〉

• = c3,

〈τ2τ1〉
• = c2(c1 + 2), 〈τ31 〉

• = c1(c1 + 1)(c1 + 2),

〈τ3τ1〉
• = c3(c1 + 3), 〈τ22 〉

• = 4c3 + c22 − 2c1(c1 + 1),

〈τ2τ
2
1 〉

• = c2(c1 + 2)(c1 + 3), 〈τ41 〉
• = c1(c1 + 1)(c1 + 2)(c1 + 3),

〈τ1〉 = c1, 〈τ2〉 = c2, 〈τ21 〉 = c1, 〈τ3〉 = c3, 〈τ2τ1〉 = 2c2, 〈τ31 〉 = 2c1,

〈τ3τ1〉 = 3c3, 〈τ22 〉 = 4c3 − 2c1(c1 + 1), 〈τ2τ
2
1 〉 = 6c2, 〈τ41 〉 = 6c1.

Remark 5.4 Define
〈τi1 · · · τik〉∞ = lim

r→∞
〈τi1 · · · τik〉. (5.2)
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We call 〈τi1 · · · τik〉∞ the stabilized generalized BGW correlators. For example,

〈τ1〉∞ = c1, 〈τ2〉∞ = c2, 〈τ21 〉 = c1, 〈τ3〉∞ = c3,

〈τ2τ1〉∞ = 2c2, 〈τ31 〉∞ = 2c1, 〈τ4〉∞ = c4, 〈τ3τ1〉∞ = 3c3,

〈τ22 〉∞ = 4c3 − 2c1(c1 + 1), 〈τ2τ
2
1 〉∞ = 6c2, 〈τ41 〉∞ = 6c1.

The partition function of these stabilized correlators and its relation to the KP hierarchy de-
serves a further study.
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[20] Duistermaat, J. J., Grünbaum, F. A., Differential equations in the spectral parameter.
Comm. Math. Phys., 103 (1986), 177–240.

[21] Feigin, B., Frenkel, E., Integrals of motion and quantum groups. Integrable systems
and quantum groups (Montecatini Terme, 1993), 349–418, Lecture Notes in Math. 1620,
Springer, Berlin, 1996.

[22] Frenkel, I. B., Representations of affine Lie algebras, Hecke modular forms and Korteweg-
de Vries type equations. Lie algebras and related topics (New Brunswick, N.J., 1981), pp.
71–110, Lecture Notes in Math., 933, Springer, Berlin-New York (1982).

[23] Faber, C., Shadrin, S., Zvonkine, D., Tautological relations and the r-spin Witten conjec-
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