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Abstract—In this study, we formulate the model reduction
problem of a stable and positive network system as a con-
strained Riemannian optimization problem with the H2-error
objective function of the original and reduced network systems.
We improve the reduction performance of the clustering-based
method, which is one of the most known methods for model
reduction of positive network systems, by using the output of the
clustering-based method as the initial point for the proposed
method. The proposed method reduces the dimension of the
network system while preserving the properties of stability,
positivity, and interconnection structure by applying the Rieman-
nian augmented Lagrangian method (RALM) and deriving the
Riemannian gradient of the Lagrangian. To check the efficiency
of our method, we conduct a numerical experiment and compare
it with the clustering-based method in the sense of H2-error and
H∞-error.

Index Terms—Positive network, structure-preserving model
reduction, Riemannian optimization

I. INTRODUCTION

Model reduction is a crucial step in designing controllers for
large-scale network systems, and thus some reduction methods
have been proposed such as the balanced truncation (BT)
method [1] and the application of the iterative rational Krylov
algorithm (IRKA) [2]–[6]. However, the BT and IRKA do
not preserve the original interconnection structure in spite
of the importance for controlling and monitoring [7]–[10].
To resolve this issue, the interconnection structure preserving
model reduction methods for network systems have been
proposed for a few decades. For example, [11] proposed to
preserve the scale-free property of networks by formulating
the interconnection constraints as the eigenvector centrality. In
this method, the reduced network remains a flow network if the
initial network is a flow network. Furthermore, [12] introduced
network reduction methods which preserve the interconnection
structure of subsystems.

Moreover, model reduction methods of positive network
systems whose outputs are always nonnegative under non-
negative inputs are important, because the systems are often
found in real world applications such as pharmacokinetics,
metabolism, epidemiology, ecology, and logistics [13], [14]. In
a positivity-preserving manner, some model reduction methods
have been proposed in [15]–[17]. For instance, the clustering-
based method [16], [17] is one of the most known methods
which preserves the positivity. Furthermore, in [16], [17], the
theoretical bounds of the H2-error between the original and
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reduced systems are provided. Nonetheless, the clustering-
based method does not guarantee the H2-optimality between
the original and reduced network systems.

The H2 optimal model reduction methods have been pro-
posed in [18]–[21] based on Riemannian optimization [22].
In particular, in [21], the set of stable matrices was endowed
with the geometry of a Riemannian manifold, as summarized
in Section II. D in this paper. That is, the Riemannian opti-
mization algorithm in [21] always produces a reduced asymp-
totically stable system at each iteration. However, the above
methods are not appropriate for network systems, because
the resulting reduced systems do not preserve the original
interconnection structure. That is, it is difficult to physically
interpret the resulting reduced model.

For the H2 optimal network system reduction, [23] pro-
posed the H2 optimal reduction method for linear consensus
networks consisting of diffusively coupled single-integrators,
which uses the clustering-based model reduction method as
an initial network of the algorithm and aims to minimize the
H2 error by selecting suitable edge weights of the reduced
network. Moreover, the method preserves the interconnection
structure of the original network system. However, since this
method is based on matrix inequalities, it is difficult to simply
extend to general positive networks to preserve the positive
property.

Therefore, to reduce large-scale asymptotically stable posi-
tive network systems, we formulate a novel H2 optimization
problem as a Riemannian optimization problem with con-
straints. The introduction of the constraints is for preserving
the positivity and interconnection structure of the original
network system, and is the major difference with the existing
problem formulations in [18]–[21]. To define the constraints,
we use the result of a clustering-based model reduction
method. That is, the problem formulation in this paper can
be regarded as a generalization of that in [21]. The main con-
tribution is to develop the Riemannian augmented Lagrangian
method (RALM) [24] for solving the problem. That is, the
RALM preserves not only the stability and positivity but also
the interconnection structure of the original system. To this
end, we derive the Riemannian gradients, that are different
from those of the objective function in [21], of the Lagrangian
composed of the objective function and a penalty term.

The remainder of this paper is organized as follows. In
Section II, we describe the preliminary knowledge about
asymptotically stable positive network systems, clustering-
based network reduction, and the Riemannian manifold of
stable matrices. In Section III, we formulate a novel H2 opti-
mal model reduction problem for preserving the positivity and
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interconnection structure of the original network system as a
Riemannian optimization problem with constraints. In Section
IV, we propose the RALM algorithm by deriving the gradients
of the Lagrangian. In Section V, to illustrate the effectiveness
of our method, we conduct a numerical experiment on a
stable positive network and compare it with the clustering-
based method from the viewpoints of H2-error and H∞-error.
Finally, our conclusions are presented in Section VI.

II. PRELIMINARIES

A. Notation
For a Riemannian manifold M , the tangent space at x ∈

M is denoted by TxM . We remark 〈·, ·〉(M)
x : TxM ×

TxM → R is an inner product at x ∈ M . For a vector
v ∈ Rm, ‖v‖2 denotes the usual Euclidean norm. The L2

space on Rm for m ∈ Z>0 is denoted by L2(Rm) with
the norm ‖f‖L2 :=

√∫∞
0
‖f(t)‖22dt, where f : [0,∞) →

Rm is a measurable function. The H2 and H∞ norms
of a linear system whose transfer function is G are de-
fined by ‖G‖H2 =

√
1
2π

∫∞
−∞ ‖G(iω)‖2Fdω and ‖G‖H∞ =

supω∈R σmax(G(iω)), respectively, where ‖ · ‖F is the Frobe-
nius norm and σmax(G(iω)) denotes the maximum singular
value of G(iω).

B. Asymptotically Stable Positive Network System
In this paper, we consider{

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t)
(1)

as the original large-scale network system with the state
x(t) ∈ Rn, input u(t) ∈ Rm, output y(t) ∈ Rp, and coefficient
matrices A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rp×n.

We assume the following:
1) The original network system (1) is asymptotically stable.

That is, the real parts of all the eigenvalues of the matrix
A are negative. In this case, we call A a stable matrix.
The matrix A is Metzler. That is, every off-diagonal
entry of A is nonnegative.

2) The matrices B and C are nonnegative.
Assumptions 2) and 3) mean that the original network

system (1) is essentially positive, as shown in [13]. That is,
not only the output y(t) but also the state x(t) is nonnegative
under the nonnegative input u(t) and initial state x(0). In fact,
the solution to system (1) is given by x(t) = exp(At)x(0) +∫ t
0

exp(A(t− τ))Bu(τ)dτ . If A is Metzler, exp(At) for any
t ∈ R is nonnegative. Thus, Assumptions 2) and 3) imply that
x(t) and y(t) are nonnegative under the nonnegative input u(t)
and initial state x(0).

We denote the original network graph by G = (V, E).

C. Network Reduction Based on Clustering
For fixed r (< n), we reduce the original system (1) to a

r-dimensional system{
ẋr(t) = Arxr(t) +Bru(t)

yr(t) = Crxr(t),
(2)

where xr(t) ∈ Rr, yr(t) ∈ Rp, and (Ar, Br, Cr) ∈ Rr×r ×
Rr×m×Rp×r. We define Gr = (Vr, Er) as the reduced network
graph associated to system (2).

As shown in [15], we can obtain a reduced model by
aggregating clusters C1, C2, . . . , Cr, that are illustrated in Fig.
1, into the nodes of Gr as follows.{

ΠTΠẋr(t) = ΠTAΠxr(t) + ΠTBu(t),

yr(t) = CΠxr(t),
(3)

where Π ∈ Rn×r is the characteristic matrix and

(Π)ij =

{
1, if i ∈ Cj ,
0, otherwise.

In this case, reduced system (3) has the same interconncetion
structure with the original network system (1). That is, if there
is a directed path from i ∈ Vr to j ∈ Vr, there is a directed
path from a node of π−1(i) to a node of π−1(j) in G. Here,
π : V → Vr is the associated map to the characteristic matrix
Π of the clustering {C1, . . . , Cr}. We remark that ΠTΠ is a
diagonal matrix whose diagonal elements are the number of
nodes in each cluster.

D. Riemannian Manifold of Stable Matrices

We will explain that the space of stable matrices Sr can be
regarded as a Riemannian manifold.

As shown in Proposition 1 of [25], for any stable matrix
Ar ∈ Rr×r, there exists a (Jr, Rr, Qr) ∈ Sr satisfying
Ar = (Jr − Rr)Qr. Conversely, for any (Jr, Rr, Qr) ∈ Sr,
(Jr − Rr)Qr is stable. Here, Sr := Skew(r) × Sym+(r) ×
Sym+(r), Skew(r) is the set of all skew symmetric matrices,
and Sym+(r) is the set of all symmetric positive definite
matrices.

The Euclidean space Rk×l is a Riemannian manifold
with the metric 〈ξ, η〉(R

k×l)
P := tr

(
ξTη
)
. For Skew(r),

which is an Euclidean embedded submanifold endowed
with the restricted metric 〈ξ, η〉(R

r×r)
P |Skew(r) and also lin-

ear subspace of Rr×r, the Riemannian gradient of f :
Skew(r) → R is calculated from the Euclidean gradient
∇f̄(x) easily using the orthogonal projection onto the tan-
gent space; grad f(x) = skew(∇f̄(x)) := 1

2 (∇f̄(x) −
∇f̄(x)T). For more detail discussion, see [26, Chapter 3]
and [22]. The Riemannian metric of Sym+(r) is defined as
〈ξ, η〉(Sym+(r))

P := tr
(
P−1ξP−1η

)
, for any P ∈ Sym+(r)

and ξ, η ∈ TPSym+(r) [27, Chapter XII]. The Riemannian
manifold Sym+(r) with this metric has a closed form of the
exponential map ExpP (ξ) = P exp

(
P−1ξ

)
, where exp(P )

is a matrix exponential, and the Riemannian gradient on
Sym+(r) is calculated as grad f(P ) = P sym(∇f̄(P ))P by
letting sym(S) := 1

2

(
S + ST

)
[19].

The set Sr is a product of the Riemannian manifolds
Skew(r) and Sym+(r). Thus, Sr is a Riemannian manifold
with the canonically induced metric.
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Fig. 1. An example of clustering-based network reduction. The original network (a) is clustered into (b) and the reduced network with the clusters is (c).
The input and output structure after reduction is the same as the original network.

III. PROBLEM FORMULATION

A. Initial Reduced Network

To define the constraints for the interconnection structure,
we calculate the reduced model (2) on Gr = (Vr, Er) by using
the clustering-based algorithm as follows;

A
(0)
r := (ΠTΠ)−1ΠTAΠ− αIr,

B
(0)
r := (ΠTΠ)−1ΠTB,

C
(0)
r := CΠ

(4)

where α ≥ 0 is a sufficiently large constant such that A(0)
r

is stable. Note that (ΠTΠ)−1ΠTAΠ is not stable in general,
even if A is stable. For example, consider

A =


−1 0 0 0 0
6 −2 0 0 0
0 1 −3 0 0
0 0 1 −4 0
0 0 0 10 −5

 , Π =


1 0
1 0
1 0
0 1
0 1

 ,

where A is a stable and Metzler matrix. Then,

(ΠTΠ)−1ΠTAΠ =

[
1
3 0
1
2

1
2

]
, which is Metzler, but is

not stable. It is also notable that the non-diagonal nonzero
entries of Ar correspond to the edges of Gr. Also, the nonzero
entries of Br and Cr imply the input and output position,
respectively.

To preserve the interconnection structure, every entry of
the feasible solution (Ar, Br, Cr) should be zero if the cor-
responding entry of the initial matrix (A

(0)
r , B

(0)
r , C

(0)
r ) is

zero and should be nonnegative if the corresponding entry
is nonnegative. For convenience, z (X) denotes the indices
sets of the zero-entries of the matrix X and nn (X) denotes
the indices sets of the nonnegative-entries of the matrix X for
X = A

(0)
r , B

(0)
r , C

(0)
r . It is notable that z (A

(0)
r ) and nn (A

(0)
r )

do not contain the diagonal indices of A(0)
r .

B. H2 Optimization Problem with constraints

We consider an H2 optimal model reduction problem using
the transfer functions G of (1) and Gr of (2) to reconstruct a
novel reduced model (Ar, Br, Cr) of preserving the positivity
and interconnection structure better than a given reduced
model (A

(0)
r , B

(0)
r , C

(0)
r ) in the sense of the H2 norm. This

is because supt≥0 ‖y(t) − yr(t)‖2 ≤ ‖G − Gr‖H2 assuming
that ‖u‖L2 ≤ 1, as explained in [2], [21]. This inequality
indicates that the maximum output error norm can be expected
to become almost zero when ‖G−Gr‖2H2 = 2F (Ar, Br, Cr)+
‖G‖2H2 is sufficiently small, where

F (Ar, Br, Cr) :=
1

2
tr
(
CrSC

T
r − 2CrX

TCT
)

(5)

=
1

2
tr
(
BT
r SBr + 2BTY Br

)
.

Here, (X,Y, S, T ) are the solutions to the following Sylvester
equations

AX +XAT
r +BBT

r = 0, (6)

ATY + Y Ar − CTCr = 0, (7)

ArS + SAT
r +BrB

T
r = 0, (8)

AT
r T + TAr + CT

r Cr = 0. (9)

Therefore, we formulate the following optimization prob-
lem.

minimize
((Jr,Rr,Qr),Br,Cr)

∈Mr

F (Ar, Br, Cr)

subject to Ar := (Jr −Rr)Qr,
g
(Ar)
ij (Ar) ≤ 0, ∀(i, j) ∈ nn (A(0)

r ),

g
(Br)
ij (Br) ≤ 0, ∀(i, j) ∈ nn (B(0)

r ),

g
(Cr)
ij (Cr) ≤ 0, ∀(i, j) ∈ nn (C(0)

r ),

g
(Ar)
ij (Ar) = 0, ∀(i, j) ∈ z (A(0)

r ),

g
(Br)
ij (Br) = 0, ∀(i, j) ∈ z (B(0)

r ),

g
(Cr)
ij (Cr) = 0, ∀(i, j) ∈ z (C(0)

r ),

(10)



where Mr := Sr × Rr×m × Rp×r and g
(X)
ij (X) := −(X)ij

for X = Ar, Br, Cr and (i, j) is an index of X .
The problem (10) is an H2 optimal model reduction

problem with nonnegativity and interconnection structure-
preserving constraints. The reduced system (2) corresponding
to a feasible solution to (10) is always an asymptotically stable,
positive, and has the same interconnection structure with the
original system (1).

Moreover, the optimization problem (10) can be regarded
as a Riemannian optimization problem with the constraints by
introducing the Riemannian metric

〈η, ξ〉(Mr)
x := 〈ξ, η〉(R

r×r)
Jr

|Skew(r) + 〈ξ, η〉(Sym+(r))

Rr

+ 〈ξ, η〉(Sym+(r))

Qr
+ 〈ξ, η〉(R

r×m)
Br

+ 〈ξ, η〉(R
p×r)

Cr
(11)

into the set Mr, where x = (Jr, Rr, Qr, Br, Cr), and ξ =
(ξ1, ξ2, ξ3, ξ4, ξ5), η = (η1, η2, η3, η4, η5) ∈ TxMr. Therefore,
we can develop an algorithm for solving (10) based on
Riemannian optimization [22].

Remark 1. According to Theorem 4.C.2 in [28], if the
matrix A has a dominant diagonal that is negative, A is
stable. Using this fact, we can formulate another optimization
problem by adding the inequality constraints to enforce the
strict diagonally dominance. However, this is just a sufficient
condition for A to be stable unlike our formulation in (10).
That is, our formulation is useful to decrease the objective
function value compared with the addition of the inequality
constraints, because the search space of Ar is wider.

IV. PROPOSED METHOD

Because the optimiztion problem (10) is a Riemannian op-
timization problem with constraints, we develop an algorithm
for solving (10) based on RALM proposed in [24].

The Lagrangian function of (10) for RALM is as follows:

Lρ((Jr, Rr, Qr, Br, Cr), λ, γ) = F (Ar, Br, Cr)

+
ρ

2

∑
V ∈{Ar,Br,Cr}

 ∑
(i,j)∈nn (V (0))

max

0,
λ
(V )
ij

ρ
+ g

(V )
ij (V )


2

+
∑

(i,j)∈z (V (0))

(
g
(V )
ij (V ) +

γVij

ρ

)2
 ,

where ρ > 0 is a penalty parameter and γAr
ij ∈ Rr×r, γBr

ij ∈
Rr×m, γCr

ij ∈ Rp×r, λAr
ij ∈ Rr×r≥0 , λBr

ij ∈ Rr×m≥0 , and λCr
ij ∈

Rp×r≥0 are the hyper parameters of RALM.
The algorithm is shown in Algorithm 1. Here, in Algorithm

1, dist is the distance function on the Riemannian manifold
Mr equipped with the Riemannian metric (11). That is,

dist(Mr) (x, y)2 = ‖Jr − J ′r‖
2
F +

∥∥∥logR−1/2r R′rR
−1/2
r

∥∥∥2
F

+
∥∥∥logQ−1/2r Q′rQ

−1/2
r

∥∥∥2
F

+ ‖Br −B′r‖
2
F + ‖Cr − C ′r‖

2
F

where x = (Jr, Rr, Qr, Br, Cr), y = (J ′r, R
′
r, Q

′
r, B

′
r, C

′
r) ∈

Mr and ξ = (ξ1, ξ2, ξ3, ξ4, ξ5), η = (η1, η2, η3, η4, η5) ∈
TxMr. For the details of step 9 in Algorithm 1, see [22].

To solve the subproblem of step 3 in Algorithm 1 by
using a Riemannian line search method [22], we calculate the

Euclidean gradients of Lρ. As shown in [29], the Euclidean
gradients F̄ with respect to Ar, Br and Cr are calculated as

∇Ar
F̄ = TS + Y TX, ∇Br

F̄ = TBr + Y TB,

∇Cr
F̄ =CrS − CX,

respectively, where (X, Y, S, T ) are the solutions to (6)-(9).
Besides, it is easily seen that∑

(i,j)∈nn (A
(0)
r )

∇Ar
ḡ
(Ar)
ij = (Ir − 1(r, r))� χ

nn (A
(0)
r )
,

∑
(i,j)∈nn (B

(0)
r )

∇Br ḡ
(Br)
ij = −χ

nn (B
(0)
r )

,

∑
(i,j)∈nn (C

(0)
r )

∇Cr
ḡ
(Cr)
ij = −χ

nn (C
(0)
r )

,

∑
(i,j)∈z (A(0)

r )

∇Ar
ḡ
(Ar)
ij = (Ir − 1(r, r))� χ

z (A
(0)
r )
,

∑
(i,j)∈z (B(0)

r )

∇Br
ḡ
(Br)
ij = −χ

z (B
(0)
r )

,

∑
(i,j)∈z (C(0)

r )

∇Cr ḡ
(Cr)
ij = −χ

z (C
(0)
r )

,

where � denotes element-wise product and 1(k, l) is a k × l
matrix whose entries are all 1. Here, χnn (V ) and χz (V ) are
matrices of the same shape as (V ), being defined as

(
χnn (V )

)
i,j

=

{
1, if (i, j) ∈ nn (V ),

0, otherwise,(
χz (V )

)
i,j

=

{
1, if (i, j) ∈ z (V ),

0, otherwise,

for V ∈
{
A

(0)
r , B

(0)
r , C

(0)
r

}
. Then, the Euclidean gradient of

the Lagrangian is written as

∇Ar
Lρ((Jr, Rr, Qr, Br, Cr), λ, γ)

= ∇Ar
F̄ (Ar, Br, Cr)

+
(
U

(Ar)
i � χ

nn (A
(0)
r )

+ U (Ar)
e � χ

z (A
(0)
r )

)
� (Ir − 1(r, r)),

∇Br
Lρ((Jr, Rr, Qr, Br, Cr), λ, γ)

=∇Br
F̄ (Ar, Br, Cr)

−
(
U

(Br)
i � χ

nn (B
(0)
r )

+ U (Br)
e � χ

z (B
(0)
r )

)
,

∇Cr
Lρ((Jr, Rr, Qr, Br, Cr), λ, γ)

=∇Br
F̄ (Ar, Br, Cr)

−
(
U

(Cr)
i � χ

nn (C
(0)
r )

+ U (Cr)
e � χ

z (C
(0)
r )

)
,

and

U
(V )
i :=

(
max

{
0,
λ
(V )
ij

ρ
+ g

(V )
ij (V )

})
(i,j)∈IV

U (V )
e :=

(
λ
(V )
ij

ρ
+ g

(V )
ij (V )

)
(i,j)∈IV



are matrices for each V ∈ {Ar, Br, Cr}. Using the
chain rule, we obtain the Euclidean gradients ∇Jr L̄ρ =
(∇Ar L̄ρ)Qr, ∇Rr L̄ρ = −(∇Ar L̄ρ)Qr, and ∇Qr L̄ρ =
−(Jr +Rr)(∇Ar L̄ρ).

Finally, we calculate the Riemannian gradients from the Eu-
clidean gradients in the same manner described in Section II-
D. The Riemannian gradients are used to solve the subproblem
of step 3 in Algorithm 1.

Algorithm 1 Riemannian augmented Lagrangian method
(RALM).
Require: The function F in (5) and the constraints{

g
(V )
ij

}
(i,j)∈IV ,V ∈{Ar,Br,Cr}

in (10) on Riemannian

manifold Mr.
Input: Initial point x0 = (J (0), R(0), Q(0), B(0), C(0)) ∈Mr;

initial hyper parametars σ = (σAr
, σBr

, σCr
) ∈ Rr×r ×

Rr×m × Rp×r, ρ ∈ R≥0, λ = (λAr
, λBr

, λCr
) ∈

Rr×r≥0 × Rr×m≥0 × Rp×r≥0 , and γ = (γAr
, γBr

, γCr
) ∈

Rr×r × Rr×m × Rp×r; initial accuracy tolerance ε >
0; minimum tolerance εmin > 0 s.t. εmin <
ε; constants θρ > 1, θε ∈ (0, 1); θσ ∈ (0, 1);
boundary vectors λmin = (λmin

Ar
, λmin
Br

, λmin
Cr

), λmax =

(λmax
Ar

, λmax
Br

, λmax
Cr

) ∈ Rr×r≥0 × Rr×m≥0 × Rp×r≥0 s.t. λmin
V ≤

λV ≤ λmax
V , and γmin = (γmin

Ar
, γmin
Br

, γmin
Cr

), γmax =
(γmax
Ar

, γmax
Br

, γmax
Cr

) ∈ Rr×r × Rr×m × Rp×r s.t. γmin
V ≤

γV ≤ γmax
V for V ∈ {Ar, Br, Cr}; minimum step size

dmin > 0.
1: for k = 0, 1, · · · do
2: Solve the subproblem below using Riemannian line

search methods within a tolerance ε:
3:

min
x∈Mr

Lρ(x, λ, γ)

4: and set the solution as xk+1 =
(J (k+1), R(k+1), Q(k+1), B(k+1), C(k+1))

5: Set A(k+1) =
(
J (k+1) −R(k+1)

)
Q(k+1)

6: if dist(Mr)(xk, xk+1) < dmin and ε ≤ εmin then
7: return xk+1

8: end if
9: Update the hyper parameters λ, γ, σ, ρ, and accuracy

tolerance ε.
10: end for

Remark 2. For the time complexity of the proposed method,
the bottleneck of the algorithm is to calculate the objective
function F and its gradients because F internally requires
the solutions for large-scale Sylvester equations (6) and (7).
However, in many applications, these Sylvester equations have
the sparse-dense structure. That is,

1) the original matrix A is large-scale, but is sparse.
2) the reduced matrix Ar is small-scale, but is dense.

In this situation, we can use an efficient algorithm whose
computational complexity is greatly smaller than O(n3) for
solving (6) and (7) such as the method proposed in Section 3
in [30].

Fig. 2: The output yr,1(t) for each original system (blue),
reduced model by clustering-based method (orange), and re-
duced model by proposed method (green)

V. EXPERIMENT

A. Experimental Conditions
We conducted a numerical experiment to verify the effec-

tiveness of the proposed method in the sense of H2-error
and H∞-error. We used the network shown in Fig. 1 with
the random positive weight sampled independently from the
uniform distribution on [0, 1]. Then, the coefficient matrices
are

A = −L− 0.1In,

Bij =

{
1 if (i, j) = (1, 1) or (14, 2)

0 otherwise.
, (12)

Cij =

{
1 if (i, j) = (1, 1) or (2, 7) or (3, 18)

0 otherwise.
,

where L is a loopy Laplacian of the random weighted network
and the second term of A is for numerical stability. We used
Riemannian conjugate gradient descent method [22] with the
Riemannian gradients obtained in Section III as the subsolver
in Algorithm 1. For each iteration, we used the after-100-
iteration output of the Riemannian conjugate gradient descent
method as its solution. The parameters for Algorithm 1 are
shown in Table I.

We obtained the initial iterative point
(J

(0)
r , R

(0)
r , Q

(0)
r , B

(0)
r , C

(0)
r ) by the following way.

1) Calculate A(0)
r , B(0)

r , and C(0)
r using (4).

2) Solve the Lyapunov equation A
(0)
r

T
Q

(0)
r + Q

(0)
r A

(0)
r =

−Ir for Q(0)
r .

3) Calculate J (0)
r = 1

2 (A
(0)
r (Q

(0)
r )−1−(Q

(0)
r )−1A

(0)
r

T
) and

R
(0)
r = − 1

2 (A
(0)
r (Q

(0)
r )−1 + (Q

(0)
r )−1A

(0)
r

T
).

Here, (J
(0)
r , R

(0)
r , Q

(0)
r ) ∈ Sr, as shown in [21].

We define the relative H2 and H∞ errors as

Err2(Gr) :=
‖G−Gr‖H2

‖G‖H2

, Err∞(Gr) :=
‖G−Gr‖H∞
‖G‖H∞

.

B. Result
The H2-error of clustering-based method was Err2(Gr) =

75.7% and its H∞-error was Err∞(Gr) = 70.24%. On



TABLE I
RALM PARAMETERS USED IN EXPERIMENT

parameter σ(0) ρ0 λ(0) λmin λmax γ(0) γmin γmax ε0 εmin θρ θε θσ dmin

value 0 10 1.0 0 10 0 -1.5 1.5 1.0 10−16 1.01 0.95 0.9 10−8

the other hand, the H2-error of propsosed method was
Err2(Gr) = 3.14% and its H∞-error was Err∞(Gr) =
4.67%. It is easily seen that the proposed method improves the
clustering-based method in the sense of not only H2-error but
also H∞-error. Moreover, in Fig. 2, we illustrate the example
outputs corresponding to the input

u(t) =

(
exp(−0.1t)| cos(100πt)|
exp(−0.1t)| sin(200πt)|

)
.

VI. CONCLUSION

We formulated the model reduction problem of an asymp-
totically stable and positive network system as a constrained
Riemannian optimization problem with H2-error of the origi-
nal and reduced network systems as the objective function.
Our method reduces the dimension of the network system
while preserving the properties of stability, positivity, and
interconnection structure by applying RALM and deriving the
Riemannian gradients of the Lagrangian. We proposed to use
the initial point of the clustering-based method. We conducted
a numerical experiment and compare it with the clustering-
based method in the sense of H2-error and H∞-error and
verified that our method improved the reduction performance
of the clustering-based method.

We note that our proposed algorithm can be easily ex-
tended to the case of a positive network system with multi-
dimensional subsystems. Moreover, instead of an initial model
generated by the clustering method as explained in Section
II-C, we can use other arbitrary reduction methods which
preserve stability, positivity, and interconnection structure, as
the initial model of our proposed algorithm.
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