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Abstract

In the present note we study determinantal arrangements constructed with use of the
3-minors of a 3× 5 generic matrix of indeterminates. In particular, we show that certain
naturally constructed hypersurface arrangements in P14

C
are free.
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1 Introduction

The main aim of the present note is to find new examples of free hypersurfaces arrange-
ments constructed as the so-called determinantal arrangements. These arrangements possess
many interesting homological property and some of them will be outlined. On the other side,
computations related to these arrangements are very involving and probably this is the main
reason why these object are not well-studied yet. In the note we focus on determinantal
arrangements constructed via the 3 minors of a 3× 5 generic matrix. Before we present our
main results, let us summarize briefly the basic concepts (see [4, 5] for more details).

Let C ⊂ P
n be an arrangement of reduced and irreducible hypersurfaces and let C = V (F ),

where F = f1 · · · fd with GCD(fi, fj) = 1. Denote by Der(S) = S · ∂x0
⊕ ...⊕S · ∂xn the ring

of polynomial derivations, where S = K[x0, ..., xn] and K is a field of characteristic zero. If
we take θ ∈ Der(S), then

θ(f1 · · · fd) = f1 · θ(f2 · · · fd) + f2 · · · fd · θ(f1).

Now we can define the ring of polynomial derivations tangent to C as

D(C) = {θ ∈ Der(S) : θ(F ) ∈ F · S}.

An inductive application of the Leibniz formula leads us to the following characterization of
D(C), namely

D(C) = {θ ∈ Der(S) : θ(fi) ∈ fi · S for i ∈ {1, ..., d}}.

We have the following (automatic) decomposition

D(C) ≃ E ⊕D0(C),

where E is the Euler derivation and D0(C) = syz(JF ) is the module of syzygies for the
Jacobian ideal JF = 〈∂x0

F, ..., ∂xnF 〉 of the defining polynomial F . The freeness of C boils
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down to a question whether pdim(S/JF ) = 2, which is equivalent to JF being Cohen-
Macaulay. One can show that a reduced hypersufrface C ⊂ P

n given by a homogeneous
polynomial F = 0 is free if the following condition holds: the minimal resolution of the
Milnor algebra M(F ) = S/JF has the following short form

0 →

n⊕

i=1

S(−di − (d− 1)) → Sn+1(−d+ 1) → S,

and the multiset of integers (d1, ..., dn) with d1 6 ... 6 dn is called the set of exponents of
D0(C), and we will denote it by exp(C).

The literature devoted to determinantal arrangements is not robust. In this context
it is worth recalling a general result by Yim [6, Theorem 3.3], where he is focusing on
determinantal arrangements in P

2n−1

C
defined by the products of the 2-minors. For i < j we

denote the 2-minor of the matrix

N =

(
x1 x2 x3 ... xn
y1 y2 y3 ... yn

)

by △ij = xiyj−xjyi. Consider arrangement A defined by the polynomial F =
∏

16i<j6n△ij

with n > 3. Then the arrangement A is free and a basis of D(A) can be very explicitly
described.

Our research is motivated by the following question [6, Question 3.4].

Question 1.1. Let M be the m× n matrix of indeterminates, and let F be the product of
all maximal minors of M . Is the arrangement defined by F free for any n > m > 2?

Remark 1.2. First of all, if C : F = 0 is the hypersurface defined by the determinant of a
generic 3 × 3 matrix of indeterminates, then C is far away from being free. Buchweitz and
Mond in [1] showed that the arrangement defined by the product of the maximal minors of a
generic n× (n+ 1) matrix of indeterminates is free (and it means that we have the freeness
property when m = 3 and n = 4), so the first non-trivial and unsolved case (to the best of
our knowledge) is when m = 3 and n = 5.

Let us consider the 3× 5 matrix of indeterminates

M =





x1 x2 x3 x4 x5
y1 y2 y3 y4 y5
z1 z2 z3 z4 z5



 .

Now for a triple {i, j, k} with i < j < k we construct the 3-minor of M by taking i-th, j-th,
and k-th column. Using the 3-minors we can get 10 hypersurfaces Hl ⊂ P

14 which are given
by the following defining polynomials:

f1 = −x3y2z1 + x2y3z1 + x3y1z2 − x1y3z2 − x2y1z3 + x1y2z3,

f2 = −x4y2z1 + x2y4z1 + x4y1z2 − x1y4z2 − x2y1z4 + x1y2z4,

f3 = −x4y3z1 + x3y4z1 + x4y1z3 − x1y4z3 − x3y1z4 + x1y3z4,

f4 = −x4y3z2 + x3y4z2 + x4y2z3 − x2y4z3 − x3y2z4 + x2y3z4,

f5 = −x5y2z1 + x2y5z1 + x5y1z2 − x1y5z2 − x2y1z5 + x1y2z5,

f6 = −x5y3z1 + x3y5z1 + x5y1z3 − x1y5z3 − x3y1z5 + x1y3z5,

f7 = −x5y3z2 + x3y5z2 + x5y2z3 − x2y5z3 − x3y2z5 + x2y3z5,
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f8 = −x5y4z1 + x4y5z1 + x5y1z4 − x1y5z4 − x4y1z5 + x1y4z5,

f9 = −x5y4z2 + x4y5z2 + x5y2z4 − x2y5z4 − x4y2z5 + x2y4z5,

f10 = −x5y4z3 + x4y5z3 + x5y3z4 − x3y5z4 − x4y3z5 + x3y4z5.

Using these 3-minors we would like to explore new examples of free divisors constructed
as determinantal arrangements of hypersurfaces.

In order to show the freeness of such arrangements, we are going to use the following
criterion due to Saito – see for instance [4, Theorem 8.1]. Let C ⊂ P

n be a reduced effective
divisor defined by a homogeneous equation f = 0. Now we define the graded module of all
Jacobian syzygies as

AR(f) :=

{

r = (a0, ..., an) ∈ Sn+1 : a0 · ∂x0
(f) + ...+ an · ∂xn(f) = 0

}

.

To each Jacobian relation r ∈ AR(f) one can associate a derivation

D(r) = a0 · ∂x0
+ ...+ an · ∂xn

that kills f , i.e., D(r)(f) = 0. One can additionally show that in fact AR(f) is isomorphic,
as a graded S-module, with D0(C).

Theorem 1.3. The homogeneous Jacobian syzygies ri ∈ AR(f) for i ∈ {1, ..., n} form a
basis of this S-module if and only if

φ(f) = c · f,

where φ(f) is the determinant of the (n + 1) × (n + 1) matrix Φ(f) = (rij)06i,j6n, r0 :=
(x0, ..., xn), and c is a non-zero constant.

Saito’s criterion is a very powerful tool under the assumption that we have a set of
potential candidates that might form a basis of AR(f), so our work boils down to finding
appropriate sets of Jacobian relations that will lead us to a basis of AR(f) for a given
arrangement C : f = 0.

Here is our first result of the note.

Theorem 1.4. Let us consider the following hypersurfaces arrangements

Cj : Fj = f1f2f3f4fj for j ∈ {5, ..., 10}.

Then Cj is free with the exponents (1, ..., 1
︸ ︷︷ ︸

14 times

).

Corollary 1.5. In the setting of the above theorem, one has

reg(S/JFj
) = 13

for each j ∈ {5, ..., 10}, so we reach an upper bound for the regularity according to the content
of [2, Proposition 2.6].

Remark 1.6. Of course not every combination of 5 defining equations fi, fj, fk, fl, fm leads
to an example of a free determinantal arrangement. Consider A : V (f1f2f3f5f10) = 0, then
the minimal free resolution of the Milnor algebra M(F ) = S/JF with F = f1f2f3f5f10 has
the following form:

0 → S(−19)3 → S4(−18) ⊕ S13(−15) → S15(−14) → S,
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so the projective dimension is equal to 3.
Moreover, not every choice of 5 consecutive hyperplanes leads to a free arrangement.

Consider B : V (f6f7f8f9f10) = 0, then the minimal free resolution of the Milnor algebra has
the following form

0 → S(−16)3 → S1(−18) ⊕ S16(−15) → S15(−14) → S,

so B is not free.

The ultimate goal of the present paper is the understand whether we can expect a positive
answer on a (sub)question devoted to the freeness of the full determinantal arrangement in
P
14.

Question 1.7. Let us consider the following hypersurfaces arrangements H : V (F ) = 0
defined by F = f1f2f3f4f5f6f7f8f9f10. Is it true that H is free?

Towards approaching the above question, we study mid-step defined arrangements, namely
those having the defining equation Qk = f1f2f3f4f5fk with k ∈ {6, 7, 8, 9, 10}. In particular,
we can show the following results.

Theorem 1.8. Let us consider the hypersurfaces arrangement

Hk : V (Qk) = 0

given by Qk = f1f2f3f4f5fk with k ∈ {6, 7, 8, 9}. Then Hk is free with the exponents
(1, ..., 1
︸ ︷︷ ︸

13 times

, 4).

Corollary 1.9. In the setting of the above theorem, one has

reg(S/JQk
) = 19

for each k ∈ {6, 7, 8, 9}, so we reach an upper bound for the regularity according to the content
of [2, Proposition 2.6].

Remark 1.10. If we consider the arrangement H10 defined by Q10, then it is not free since
the minimal free resolution of the Milnor algebra has the following form:

0 → S(−22)3 → S5(−21) ⊕ S12(−18) → S15(−17) → S,

which is quite surprising.

Our very ample numerical experiments suggest that the full determinantal arrangement
H : f1 · · · f10 = 0 should be free with the exponents (1, ..., 1

︸ ︷︷ ︸

9 times

, 4, ..., 4
︸ ︷︷ ︸

5 times

). In order to verify

our claim we also checked other larger arrangements of hyperplanes, for instance we can
verify that C : f1f2f3f4f7f8f9 = 0 is free with the exponents (1, ..., 1

︸ ︷︷ ︸

12 times

, 4, 4). However, the

derivations of degree 4 seem to us that they do not have a natural geometric or algebraic
explanation so it is very hard to find the basis of derivations for H. We hope to solve this
problem in the nearest future.
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2 Proofs

We start with our proof of Theorem 1.7.

Proof. We are going to apply directly Saito’s criterion. In order to do so, we need to find
a basis of the S-modules AR(Fj) for each j ∈ {5, ..., 10}. This means that in each case we
need to find 14 derivations for each AR(Fj). Since for each choice of Fj the procedure goes
along the same lines, let us focus on the first case F5 = f1f2f3f4f5.

We start with a group of (obvious to see) derivations, namely

θ1 = z1 · ∂x1
+ z2 · ∂x2

+ z3 · ∂x3
+ z4 · ∂x4

+ z5 · ∂x5
,

θ2 = z1 · ∂y1 + z2 · ∂y2 + z3 · ∂y3 + z4 · ∂y4 + z5 · ∂y5 ,
θ3 = y1 · ∂x1

+ y2 · ∂x2
+ y3 · ∂x3

+ y4 · ∂x4
+ y5 · ∂x5

,
θ4 = y1 · ∂z1 + y2 · ∂z2 + y3 · ∂z3 + y4 · ∂z4 + y5 · ∂z5 ,
θ5 = x1 · ∂y1 + x2 · ∂y2 + x3 · ∂y3 + x4 · ∂y4 + x5 · ∂y5 ,
θ6 = x1 · ∂z1 + x2 · ∂z2 + x3 · ∂z3 + x4 · ∂z4 + x5 · ∂z5 ,
θ7 = x2 · ∂x5

+ y2 · ∂y5 + z2 · ∂z5 ,
θ8 = x1 · ∂x5

+ y1 · ∂y5 + z1 · ∂z5 ,
θ9 = y1 · ∂y1 + y2 · ∂y2 + y3 · ∂y3 + y4 · ∂y4 + y5 · ∂y5 − z1∂z1 − z2∂z2 − z3∂z3 − z4∂z4 − z5∂z5 .

We have additionally 5 non-obvious-to-see relations among the partials derivatives (we
have found them with use of Singular [3]), namely:

θ10 = 5x5 · ∂x5
+ 5y5 · ∂y5 − z1 · ∂z1 − z2 · ∂z2 − z3 · ∂z3 − z4 · ∂z4 + 4z5 · ∂z5 ,

θ11 = 5x4 · ∂x4
+ 5y4 · ∂y4 − 3z1 · ∂z1 − 3z2 · ∂z2 − 3z3 · ∂z3 + 2z4 · ∂z4 − 3z5 · ∂z5 ,

θ12 = 5x3 · ∂x3
− 3y1 · ∂y1 − 3y2 · ∂y2 + 2y3 · ∂y3 − 3y4 · ∂y4 − 3y5 · ∂y5 + 5z3 · ∂z3 ,

θ13 = 5x1 · ∂x1
+ 5y1 · ∂y1 + z1 · ∂z1 − 4z2 · ∂z2 − 4z3 · ∂z3 − 4z4 · ∂z4 − 4z5 · ∂z5 ,

and

θ14 = 5x2 · ∂x2
− 3y1 · ∂y1 + 2y2 · ∂y2 − 3y3 · ∂y3 − 3y4 · ∂y4 − 3y5 · ∂y5 − z1 · ∂z1 + 4z2 · ∂z2

−z3 · ∂z3 − z4 · ∂z4 − z5 · ∂z5 .

Now we are going to construct Saito’s matrix. In order to do so, let us write the coefficients
of all θi’s as the columns, and for the Euler derivation E =

∑
5

i=1
xi · ∂xi

+
∑

5

j=1
yj · ∂yj +

∑
5

i=k zk · ∂zk we write r0 = (x1, ..., x5, y1, ..., y5, z1, ..., z5)
t.

Then we get the following matrix

A =






























x1 z1 0 y1 0 0 0 0 0 0 0 5x1 0 0 0
x2 z2 0 y2 0 0 0 0 0 5x2 0 0 0 0 0
x3 z3 0 y3 0 0 0 0 5x3 0 0 0 0 0 0
x4 z4 0 y4 0 0 0 5x4 0 0 0 0 0 0 0
x5 z5 0 y5 0 0 5x5 0 0 0 x2 0 x1 0 0
y1 0 z1 0 y1 0 0 0 −3y1 −3y1 0 5y1 0 x1 0
y2 0 z2 0 y2 0 0 0 −3y2 2y2 0 0 0 x2 0
y3 0 z3 0 y3 0 0 0 2y3 −3y3 0 0 0 x3 0
y4 0 z4 0 y4 0 0 5y4 −3y4 −3y4 0 0 0 x4 0
y5 0 z5 0 y5 0 5y5 0 −3y5 −3y5 y2 0 y1 x5 0
z1 0 0 0 −z1 y1 −z1 −3z1 0 −z1 0 z1 0 0 x1
z2 0 0 0 −z2 y2 −z2 −3z2 0 4z2 0 −4z2 0 0 x2
z3 0 0 0 −z3 y3 −z3 −3z3 5z3 −z3 0 −4z3 0 0 x3
z4 0 0 0 −z4 y4 −z4 2z4 0 −z4 0 −4z4 0 0 x4
z5 0 0 0 −z5 y5 4z5 −3z5 0 −z5 z2 −4z5 z1 0 x5






























.



6

After some cumbersome computations we obtain

Det(A) = 9375 · F5,

which completes the proof.

Now we are going to sketch the proof of Theorem 1.8.

Proof. Once again, we are going to apply Saito’s criterion. We focus on the case k = 7
since other cases can be show in analogical way. The proof is heavily based on Singular

computations and experiments. We can find polynomial derivations that preservesH, namely

θ1 = z1 · ∂x1
+ z2 · ∂x2

+ z3 · ∂x3
+ z4 · ∂x4

+ z5 · ∂x5
,

θ2 = z1 · ∂y1 + z2 · ∂y2 + z3 · ∂y3 + z4 · ∂y4 + z5 · ∂y5 ,
θ3 = y1 · ∂x1

+ y2 · ∂x2
+ y3 · ∂x3

+ y4 · ∂x4
+ y5 · ∂x5

,
θ4 = y1 · ∂z1 + y2 · ∂z2 + y3 · ∂z3 + y4 · ∂z4 + y5 · ∂z5 ,
θ5 = 3x5 · ∂x5

+ 3y5 · ∂y5 − z1 · ∂z1 − z2 · ∂z2 − z3 · ∂z3 − z4 · ∂z4 + 2z5 · ∂z5 ,
θ6 = 2x4 · ∂x4

+ 2y4 · ∂y4 − z1 · ∂z1 − z2 · ∂z2 − z3 · ∂z3 + z4 · ∂z4 − z5 · ∂z5 ,
θ7 = 3x3 · ∂x3

+ 3y3 · ∂y3 − 2z1 · ∂z1 − 2z2 · ∂z2 + z3 · ∂z3 − 2z4 · ∂z4 − 2z5 · ∂z5 ,
θ8 = 6x2 · ∂x2

+ 6y2 · ∂y2 − 5z1 · ∂z1 + z2 · ∂z2 − 5z3 · ∂z3 − 5z4 · ∂z4 − 5z5 · ∂z5 ,
θ9 = x2 · ∂x5

+ y2 · ∂y5 + z2 · ∂z5 ,
θ10 = 3x1 · ∂x1

+ 3y1 · ∂y1 + z1 · ∂z1 − 2z2 · ∂z2 − 2z3 · ∂z3 − 2z4 · ∂z4 − 2z5 · ∂z5 ,
θ11 = x1 · ∂y1 + x2 · ∂y2 + x3 · ∂y3 + x4 · ∂y4 + x5 · ∂y5 ,
θ12 = x1 · ∂z1 + x2 · ∂z2 + x3 · ∂z3 + x4 · ∂z4 + x5 · ∂z5 ,

θ13 = y1 · ∂y1 + y2 · ∂y2 + y3 · ∂y3 + y4 · ∂y4 + y5 · ∂y5 − z1 · ∂z1 − z2 · ∂z2 − z3 · ∂z3 − z4 · ∂z4

− z5 · ∂z5 ,

and

θ14 = 3x1x3y2z2 · ∂x2
+180x1x2y3z3 · ∂x3

+(192x1x2y4z3− 9x1x3y4z2 +12x1x3y2z4−
12x1x2y3z4) ·∂x4

+(15x1x3y5z2−12x1x3y2z5) ·∂x5
+(3x3y1y2z2+60x2y1y2z3−

60x1y
2
2z3) · ∂y2 + (3x3y1y3z2 − 3x1y

2
3z2 − 120x3y1y2z3 + 180x2y1y3z3 +

120x1y2y3z3) · ∂y3 + (12x4y1y3z2 − 9x3y1y4z2 − 12x1y3y4z2 − 132x4y1y2z3 +
192x2y1y4z3 + 132x1y2y4z3 + 12x3y1y2z4 − 12x2y1y3z4) · ∂y4 + (15x3y1y5z2 −
12x5y1y3z2+12x1y3y5z2+60x2y1y5z3−60x1y2y5z3−12x3y1y2z5+12x2y1y3z5−
12x1y2y3z5) · ∂y5 +(4x1y3z

2
2 −x3y1z

2
2 +4x3y2z1z2−4x2y3z1z2+176x2y2z1z3−

204x2y1z2z3 + 28x1y2z2z3) · ∂z2 + (204x2y3z1z3 − 28x3y2z1z3 − 24x2y1z
2
3 +

28x1y2z
2
3 + 181x1y3z2z3 − 181x3y1z2z3) · ∂z3 + (8x4y3z1z2 − 8x3y4z1z2 −

40x4y2z1z3 + 216x2y4z1z3 − 180x4y1z2z3 + 180x1y4z2z3 + 12x3y2z1z4 −
12x2y3z1z4−x3y1z2z4−8x1y3z2z4−24x2y1z3z4+40x1y2z3z4)·∂z4+(16x3y5z1z2−
16x5y3z1z2−16x5y2z1z3+192x2y5z1z3−72x5y1z2z3+12x1y5z2z3−12x3y2z1z5+
12x2y3z1z5 − x3y1z2z5 + 4x1y3z2z5 − 132x2y1z3z5 + 16x1y2z3z5) · ∂z5 .

We claim that the set {E, θ1, θ2, ..., θ14} gives us a basis for D(H). It is enough to observe
that the determinant of Saito’s matrix A is equal to

Det(A) = 23328 ·Q7,

which completes the proof.
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3 Further numerical experiments

In order to understand better the geometry of determinantal hyperplane arrangements
we decided to investigate all possible arrangements C given by triplets Fijk = fifjfk and
given by 4-tuples Fijkl = fifjfkfl provided that the indices are pairwise distinct. Our first
observation is the following.

Proposition 3.1. Let C ⊂ P
14
C

be a determinantal arrangement defined by the equation
Fijk = fifjfk, where i, j, k ∈ {1, ..., 10} and the indices are pairwise distinct. Then C is
never free.

Proof. Using a simple Singular routine we examined all choices of indices obtaining 120
determinantal arrangements, and in each case pdim(S/JFijk

) > 2, which completes the
proof.

After that we focused on determinantal arrangements C given by Fijkl = fifjfkfl. We
have exactly 210 such arrangements, and among them we have exactly 5 special arrange-
ments, namely

a) C1 ⊂ P
14
C

given by F1234,

b) C2 ⊂ P
14
C

given by F1567,

c) C3 ⊂ P
14
C

given by F2589,

d) C4 ⊂ P
14
C

given by F36810,

e) C5 ⊂ P14
C

given by F47910.

These arrangements can be viewed as determinantal arrangements constructed as products
of the maximal minors of appropriate generic 3 × 4 matrix of indeterminantes. Thus by a
result due to Buchweitz and Mond [1] arrangements Ci with i ∈ {1, 2, 3, 4, 5} are free.

Another important class of hypersurface arrangements was introduced by Buśe, Dimca,
Schenck, and Sticlaru, and such arrangements are called nearly-free.

Definition 3.2. ([2, Definition 2.6]) A reduced hypersurface C ⊂ P
n
C

given by F = 0 is
nearly-free if its Milnor algebra M(F ) admits a graded free resolution of the form

0 → S(−dn − d) → S(−dn − d+ 1)⊕

(

⊕n−1

i=0
S(−di − d+ 1)

)

→ Sn+1(d+ 1) → S

for some integers d0 6 d1 6 d2 6 . . . dn.

Next, we checked whether some of the remaining 205 determinantal arrangements C

given by Fijkl = 0 are nearly-free. It turns out that among 205 arrangements we found 58
having this peculiar property that their Milnor algebras M(Fijkl) have the following minimal
resolution:

0 → S(−15) → S15(−12) → S15(−11) → S,

so these are not nearly-free arrangements, but to some extend these are close to them. Having
a complete picture of the minimal resolution we can also calculate the regularity of S/JFijkl

which is equal to
reg(S/JFijkl

) = 12.
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Paulina Wísniewska, Department of Mathematics and Doctoral School, Pedagogical Uni-
versity of Krakow, ul. Podchorazych 2, PL-30-084 Kraków, Poland.
E-mail address: wisniewska.paulina.m@gmail.com

http://www.singular.uni-kl.de

	1 Introduction
	2 Proofs
	3 Further numerical experiments

