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CHARACTER FORMULA FOR WEIL REPRESENTATIONS IN TERMS

OF FROBENIUS TRACES

TIM DOKCHITSER AND VLADIMIR DOKCHITSER

Abstract. It is known that the étale cohomology of a potentially good abelian variety
over a local field K is determined by its Euler factors over the extensions of K. We
extend this to all abelian varieties, show that it is enough to take extensions where A
is semistable, and give a uniform version over p-adic fields where the extensions are the
same for all abelian varieties of a given dimension. The results are explicit, and apply
to a wide class of Weil-Deligne representations.

Ramified l-adic local Galois representations tend to be unwelcome. We give an explicit
character formula which reconstructs such a representation from its Frobenius traces over
extensions where it is unramified. We also record some consequences for étale cohomology
of abelian varieties and other l-adic representations. The paper is a number-theoretic
counterpart of [13], which concerns representations of finite groups.

Our setting is as follows. Let K be a non-archimedean local field, with residue field
FK, separable closure Ks and algebraic closure K̄. We write Knr for the maximal un-
ramified extension of K in Ks, IK = IKs/K for the absolute inertia group and FrobK ∈
GK = Gal(Ks/K) for an arithmetic Frobenius element. Recall that the Weil group WK

is generated by IK and FrobK ; its topology is the usual profinite one on IK and discrete
on WK/IK ∼= Z. A Weil representation over K is a continuous finite-dimensional com-
plex representation of WK . We refer the reader to [23] for the background on Weil and
Weil-Deligne representations.

We begin with an analogue of the character formula [13, Cor. 9] for Weil representations:

Theorem 1. Let F/K be a finite Galois extension of local fields and ρ a semisimple Weil
representation over K that factors through Gal(Fnr/K). Let {ρi}i∈Λ be a set of irreducible
representations of Gal(F/K), with exactly one in each set of unramified twists1. Write
I < Gal(F/K) for the inertia group and mi = 〈ResI ρi,ResI ρi〉. Then

(i) There are unramified representations Ψi such that ρ ∼=
⊕

i∈Λ ρi ⊗Ψi.

(ii) Fix i ∈ Λ. For every d > 0, TrΨi(Frob
dmi
K ) = 1

|I|mi

∑
L Tr ρi(FrobL) Tr ρ(FrobL),

where L ranges over extensions of K in Fnr of ramification degree |I| and residue
degree dmi. Note that F

nr/L is unramified, so ρ(FrobL), ρi(FrobL) are well-defined.
(iii) The twist ρi ⊗Ψi is uniquely determined by (ii).
(iv) Concretely, suppose dimΨi≤N . There is a unique 0 ≤ n ≤ N and λ1, ..., λn ∈

C× such that
∑

k λ
d
k = TrΨi(Frob

dmi
K ) for d = 1, ..., N . Then Ψi(FrobK) has

eigenvalues mi
√
λ1, ...,

mi
√
λn for some choice of the roots, and ρi⊗Ψi is independent

of this choice.

Let ℓ be a prime different from the residue characteristic of K. As an application,
we deduce that the ℓ-adic representation ρℓ = H1

ét(AK̄ ,Qℓ) of an abelian variety A/K is

1i.e. ρi 6= ρj⊗(1-dim) unramified, and each irreducible of Gal(F/K) is ρi⊗(1-dim unramified) for some i
1

http://arxiv.org/abs/2201.04094v3


2 TIM DOKCHITSER AND VLADIMIR DOKCHITSER

determined by the traces Tr ρILℓ (FrobL) over the fields L where A is semistable. (Here,

as usual, ρILℓ is the maximal subrepresentation unramified over L.) In fact, when K has
characteristic 0, we can choose a universal finite list of such fields to control all abelian
varieties of a fixed dimension.

Theorem 2. Let g ≥ 0, and suppose charK = 0. There is a finite Galois extension Kg/K
such that

(i) Every g-dimensional abelian variety A/K has semistable reduction over Kg.
(ii) The GK-representation ρℓ = H1

ét
(AK̄ ,Qℓ) is uniquely determined by the traces

Tr ρILℓ (FrobL) over subfields K ⊂ L ⊂ Kg for which Kg/L is unramified.
(iii) When g ≥ 2, for every smooth projective curve X/K of genus g the GK-representation

H1
ét
(XK̄ ,Qℓ) is uniquely determined by point counts #X̄L(FL) with L as in (ii).

Here XL is the minimal regular model of X/L with special fibre X̄L/FL.

We caution the reader that the result is false when charK > 0, see Remark 11.
We now return to the case of arbitrary characteristic. Theorem 1 allows one to explicitly

reconstruct local Galois representations from the restrictions to subgroups where they be-
come semistable or unramified (extending [12]). For example, supposeX/K is a curve with
‘very bad’ reduction. Then we can identify the Galois representation ρl = H1

ét
(XK̄ ,Qℓ),

provided we know a Galois extension F/K where X becomes semistable, and we can
count points on the reduction of X in extensions of K where X is semistable. We restore
the decomposition of ρl into irreducibles via a weighted average of Frobenius traces as in
Theorem 1 (ii), which can be computed as point counts on the reduced curves. We give a
numerical example at the end of this paper, which illustrates this in detail. This style of
argument has been used for specific Galois groups (see [12, §§3-4], [11, Thm 7.3], [5], [17,
App. A]), and Theorem 1 gives a universal character formula which applies for arbitrary
groups.

Here are some theoretical consequences of Theorem 1 for general representations. The
following corollary is essentially due to Saito [20, Lemma 1(1)]; see also Remark 9.

Corollary 3. Every semisimple Weil representation ρ over K is uniquely determined by
the traces Tr ρ(FrobL), where L varies over finite separable extensions of K over which ρ
is unramified.

Notation. Recall that a Frobenius semisimple Weil-Deligne representation ρ = (ρWeil, N)
over K can be decomposed as ρ =

⊕
n≥1 ρn ⊗ Spn, where ρn are semisimple Weil repre-

sentations (i.e. have N = 0), and Spn is the n-dimensional special representation [23,
4.1.4–4.1.5]. In particular, ρN=0 := kerN =

⊕
ρn.

We say that ρ is weight-monodromy compatible if the eigenvalues of FrobK on ρi are

Weil numbers of absolute value q
n−1

2 , where q = |FK |. We use the same term for ℓ-adic
representations when their associated Weil-Deligne representation is weight-monodromy
compatible.

For every proper smooth variety X/K and 0 ≤ i ≤ 2 dimX, H i
ét
(XK̄ ,Qℓ)(

i
2
) is conjec-

tured to be weight-monodromy compatible [8], and this is often known (see [21, §1] for
a summary). Because a weight-monodromy compatible representation is determined by
ρN=0, from Corollary 3 we get
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Corollary 4. Frobenius-semisimple Weil-Deligne representations ρ = (ρWeil, N) over
K satisfying the weight-monodromy compatibility are uniquely determined by the traces
Tr ρN=0(FrobL), where L varies over finite separable extensions of K over which ρWeil is
unramified.

Corollary 5. Let X/K be a proper smooth variety and 0 ≤ i ≤ 2 dimX. If the GK-
representation ρℓ = H i

ét
(XK̄ ,Qℓ)(

i
2
) is Frobenius semisimple and weight-monodromy com-

patible, then it is uniquely determined by Tr ρILℓ (FrobL) for finite separable extensions L/K
for which IL acts unipotently. In particular, if these traces are independent of ℓ, then so
is the Weil-Deligne representation associated to H i

ét
(XK̄ ,Qℓ).

For semistable abelian varieties these traces are known to be independent of ℓ [15, IX,
Thm 4.3], and we get the well-known independence of ℓ for Weil-Deligne representations
of general abelian varieties (see [6, Ex. 8.10], [14, Rem. 2.4.6] and [1, Prop. 2.8.1] for a
proof):

Corollary 6. For an abelian variety A/K, the Weil–Deligne representation associated to
H1

ét
(AK̄ ,Qℓ) is independent of ℓ.

Finally, we also have a version of Theorem 2 for semisimple ℓ-adic representations:

Theorem 7. Suppose charK = 0. Let n ≥ 0 and F/Qℓ a finite extension. There
is a finite Galois extension KF ,n/K such that all continuous semisimple representations
ρℓ : GK → GLn(F) are

(1) unramified over subfields K ⊂ L ⊂ KF ,n for which KF ,n/L is unramified;
(2) uniquely determined by the traces Tr ρℓ(FrobL) for L as in (1).

Moreover, any finite extension E/KF ,n, with E Galois over K, has this property.

Again, because a Frobenius semisimple weight-monodromy compatible representation
is determined by its maximal semisimple subrepresentation, we deduce

Corollary 8. Suppose charK = 0. All Frobenius semisimple weight-monodromy compati-

ble representations ρℓ : GK → GLn(F) are uniquely determined by the traces Tr ρILℓ (FrobL)
with L and KF ,n (or E) as in the theorem.

Remark 9. Our strategy of proving that Weil representations are determined by their
Frobenius traces over extensions where they are unramified is known, and goes back at
least to Chebotarev. He used the fact that after adjoining enough roots of unity, a finite
extension of number fields has abundance of cyclotomic extensions inside it to reduce his
density theorem to Hecke’s cyclotomic case (see e.g. [19]). Similarly, Corollary 3 relies on
the abudance of unramified extensions inside Fnr/K for a finite Galois extension F/K.
What is new is Theorem 1, which makes this explicit in practice.

As mentioned above, Corollary 3 is due to Saito [20, Lemma 1(1)]. His assumption
n(σ) ≥ 0 is slightly stronger but the proof only uses n(σ) > 0, which is equivalent to that
in Corollary 3. The proof of [20, Lemma 1(1)] does not explain why m is a function of the
traces, and the field cut out by σ is not a finite extension of K. However, both of these
issues can be circumvented with an argument similar to the proof of Corollary 3 below,
by comparing two representations instead of taking one.
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Proof of Theorem 1

(i) This is standard; see e.g. [12, Lemma 2.3] and its proof (taking F as in the theorem).
(ii) By linearity in ρ, it suffices to prove this when ρ = ρi ⊗ Ψ, with Ψ unramified

1-dimensional. Because the formula is also invariant under twisting by unramified 1-
dimensional characters, we may assume Ψ = 1. In particular Ψ factors through Gal(F/K),
and this case is proved in [13, Cor 9 (iii)]. Note that ranging over L is the same as ranging

over g ∈ Frobdmi
K IFnr/K under the correspondence L 7→ FrobL and g 7→ g-invariants of Fnr.

(iii),(iv) This is essentially [13, Cor 9 (iv)]. It is stated there for finite groups, but the
proof is the same: (iii) and (iv) follow formally from (ii) plus the fact that ρi is invariant
under twisting by unramified characters of order mi, which is [13, Lemma 5]. �

Proof of Corollary 3

Let ρ1, ρ2 be two non-isomorphic semisimple Weil representations over K. They have
finite inertia images, and so there is a finite Galois extension F/K such that both ρ1 and
ρ2 factor through Gal(Fnr/K). By Theorem 1, ρ1 and ρ2 can be distinguished from one
another by their Frobenius traces over extensions L/K inside Fnr over which they are
unramified.

Proof of Theorem 7

Fix n and F as in the theorem. First consider continuous representations τ : GK →
GLn(F) with finite image. After taking a τ(GK)-invariant OF -lattice, we may assume
that τ lands in GLn(OF ). Recall that GLn(OF ) has a compact open subgroup U with
no elements of finite order (e.g. using exp and log as in [22, Appendix]). Therefore
|τ(GK)| ≤ (GLn(OF ) : U), and τ factors thorough a Galois extension of K of at most this
degree. As charK = 0, there are only finitely many separable extensions of K of a given
degree by a theorem of Krasner [18], and so there is a finite Galois extension F/K, such
that every τ with finite image factors through Gal(F/K). It follows that every continuous
semisimple representation ρ : GK → GLn(F) factors through Gal(Fnr/K).

Now apply Theorem 1. LetKF ,n be the compositum of all L/K in Fnr with ramification
degree eL/K = eF/K and residue degree over K bounded by n3. By the theorem (parts

(ii)-(iv) and using that dmi ≤ n3 in (iv)), Frobenius traces over these fields determine
ρC : WK → GLn(C) for some chosen embedding F →֒ C. Since WK ⊂ GK is dense and
ρC is continuous, it is determined on all of GK as well. Therefore ρ itself is uniquely
determined as a representation to GLn(F). The same is true for any finite extension E of
KF ,n, Galois over K. �

Proof of Theorem 2

We will prove a slightly stronger statement:

Theorem 10. Suppose charK = 0. Fix g, c ∈ N and a prime ℓ different from the residue
characteristic of K. There is a finite Galois extension Kℓ,g,c/K such that

(i) Every g-dimensional abelian variety A/K has semistable reduction over Kℓ,g,c.

(ii) The GK-representation ρℓ = H1
ét
(AK̄ ,Qℓ) is uniquely determined by Tr ρILℓ (FrobL)

for subfields K ⊂ L ⊂ Kℓ,g,c with |FL| > c and Kℓ,g,c/L unramified.
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(iii) When g ≥ 2, for every smooth projective curve X/K of genus g, the GK-representation
H1

ét
(XK̄ ,Qℓ) is uniquely determined by point counts #X̄L(FL) with L as in (ii).

Here XL is the minimal regular model of X/L with special fibre X̄L/FL.

Proof. (i), (ii) Suppose c = 1. Recall that H1
ét
(AK̄ ,Qℓ) is Frobenius semisimple and

weight-monodromy compatible [15, IX]. For L/K finite, IL acts unipotently on it if and
only if A/L is semistable [15, IX, 3.5/3.8], [2, 7.4.6]. By Theorem 7 and Corollary 8 for
n = 2g and F = Qℓ, any choice of Kℓ,g,1 that contains KF ,n satisfies (i) and (ii).

Now let c be arbitrary, and choose a prime d 6= ℓ so that [Qℓ(ζd) : Qℓ] > 4g2 and |FK |d >
c. (All but finitely many primes satisfy these conditions.) Let K ′ be the unramified
extension of K of degree d. Construct K ′

ℓ,g,1 by the c = 1 case over K ′, enlarging it

if necessary to contain KF ,n. We claim that Kℓ,g,c = K ′
ℓ,g,1 satisfies (i) and (ii). By

construction, (i) holds.
Suppose A/K is an abelian variety. Frobenius traces over subfields K ′ ⊂ L ⊂ K ′

ℓ,g,1 as

in (ii) determine the restriction of ρℓ to K ′ uniquely by the properties of KF ,n. Such L

have |FL| ≥ |FK ′| = |FK |d > c, so it suffices to show that this restriction determines ρ.
By Theorem 7 and Corollary 8 again, it suffices to reconstruct Frobenius traces over

subfields K ⊂ L ⊂ KF ,n with KF ,n/L unramified. If L contains K ′ then we are done,
as we have already reconstructed the restriction of ρℓ to K ′. Suppose L 6⊃ K ′, and let
α1, ..., αm (m ≤ 2g) be the eigenvalues of ρIL(FrobL). As LK ′/L has degree d (as d is
prime), we know αd

1, ..., α
d
m, the Frobenius eigenvalues over LK ′ from the restriction to K ′.

Note that α1 generates an extension of Ql of degree ≤ 2g. Now, αd
1 has a unique dth

root that generates an extension of Qℓ of degree ≤ 2g, namely α1. Indeed, if α1ζ
i
d also

generates such an extension for i 6= 0 mod d, then

[Qℓ(α1, ζd) : Qℓ] = [Qℓ(α1, α1ζ
i
d) : Qℓ] ≤ (2g)2 = 4g2,

contradicting [Qℓ(ζd) : Qℓ] > 4g2. Therefore α1 is indeed determined by αd
1, and similarly

for all the other αi, as required.
(iii) We claim that any Kℓ,g,1 that satisfies (i) and (ii) also satisfies (iii), provided

c > 16g2 (which we may clearly assume).
Let A be the Jacobian of X. Recall that there is a canonical isomorphism

H1
ét(XK̄ ,Ql) ∼= H1

ét(AK̄ ,Ql).

By (ii), this representation, say ρℓ, is determined by the traces Tr ρILℓ (FrobL) for L as
in (ii). By (i), over these fields A is semistable, hence so is X as g ≥ 2 [9, Thm. 1.2].
Therefore

H1
ét(XK̄ ,Ql)

IL ∼= H1
ét((X̄L)F̄L

,Ql)

as Gal(F̄L/FL)-modules, see e.g. [11, Thm. B.1]. By the Grothendieck-Lefschetz trace
formula [7, p. 86, Thm 3.1],

#X̄L(FL) = t0 − t1 + t2,

where ti is the trace of the Frobenius automorphism on H i
ét
((X̄L)F̄L

,Ql). In particular,

t1 = Tr ρILℓ (FrobL) by the above. Note that t0 = 1 as X̄L is connected, and t2 is a multiple
of q = |FL| asH2

ét
((X̄L)F̄L

,Ql) is the permutation module on the irreducible components of

X̄L twisted by Ql(1). Now, |t1| ≤ 2g
√
q because all eigenvalues of ρILℓ (FrobL) have absolute
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values 1 or
√
q and dim ρILℓ ≤ 2g. Because q ≥ c > 16g2, we have 2g

√
q < q/2, and so

t1 mod q = (t0 + t2 −#X̄L(FL)) mod q = (1−#X̄L(FL)) mod q

recovers t1 uniquely. This shows that #X̄L(FL) determines t1 = Tr ρILℓ (FrobL), and the

collection of these for varying L determines H1
ét(XK̄ ,Ql). �

An example

We end with a numerical example of how Theorem 1 works in practice.
Let K = Q7 and let F/Q7 be a wildly ramified Galois extension of degree 21 with

(non-abelian) Galois group G = C7 ⋊C3, residue degree 3 and ramification degree 7. The
character table of G is as follows, after fixing a choice of a cube root of unity ζ3 and

√
−7

in C:

1 τ τ−1 σ σ−1

1 1 1 1 1 1
χ 1 ζ23 ζ3 1 1
χ̄ 1 ζ3 ζ23 1 1

ρ1 3 0 0 −1−
√
−7

2

−1+
√
−7

2

ρ2 3 0 0 −1+
√
−7

2

−1−
√
−7

2

Table 1. Character table of G = C7⋊C3

Consider a genus 3 curve X whose Jacobian has bad reduction over Q7, but X ac-
quires good reduction over F . Our goal is to determine the Galois representation ρ =
H1

ét
(XK̄ ,Qℓ) ⊗Qℓ

C. By the Néron-Ogg-Shafarevich criterion (or just the proper smooth
base change theorem), IK acts on V through IF/Q7

= C7. By Theorem 1(i), and the fact
that the characteristic polynomials of inertia elements have rational coefficients by [22,
Thm. 2],

ρ ∼= (ρ1 ⊗Ψ1)⊕ (ρ2 ⊗Ψ2),

for some unramified characters Ψ1,Ψ2.
Theorem 1 lets us determine the Ψi as follows. Let F̃ be the degree 7 unramified

extension of F . For each element g ∈ IF/Q7
= C7 let g̃ ∈ Gal(F̃ /Q7) be the unique

element that projects to g ∈ Gal(F/Q7) and acts as Frob3Q7
on the residue field. Write

Fg = F̃ 〈g̃〉 for the corresponding degree 21 extensions of Q7. Note that JacX has good

reduction over Fg, since F̃ /Fg is unramified.
By the theorem,

Ψi(Frob
3
Q7
) =

1

|C7|
1

〈ResC7
ρi,ResC7

ρi〉
∑

g∈IF/Q7

Tr ρi(g) Tr ρ(FrobFg) =

=
1

21

∑

g∈IF/Q7

Tr ρi(g) · (73 + 1−#XFg(F73)),

where XFg is a regular model of X over Fg, by the Grothendieck-Lefschetz trace formula
(as in proof of Theorem 10 (iii)). Moreover, Ψi(FrobQ7

) can be taken to be any cube root
of this value, as the discrepancy vanishes when taking the tensor product with ρi.
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As a particular example, let F/Q7 be the splitting field of

f(x) = x7 + 21x6 + 7,

taken from [16]. Let α be a root of f in F ; it is a uniformiser of F . Let ζ ∈ F be a
primitive 18th root of unity. One checks that the roots αj of f have expansions

αj = α+ jζα2 +O(α3), j = 0, ..., 6.

The generators of G are then determined by

σ : αj 7→ αj+1 (order 7), τ : αj 7→ α2j (order 3),

with indices taken modulo 7.
Now take X : y2 = f(x). It acquires good reduction over Q7(α), and using Magma [3]

we find that
#XFid

(F73) = 73 + 1 = 344,

#XFσ(F73) = #XFσ2
(F73) = #XFσ4

(F73) = 73 − 72 + 1 = 295,

#XFσ3
(F73) = #XFσ5

(F73) = #XFσ6
(F73) = 73 + 72 + 1 = 393,

which leads to Ψ1(FrobQ7
) =

√
−7 and Ψ2(FrobQ7

) = −
√
−7.

Conversely, let X ′ : y2 = x7+420x6−245x3+1225x2−833x+189. (The right-hand side
is the minimal polynomial of −α2−α.) This curves acquires good reduction over the same
fields as X, but has the opposite point counts (that is, 295 and 393 are interchanged), so
that here Ψ1(FrobQ7

) = −
√
−7 and Ψ2(FrobQ7

) =
√
−7.

What makes the example interesting is that the two curves have the same point counts
over all extensions of Q7 of degree at most 20. In that sense our result here is best possible.

Remark 11. The assumption charK = 0 in Theorems 2, 7, 10 and Corollary 8 is neces-
sary, as we will now explain.

First, suppose M/K is any ramified separable extension of prime degree p > 2. It is
obtained by adjoining the root of some Eisenstein polynomial f(x). Consider the hyper-
elliptic Jacobian of dimension g = (p− 1)/2

A = JacC, C : y2 = f(x).

In the terminology of [10], C has one proper cluster of size p (because IK acts transitively
on roots of f(x) and deg f = p is prime). By [10, Thm 1.20],

ρl = H1
ét(AK̄ ,Qℓ) ∼= γ ⊗ (π ⊖ 1),

as an IK-representation, where γ is some tame character and π is the permutation char-
acter of IK on the roots of f .

Now, suppose charK = p. By [18], there are extensions M/K as above with arbitrary
large valuation of the discriminant. Therefore, by the conductor-discriminant formula and
the definition of the conductor, for every n ≥ 1 there is a separable polynomial f(x) ∈ K[x]
of degree p such that the higher ramification group Gn ⊳ IK acts non-trivially on the roots
of f(x).

Let Kg/K be any finite Galois extension. Then Gn acts trivially on Kg for some n.
However, the above construction produces an abelian variety of dimension g for which

ρIKg
l ⊂ ρGn

l = 0. Therefore A has non-semistable reduction over Kg and Tr ρILℓ (FrobL) = 0
for every subfield K ⊂ L ⊂ Kg. In other words, Theorems 2, 7, 10 and Corollary 8 fail
over function fields.
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[15] A.Grothendieck, Modèles de Néron et monodromie, LNM 288, Springer, 1972.
[16] J. W. Jones, D. P. Roberts, A database of local fields, J. Symb. Comput. 41 (2006), 80–97.
[17] D. Kohen, A. Pacetti, Heegner points on Cartan non-split curves, Canadian Journal of Math. 68

(2016), 422-444.
[18] M. Krasner, Nombre des extensions d’un degré donné d’un corps p-adique, Les Tendances
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