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K-POLYSTABILITY OF SMOOTH FANO SL2-THREEFOLDS

JACK ROGERS

Abstract. We prove the K-polystability of all smooth complex Fano three-
folds admitting an effective action of SL2 but not of a 2-torus or 3-torus. In
particular, the existence of Kähler-Einstein metrics on varieties in the families
(1.10), (1.15), (1.16), (1.17), (2.21), (2.27), (2.32), (3.13), (3.17), (3.25) and
(4.6) of the Mori-Mukai classification of smooth Fano threefolds is proved.
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1. Introduction

Since the solution of the Yau-Tian Donaldson conjecture by Chen-Donaldson-
Sun [CDS15], showing that the existence of a Kähler-Einstein metric on a Fano
manifold is equivalent to its K-polystability, there has been much progress in the
theoretical study of K-stability in its various forms. However, there is still much
work to be done when it comes to practical methods to actually check the K-
(semi/poly)stability of a given variety.

One of the more fruitful approaches in this direction is to consider varieties
equipped with group actions, so that we can use the equivariant K-stability in-
troduced by Datar-Székelyhidhi [DS15]. Exploiting these symmetries can make
verifying K-stability far more straightforward than it is in general via the analysis
of associated combinatorial data. For example, Wang-Zhu proved that a smooth
Fano toric variety is K-polystable if and only if the barycentre of its associated
dual polytope is the origin.

One of the key invariants determining the viability of this method is called the
complexity of the group action. Suppose a reductive algebraic group G acts on a
normal variety X . Let B ⊆ G be a Borel subgroup of G. The complexity cG(X)
of the action of G on X is the minimal codimension in X of the orbits of B, or
equivalently the transcendence degree of the field of B-invariant rational functions
on X over the base field.

Criteria forK-stability using combinatorial methods have been found in the toric
case by Wang-Zhu [WZ04], in the case of complexity one T -varieties by Ilten-Suess
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2 JACK ROGERS

[IS17], and for complexity zero varieties under general reductive groups (spherical
varieties) by Delcroix [Del16].

In this paper we provide the first results in a project to find a combinatorial cri-
terion for the K-stability of complexity-one G-varieties for general reductive groups
G. Specifically, we consider the simplest nontrivial examples of such varieties, the
smooth Fano threefolds admitting effective actions of SL2.

Using the classification of Cheltsov-Przyjalkowski-Shramov [CPS19] of smooth
Fano threefolds with infinite automorphism groups, it is possible to identify all such
threefolds admitting effective SL2-actions. After ruling out those whose automor-
phism groups are non-reductive (since these are known not to be K-polystable by
Matsushima’s criterion [Mat57]) and those also known to be toric or to admit the
effective action of a 2-torus (since the K-polystability of these varieties is already
checkable by the previously mentioned results of Wang-Zhu and Ilten-Süß), there
are seven smooth Fano SL2-threefolds remaining. They are listed below by the
numbers and descriptions given in the paper of Cheltsov-Przyjalkowski-Shramov.
The cases denoted with daggers consist of families of varieties, only some of which
admit effective SL2-actions.

1.10† V22, a zero locus of three sections of the rank 3 vector bundle
∧2 Q, where

Q is the universal quotient bundle on Gr (3, 7)

1.15 V5, a section of Gr (2, 5) ⊆ P9 by a linear subspace of codimension 3

2.21† The blow up of a quadric threefold Q ⊆ P4 along a twisted quartic curve

2.27 The blow up of P3 along a twisted cubic curve

3.13† The blow up of a divisor W ⊆ P2 × P2 of bidegree (1, 1) along a curve
of bidegree (2, 2) which is mapped to irreducible conics by the natural
projections to P2

3.17 A divisor on P1 × P1 × P2 of tridegree (1, 1, 1), or a blow-up of P1 × P2

along a curve of bidegree (1, 1)

4.6 The blow up of P3 along a disjoint union of three lines

Our main result is:

Theorem 1.1. The smooth Fano threefolds, (1.10), (1.15), (1.16), (1.17), (2.27),
(2.32), (3.17), (3.25) and (4.6) in the Mori-Mukai classification are K-polystable
and hence admit Kähler-Einstein metrics. The families (2.21) and (3.13) each
contain a K-polystable variety admitting a Kähler-Einstein metric.

Remark. The same result were recently obtained independently by other authors
using different methods, see [SC21,ACC+21]. The K-polystability of the Mukai-
Umemura threefold in the family (1.10) was already known by Donaldson [Don08],
and the K-polystability of V5 (1.15) was known by Cheltsov-Shramov [CS09].

The rest of this paper is organised as follows: in Section 2 we recall the definition
of K-polystability and its equivariant version. In Section 3 we discuss the theory of
varieties with actions of complexity one and the combinatorial description of these
varieties. In Section 4, we state the technical result (Theorem 4.1) which allows us
to prove the main theorem stated above. The remaining sections provide a proof
of Theorem 4.1, calculations of the combinatorial data of the varieties in question,
and demonstrations that Theorem 4.1 does indeed imply their K-polystability.
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2. Equivariant K-stability

2.1. Test configurations. We begin by recalling the definitions ofK-(semi/poly)stability
and setting conventions, then describe the equivariant version due to Datar and
Székelyhidi.

Definition 2.1. Let (X,L) be a complex polarised variety and let m > 0. A test
configuration for (X,L) of exponent m consists of:

• A flat morphism of schemes π : X → A1
C;

• A π-relatively ample line bundle L → X ;
• A C× action on X ,L;

such that π and the bundle map L → X are C×-equivariant for the standard action
of C× on A1

C by multiplication, and for some (and hence all by equivariance) t 6= 0
in A1

C, the pair (Xt, Lt) := (π−1(t),L|π−1(t)) is isomorphic to (X,L⊗m). We also
require that the central fibre X0 is irreducible.

We call (X ,L) a product configuration if X ∼= X ×A1 and a trivial configuration
if it is a product configuration and the C×-action is trivial on X .

Note that since 0 ∈ A1
C is fixed by the standard C× action, the morphism π

induces a C× action on the central fibre X0 and the line bundle L0. Also note
that Fano varieties are polarised by their anticanonical bundle, so the notion of
test configuration makes sense in this case.

In the general case of a projective scheme Z with an ample line bundle Λ, we
can consider the vector spaces Hk = H0(Z,Λ⊗k) of global sections of the tensor
powers of Λ. Let dk := dimHk. For k large enough that Λ⊗k is very ample, the dk
are known to be given by a Hilbert polynomial of degree n = dimZ. Now suppose
there is a C×-action on the pair (Z,Λ). This induces a C× action on each Hk.
Let wk be the sum of the weights of this action, or equivalently the weight on the
top exterior power. Then for k large enough, wk is also given by a polynomial,
this being of degree n + 1 [Don18]. Now set F (k) = wk/kdk, so that there is an
expansion for large k given by:

F (k) = F0 + F1k
−1 + F2k

−2 + . . . .

Definition 2.2. The Donaldson-Futaki invariant of (Z,Λ) is the coefficient F1

in the above expansion. For a test configuration (X ,L) of a polarised variety
(X,L), we define DF (X ,L) to be the Donaldson-Futaki invariant of the central
fibre (X0, L0).

Definition 2.3. A polarised variety (X,L) is:

• K-semistable if DF (X ,L) ≥ 0 for every test configuration (X ,L) on (X,L);
• K-polystable if it is K-semistable and DF (X ,L) = 0 only for product con-

figurations;
• K-stable if it is K-semistable and DF (X ,L) = 0 only for trivial configura-

tions;
• K-unstable if it is not K-semistable.

An important result of Li-Xu immediately allows us to restrict the set of test
configurations we need to check in order to verify K-(semi/poly)stability:

Definition 2.4. A test configuration (X ,L) for a polarised variety (X,L) is called
special if the central fibre X0 is normal.

Theorem 2.1. [LX14] For a Fano variety (X,−KX), K-(poly/semi)stability can
be verified by checking the Donaldson-Futaki invariant of only the special test con-
figurations.
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Interest inK-stability mostly stems from the solution of the Yau-Tian-Donaldson
conjecture by Chen-Donaldson-Sun, i.e.:

Theorem 2.2. [CDS15] A smooth complex Fano variety X admits a Kähler-
Einstein metric if and only if (X,K−1

X ) is K-polystable.

Unfortunately, since there are generally infinitely many test configurations for
a given polarised variety, it is very difficult to check K-(poly/semi)stability in the
general case, even accounting for the Li-Xu theorem.

The α-invariant of Tian [Tia87] was for a long time one of the only practical
methods to check K-(poly)stability. Recently, work of Abban-Zhuang [AZ20,AZ21]
has provided other more powerful methods of verification. Otherwise, most progress
on this front has come from the equivariant perspective due to the work of Datar-
Székelyhidi [DS15], which we summarise now.

Definition 2.5. Let X be a G-variety, and let π : L → X be a line bundle on X .
We say that L is G-linearised if there is a G-action on L such that π is G-equivariant
and the map π−1(x) → π−1(g · x) induced on the fibres is linear for all g ∈ G and
all x ∈ X .

Definition 2.6. Let G be a reductive algebraic group and let (X,L) be a polarised
variety with aG-action onX such that L isG-linearised. A test configuration (X ,L)
of exponent m is G-equivariant if there is a G-action on (X ,L) which commutes
with the C× action and such that the isomorphisms between (X,L⊗m) and (Xt, Lt)
for t 6= 0 are G-equivariant. Then (X,L) is equivariantly K-(poly/semi)stable if it
is K-(poly/semi)stable with respect to G-equivariant special test configurations.

The main result of Datar-Székelyhidi is the following:

Theorem 2.3. [DS15] Let G be a reductive algebraic group and let X be a smooth
complex Fano G-variety. Then (X,K−1

X ) is equivariantly K-polystable if and only
if X admits a Kähler-Einstein metric.

Remark. We should mention that the result of Datar-Székelyhidi has been gen-
eralised to the singular case when G is finite by Liu-Zhu [LZ20] and for general
reductive groups by Zhuang [Zhu21]. Specifically, Zhuang uses a purely algebraic
argument showing (among other things) that K-polystability of a log Fano pair
(X,∆) is equivalent to G-equivariant K-polystability when G is reductive.

2.2. β invariant. Here we discuss an invariant introduced by Fujita [Fuj16] and
Li [Li17] which they have shown to have an intimate connection to K-stability. We
must first include some preliminary definitions.

Definition 2.7. Let δ be a Cartier divisor on a smooth projective variety X of
dimension d. The volume of δ is

vol δ = lim sup
n→∞

dimH0(X,O(δ)⊗n)

nd/d!
.

In fact, by [Laz17, Ex. 11.4.7] the lim sup is actually a limit. One can also check
that if δ is ample, then vol δ = δd.

Definition 2.8. Let X be a Fano variety. If σ : Y → X is any projective birational
morphism with Y normal, we call a prime divisor F ⊆ Y a prime divisor over X .

Proposition 2.1. Let X be a smooth complex Fano projective variety. There is a
bijective correspondence between prime divisors over X and test configurations on
X (excluding the trivial test configuration).
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Proof. [Xu20, Lemma 3.7] Let F ⊆ Y → X be a prime divisor overX and let −KX

be the anticanonical divisor ofX . Consider the section ringR =
⊕

k∈Z H
0(X,−kKX)

of −KX . The prime divisor F induces a filtration

FrR :=
⊕

k∈Z

{f ∈ H0(X,−kKX) | νF (f) ≥ r}

of R. Consider the Rees algebra

A =
⊕

r∈Z

FrR · z−r

of this filtration. Setting r = −1, we see that the k = 0 piece of FrR is C. It follows
that z ∈ A(0,−1), so there is an embedding C[z] →֒ A. This induces a morphism

X = ProjA → A1, which is automatically compatible with the standard C× action
on A1. Furthermore, since R = A/(z − 1) we see that X = ProjR embeds into
X = ProjA as a closed subscheme and is the preimage of 1 ∈ A1 under the given
morphism. Hence (X ,O(1)X ) is indeed a test configuration on (X,−KX).

Conversely, given a test configuration (X ,L) on (X,−KX), the special fibreX0 ⊆
X is a prime divisor, having a corresponding valuation ν0 on k(X ) = k(X × A1).
We can thus restrict ν0 to k(X). Since the restriction of a geometric valuation is
itself geometric, there exists some model Y of k(X) with a prime divisor F ⊆ Y
such that νF = ν0|k(X), i.e. a prime divisor over X . �

Definition 2.9. Let Fr be a filtration of an algebra R. The associated graded ring
to the filtration Fr is the ring

B =
⊕

r∈Z

Fr/Fr+1.

Remark. In the notation of Proposition 2.1, the associated graded ring to the fil-
tration Fr on R is A/(z). The ideal (z) ⊆ C[z] corresponds to 0 ∈ A1, so A/(z)
corresponds to the fibre over 0 of the morphism ProjA → A1, i.e. the central fibre
of the corresponding test configuration.

Definition 2.10. Let X be a Fano variety and let F ⊆ Y
σ−→ X be a prime divisor

over X . The log discrepancy of F over X is AX(F ) = ordF (KY/X) + 1, where
KY/X = KY − σ∗(KX) is the relative canonical divisor.

The usual definition of log discrepancy is more general, but we will only need
the one above. For full details see e.g. [KM98, §2]. A useful consequence of this
definition is that it is not hard to see that if σ is a sequence of n nested blow-ups,
of which F is the final exceptional divisor, then AX(F ) = n+ 1.

Definition 2.11. Let X be a smooth complex Fano variety of dimension n. Let
F ⊆ Y be a prime divisor over X . The β-invariant of F over X is

βX(F ) = AX(F )(−KX)n −
∫ ∞

0

vol(−KX − xF )dx,

where vol(−KX − xF ) is shorthand for vol(σ∗(−KX)− xF ), where σ : Y → X .

Theorem 2.4. [Li17,Fuj16] A smooth complex Fano variety X is K-semistable
if and only if βX(F ) ≥ 0 for any prime divisor F over X, and K-stable if and only
if the inequality is always strict.

The proof of the above essentially amounts to the fact that, under the corre-
spondence described in Proposition 2.1, the β-invariant of a prime divisor F over
X is a positive multiple of the Donaldson-Futaki invariant of the corresponding test
configuration. This gives a K-polystability criterion as well:
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Corollary 2.1. A smooth complex Fano variety X is K-polystable if and only
if βF (X) ≥ 0 for any prime divisor F over X, and βF (X) = 0 only when F
corresponds to a product test configuration.

In our perspective when X is equipped with a group action, we have:

Corollary 2.2. If X comes equipped with the action of a reductive group G, then
we can verify the K-polystability of X by checking the β-invariant for prime divisors
F ⊆ Y → X in the case where Y also has a G-action, the morphism Y → X is
G-equivariant, and F is G-invariant in Y .

Proof. This follows by combining the theorem of Fujita-Li with the theorem of
Datar-Székelyhidi. �

It is this final corollary which we will ultimately use to prove our main theorem.

3. Actions of Complexity One

3.1. Notation and Conventions. In this section we will summarise the theory of
group actions of complexity one on normal varieties. This is work mainly completed
by Timashev [Tim97,Tim00] and proofs of all results in this section can be found
in [Tim11]. This theory is complicated and for reasons of space our coverage of it
is quite brief.

Fix an algebraically closed field k of characteristic 0, a finitely generated ex-
tension K of k, a connected and reductive affine algebraic group G and a Borel
subgroup B of G. Let G act on K such that K is the function field common to a
G-birational class of normal G-varieties. We call such a G-variety a G-model of K
and use this theory to classify the G-models of K up to G-isomorphism.

Denote by KB the set of B-invariants of K under the G-action, and by K(B)

the set of B-semi-invariants, that is elements of K on which B acts via a character

λ ∈ X(B), the character group of B. For fixed λ let K
(B)
λ denote the semi-invariants

of weight λ. Let Λ ⊆ X(B) denote the (free abelian) subgroup consisting of λ such

that K
(B)
λ is nonzero. We call Λ the weight lattice.

Let D denote the set of non-G-invariant divisors on all G-models of K and let
DB denote the subset of D consisting of B-stable divisors. Elements of DB are
called colours. Let KB ⊆ K denote the subalgebra of elements of K with B-stable
divisor of poles.

We call a discrete valuation ν of K geometric if it is a positive rational multiple
of the valuation corresponding to a prime divisor D on some model ofK. A discrete
valuation of K is G-invariant if ν(g · f) = ν(f) for all g ∈ G and f ∈ K. A G-
valuation of K is a G-invariant geometric valuation of K. Every G-valuation of K
is a positive rational multiple of a valuation corresponding to a G-invariant prime
divisor on some G-model of K. Denote by V the set of G-valuations of K.

3.2. Luna-Vust theory. The Luna-Vust theory [LV83], further developed by Knop
[Kno93,Kno95] and Timashev [Tim97], is a deep theory which allows us to classify
up to isomorphism homogeneous spaces of algebraic groups and embeddings thereof
in algebraic varieties. It contains within it the classification of toric varieties by
fans and of spherical varieties by coloured fans as special cases. We give a very
broad overview of its working here, in the notation of the previous section.

The Luna-Vust theory classifies varieties in terms of G-germs, which are essen-
tially G-stable subvarieties, and B-charts, which are affine open B-stable subsets.
Associated to these are sets of valuations called coloured data corresponding to the
G- and B-stable divisors containing a given G-germ or intersecting a given B-chart.
The coloured data satisfy certain admissibility conditions, and ultimately determine
the G-germs and hence the G-models up to isomorphism.
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Definition 3.1. A G-germ of K is a local ring OX,Y ⊆ K of some G-stable
subvariety Y on some G-model X of K. A geometric realisation of a G-germ is a
G-model X containing a G-subvariety Y with the corresponding local ring. The
support of a G-germ OX,Y is the set of G-valuations of K having centre on Y in any
geometric realisation of OX,Y , i.e. G-valuations ν such that Oν dominates OX,Y .

We will often conflate a G-germ OX,Y with a G-subvariety Y in a geometric
realisation.

Proposition 3.1. [Tim11, §12] The support of a G-germ is non-empty.

The following is a version of the valuative criterion of separation:

Proposition 3.2. [Tim11, Thm 12.2] The supports of all G-germs realised by a
fixed G-model X are pairwise disjoint.

The Luna-Vust theory is capable of classifying G-models up to isomorphism by
the following:

Theorem 3.1. [Tim97, §1.1] A G-model X of K is uniquely determined among
G-models of K by its set of G-germs.

We keep track of G-germs using B-charts :

Definition 3.2. A B-chart of K is a B-stable affine open subset on some G-model
of K.

Proposition 3.3. [Tim97, Lemma 1.1] Any G-germ OX,Y admits a geometric
realisation X such that Y intersects some B-chart X0 ⊆ X. We can therefore
cover any G-model by the G-translates of finitely many B-charts.

B-charts are associated with the valuations of the G- and B-invariant prime
divisors they intersect:

Definition 3.3. Let X0 be a B-chart. Let W ⊆ V be the set of G-valuations
corresponding to G-invariant prime divisors which intersect X0 and let R ⊆ DB be
the set of valuations corresponding to colours which intersect X0. We call the pair
(W ,R) the coloured data of X0.

Proposition 3.4. [Tim11, §13] B-charts are determined by their coloured data.

G-germs also have coloured data:

Definition 3.4. Let Y be a G-germ. Let VY ⊆ V be the set of G-valuations
corresponding to G-invariant prime divisors containing Y , and let DB

Y ⊆ DB be the
set of valuations corresponding to colours containing Y . We call the pair (VY ,DB

Y )
the coloured data of Y .

Proposition 3.5. [Tim11, Prop 14.1] G-germs are determined by their coloured
data.

In short, the Luna-Vust theory describes properties which must be satisfied by
subsets of V and DB in order for them to correspond to the coloured data of some B-
chart or G-germ, allows us to compute the supports of G-germs from their coloured
data, and provides a method to construct varieties from sets of coloured data. We
can then distinguish between nonisomorphic varieties by differences in the coloured
data of their G-germs. We can also verify properties of varieties from their coloured
data, for example, the valuative criterion of completeness becomes:

Proposition 3.6. A G-model X of K is complete if and only if the supports of its
G-germs cover V.

We will show in the remainder of this section how the Luna-Vust theory is applied
to give a combinatorial description of varieties of complexity one.
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3.3. Hyperspace. Here we introduce the hyperspace, which will be home of cer-
tain collections of cones which will classify complexity one varieties. These cones
will be generated from the coloured data of each variety, i.e. by G-valuations and
valuations corresponding to colours. Hence we address some properties of these
first:

Proposition 3.7. [Tim11, Cor 19.13] A G-valuation of K is uniquely determined
by its restriction to K(B).

Proposition 3.8. [Tim11, §13.1] There is a split exact sequence of abelian groups

0 → (KB)× → K(B) → Λ → 0.

Corollary 3.1. A G-valuation of K is uniquely determined by its restriction to
KB and a functional on Λ.

Proof. Fix a map e : Λ → K(B) splitting the exact sequence above by sending a

weight λ to a semi-invariant eλ ∈ K
(B)
λ . Then the exact sequence tells us that

K(B) = (KB)× ⊕ e(Λ). We know that a G-valuation ν is determined by its restric-
tion to K(B), and this in turn is given by its restriction to KB and a functional
ℓ : Λ → Q given by ℓ(λ) = ν(eλ). �

In complexity one, KB has transcendence degree 1 over k and hence is the
function field common to a birational class of curves containing a unique smooth
projective curve C. Then any geometric valuation of KB is of the form ν = hνx
where h is a nonnegative rational number and x ∈ C. Hence G-valuations of K
correspond to triples (x, h, ℓ) where x ∈ C, h ∈ Q≥0 and ℓ ∈ Hom(Λ,Q) = Λ∗, and
are uniquely determined by this restriction up to the equivalence relation whereby
(x, h, ℓ) ∼ (x′, h′, ℓ′) if and only if we have equality or h = h′ = 0 and ℓ = ℓ′. Let

H =
⋃

x∈C

({x} ×Q≥0 × Λ∗/ ∼

and call H the hyperspace of K.
We have an injective map κ : V → H by the above, and can also map DB to H

using κ, although this is not necessarily injective. We can thus view the coloured
data of a G-model of K as sitting within H, and the classification of complexity
one varieties comes down to classifying collections of certain types of cones within
H, described in a later subsection.

Denote by Hx the subset of H consisting of points with first co-ordinate x. We
call this the slice of hyperspace corresponding to x. Likewise set Vx = V ∩Hx etc.
The subset of H consisting of points with h = 0 is called the central hyperplane and
denoted by Z.

3.3.1. Splitting Maps. The choice of the map e : Λ → K(B) is arbitrary, so we must
keep track of what happens if a different map is chosen. If a valuation has co-
ordinates (x, h, ℓ) under e, and co-ordinates (x′, h′, ℓ′) under another splitting e′,
then we have x = x′, h = h′ since these depend only on the restriction to KB, and
we have

ℓ′(λ) = ℓ(λ) + hνx(e
′
λ/eλ)

for each λ ∈ Λ. Thus a different choice of splitting introduces an ‘integral shift’ to
the ℓ-co-ordinates of the hyperspace.

Since e′λ/eλ is a rational function on the smooth projective curve C, the cor-
responding principal divisor has degree zero, so we have 0 =

∑
x∈C νx(e

′
λ/eλ) for

each λ. Therefore when we introduce these integral shifts, they must balance each
other out. When C = P1, which we will see later is always the case for us, any such
collection of balanced integral shifts corresponds to a different choice of splitting.
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3.3.2. Quasihomogeneous and One-Parameter Cases. There are two types of com-
plexity one varieties depending on the relationship between KB and KG. In the
quasihomogeneous case when KG = k, any G-model X of K has an open G-orbit
containing a one-parameter family of codimension 1 B-orbits. This open orbit is
an embedding of some homogeneous space G/H , which provides a minimal model
for the G-birational class of varieties determined by K. In the one-parameter case,
where KG = KB, G-models contain a one-parameter family of codimension 1 G-
orbits, each of which contains a B-orbit as an open subset.

In all examples of interest to us, we are in the quasihomogeneous case, so we
assume from now on that KG = k.

Proposition 3.9. In the quasihomogeneous case, the smooth projective curve C is
in fact P1.

Proof. [Tim11, §16.2] Note that G is a rational variety. Now since G/H ⊆ X
is an open orbit, we have K = k(G/H). Since KB = k(C) ⊆ K, we have a
dominant rational map G/H 99K C and hence a dominant rational map G 99K C
via the quotient. It follows that C is unirational and hence equal to P1 by Lüroth’s
theorem. �

3.3.3. Regular, Subregular and Central Divisors. A complexity one G-model X
comes with a dominant rational B-quotient map π : X 99K C arising from the inclu-
sion KB = k(C) ⊆ K, which separates general B-orbits. There is a one-parameter
family of B-stable prime divisors (i.e. colours) Dx ⊆ π∗(x) in X parameterised by
points x ∈ π(X), an open subset of C.

The behaviour of prime divisors on X under π determines to some extent the po-
sition in hyperspace of their corresponding valuations, and we introduce a typology
of divisors based on this.

First, the choice of splitting e marks out certain colours as being distinguished,
namely those colours lying in div(eλ) for some λ ∈ Λ. They have ℓ(λ) = νD(eλ) 6= 0
for some λ. Colours lying outside all div(eλ) have ℓ = 0, and these constitute all
but finitely many colours.

Next, it will be the case that certain colours Dx are exactly equal to π∗(x), while
at certain points x ∈ C we will see that π∗(x) is non-reduced and contains the colour
Dx with multiplicity greater than one. The former type of colour is called regular
and has h-co-ordinate in hyperspace equal to 1, while the latter colours are called
subregular and have h-co-ordinate greater than 1. Again, all but finitely many
colours are regular, and hence have co-ordinates (x, h, ℓ) = (x, 1, 0) in hyperspace.
We denote these points by εx.

Finally, colours (or G-divisors) which do not appear in any π∗(x) for x ∈ C have
h-co-ordinate 0 and are called central. There are only finitely many central divisors
on any G-model.

The existence and properties of subregular and central divisors will be of central
importance to later results in this paper.

3.4. Coloured Hyperfans. We now describe how the Luna-Vust theory translates
into a combinatorial description of varieties once the coloured data is inserted into
the hyperspace. The key is that we can interpret semi-invariant functions in K as

‘linear functionals’ on H. Indeed, given f ∈ K
(B)
λ and a valuation ν corresponding

to a point (x, ℓ, h) ∈ H, we can define f(x, ℓ, h) = ν(f) = hνx(f) + ℓ(eλ). It turns
out that, once a sensible definition of a linear functional on H is given (see [Tim97,
§2.1]), all functionals on H are determined by semi-invariant functions.

Since the coloured data of a G-model X consists of subsets of V and DB cor-
responding to the G- and B-divisors containing its G-germs, and we have mapped
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this data into H, we can use the functionals in K(B) to generate cones from this
coloured data.

3.4.1. B-charts. Let X0 be a B-chart with coloured data W ⊆ V , R ⊆ DB. Let
C = C(W ,R) ⊆ H be the set consisting of points q ∈ H such that any functional
ϕ on H non-negative on W and R is non-negative on q. This is in some sense the
‘double dual’ of the set W ∪ R in H. It is not a cone in the conventional sense
because H is not a vector space or half-space. However, Cx = C ∩ Hx is a cone
for each x ∈ P1 and so is K = C ∩ Z. We call these objects C hypercones, and
their properties are determined by conditions on coloured data contained in the
Luna-Vust theory.

First, we note that B-charts split into two types. Those we call type I have
nonconstant B-invariants in their algebra of functions. In this case, there is some
x ∈ P1 such that Cx ⊆ K, i.e. there are no noncentralG- orB-divisors corresponding
to some x ∈ P1. B-charts of type II have no nonconstant B-invariant functions,
and in this case every x ∈ P1 corresponds to at least one noncentral divisor.

The double dual set C ⊆ H defined by the B-chart X0 above determines an
object called a hypercone. Recall that εx denotes the point (x, 1, 0) ∈ H.

Definition 3.5. A hypercone in H is a union C =
⋃

x∈P1 Cx of finitely generated
convex cones Cx = C ∩ Hx such that:

(1) Cx = K +Q≥0εx for all but finitely many x, where K = C ∩ Z;
(2) Either:

(I) there exists x ∈ P1 with Cx = K, or;
(II) the polytope P =

∑
x∈P1 Px is non-empty, where the Px are defined

by εx + Px = Cx ∩ (εx + Z).

The hypercone C is called strictly convex if every Cx is strictly convex and 0 /∈ P .

Definition 3.6. A coloured hypercone in H is a pair (C,R) such that R ⊆ DB ,
0 /∈ R, and C is a strictly convex hypercone in H generated by κ(R), a finite subset
W ⊆ V , and (if C is of type II) the polytope P .

Theorem 3.2. [Tim97, Thm 3.1] B-charts of K correspond bijectively to coloured
hypercones in H of the corresponding type.

3.4.2. G-germs. Now let Y be a G-germ of K. We say that Y is of type I if it
admits a B-chart of type I (i.e. there exists a B-chart of type I intersecting Y ) and
Y is of type II if not. A G-germ is of type I if and only if VY ∪DB

Y is finite and of
type II if and only if it admits a minimal B-chart.

Definition 3.7. The relative interior of a (coloured) hypercone C of type II is the
set
⋃

x∈P1 relintCx ∪ relintK. We call C supported if relint C ∩ V is nonempty.

Definition 3.8. Let C be a hypercone in H. A face of C is a face of some Cp not
intersecting P . A hyperface of C is a hypercone C′ = C ∩ kerϕ for some functional
ϕ on H nonnegative on C. We call ϕ a supporting functional for the face C′.

A (hyper)face of a coloured hypercone (C,R) is a coloured (hyper)cone (C′,R′)
where C′ is a (hyper)face of C and R′ = R∩ κ−1(C′).

Theorem 3.3. [Tim97, Thm 3.2] G-germs of type I are in bijection with supported
coloured cones in H, and G-germs of type II are in bijection with supported coloured
hypercones of type II in H. Inclusion of G-germs in each other corresponds to
opposite inclusions of the respective (hyper)cones as (hyper)faces of each other.

3.4.3. G-models. We know that G-models are determined by their G-germs, which
lie in a finite collection of B-charts. The supports of the G-germs must be disjoint,
and inclusions of G-germs must be kept track of. In this spirit we have the following
definition:
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Definition 3.9. A coloured hyperfan in H is a collection of supported coloured
cones and supported coloured hypercones of type II in H, obtained as the set of all
supported (hyper)faces of a finite collection of coloured hypercones, subject to the
condition that the relative interiors of these (hyper)faces are disjoint inside V .

The coloured hyperfan FX of a G-model X is the collection {CY | Y ⊆ X}
where Y runs over all G-germs of X . Then by Theorem 3.2 and Theorem 3.3, we
have [Tim97, Thm 3.3]:

Theorem 3.4. G-models of K are in bijection up to isomorphism with coloured
hyperfans in H.

Corollary 3.2. A G-model is complete if and only if its coloured hyperfan covers
V.
Proposition 3.10. We say that a G-model X is of type I if all of its G-germs are
of type I, and of type II if it contains any G-germ of type II. For any G-model X,
there exists a G-model X̌ of type I and a proper birational morphism ϕ : X̌ → X.

Proof. See [Tim11, §16.6] �

Section 7 of this paper contains many example calculations with figures of the
coloured hyperfans of complexity one varieties, which should illuminate this com-
plicated theory.

3.5. Divisors on Complexity One G-Varieties. We now begin to study the
properties of divisors on complexity-oneG-varieties, following [Tim00]. Throughout
this section X is a normal but possibly singular variety unless otherwise specified.
Helpfully, we can reduce everything to B-stable divisors:

Proposition 3.11. Let a connected solvable algebraic group B act on a normal
variety X. Then any Weil divisor on X is linearly equivalent to a B-stable one.

Proof. See [Tim11, Prop 17.1]. �

3.5.1. Cartier Divisors. Next we want to investigate conditions which guarantee
that a divisor is Cartier. We will assume that the associated line bundle to any
Cartier divisor is G-linearised (this is fine by [KKLV89, Prop 2.4] since G is facto-
rial).

Lemma 3.1. Any prime divisor D ⊆ X which does not contain a G-orbit is Cartier
and generated by global sections.

Proof. See [Tim11, Lemma 17.3]. �

Theorem 3.5. Let δ be a divisor on X and assume by Proposition 3.11 that δ
is B-stable. Then δ is Cartier if and only if for any G-germ Y of X, there exists
fY ∈ K(B) such that each prime divisor D containing Y occurs in δ with multiplicity
νD(fY ).

Proof. See [Tim11, Thm 17.4] �

Corollary 3.3. A Cartier divisor δ on a G-model X is determined by the following
data:

(1) a collection {fY } of B-eigenfunctions for each G-germ Y ⊆ X such that
ν(fY1

) = ν(fY2
) and νD(fY1

) = νD(fY2
) for all ν ∈ VY1

∩ VY2
and all

D ∈ DB
Y1

∩ DB
Y2
;

(2) a collection of integers mD for each D ∈ DB \ ⋃Y⊆X DB
Y (mD being the

multiplicity of D in the divisor), only finitely many of which are nonzero.
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If X is quasihomogeneous of complexity one, each fY determines up to scalar
multiples (and is up to powers determined by) a linear functional ϕY on the coloured
cone or hypercone CY such that ϕY1

|CY2
= ϕY2

whenever CY2
is a face of CY1

,
that is, whenever Y2 contains Y1. Then the functionals ϕY paste together to a
piecewise linear function on

⋃
Y ⊆X CY ∩ V , which we call a piecewise linear function

on the coloured hyperfan FX = {CY | Y ⊆ X} of X . Then Cartier divisors on X
correspond to these piecewise linear functions.

3.5.2. Globally Generated and Ample Divisors.

Proposition 3.12. Let δ be a Cartier divisor on X given by {fY }, {mD} as above.
Then:

(1) δ is globally generated if and only if fY can be chosen such that for any
G-germ Y ⊆ X, we have:
(a) for any other G-germ Y ′ ⊆ X and every B-stable divisor D containing

Y ′, νD(fY ) ≤ νD(fY ′);
(b) for any D ∈ DB \⋃Y ′⊆X DB

Y , νD(fY ) ≤ mD.

(2) δ is ample if and only if, after replacing δ with some positive multiple, fY
can be chosen such that for any G-germ Y ⊆ X, there exists a B-chart
X0 ⊆ X intersecting Y such that (a) and (b) hold, and the inequalities
therein are strict if and only if D ∩X0 = ∅.

Proof. See [Tim11, Thm 17.18] �

3.5.3. Global Sections. Let B(X) be the set of all B-stable prime divisors on X ,
including the G-stable ones. Let δ =

∑
D∈B(X) mDD be a B-stable Cartier divisor,

and let ηδ ∈ H0(X,O(δ))(B) be the respective rational B-eigensection (i.e. div ηδ =
δ). We have

H0(X,O(δ))(B) = {fηδ | f ∈ K(B), div f + δ ≥ 0}.
The B-weight of an arbitrary B-eigensection σ = fηδ is λ + λδ, where λ is the
weight of f and λδ is the weight of ηδ. The latter is determined up to a character
of G and can be calculated as follows: let Y be a G-orbit intersecting δ and pull
Y ∩ δ back to G under the orbit map, giving a divisor δ̃ on G. Since we assume G
to be factorial, δ̃ is principal, defined by a rational function F ∈ k(G)(B). Then λδ

is the B-weight of F .
It follows that

H0(X,O(δ))
(B)
λ+λδ

∼= {f ∈ K
(B)
λ | div f+δ ≥ 0} ∼= {f ∈ KB | div f+div eλ+δ ≥ 0}.

We want to calculate the calculate the dimension of the space H0(X,O(δ)) of

global sections of δ. Note that, setting mλ(δ) = dimH0(X,O(δ))
(B)
λ+λδ

for brevity,

using the Weyl dimension formula [Hum72, §24.3] for modules and counting multi-
plicities of simple submodules, we have

dimH0(X,O(δ)) =
∑

λ∈Λ

mλ(δ)
∏

α∨∈∆∨

+

(
1 +

(λ, α∨)

(ρ, α∨)

)
.

We can calculate mλ(δ) using the notion of a pseudodivisor:

Definition 3.10. Let C be a smooth projective curve. A pseudodivisor µ on C is
a formal linear combination µ =

∑
p∈C mp · p where mp ∈ R ∪ {±∞} and all but

finitely many mp are 0. Let H0(C, µ) = {f ∈ k(C) | div f + µ ≥ 0} where for all
x ∈ R, we set x+ (±∞) = ±∞.

If there is p ∈ C with mp = −∞, then H0(C, µ) = 0. Otherwise, H0(C, µ) is the
space of global sections of the divisor ⌊µ⌋ =∑p ⌊mp⌋ · p on C\{p ∈ C | mp = +∞},
where ⌊mp⌋ represents the floor of mp.
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Now let δ be as above. Note that H0(X,O(δ))(B) is isomorphic to



f0eλ | f0 ∈ KB, λ ∈ Λ,
∑

D∈B(X)

[hDνpD
(f0) + 〈λ, ℓD〉+mD]D ≥ 0




 .

Hence fix λ ∈ Λ and consider the pseudodivisor

Hλ = Hλ(δ) =
∑

p∈P1

(
min
pD=p

〈λ, ℓD〉+mD

hD

)
p,

where we assume x
0 = +∞ for x ≥ 0 and x

0 = −∞ for x < 0. It is clear from the

above description of H0(X,O(δ))(B) that mλ(δ) = dimH0(P1, Hλ(δ)) := h0(δ, λ).
We know that h0(P1, Hλ) = 0 if any of its coefficients are −∞. This is the case

exactly when there is p ∈ P1 and D ∈ B(X) with pD = p satisfying hD = 0 and
〈λ, ℓD〉 < −mD. Hence we define a polyhedral domain

P(δ) = {λ ∈ Λ⊗ R | 〈λ, ℓD〉 ≥ −mD for all D with hD = 0}.
Then H0(P1, Hλ) = 0 for all λ /∈ P(δ). Conversely, a coefficient of Hλ is +∞ if
and only if there is p ∈ P1 such that no divisor D ∈ B(X) with pD = p satisfies
hD > 0. This is the case e.g. if X is a B-chart of type I. Then H0(P1, Hλ) is the
space of global sections of ⌊Hλ⌋ on the affine curve P1 \ {p | mp = +∞} and hence
h0(δ, λ) = ∞ for all λ ∈ P(δ).

Otherwise, Hλ is a ‘standard’ Weil divisor on P1, so by Riemann-Roch we have
h0(δ, λ) = deg ⌊Hλ⌋+1+h1(δ, λ), where h1(δ, λ) := dimH1(P1, ⌊Hλ⌋). If we define

A(δ, λ) =
∑

p∈P1

min
pD=p

〈λ, ℓD〉+mD

hD
,

i.e. A(δ, λ) = degHλ, then deg ⌊Hλ(δ)⌋ differs from A(δ, λ) by some bounded non-
negative function σ(δ, λ) for all δ, λ. We then have h0(δ, λ) = A(δ, λ) − σ(δ, λ) +
h1(δ, λ) + 1.

Proposition 3.13. If A(δ, λ) < 0, then h0(δ, λ) = 0. Otherwise, for large n,
h0(nδ, nλ) ∼ nA(δ, λ).

Proof. See [Tim11, §17.4] �

Inspired by the first part of the above Proposition, define the polyhedral domain

P+(δ) = {λ ∈ P(δ) | A(δ, λ) ≥ 0}.
Then by the above and the definition of P(δ), we have h0(δ, λ) = 0 for all λ /∈ P+(δ).

3.5.4. Volume of Divisors. Now assume that X is a smooth projective G-model.
Let ∆ be the root system of G, ∆+ the positive roots determined by B, ∆∨

+ the

corresponding set of positive coroots and ρ = 1
2

∑
α∈∆+

α. The following formula

of Timashev [Tim00] allows us to compute the volume of a Cartier divisor on a
complexity one variety.

Theorem 3.6. Let δ be a B-stable Cartier divisor of weight λδ on a normal pro-
jective quasihomogeneous G-variety X of dimension d, complexity c = 1 and rank
r. Then, in the notation of the previous subsection:

d = c+ r + |∆∨
+ \ (Λ + Zλδ)

⊥|,
and

vol δ = d!

∫

λδ+P+(δ)

A(δ, λ− λδ)
∏

α∨∈∆∨

+
\(Λ+Zλδ)⊥

〈λ, α∨〉
〈ρ, α∨〉 dλ
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where the Lebesgue measure on Λ ⊗ R is normalised such that a fundamental par-
allelepiped of Λ has volume 1.

Proof. See [Tim11, Thm 18.8] �

Example. Let G = SL2 so that ∆ = {±α}, ∆+ = {α}, ∆∨
+ =

{
α∨ = 2α

(α,α)

}
and

ρ = 1
2α. Any quasihomogeneous complexity one SL2-threefold X has d = 3, c = 1,

r = 1, so |∆∨
+ \ (Λ + Zλδ)

⊥| = 1, i.e. this set is just ∆∨
+ = {α∨}. If we identify

Λ = Zα with Z, and hence α with 1, we have

∏

α∨∈∆∨

+
\(Λ+Zλδ)⊥

〈λ, α∨〉
〈ρ, α∨〉 =

〈λ, α∨〉
〈α2 , α∨〉 = 2λ,

and the volume of a Cartier divisor δ on X is given by

vol δ = 6

∫

λδ+P+(δ)

2λA(δ, λ− λδ) dλ.

We will put this formula to great use later on to calculate β-invariants of prime
divisors over SL2-threefolds.

4. Main Results

The main results of this paper are the following:

Theorem 4.1. Let X be a smooth Fano SL2-threefold. If any of the three conditions
below holds, then X is K-polystable if βF (X) > 0 for all central G-stable prime
divisors over X:

(i) A finite subgroup A ⊆ AutX acts on P1 with no fixed points, such that the
rational B-quotient X 99K P1 is A-equivariant

(ii) A finite subgroup A ⊆ AutX acts on P1, interchanging two points in P1

corresponding to subregular colours of X, and the rational B-quotient X 99K

P1 is A-equivariant
(iii) X has subregular colours lying over three or more distinct points of P1.

Remark. We expect but have not proved that Theorem 4.1 applies with only minor
alterations to smooth Fano G-varieties of complexity one in general, rather than
just to SL2-threefolds.

Remark. We note the similarity of this result to [Süß13, Thm 1.1]

This result is essential since there are in general infinitely many prime divisors
over X , even G-invariant ones, but there are only finitely many central ones.

Theorem 4.2. The smooth Fano threefolds, (1.16), (1.17), (2.27), (2.32), (3.17),
(3.25) and (4.6) in the Mori-Mukai classification are K-polystable. The families
(2.21) and (3.13) each contain a K-polystable variety.

Remark. The same result were recently obtained independently by other authors
using different methods, see [SC21,ACC+21]. The K-polystability of the Mukai-
Umemura threefold in the family (1.10) was already known by Donaldson [Don08],
and the K-polystability of V5 (1.15) was known by Cheltsov-Shramov [CS09].

We will prove Theorem 4.1 in the next section for each of the three cases. In
the following two sections, we present the coloured data for each complexity one
homogeneous space of SL2 and calculate the coloured hyperfans of the varieties
listed in Theorem 4.2. We then use this data to demonstrate that for each of these,
one of the three conditions of Theorem 4.1 holds. In the final section, we show that
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there can only be one central prime divisor over any of these varieties. We then
calculate the β-invariant of this divisor explicitly in each case, completing the proof
of Theorem 4.2.

5. Proof of Theorem 4.1

5.1. Action Without Fixed Points.

Proof of Theorem 4.1(i). If A acts on P1 and the B-quotient X 99K P1 is A-
equivariant, we have an overall action on X of an extension G′ of G by A which
descends to the quotient. Suppose F is a non-central G-invariant prime divisor over
X . Since F is non-central, it must lie over some point PF ∈ P1. If A acts with no
fixed points on P1, then in particular PF is not fixed, so F cannot be G′-invariant.
It follows that only central divisors can be G′-invariant. Since A is finite, G′ is re-
ductive, so by the theorems of Fujita-Li and Datar-Székelyhidi, X is K-polystable
if β(F ) ≥ 0 for all G′-invariant prime divisors over X , i.e. for all central G-divisors
over X , and is only 0 for divisors corresponding to product configurations. �

5.2. Non-Normality. The proof of Theorem 4.1 parts (ii) and (iii) will be by
showing that, under these conditions, the test configurations corresponding to
non-central prime divisors over X have non-normal central fibre, and hence are
not special test configurations, and therefore we do not need to calculate their
Donaldson-Futaki invariant (or, equivalently, the β invariant of F ). We will use the
correspondence described in Section 3.5 between B-semi-invariant sections of prime
divisors on over X and sections of divisors on the B-quotient. We show that the
filtrations defined by the resulting divisors on P1 give non-integrally closed rings
which correspond to the central fibres of the given test configuration.

5.2.1. Divisors on P1.

Theorem 5.1. Let H =
∑m

i=1 aiQi =
∑m

i=1
bi
ci
Qi be a Q-divisor of positive degree

on P1, and let P ∈ P1. Let

A =
⊕

k∈Z

H0(kH)

be the section ring of H. Fix q ∈ Z and consider the filtration on A over r ∈ Z

given by

Fq
r =

⊕

k∈Z

{
f ∈ H0(kH) | ordP (f) ≥

r

q

}
.

Then take the associated graded ring

Bq =
⊕

r∈Z

Fq
r /Fq

r+1.

If at least two Qi, both distinct from P , have non-integral coefficients ai /∈ Z in
H, then for each q ∈ Z≥1, the ring Bq is not integrally closed.

We will prove this theorem in a number of steps, beginning with:

Proposition 5.1. With all notation as in Theorem 5.1, for any q ≥ 1 there exist
integers k, r and n, with k and n positive, such that Bq

(k,r) = 0 and Bq
(nk,nr) 6= 0.

Lemma 5.1. In the above proposition and theorem, we can assume without loss of
generality that q = 1.

Proof. Let q ≥ 1. We have B1
(k,r) = Bq

(k,qr), so if we find k, r and n with B1
(k,r) = 0

and B1
(nk,nr) 6= 0, then k, qr and n give the required result for q > 1. Hence we set

q = 1 going forward, and we drop the corresponding superscript. �
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Proof of Proposition 5.1. By the lemma, we assume that q = 1, and we want to find
n, k and r with B(k,r) = 0 and B(nk,nr) 6= 0. We will rewrite H =

∑m
i=1 aiQi+aPP ,

with aP = bP
cP

, and assuming all Qi 6= P . Sums and products indexed over i should
be understood as running from i = 1 to i = m and excluding P, aP etc. unless
otherwise specified.

Before we choose particular values of k, r and n, we will demonstrate an al-
ternative description of B(k,r). Denote by F(k,r) the degree-k part of Fr, i.e.

F(k,r) = {f ∈ H0(kH) | ordP (f) ≥ r}. Then B(k,r) = F(k,r)/F(k,r+1). Define

H(k,r) =

{
kH −r ≥ ⌊kaP ⌋
kH − kaPP − rP −r ≤ ⌊kaP ⌋.

We will show that F(k,r) = H0(H(k,r)), so B(k,r) = H0(H(k,r))/H
0(H(k,r+1)).

Indeed, when−r ≥ ⌊kaP ⌋, it suffices to show that any f ∈ H0(kH) automatically
has order at least r at P . Any such f must satisfy ordP (f) + ⌊kaP ⌋ ≥ 0, and if
0 ≥ r + ⌊kaP ⌋ then the result follows.

On the other hand, it is clear that F(k,r) ⊆ H0(kH− kaPP − rP ). Now suppose

f ∈ H0(kH − kaPP − rP ) and −r < ⌊kaP ⌋. We have ordP (f) ≥ r since the
coefficient at P of (f) + ⌊kH − kaPP − rP ⌋ is ordP (f)− r, so it remains to show
that f ∈ H0(kH). Since kH only differs from kH−kaPP − rP at P , it is sufficient
to note that ordP (f) + ⌊kaP ⌋ ≥ r + ⌊kaP ⌋ > 0.

Hence to show B(k,r) = 0 it is sufficient either that deg ⌊H(k,r)⌋ < 0 orH0(H(k,r)) =

H0(H(k,r+1)).

Likewise, for B(k,r) 6= 0 we must show that deg ⌊H(k,r)⌋ ≥ 0 and H0(H(k,r)) 6=
H0(H(k,r+1)). Note that when the first of these conditions holds and −r ≤ ⌊kaP ⌋,
the second one also holds by definition of H(k,r). If −r ≥ ⌊kaP ⌋ and deg ⌊kH⌋ ≥ 0
we have

0 ≤ deg ⌊kH⌋ =
∑

i

⌊kai⌋+ ⌊kai⌋ ≤ r + ⌊kai⌋ ≤ 0,

so −(r+1) < ⌊kai⌋ and H0(H(k,r)) 6= H0(H(k,r+1)) as well. Thus B(k,r) 6= 0 if and
only if deg ⌊H(k,r)⌋ ≥ 0.

Choice of k:

Our choice of k is motivated by two requirements, the reasons for which will be
seen later, these being:

(1)
∑

i

{kai} ≥ 1

where {x} = x− ⌊x⌋ is the fractional part of a real number x, and

(2) deg ⌊kH⌋ ≥ 0.

With that in mind, consider

k =

{∏
i ci + 1

∑
i {ai} ≥ 1∏

i ci − 1
∑

i {ai} < 1.

This choice satisfies requirement (1): in the first case we have {kai} = {ai} for
each i (by the fact that {x+n} = {x} for all integers n and real x), so

∑
i {kai} =
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∑
i {ai} ≥ 1 by assumption. If

∑
i {ai} < 1 we have

∑

i

{kai} =
∑

i

{−ai}

= |{i | ai /∈ Z}| −
∑

i

{ai}

≥ 2−
∑

i

{ai} > 1

since {−x} is 1 − {x} whenever x /∈ Z and 0 when x ∈ Z. Note that this is where
we use our assumption that at least two ai are non-integral, and it is essential.

However, this choice of k may not satisfy requirement (2). We have

deg ⌊kH⌋ = deg (kH)−
∑

i

{kai} − {kaP} > deg (kH)− (m+ 1),

since 0 ≤ {x} < 1 for all x. Since degH > 0, for k ≫ 0 we will have deg (kH) ≥
m + 1 and requirement (2) will be satisfied. Hence replace our initial choice of
k with k + ℓ

∏
i ci for ℓ large enough to give deg(kH) ≥ m + 1 - this choice will

still satisfy requirement (1) since {(k + ℓ
∏

i ci) ai} = {kai} for each i in either case.

Choice of r, B(k,r) = 0:

Let r = ⌊deg (kH − kaPP )⌋ = ⌊∑i kai⌋. Then

r + ⌊kaP ⌋ =
⌊
∑

i

kai

⌋
+ ⌊kaP ⌋

≥
∑

i

⌊kai⌋+ ⌊kaP ⌋

= deg ⌊kH⌋ ≥ 0

by requirement (2) of our choice of k, so −r ≤ ⌊kaP ⌋ and F(k,r) = H0(H(k,r)) =

H0(kH − kaPP − rP ).
We have

deg ⌊kH − kaPP − rP ⌋ =
∑

i

⌊kai⌋+ ⌊−r⌋

=
∑

i

⌊kai⌋ −
⌊
∑

i

kai

⌋

=

{
∑

i

kai

}
−
∑

i

{kai}

< 1−
∑

i

{kai} ≤ 0

since {x} < 1 for all x and
∑

i {kai} ≥ 1 by requirement (1) of our choice of k. It
follows that B(k,r) = F(k,r)/F(k,r+1) = 0.

Choice of n, B(nk,nr) 6= 0:
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Next, choose n = cP
∏

i ci, so that nkH is an integral divisor. To show that
B(nk,nr) 6= 0, recall that it suffices to show that deg ⌊H(nk,nr)⌋ ≥ 0. We have

nr + ⌊nkaP ⌋ = n

(⌊
∑

i

kai

⌋
+ kaP

)

= n

(
deg (kH)−

{
∑

i

kai

})
> 0,

since we chose k satisfying deg (kH) ≥ m + 1 > 1. Hence −nr ≤ nkaP , meaning
H(nk,nr) = nkH − nkaP − nrP . This divisor has degree

degH(nk,nr) =deg (nkH)− nkaP − nr

= n

(
deg (kH)− kaP −

⌊
∑

i

kai

⌋)

= n

{
∑

i

kai

}
≥ 0

since {x} ≥ 0 for any x. Hence B(nk,nr) 6= 0, and we are done. �

Our goal is to show that for each H as above, the ring B is not integrally closed.
We now know that there exist k, r and n with B(k,r) = 0 and B(nk,nr) 6= 0. Let K
be the algebra consisting of fractions of homogeneous elements of B. If there exists
f ∈ K(k,r) with fn ∈ B(nk,nr) then the monic polynomial xn− fn ∈ B[x] has a root
in K which does not lie in B (since such a root would lie in B(k,r)), which would
prove non-normality. We now show the existence of such an element.

Proposition 5.2. Let H, k, r and n be as above. There exist integers (k′, r′) such
that B(k′,r′) and B(k′+k,r′+r) are both nonzero. Hence there exists a nonzero function
in K(k,r).

Proof. Recall from above that B(k,r) 6= 0 if and only if deg ⌊H(k,r)⌋ ≥ 0.
We have deg ⌊kH⌋ = deg (kH) −∑i {kai} − {kaP} > deg (kH) − t, where t

is the number of terms in kH with non-integral coefficients (possibly including
kaP ). Hence choose k′ such that deg (k′H) > t and choose r′ = −⌊k′aP ⌋. Then
H(k′,r′) = k′H = k′H − k′aPP − r′P and deg ⌊k′H⌋ > 0, so B(k′,r′) 6= 0.

Now let k and r be as in the proof of Proposition 5.1 and recall that for these
values we have −r ≤ ⌊kaP ⌋. Hence

H(k+k′,r+r′) = (k + k′)H − (k + k′)aPP − (r + r′)P = H(k,r) +H(k′,r′).

Then deg ⌊H(k+k′,r+r′)⌋ ≥ deg ⌊H(k,r)⌋+ deg ⌊H(k′,r′)⌋. Since deg ⌊H(k,r)⌋ is fixed,
we may increase k′ (and thus increase deg ⌊H(k′,r′)⌋) to ensure that deg ⌊H(k+k′,r+r′)⌋ ≥
0, if necessary.

It follows that B(k+k′,r+r′) 6= 0 as required, and since B(k′,r′) 6= 0 as well, taking
the quotient of a nonzero element of the former by a nonzero element of the latter
gives a nonzero element in K(k,r). �

We can now prove the theorem:

Proof of Theorem 5.1. As always we are free to assume that q = 1 and drop the
superscript.

By some previous remarks, it suffices to find a nonzero element f ∈ K(k,r) with
fn ∈ B(nk,nr). The result above shows that K(k,r) 6= 0, so we may choose f ∈ K(k,r)

to be nonzero, so fn ∈ K(nk,nr) 6= 0. We will show that K(nk,nr) is a line, and since
it contains B(nk,nr) 6= 0, it follows that the two are equal, giving the result.
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Let k′, r′ be arbitrary integers, and suppose g, h ∈ K(k′,r′) are nonzero. Their
quotient must lie in K(0,0), which consists of fractions of homogeneous elements

of B of equal degree. Since B(k′,r′) = H0(H(k,r))/H
0(H(k′,r′+1)) by the previous

proof, it is clear that dimB(k′,r′) ≤ 1. Therefore any fraction of elements of B of
equal degree is constant, so K(0,0) = k. Then dimK(k′,r′) ≤ 1 for any (k′, r′), and
since K(nk,nr) 6= 0, it follows that dimK(nk,nr) = 1 as required. �

We will now work through an example to demonstrate this theorem.

Example. With all notation as in the rest of this section, let

H =
1

2
Q1 +

1

3
Q2 −

1

2
P.

We will show that the ring B arising from H as described in Theorem 5.1 is not
integrally closed, since H has two non-integral coefficients at Q1 and Q2.

First, we find k, r and n. Since
∑

i {ai} = 1
2 + 1

3 = 5
6 < 1, we set k = a1 ·

a2 − 1 = 2 · 3 − 1 = 5. Now r = ⌊∑i kai⌋ =
⌊
5
2 + 5

3

⌋
=
⌊
25
6

⌋
= 4. Finally,

n = cP · c1 · c2 = 2 · 2 · 3 = 12.
This gives H(k,r) = 5

2Q1 +
5
3Q2 − 4P . Then ⌊H(k,r)⌋ = 2Q1 + Q2 − 4P . This

divisor has no global sections because it has negative degree, so we see that B(k,r) =

H0(H(k,r))/H
0(H(k,r+1)) = 0 as required.

On the other hand, we have H(nk,nr) = 30Q1 + 20Q2 − 48P , which has positive
degree, so B(nk,nr) 6= 0. Indeed we have

B(nk,nr) = H0(30Q1 + 20Q2 − 48P )/H0(30Q1 + 20Q2 − 49P ).

Let P1 have co-ordinates x and y and suppose P = [0 : 1], Q1 = [1 : 0] and
Q2 = [1 : 1]. Then B(nk,nr) is generated by the rational functions

x48

y30(x− y)18
,

x48

y29(x− y)19
,

x48

y28(x − y)20
.

However, note that because we quotient by H0(30Q1 + 20Q2 − 49P ), we can show
that:

x48

y30(x − y)18
+

x48

y29(x − y)19
=

x49

y30(x − y)20
= 0,

since the result is a section of that divisor. It follows that in B(nk,nr) we have
y

x−y = −1, and we will use this fact later.

Now we choose k′ and r′. We can pick k′ = 4 since that gives k′H = 2Q1 +
4
3Q2−2P which has degree 4

3 and only one non-integral coefficient, so deg ⌊k′H⌋ > 0.
Then r′ = −⌊k′aP ⌋ = 2. We have

B(k′,r′) = H0(2Q1 +Q2 − 2P )/H0(2Q1 +Q2 − 3P )

and

B(k+k′,r+r′) = H0(4Q1 + 3Q2 − 6P )/H0(4Q1 + 3Q2 − 7P ).

Hence take f = x2

y(x−y) ∈ B(k′,r′) and g = x6

y4(x−y)2 ∈ B(k+k′,r+r′) and let

h =
f

g
=

x4

y3(x− y)
∈ K(k,r).

We know that h /∈ B since B(k,r) = 0. However, we have

hn =
x48

y36(x− y)12
=

(x− y)6

y6
· x48

y30(x − y)18
=

x48

y30(x− y)18
∈ B(nk,nr),

since (x−y)
y = −1 in B as seen above.
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It follows that h is a root in K, the field of fractions of B, of the monic polynomial

zn − x48

y30(x− y)12
∈ B[z].

Hence B is not integrally closed.

5.2.2. Divisor Correspondence. Now we show that prime divisors overX give rise to
divisors on P1, and demonstrate how, subject to some conditions, Theorem 5.1 can
be applied to show that the test configurations corresponding to these prime divisors
have non-normal central fibres. We refer back to the notation of Proposition 2.1
and Definition 2.9.

Proposition 5.3. Let X be a smooth G-variety of complexity one. The test con-
figuration corresponding to a prime divisor F over X is special if and only if the
graded ring B associated to the filtration on the section ring of −KX induced by F
is integrally closed.

Proof. The test configuration is special if and only if the central fibre X0 is normal.
In this case we haveX0 = π−1(0) = ProjA/(z), whereA/(z) =

⊕
r∈ZFrR/Fr+1R =

B. Since X0 = ProjB, and in fact B is the section ring of (X0, L0), it follows that X0

is normal, and the test configuration special, if and only if B is integrally closed. �

Now suppose X is a smooth Fano G-variety of complexity one. Let F be a
non-central G-divisor over X . We know that the test configuration corresponding
to X is special if and only if the bigraded ring B defined above is integrally closed.
We will use the B-quotient to allow ourselves to check this using divisors on P1.
Recall that B =

⊕
r∈ZFrR/Fr+1R, where R =

⊕
k∈Z H

0(X,−kKX) and FrR =⊕
k∈Z {f ∈ H0(X,−kKX) | νF (f) ≥ r}.
We know that we can find a B-invariant representative of the class −KX , and

given this, the section ringsH0(X,−kKX) gain a G-module structure. The B-semi-
invariants of weight λ in thisG-module are of the form f0eλ where f0 ∈ KB = k(P1).
If B(X) is the set of B-invariant divisors ofX and we have−KX =

∑
D∈B(X)mDD,

then

H0(X,−KX)
(B)
λ = {f0eλ | f0 ∈ KB,

∑

D∈B(X)

[hDνPD
(f0) + 〈λ, ℓD〉+mD]D ≥ 0}.

For a fixed weight λ ∈ Λ we have H0(X,−KX)
(B)
λ

∼= H0(P1, Hλ), where

Hλ =
∑

P∈P1

(
min
PD=P

〈λ, ℓD〉+mD

hD

)
P .

This is a well defined divisor on P1 (i.e. has no coefficients ±∞) provided that
(a): for any P ∈ P1 there exists a B-divisor D on X with PD = P and hD > 0,
and (b): λ lies in the polyhedral domain

P(−KX) = {λ ∈ Λ | 〈λ, ℓD〉 ≥ −mD for all D with hD = 0}.
Condition (a) holds by completeness ofX , but we need to be careful about condition
(b).

Recall the function

A(−KX , λ) =
∑

P∈P1

(
min
PD=P

〈λ, ℓD〉+mD

hD

)

which computes the degree of Hλ, and the polyhedral domain

P+(−KX) = {λ ∈ P | A(−KX , λ) ≥ 0}.
In this notation, Hλ is well-defined and has positive degree exactly when λ lies in
the relative interior of P+(−KX).
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Lemma 5.2. We may assume that 0 is in the relative interior of P+(−KX).

Proof. Since−KX is ample, we have seen that−Kn
X = vol(−KX), and this quantity

must be positive. We have also seen that vol(−KX) can be expressed as an integral
over λ−KX

+ P+(−KX). It follows that P+(−KX) has non-empty interior. Let
λ lie in the interior of P+(−KX), and replace −KX with the equivalent divisor
−K ′

X = −KX + div eλ.
Suppose hD = 0 for some D ∈ B(X). We know that 〈λ, ℓD〉 ≥ −mD. The

former is defined to be νD(eλ), so we have mD + νD(eλ) = m′
D ≥ 0, or equivalently

0 = 〈0, ℓD〉 ≥ −m′
D, i.e. 0 ∈ P(−K ′

X).
Likewise, since λ ∈ relintP+(−KX), we have A(−KX , λ) > 0. But

A(−KX , λ) =
∑

P∈P1

(
min
PD=P

〈λ, ℓD〉+mD

hD

)

=
∑

P∈P1

(
min
PD=P

m′
D

hD

)
= A(−K ′

X , 0).

So A(−K ′
X , 0) > 0 and the result follows. �

Now looking back to B, we have

(Fr)(B) =
⊕

k∈Z

{
f ∈

⊕

λ∈Λ

H0(X,−kKX)
(B)
λ | νF (f) ≥ r

}
.

By discussions above, we can rewrite this as

(Fr)(B) =
⊕

λ∈Λ

⊕

k∈Z

{f ∈ H0(P1, kHλ) | νF (f) ≥ r}.

Since νF (f) = hF ordPF
(f) + 〈λ, ℓF 〉, we have

(Fr)
(B)
(λ,k) =

{
f ∈ H0(kHλ) | ordP (f) ≥

r − 〈λ, ℓF 〉
hF

}
.

We have shown that if degHλ > 0 and Hλ has non-integral coefficients at two
points other than PF , the ring BhF (Hλ) is not integrally closed. The latter is the
sum over (k, r) ∈ Z⊕ Z of

BhF (Hλ)(k,r) =

{
f ∈ H0(kHλ) | ordPF

(f) ≥ r
hF

}

{
f ∈ H0(kHλ) | ordPF

(f) ≥ r+1
hF

} .

Note that BhF (Hλ)(k,r−〈λ,ℓF 〉) = (Fr)
(B)
(λ,k)/(Fr+1)

(B)
(λ,k) as defined above. The shift

of degrees by 〈λ, ℓF 〉 can be ignored as we sum over Z either way.
We can now write

B(B) =
⊕

λ∈Λ

⊕

r∈Z

⊕

k∈Z

B(B)
(λ,k,r) =

⊕

λ∈Λ

⊕

r∈Z

⊕

k∈Z

BhF (Hλ)(k,r)

=
⊕

λ∈Λ

BhF (Hλ).

Lemma 5.3. Let A be an integral domain with field of fractions K, and let K ′ be
a subfield of K. Let B = A ∩K ′. If B is not integrally closed in K ′, then A is not
integrally closed in K.

Proof. If B is not integrally closed in K ′, there exists a monic polynomial in B[x]
with a root f ∈ K ′ which does not lie in B. Since K ′ ⊆ K and B[x] ⊆ A[x], we
can also view f as a root in K of a monic polynomial in A[x]. If f ∈ A, then since
f ∈ K ′, we have f ∈ A ∩K ′ = B, a contradiction. Hence f /∈ A and A is therefore
not integrally closed in K. �
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Theorem 5.2. If there exists λ ∈ P+(−KX) such that Hλ has two non-integral
coefficients at points other than PF , then B is not integrally closed.

Proof. By Lemma 5.3 it suffices to show that B(B)
0 = B∩KB is not integrally closed.

We have shown that B(B) =
⊕

λ∈Λ BhF (Hλ), so in particular B(B)
0 = BhF (H0).

Hence if BhF (H0) is not integrally closed, then neither is B. We have proved
already that BhF (H0) is not integrally closed when H0 has positive degree and two
non-integral points distinct from PF . We may assume that H0 has positive degree
by Lemma 5.2.

If Hλ has non-integral coefficients at two points other than PF , then replace
−KX with −K ′

X = −KX + div eλ. Then H ′
0 = Hλ and the result follows using H ′

0

instead of H0. �

To summarise the results of this subsection, we have:

Corollary 5.1. Let X be a smooth Fano G-variety of complexity one with anti-
canonical divisor −KX. Let F be a non-central prime divisor over X corresponding
to a point PF ∈ P1 on the B-quotient. If there exists λ ∈ P+(−KX) such that Hλ

has two non-integral coefficients at points other than PF , then the test configuration
corresponding to F has non-normal special fibre.

In Section 8 we will show that the hypotheses of Corollary 5.1 hold for all smooth
Fano SL2 threefolds. This will allow us to conclude the following:

Theorem 5.3. Let X be one of the SL2-threefolds mentioned in Theorem 4.2. Let
F be a non-central prime divisor over X corresponding to a point PF ∈ P1. If X
has subregular colours lying over two points in P1 distinct from PF , then the test
configuration corresponding to F has non-normal central fibre.

This result now allows us to prove parts (ii) and (iii) of Theorem 4.1.

5.3. Action Interchanging Two Points.

Proof of Theorem 4.1(ii). Suppose a finite subgroup A ⊆ AutX acts on P1, inter-
changing two points P and Q corresponding to subregular colours of X and that
the B-quotient is equivariant with respect to the A-action. We have an action on
X of an extension G′ of G by A. Any non-central G-invariant prime divisor F
over X can only be G′-invariant if its corresponding point PF ∈ P1 is fixed by A.
Since P and Q are not fixed by A, they are distinct from PF , and since each has
a subregular colour lying over it, Theorem 5.3 applies, and the test configuration
corresponding to F is not special. Therefore we may show that X is K-polystable
by checking only central divisors. �

5.4. Three or More Subregular Colours.

Proof of Theorem 4.1(iii). If X has subregular colours lying over three or more
distinct points of P1, then for any non-central prime divisor F overX corresponding
to a point PF in P1, there always exist at least two subregular colours lying over
two points distinct from PF and from each other. Then Theorem 5.3 applies and
we need only check the β-invariant of central divisors. �

6. Homogeneous Spaces of SL2

In this subsection we will describe the coloured data of the complexity one ho-
mogeneous spaces of SL2, as calculated by Timashev [Tim97]. We will show the
calculation in full for SL2 itself, while simply presenting the pictures for the re-
maining homogeneous spaces. Note that a complexity one homogeneous space for
SL2 must be of the form SL2/H for H finite, and that the finite subgroups of SL2
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are as follows: the cyclic groups Zn for n ∈ N, the binary dihedral groups D̃n for
n ∈ N, the binary tetrahedral group T̃ , the binary cubic group C̃ and the binary
icosahedral group Ĩ.

6.1. SL2. Consider the action of G = SL2 on itself by left multiplication of matri-
ces, let K = k(G) and choose subgroups B,U and T of G consisting of upper tri-
angular, upper unitriangular and diagonal matrices, respectively. The action gives
the homogeneous space G/H = SL2/{e}. The B-orbit of the identity is B itself,
which is a maximal orbit of codimension 1, so this is a complexity one homogeneous
space. Note that X(B) = Zα where α is the character

(
a b
0 1/a

)
7→ a. For g =

(
x y
z w

)
,

the functions g 7→ z and g 7→ w are semi-invariant of weight α, so Λ = Zα as well.

These semi-invariants generate the space M = k[G]
(B)
α , and KB = k(z/w). Fix a

splitting e : Λ → K(B) given by eα = z. Then all semi-invariants are of the form
fekα where f ∈ KB and k ∈ Z.

We are interested in G-valuations and valuations of colours of K, which are
determined by their restrictions to K(B), which are in turn determined by their
restrictions to KB and a functional ℓ : Λ → Q.

The rational B-quotient map is determined by the invariant z/w and thus looks
like π : SL2 → P1, g 7→ [z : w]. The regular semi-invariants thus lie in the space
M generated by z and w. Since no other semi-invariants can divide z or w, there
are no subregular semi-invariants. Likewise there are also no central colours. The
fibre of a point p = [α : β] ∈ P1 is the regular B-divisor Dp = Z(βz − αw), and
all B-stable divisors are of this form. The chosen splitting e marks out the point
∞ = [0 : 1] with D∞ = Z(eα) as distinguished. Non-distinguished regular colours
Dp for p 6= ∞ sit at (p, ℓ, h) = (p, 0, 1) ∈ Hp, and D∞ has ℓ = ν∞(eα) = 1, so sits
at (∞, 1, 1) ∈ H∞.

We can calculate V using the method of formal curves (see [Tim11, §24]): fix
m ∈ Z and u(t) ∈ k((t)) and let

x(t) =



tm u(t)

0 t−m



 ∈ X
∗(T ) · U(k((t)))

where ordt u(t) = n ≤ −m. Then any non-central G-valuation is proportional to
νx(t), where νx(t)(f) = ordt(f(g · x(t))) for any f ∈ K(B) and generic g ∈ G. Let
p = [α : β] and

dp = νx(t)(βz − αw) = ordt((βt
m − αu(t))z − αt−mw).

The value of dp is constant along P1 except at the distinguished point, where it
jumps by some h ∈ Q≥0, so that ν is represented in hyperspace by (x, ℓ, h), where
ℓ = νx(t)(eα).

Note that for any p, dp ∈ [m,−m]. Now suppose that m ≤ n. We have dp ≥
min {ordt(βtm − αu(t)),−m} = ordt(βt

m − αu(t)) ≥ min {m,n} = m. Now if
dp > m, we have dp ∈ (m,−m]. Otherwise dp = m. Since h is the difference
between the maximum possible value of dp (which is −m) and the minimum, which
we see lies in the interval [m,−m), we have h ∈ (0,−2m]. Finally, ℓ is given by the
value of dp, which at non-distinguished points is m and at the distinguished point
is m+ h.

In the case m > n, we have dp = n when α 6= 0, and when α = 0 (at the
distinguished point), we have dp = m. Hence h = m−n, ℓ = n for nondistinguished
points and ℓ = n+ h for ∞.

In either case we have h > 0 and the possible (ℓ, h) are defined for p 6= ∞ by
the inequality 2ℓ + h ≤ 0, and for p = ∞ by 2ℓ − h ≤ 0. Re-including the central
valuations allows h ≥ 0. Thus we have valuation cones Vp = {(ℓ, h) ∈ Hp | 2ℓ+h ≤



24 JACK ROGERS

0, h ≥ 0} for p 6= ∞, and V∞ = {(ℓ, h) ∈ H∞ | 2ℓ − h ≤ 0, h ≥ 0}. The picture of
the hyperspace is thus:

ℓ

h

p 6= ∞
ℓ

h

p = ∞

Figure 1. Coloured data of SL2

where dashed areas denote the valuation cones and colours are denoted by unfilled
circles.

6.2. SL2/Zm. The coloured data of SL2/Zm has a distinguished point as above,
but the two points 0,∞ ∈ P1 are also set apart since they are fixed by the Zm

action on P1 obtained via the B-quotient.

m

−m−1
2−m

2
ℓ

h

p = 0,∞
ℓ

h

2

−1

p general

ℓ

h

2

1

p distinguished

Figure 2. Coloured data of SL2/Zm

where Q = Λ∗, the ℓ-axis, is given by Z if m is odd and 1
2Z if m is even.

6.3. SL2/D̃n. The binary dihedral and polyhedral groups have distinguished points
corresponding to the faces, edges and vertices of their corresponding polygons.

n

1− n−n ℓ

h

p = pf
ℓ

h

2

1
p = pe, pv

ℓ

h

1

−1

p 6= pf , pv, pe

Figure 3. Coloured data of SL2/D̃n
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6.4. SL2/T̃ .

2

−1 ℓ

h

p = pe

ℓ

h

1

3

p = pv, pf

ℓ

h

1

−1

p 6= pf , pv, pe

Figure 4. Coloured data of SL2/T̃

6.5. SL2/C̃.

2

−1 ℓ

h

p = pe

ℓ

h

1

4

p = pf

ℓ

h

1

3

p = pv

ℓ

h

1

−1

p 6= pf , pv, pe

Figure 5. Coloured data of SL2/C̃

6.6. SL2/Ĩ.



26 JACK ROGERS

2

−1 ℓ

h

p = pe

ℓ

h

1

3

p = pf

ℓ

h

1

5

p = pv

ℓ

h

1

−1

p 6= pf , pv, pe

Figure 6. Coloured data of SL2/Ĩ

7. Coloured Hyperfans of Smooth Fano SL2-Threefolds

Here we calculate the coloured hyperfans of the smooth Fano SL2-threefolds we
are interested in.

7.1. SL2-Actions on Symmetric Powers. Many of the SL2-actions on threefolds
to be considered here will be induced by an SL2-action on Pn for some n, often in
the case where Pn is realised as the projectivisation of a symmetric power of k2.
We describe these actions and some of their properties here, and will use the results
throughout the remainder of this section.

Proposition 7.1. Let G = SL2. Fix a Borel subgroup B consisting of the upper
triangular matrices in G. Then X(B) = Zα, where α is the character

(
a b
0 1/a

)
7→ a.

The dominant weights are the non-negative integer multiples of α, and the simple
G-module of highest weight nα can be realised as the space Snk2 = k[x, y]n of
homogeneous degree n polynomials in 2 variables, where G acts by linear change of
variables.

Proof. The G-module k[x, y]n is indeed simple: if not, it decomposes as a direct sum
of G-submodules by complete reduciblity of modules for reductive groups. Each of
these G-submodules must contain a nonzero U -invariant (see [Hum75, Thm 17.5]).
But the only U -invariants in k[x, y]n are scalar multiples of yn, and complementary
submodules cannot both nontrivially intersect a single line. A simple check shows
that B acts on kyn with weight nα. �

Proposition 7.2. By the above, G acts on Pn = P(Snk2). Under this action, the
rational normal curve Z ⊆ Pn defined as the image of P1 = P(k2) under the degree
n Veronese map, is a G-orbit.
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Proof. Since G acts transitively on P1 under the standard linear action, it suffices to
show that νn is G-equivariant. But νn maps [x : y] to [xn : xn−1y : . . . : xyn−1 : yn]
and since the G-action on Pn is defined by the same linear changes of the variables
x, y as the action on P1, equivariance follows immediately. �

Proposition 7.3. Let Pn = P(Snk2) (n ≥ 2) have homogeneous co-ordinates zk,
0 ≤ k ≤ n. Then (where they are regular) zn is a B-semi-invariant of weight nα
and zn−2zn − z2n−1 is a semi-invariant of weight (2n− 4)α.

Proof. Since zn corresponds to yn ∈ Snk2, it is a semi-invariant of weight nα by
Proposition 7.1. For zn−2zn − z2n−1, note that

(
a b
0 1/a

)
∈ B maps the co-ordinate

function zk to the linear polynomial given by making the replacement xn−mym 7→
zm in the expression (ax + by)n−mym/am. It is then straightforward to check the
claim. �

Proposition 7.4. Each co-ordinate function zk on Pn = Snk2 is a T -eigenvector
of weight (2k−n)α, where T ⊆ B is a maximal torus. It follows that a homogeneous
B-eigenfunction of degree d must be a linear combination of monomials zk1

· · · zkd

with
∑d

i=1 ki =
1
2 (m + dn). In particular, a G-invariant divisor of degree d in Pn

must be defined by a linear combination of such monomials with
∑d

i=1 ki =
dn
2 .

Proof. An element
(
a 0
0 1/a

)
∈ T acts on zk by zk 7→ (ax)n−k(y/a)k 7→ an−2kzk,

so zk has weight (2k − n)α. The B-weight of a B-eigenfunction must equal the
T -weight of the same function, which must in turn equal the weight of any of its
individual terms. Hence for a homogeneous polynomial of degree d, constructed
from monomials zk1

· · · zkd
, to be a B-eigenfunction of weight mα we must have∑d

i=1 (2ki − n) = m, or
∑d

i=1 ki = 1
2 (m + dn). Finally, a G-invariant divisor

must be defined by a G-semi-invariant homogeneous polynomial. Since G (being a
perfect group) has no nontrivial characters, such a polynomial must in particular
have B-weight 0, from which the final claim follows. �

7.2. Blow-up of P3 Along Three Lines (4.6).

Hyperfan of P3. Let G = SL2 act on X = P(M2(k)) ∼= P3 by left multiplication
of matrices. Then the orbit B · ( 1 0

0 1 ) is
{
( x y
0 1 ) ∈ P3

}
. This point has stabiliser

Z2 and the orbit therefore has dimension dimB = 2. This must be a maximal
orbit and so this action has complexity one. The G-orbit of the same point is{
( x y
z w ) ∈ P3 | xw − yz 6= 0

}
= PGL2. This is an open subset of P3, so we are in

the quasihomogeneous case, and P3 is an embedding of PGL2 = SL2/Z2 = G/H .
The degenerate matrices constitute a G-stable prime divisor D = Z(xw − yz) of
P3, which contains all of its closed orbits.

There is a family of colours parameterised by points in P1: namely, for p =
[α : β] ∈ P1, the divisor Dp = Z(βz − αw) is a colour.

Coloured Hyperspace. We know from 6.2 that the weight lattice Λ of SL2/Z2 is
Z · 2α, so we identify its dual Q with 1

2Z, and the field of B-invariants can be
generated by z/w. In the case of SL2/Z2, to keep the convention of our analysis

of SL2, we would choose a distinguished semi-invariant e2α = z2 ∈ k[G/H ]
(B)
2α .

This corresponds to the rational function F = z2/(xw − yz) on P3. It is still a
semi-invariant of weight 2α and we will set e2α = F .

In the hyperspace, the choice of e2α means that ∞ = [0 : 1] is distinguished,
since its pullback under the B-quotient map is the divisor of F . For all other
points, the valuation cone is defined by ℓ + h ≤ 0 (not 2ℓ + h as before since
we identify Q with 1

2Z), and the colour Dp lies at (0, 1) in Hp. For p = ∞, the
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valuation cone is ℓ − h ≤ 0, and the colour Dp lies at (2, 1). Indeed, we have
ℓD∞

= νD∞
(e2α) = νz(z

2/(xw − yz)) = 2.
Let D := Z(xw−yz) ⊆ P3 be the divisor of degenerate matrices, with associated

valuation νD. This valuation is G-invariant and geometric, so lies in V . To locate
νD in the hyperspace H, first note that νD(z/w) = 0, so νD has trivial restriction
to KB and is thus central. We also have νD(e2α) = νD(z2/(xw− yz)) = −1, so νD
sits at (−1, 0) in the centre of the hyperspace. Since any positive rational multiple
of νD is also a G-valuation, the cone of central valuations K = V ∩ Z is Q≤0.

Coloured Data. As has been noted, all closed G-orbits in X lie in the divisor of
degenerate matrices D. Since we are projectivising 2× 2 matrices, D must consist
exclusively of (projectivisations of) rank 1 matrices. It is not difficult to check that
each closed orbit consists of matrices with a given kernel, so they are parameterised
by P1. For p ∈ P1 we write Yp for the closed orbit of matrices whose kernel is the
line in k2 represented by p. Each colour Dp contains the closed orbit Yp and this
orbit is contained in no other B-divisor, so the coloured data of the G-germs in X
are as follows: VYp

= {νD}, DB
Yp

= {Dp}; VD = {νD},DB
D = ∅.

Thus for p 6= ∞, the minimal G-germ Yp corresponds to the coloured cone in
Hp spanned by the colour Dp at (0, 1) and the G-divisor D at (−1, 0), i.e. it is
the upper-left quarter-plane. Similarly for p = ∞ the coloured cone is spanned by
D∞ = (2, 1) and D. We can see that for any p, the coloured cones spanned by the
minimal G-germs cover Vp entirely, in accordance with completeness of P3. Hence
the coloured hyperfan of P3 looks as follows:

ℓ

h

D

p 6= ∞

Dp

ℓ

h

D

p = ∞

Dp

Figure 7. Coloured hyperfan of P3 (linear action)
where filled circles represent G-divisors, unfilled circles represent colours, thick lines
indicate rays spanned by G-germs and B-divisors, hatched areas show the coloured
cones generated by minimal G-germs, and dashed lines show the boundaries of the
valuation cones.

Blow-up of One Line. The closed G-orbits Yp ⊆ P3, where p = [α : β] ∈ P1, consist
of matrices whose kernel is the line in k2 represented by p. That is, Yp = Z(βx −
αy, βz − αw). Each of these closed orbits is a G-stable line in P3, and they are
mutually disjoint. We will obtain our example by blowing up three of these lines,
which can be chosen arbitrarily. First we investigate what happens to the coloured
data and hyperspace after one blow-up, and the rest follows easily.

Let 0 = [1 : 0] ∈ P1 and consider Y0 = Z(y, w) ⊆ P3. Let X := BlY0
(P3) =

Z(yv − wu) ⊆ P1 × P3. Note that under the blow-up, the colours Dp and closed
orbits Yp of P3 where p 6= 0 pull back isomorphically to X , and since Y0 is G-stable,
the blow-up is equivariant.
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The exceptional divisor of this blow-up is E0 = Z(y, w) ⊆ P1×P3 and the strict

transform of the divisor of degenerate matrices is D̃ = Z(xw−yz, uz−vx, yv−uw) ⊆
P1 × P3. These are the only G-stable prime divisors in X , and their intersection is
the curve Z(uz− vx, y, w). Together D̃, E0, their intersection and the closed orbits
Yp (p 6= 0) constitute all G-germs of X . Meanwhile, the colours of X are the colours

Dp (p 6= 0) of P3 and the strict transform D̃0 = Z(w, v).
Hence the coloured data of the G-germs of X are as follows: for p 6= 0 we have

VYp
= {νD̃}, DB

Yp
= {D̃p}. Then also VD̃∩E0

= {νD̃, νE0
}, DB

D̃∩E0

= ∅, VD̃ = {νD̃},
DB

D̃
= ∅, VE0

= {νE0
}, DB

E0
= ∅.

The set-up of the hyperspace is unchanged from the example of P3: Λ is generated
by 2α, Q is identified with 1

2Z, we choose the splitting e2α = z2/(xw−yz) (marking
∞) as the distinguished point), and the valuation cones are defined by ℓ+h ≤ 0 for
p 6= ∞ and ℓ− h ≤ 0 for p = ∞. It remains to locate the colours and G-divisors.

The central divisor D̃ still sits at (−1, 0) in every section of the hyperspace, as

before. For p = 0, the colour D̃0 sits at (0, 1) and the G-divisor E0 sits at (−1, 1).

The coloured cone defined by the minimal G-germ D̃ ∩ E0 spans the rays defined
by D̃ and E0. For p 6= 0, the colour D̃p sits at (0, 1) as before and the cone defined

by Ỹp spans the rays defined by D and D̃p. Again we see that the coloured cones
defined by the various G-germs all cover the valuation cone in each slice of the
hyperspace, as required by completeness of X . Thus the coloured hyperfan looks
like:

ℓ

h

D̃

p 6= 0,∞

D̃p

ℓ

h

D̃

p = 0

D̃0

E0

ℓ

h

D̃

p = ∞

D̃p

Figure 8. Coloured hyperfan of the blow-up of P3 along one line

Blow-up of Three Lines. Now we can go back to P3, choose three arbitrary non-
distinguished points (say q, r, s ∈ P1 \ {∞}) and successively blow up their corre-
sponding G-orbits, in this case Yq, Yr and Ys. From the calculations above for the
first blow up it is clear what happens as far as G-germs and the hyperspace are
concerned: the slices of hyperspace corresponding to all points p 6= q, r, s will be
unchanged from their description above, and in each of the slices corresponding to
q, r, s there will be a new G-divisor (the exceptional divisor of the blow-up) sitting
at (−1, 1), while the corresponding colour does not move from (0, 1). The minimal

G-germs are Yp for p 6= q, r, s and D̃∩Ep for p = q, r, s. The former define coloured

cones bounded by D̃ and D̃p in Hp (p 6= q, r, s) and the latter define coloured cones

bounded by D̃ and Ep in Hp (p = q, r, s). Hence we get the following coloured
hyperfan:
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ℓ

h

D̃

p 6= q, r, s,∞

D̃p

ℓ

h

D̃

p = q, r, s

D̃p

Ep

ℓ

h

D̃

p = ∞

D̃p

Figure 9. Coloured hyperfan of the blow-up of P3 along three lines

7.3. Blow-up of P1 × P2 (3.17).

Orbits and G-germs Before the Blow-up. Let G = SL2 act on P1 × P2, linearly
on the first factor and quadratically on the second. The G-orbit of the point
P = ([1 : 0], [1 : 0 : 1]) is

{([a : c], [a2 + b2 : ac+ bd : c2 + d2]) | ad− bc = 1}.
The stabiliser GP is Z4, so this orbit is open, and the B-orbit is easily checked to
be 2 dimensional. Hence P1 × P2 is a complexity one G-variety and an embedding
of G/H = SL2/Z4.

The divisors ∆ = Z(x2
0z2 + x2

1z0 − 2x0x1z1) and F = Z(z0z2 − z21) are G-stable.
Consider the G-stable curve C = Z(x1z0−x0z1, x1z1−x0z2) ⊆ P1×P2. Note that
C = F ∩∆. The orbits on P1×P2 are as follows: C is itself a closed orbit, then ∆\C
and F \C are orbits, and the open orbit described above is P1×P2 \ (F ∪∆). This
is shown in detail by calculations after the blow-up in a later subsection. Hence the
proper G-germs of P1 × P2 are C, F and ∆.

(Semi-) Invariant Functions. Recall that for SL2/Z4, the weight lattice Λ is gen-
erated by 2α, Q = Λ∗ is identified with 1

2Z, the field of invariants is gener-

ated by z2/w2 and we chose a semi-invariant regular function F from the module

M = k[G]
(B×H)
(2α,ε2) spanned by z2 and w2 to give a splitting e2α = F 2/(zw).

On P1×P2, the function f0 = g0/h0 = x2
1(z0z2−z21)/(x0z2−x1z1)

2 is B-invariant
and under the isomorphism G/H ∼= P1 × P2 \ (F ∪∆) corresponds to the invariant
z2/w2. Hence this function defines a rational B-quotient map π : P1 × P2

99K P1,
P 7→ [g0(P ) : h0(P )].

For p = [α : β] ∈ P1, the pullbacks π∗(p) = Z(βg0 − αh0) define a family of
regular colours Dp = π∗(p) except at three points:

p = ∞ = [0 : 1] : π∗(p) = Z(x2
1(z0z2 − z21)) = F ∪ Z(x2

1) = F ∪D∞,

p = −1 = [1 : −1] : π∗(p) = Z(z2(x
2
0z2 + x2

1z0 − 2x0x1z1)) = ∆∪Z(z2) = ∆∪D−1,

p = 0 = [1 : 0] : π∗(p) = Z((x0z2 − x1z1)
2) = D0.

Note that D∞ and D0 correspond to points in P1 of multiplicity 2, i.e. they are
subregular colours and thus have h-coordinate 2 in hyperspace, in accordance with
the calculation of the hyperspace of SL2/Z4 in Section 6.2.

Now we choose as the splitting semi-invariant

e2α =
z22(x

2
0z2 + x2

1z0 − 2x0x1z1)

x1(z0z2 − z21)(x0z2 − x1z1)
.
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This corresponds in the homogeneous space to the function (z2 + w2)2/(zw), and
hence to the choice F = z2 + w2 ∈ M and thus marks out the point −1 ∈ P1 as
distinguished.

Coloured Data and Hyperfan. We first note here that the curve C is contained in
the G-divisors ∆ and F , and in every colour Dp for p 6= −1,∞, i.e. in colours lying
over points in P1 whose pullback does not contain ∆ or F . Hence the coloured
data of C is: VC = {ν∆, νF }, DB

C = {Dp | p 6= −1,∞}, and the remaining coloured
data is V∆ = {ν∆},VF = {νF }, DB

∆ = DB
F = ∅. We see from this that C defines a

coloured hypercone of type II in H.
In accordance with Section 6.2, the subregular colours D0, D∞ sit at (−1, 2) in

their respective slices of hyperspace, the colour D−1 sitting over the distinguished
point sits at (2, 1), and the non-distinguished regular colours Dp for p 6= 0,−1,∞
lie at (0, 1). Finally, the G-divisors F and ∆ go to (p, ℓ, h) = (∞,−1, 1) and
(p, ℓ, h) = (−1, 1, 1) respectively. Then the polytope defined by C is P = P0 +
P∞ + P−1 = {−1/2} + {−1} + {1} = {−1/2}. Hence the coloured hyperfan of
P1 × P2 is as follows:
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−1 ℓ

h

p = 0

D0

2

−1 ℓ

h

p = ∞

D∞

F

ℓ

h

1

2

p = −1

∆ D−1

ℓ

h

−1

p 6= 0,−1,∞

Dp

Figure 10. Coloured hyperfan of P1 × P2

Blow-up. We now blow up C to obtain the varietyX = Z(x0y0z2+x1y1z0−x0y1z1−
x1y0z1) ⊆ P1×P1×P2. Then X contains the G-stable divisors ∆̃ = Z(x0y1−x1y0),
the strict transform of the divisor ∆ defined above, E = Z(x1z0−x0z1, x1z1−x0z2),

the exceptional divisor of the blow-up, and F̃ = Z(y1z0 − y0z1, y0z2 − y1z1), the

strict transform of the above divisor F̃ . Let D = E ∪ F̃ .

Orbits and G-germs After the Blow-up. Claim: the G-orbits on X are X \ (D ∪ ∆̃),

which is open, ∆̃ \ (D ∩ ∆̃), E \ (E ∩ ∆̃), F̃ \ (F̃ ∩ ∆̃) and D ∩ ∆̃, which is closed.
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We note that D ∩ ∆̃ = E ∩ ∆̃ = F̃ ∩ ∆̃ = E ∩ F̃ . Thus the G-germs of X are ∆̃,
E, F̃ and D ∩ ∆̃, with the latter being minimal.

Proposition 7.5. The open SL2-orbit on X is X \ (D ∪ ∆̃).

Proof. For (p, q) ∈ P1×P1, let Xp,q = X ∩ ({(p, q)}×P2). Since the torus k∗ ⊆ SL2

fixes 0 := [0 : 1],∞ := [1 : 0] ∈ P1, it must also leave X0,∞ stable. We claim that
k∗ acts transitively on X0,∞ \D0,∞:

Indeed, suppose Q = (0,∞, [q0 : q1 : q2]) ∈ X0,∞ \ D0,∞. The equation for

X demands that q1 = 0, and this means that the equations for E, F̃ reduce to
q0 = 0 and q2 = 0, respectively. Hence we must have Q = (0,∞, [q0 : 0 : q2]), with

q0q2 6= 0. Now consider P = (0,∞, [1 : 0 : 1]), whose image under A =
(
a 0
0 1/a

)
∈ k∗

is (0,∞, [a2 : 0 : 1/a2]) = (0,∞, [a4 : 0 : 1]). By setting a to be any fourth root of
q0/q2, we thus have that Q = A · P , proving the claim.

Now let S = (p, q, r) ∈ X \ (D ∪ ∆̃). Since p, q ∈ P1 are distinct, there exists
M ∈ SL2 with M ·S = (0,∞,M · r) ∈ X0,∞ \D0,∞. Now by the above there exists

A ∈ k∗ with A · (M · S) = P , hence SL2 · P = X \ (D ∪ ∆̃) as promised. �

Proposition 7.6. ∆̃ \ (D ∩ ∆̃) is an SL2-orbit on X.

Proof. First, note that the Borel subgroup B ⊆ SL2 fixes ∞ ∈ P1, which we use to
show that B acts transitively on X∞,∞ \D∞,∞. The equations for X and D here
reduce to z2 = 0, z1 = 0 respectively. Let P = (∞,∞, [0 : 1 : 0]) ∈ X∞,∞ \D∞,∞,

so that A =
(
a b
0 1/a

)
· P = (∞,∞, [2ab : 1 : 0]). If r = [r0 : r1 : 0] ∈ X∞,∞ \D∞,∞,

then setting a = 1, b = r0/2r1 gives A · P = (∞,∞, r), so we are done. Now for

any Q = (p, p, q) ∈ ∆̃ \ (D ∩ ∆̃) there exists M ∈ SL2 with M ·Q = (∞,∞,M · q),
so there exists A ∈ B such that A ·M ·Q = P as required. �

Proposition 7.7. E \ (E ∩ ∆̃) and F̃ \ (F̃ ∩ ∆̃) are SL2-orbits on X.

Proof. Let Q = (p, q, r) ∈ E \ (E ∩ ∆̃). As above, there exists M ∈ SL2 with
M · Q = (0,∞,M · r) ∈ D0,∞. Now since E is SL2 stable, we have in fact that

M ·Q ∈ (E)0,∞, which is a singleton. Hence E \ (E ∩ ∆̃) is an SL2-orbit, and the

case for F̃ is symmetric. �

Proposition 7.8. The final SL2-orbit on X is ∆̃ ∩ D. Hence the G-orbits on X
are D ∪ ∆̃, ∆̃ \ (D ∩ ∆̃), E \ (E ∩ ∆̃), F̃ \ (F̃ ∩ ∆̃) and D ∩ ∆̃

Proof. Let Q = (p, p, q) ∈ ∆̃ ∩ D, noting that assuming the equations for ∆̃, the

equations for E and F̃ become the same, i.e. ∆̃∩E = ∆̃∩ F̃ . It follows that D∞,∞

is a singleton, say P . We can as before choose M ∈ SL2 such that M ·Q ∈ D∞,∞,

showing that ∆̃ ∩D = SL2 · P .
Now it is clear that the orbits described so far cover X , so they must constitute

an exhaustive list. �

Hyperfan of X. As in previous examples, blowing up the curve C does not change
the position of any divisor in hyperspace, but it adds the new G-divisor E. Taking
the same invariant and semi-invariant rational functions used above (i.e. f0 and
e2α) we see that E sits over 0 ∈ P1 and lies at (p, ℓ, h) = (0,−1, 1) ∈ H. The colour

D̃0 no longer contains the minimal G-germ E ∩ ∆̃, which now has coloured data
VE∩∆̃ = {νE, νF̃ , ν∆̃}, DB

E∩∆̃
= {D̃p | p 6= −1, 0,∞}.

We thus have P = P0 + P∞ = P−1 = {−1} + {−1} + {1} = {−1}. Hence all
things considered the coloured hyperfan for X looks like:
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Figure 11. Coloured hyperfan of the blow-up of P1 × P2 along C

7.4. Blow-up of the Divisor W in P2 × P2 (3.13).

Definition and Structure of W . Let G = SL2 act diagonally on P2 × P2 with the
action on each factor P2 = P(S2k2) described in Section 7.1. Then the divisor
W = Z(x0y2 − 2x1y1 +x2y0) is G-stable. The point P = ([1 : 0 : 1], [0 : 1 : 0]) ∈ W
has a 2 dimensional B-orbit, and a G-stabiliser of order 8 generated by

(
i 0
0 −i

)
and(

0 i
i 0

)
, so let H = GP = D̃2, the binary dihedral group of order 8. Then we see that

W is a quasihomogeneous complexity-one G-variety containing the homogeneous
space G/H .

Now consider the conic C = Z(x0x2 − x2
1) ⊆ P2. It is G-stable under the action

induced from S2k2 by Proposition 7.2, and hence the divisors C × P2 and P2 × C
on P2 × P2 are also G-stable. Let E∞ and E0 respectively be the intersections of
these divisors with W . Their union is the complement of G/H in W and their
intersection is a G-stable curve Z = (C × C) ∩W . The equations of W also force
Z = diag (P2 × P2) ∩W .

Thus the G-germs ofW are exactly Z,E0 and E∞, with the latter two containing
the former, which is minimal.

(Semi-) Invariant Functions. For G/H = SL2/D̃2, the weight lattice is Λ = Z(2α),
Q = Λ∗ is identified with 1

2Z and the field of invariants is generated by f2
f /f

2
v . In

W , the equations defining E0 and E∞ are invariant, and x2, y2 are B-semi-invariant
of weight 2α. Hence f = y22(x0x2 − x2

1)/x
2
2(y0y2 − y21) is invariant, and one can

check that it does indeed correspond to f2
f /f

2
v on the open orbit.

Now f defines a B-quotient π : W 99K P1, P 7→ [y22(x0x2 − x2
1) : x

2
2(y0y2 − y21)].

The pullback of p = [α : β] ∈ P1 is Z(βy22(x0x2 − x2
1)−αx2

2(y0y2 − y21)) and defines
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a regular colour for all p except for the following:

p = [1 : 0] = 0 : π∗(p) = Z(x2
2(y0y2 − y21)) = Z(x2

2) ∪ Z(y0y2 − y21) = D0 ∪ E0

p = [0 : 1] = ∞ : π∗(p) = Z(y22(x0x2 − x2
1)) = Z(y22) ∪ Z(x0x2 − x2

1) = D∞ ∪E∞

p = [−1 : 1] = −1 : π∗(p) = Z(−(x1y2 − x2y1)
2) = D−1.

Here we see three subregular colours (D0, D∞, D−1) of multiplicity 2 correspond-
ing to the three subregular semi-invariants on G/H , and the two G-divisors E0, E∞

defining the minimal G-germ Z. One can check that every colour except D0, D∞

contains Z.
The function x2y2/(x1y2 − x2y1) is semi-invariant of weight 2α and corresponds

to fefv/ff in the homogeneous space, so we choose this as our splitting e2α. Its
divisor is D0 +D∞ −D−1, so these points are distinguished by it.

Hyperfan Before the Blow-up. We recall that the G-germs of W are E0, E∞ and
Z, with the latter being minimal. The coloured data are thus VZ = {νE0

, νE∞
},

DB
Z = {Dp | p 6= 0,∞} and VEi

= {νEi
}, DB

Ei
= ∅ for i = 0,∞. Thus Z defines a

supported coloured hypercone of type II in H.
From our choice of invariant and splitting semi-invariant, the G-divisors and

colours map to the following points in hyperspace: E0 7→ (0, 0, 1), D0 7→ (0, 1, 2),
E∞ 7→ (∞, 0, 1), D∞ 7→ (∞, 1, 2), D−1 7→ (−1,−1, 2) and Dp 7→ (p, 0, 1) for
p 6= 0,∞,−1. Therefore the polytope defined by Z is given by P−1 = {−1/2},
Pp = {0} for p 6= −1, so P = {−1/2}. Hence the coloured hyperfan of W looks
like:
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Figure 12. Coloured hyperfan of the divisor W on P2 × P2
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Blow-up. To obtain the variety we want, we blow up W along Z. Since Z defines
a hypercone of type II, it has a minimal B-chart U = W \ (D0 ∪D∞). We will
simplify matters by blowing up this chart instead.

Hence consider U as an affine chart of W , i.e. we set x2 = y2 = 1 in W to obtain
W ∩ U = Z(x0 − 2x1y1 + y0) ⊆ A4. Eliminate x0 = 2x1y1 − y0 so that W ∩ U =
Spec k[x1, y0, y1] = A3. Then E0 ∩ U = Z(y0 − y21) ⊆ A3, E∞ ∩ U = Z(2x1y1 −
y0 −x2

1) ⊆ A3 and Z ∩U = Z(y0 − y21 , 2x1y1 − y0 − x2
1) = Z(y1 − x1, y0 − y21) ⊆ A3.

Now take X = BlU∩Z(W ∩ Z) = Z(z0(y0 − y21) − z1(y1 − x1)) ⊆ A3 × P1.
The exceptional divisor is E = Z(y0 − y21 , y1 − x1), and we have strict transforms

Ẽ0 = Z(y0 − y21 , z1) and Ẽ∞ = Z(z0(x1 − y1) − z1, 2x1y1 − y0 − x2
1) of the G-

divisors from downstairs. Any two of these three G-divisors intersect in the curve
Y = Z(y0 − y21 , y1 − x1, z1), which is hence the unique minimal G-germ of the
blow-up.

The invariant rational function on W becomes f = (2x1y1 − y0 − x2
1)/(y0 − y21)

on U ∩W and hence also on X . Under the induced B-quotient π to P1 we see that
π∗([1 : −1]) = Z(x1 − y1, y0 − y21) ∪Z(x1 − y1, z0) = E ∪ D̃−1. Hence E sits in the

slice of hyperspace corresponding to −1 ∈ P1, and the colour D̃−1 does not contain
the minimal G-germ Y , as D−1 did before the blow-up.

Choosing a uniformising element δ = (2x1y1 − y0 − x2
1 + (y0 − y21))/(y0 − y21) =

−(y1 − x1)
2/(y0 − y21) of the DVR corresponding to −1 and taking an affine chart

z0 = 1 of X , a simple calculation shows that hE = νE(δ) = 1.
Likewise, the splitting semi-invariant e2α from above becomes 1/(x1 − y1) on

X , giving ℓE = νE(e2α) = −1. Hence E 7→ (−1,−1, 1) ∈ H. The positions in
hyperspace of all other G-divisors and colours remain as always unchanged by the
blow-up.

Thus the curve Y has coloured data VY = {νE, νẼ0
, νẼ∞

}, DB
Y = {Dp | p 6=

0,∞,−1}. It defines a supported coloured hypercone of type II in H with associated
polytope P = P−1 = {−1}. Hence X (and therefore the variety BlZ W ) has the
following coloured hyperfan:
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Figure 13. Coloured hyperfan of the blow-up of W along Z

7.5. Blow-up of P3 Along the Twisted Cubic (2.27).

Homogeneous Space and Structure. Let G = SL2 act on P3 = P(S3k2) as in Sec-
tion 7.1. The point P = [1 : 0 : 0 : 1] has as its G-stabiliser the binary dihedral

group H = D̃3 of degree 3 and order 12. The same point has B-stabiliser equal
to the group of sixth roots of unity, so dimB · P = 2. Hence G · P is the homo-
geneous space G/H , realising P3 (in a different way to previous examples) as a
quasihomogeneous complexity-one G-variety.

Let Z be the rational normal curve of degree 3 in P3, i.e. Z = Z(x0x2−x2
1, x0x3−

x1x2, x1x3−x2
2). Then Z is a closed orbit in P3 by Proposition 7.2. We will see that

Z is the unique minimal G-germ of P3, and is contained in its unique G-divisor.

(Semi-) Invariant Functions. By Section 6.3, there are semi-invariant functions
fv, fe, ff in k[G](B×H) of respective biweights (3α, (−1, 3)), (3α, (−1, 1)) and (2α, (1, 2)).

In P3, x3 is semi-invariant of B-weight 3α, and x1x3 − x2
2 is semi-invariant of

B-weight 2α by Proposition 7.3. Hence the latter corresponds to ff . On G/H ,
we see that, acting with

(
0 i
i 0

)
∈ H on the right, x3 has H-weight (−1, 3), so x3

corresponds to fv Finally, 2x3
2 − 3x1x2x3 + x0x

2
3 has B-weight 3α and thus by

process of elimination it corresponds to fe.
Now the function f3

f /f
2
e is B-invariant, so gives the B-quotient map π to P1,

i.e. π(P ) = [f3
f (P ) : f2

e (P )] for P ∈ P3. This defines a family of regular colours

Dp = π∗(p) in P3 for all p = [α : β] ∈ P1 except:

p = 0 : π∗(p) = Z(f2
e ) = D0,

p = ∞ : π∗(p) = Z(f3
f ) = D∞,

p = −4 : π∗(p) = Z(f2
v )∪Z(3x2

1x
2
2−4x3

1x3−x2
0x

2
3−4x0x

3
2+6x0x1x2x3) = D−4∪F

where F is a G-divisor. The subregular coloursD0, D∞ and D−4 have multiplicities
2, 3 and 2, respectively, in accordance with the pictures above.

Finally, we choose a splitting e2α = fvfe/f
2
f ∈ K

(B)
2α .

Coloured Data and Hyperfan of P3. The minimal G-germ is contained in F and in
every colour except D−4, so has coloured data VZ = {νF }, DB

Z = {Dp | p 6= −4}.
It therefore defines a supported coloured hypercone of type II in H.

By our choice of splitting we see that D0 7→ (ℓ, h) = (1, 2) in hyperspace, D∞ 7→
(−2, 3), D−4 7→ (1, 2), F 7→ (0, 1) and as always the regular colours Dp 7→ (0, 1) for
p 6= 0,∞,−4.

Therefore the polytope defined by Z is given by P = P0 + P∞ + P−4 = {1/2−
1/3 + 0} = {−1/6}.
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Hence the coloured hyperfan of P3 looks like:
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Figure 14. Coloured hyperfan of P3 (cubic action)

Blow-up. Now to get the variety we need, we blow up Z. To simplify what happens,
we will take affine charts. Take the minimal B-chart for Z, which is UZ = P3\Z(x3).
By setting x3 = 1, we get UZ ∩P3 = A3 = Spec k[x0, x1, x2]. Then Z ∩UZ becomes
Z(x0 − x1x2, x1 − x2

2).
Now X = BlZ∩UZ

(A3) = Z(z0(x1 − x2
2) − z1(x0 − x1x2)) ⊆ A3 × P1. The

exceptional divisor is E = Z(x1 − x2
2, x0 − x1x2). Take another affine chart V

defined by z1 = 1. Using the equation for X we can eliminate x0 to obtain X∩V =
A3 = Spec k[x1, x2, z0]. Now E ∩ V = Z(x1 − x2

2).
On V ∩ X , the B-invariant above becomes (x2

2 − x1)/(2x2(1 + z0))
2, and the

splitting semi-invariant becomes 2x2(1 + z0)/(x1 − x2
2). Hence E sits over ∞ in

hyperspace and is mapped to (−1, 1) ∈ H∞.
Since the blow-up is an isomorphism away from Z, nothing else in hyperspace

moves from its previous position. There is a new minimal G-germ Y = E ∩ F̃ with
coloured data VY = {νE, νF̃ },DB

Y = {Dp | p 6= ∞,−4}. The coloured hyperfan for
X is thus:
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Figure 15. Coloured hyperfan of the blow-up of P3 along the
twisted cubic

7.6. Blow-up of the Quadric Threefold (2.21).

Homogeneous Space and Structure. Let G = SL2 act on P4 = P(S4k2) as in Sec-
tion 7.1. Then the quadric hypersurface Q = Z(3x2

2 − 4x1x3 + x0x4) is a smooth,
G-stable threefold. The stabiliser GP of the point P = [0 : 1 : 0 : 0 : 1] ∈ Q is the

binary tetrahedral group T̃ , hence the orbit G · P is 3 dimensional and thus open.
The same point has the group of sixth roots of unity as its B-stabiliser, so has a
2-dimensional B orbit, so that Q is a quasihomogeneous complexity one G-variety
containing the homogeneous space G/H = SL2/T̃ .

Let Z be the rational normal curve of degree 4 in P4, i.e. Z = Z(x0x2−x2
1, x0x3−

x1x2, x1x4 − x2x3, x2x4 − x2
3). Then Z is a closed G-orbit in Q by Proposition 7.2.

We will see that Z is the unique minimal G-germ in Q, and is contained in a unique
G-divisor.

(Semi-) Invariant Functions. We know from Section 6.4 that there are semi-invariant
regular functions fe, ff , fv in k[G](B×H) of respective biweights (6α, 1), (4α, ε−1)
and (4α, ε), where ε is a primitive cube root of unity.

On Q, x4 and x2x4 − x2
3 have B-weight 4α by Proposition 7.3, and checking

on the homogeneous space G/H = G · [0 : 1 : 0 : 0 : 1] we see that acting by(
ε 0
0 ε−1

)
on the right, they have H-weights ε−1 and ε respectively. Hence x4 = ff ,

x2x4 − x2
3 = fv. Finally, the function 2x3

3 + x1x
2
4 − 3x2x3x4 is B-semi-invariant of

weight 6α and H-invariant, so this is fe.
Now f3

v /f
2
e is a B-invariant rational function on Q, so the B-quotient map π is

given by π(P ) = [f3
v (P ) : f2

e (P )] for P ∈ Q, and defines a family of regular colours
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Dp = π∗(p) for all p = [α : β] ∈ P1 except:

p = 0 : π∗(p) = Z(f2
e ) = D0,

p = ∞ : π∗(p) = Z(f3
v ) = D∞,

p = −4 : π∗(p) = Z(f3
f ) ∪ Z(4x3

2 + x2
1x4 + x0x

2
3 − 6x1x2x3) = D−4 ∪ F

where F is a G-invariant divisor. Note that the subregular coloursD0, D∞ and D−4

have multiplicities 2, 3 and 3, respectively, as we should expect from the hyperspace
of G/H .

Finally, we choose as a splitting semi-invariant e2α = fvff/fe ∈ K
(B)
2α .

Coloured Data and Hyperfan of Q. The minimal G-germ Z is contained in F and
in every colour except D−4, so has coloured data VZ = {νF}, DB

Z = {Dp | p 6= −4}.
Hence it defines a supported coloured hypercone of type II in H.

Our choice of invariant and splitting functions mean that D0 sits at (ℓ, h) =
(−1, 2) in hyperspace, D−4, D∞ 7→ (1, 3), F 7→ (0, 1) and as always for regular
colours we have Dp 7→ (0, 1) for p 6= 0,∞,−4.

Hence the polytope defined by Z is given by P = P0 + P∞ + P−4 = {−1/2 +
1/3+0} = {−1/6}. Therefore the full coloured hyperfan defined by Q is as follows:
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Figure 16. Coloured hyperfan of the quadric threefold Q

Blow-up. The variety we want is obtained by blowing up Z. We calculate the
effect on the hyperfan by blowing up in an affine chart. Since Z defines a coloured
hypercone of type II, it has a minimal B-chart UZ with the same coloured data.
Indeed Z is contained in every colour except D−4 = Z(x4), so UZ = P4 \ Z(x4).
Setting x4 = 1 allows us to eliminate x0 using the equation for Q, so UZ ∩ Q ∼=
A3 = Spec k[x1, x2, x3]. Then UZ ∩ Z = Z(x1 − x2x3, x2 − x2

3).
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Now X = BlUZ∩Z(A
3) = Z(z0(x2 − x2

3) − z1(x1 − x2x3)) ⊆ A3 × P1. The
exceptional divisor E is given by Z(x1−x2x3, x2−x2

3). Now we take another affine
chart V by setting z1 = 1, which allows us to eliminate x1 using the equation for
X . Thus V ∩X = A3 = Spec k[x2, x3, z0], and E ∩ V = Z(x2 − x2

3).
On V ∩X , the invariant function f3

v /f
2
e becomes (x2 − x2

3)/(z0 − 2x3)
2, and the

splitting semi-invariant is 1/(z0 − 2x3), so we see that E 7→ (p, ℓ, h) = (∞, 0, 1) in
hyperspace.

Since the blow-up is an isomorphism away from Z, all other colours and G-
divisors lie at the same points in hyperspace as before. The blow-up introduces a
new minimal G-germ Y = E ∩ F̃ which must have coloured data VY = {νE , νF̃ },
DB

Y = {Dp | p 6= ∞,−4}. Hence the coloured hyperfan for X looks like:

ℓ

h

D̃p

−1

p 6= pf , pv, pe

2

−1 ℓ

h

pe = 0

D̃0

ℓ

h

1

3

F̃

pf = −4

D̃−4

ℓ

h

1

3

E

pv = ∞

D̃∞

Figure 17. Coloured hyperfan of the blow-up of Q along Z

7.7. V5 (1.15).

Description and Homogeneous Space. Let G = SL2 act on k2 with the standard
linear action, and hence on P6 = P(S6k2). By [Fur92], we can realise V5 as the
closure in P6 of the G-orbit of the point P = [0 : 1 : 0 : 0 : 0 : −1 : 0]. This
explicitly shows that V5 is a quasihomogeneous G-variety of complexity one. The
stabiliser of P in G contains the matrices y, r and ω which, in Section 6.5, were
shown to generate the binary cubic group H = C̃. Since no other finite subgroup
of G contains C̃, we see that G · P ∼= G/H . Hence there are three subregular
semi-invariants fv, fe and ff of respective (B×H) biweights (8α, 1), (12α,−1) and
(6α,−1) and multiplicities 3, 2 and 4.
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The description of V5 in [Fur92] realises it as the subvariety of P6 defined by the
equations

x0x4 − 4x1x3 + 3x2
2 = 0,

x0x5 − 3x1x4 + 2x2x3 = 0,

x0x6 − 9x2x4 + 8x2
3 = 0,

x1x6 − 3x2x5 + 2x3x4 = 0,

x2x6 − 4x3x5 + 3x2
4 = 0.

It is clear from the above then that the rational normal curve Z of degree 6 defined
as the image of the Veronese embedding ν6 : P

1 → P6 lies inside V5 as a minimal
G-germ. We will show later that Z is in fact the unique minimal G-germ of V5,
contained in a unique G-stable divisor.

(Semi)-Invariant Functions. One can find semi-invariants of the correct B-weights
by using a torus action, under which each co-ordinate function has a given weight.
In this case xk has weight −6 + 2k. It is easy to see immediately that x6 is B
semi-invariant of weight 6, so must be the subregular semi-invariant ff . Likewise
x4x6 − x2

5 is B semi-invariant of weight 8, so represents fv. Now from Section 6.5,
we know that fvff/fe is a rational function, so has degree 0. Hence fe must have
degree 3 and B- (hence T -) weight 12α, and therefore must be a linear combination
of the monomials x3x

2
6, x4x5x6 and x3

5. A simple check shows that fe = x3x
2
6 −

3x4x5x6 + 2x3
5 suffices.

Hence f3
v /f

2
e is an invariant rational function defining a rational B-quotient

π : V5 99K P1, P 7→ [f3
v (P ) : f2

e (P )]. The pullback of p = [α : β] ∈ P1 defines a
regular colour for all p except the following:

p = 0 : π∗(p) = Z(f2
e ) = D0;

p = ∞ : π∗(p) = Z(f3
v ) = D∞;

p = −4 : π∗(p) = Z(x4
6) ∪ Z(x1x5 + 3x2

3 − 4x2x3) = D−4 ∪ F ;

where F is then a unique G-divisor containing the G-germ Z. Likewise it is straight-
forward that Z is contained in every colour except D−4.

We choose as mentioned the semi-invariant splitting function e2α = fvff/fe of
B-weight 2α, and the colours D0, D∞ and D−4 are distinguished by it.

Coloured Hyperfan. We already know from previous discussions and our choice of
splitting that regular colours Dp for p 6= 0,∞ − 4 are mapped to points (p, 0, 1)
of hyperspace, and that D0 7→ (0,−1, 2), D∞ 7→ (∞, 1, 3) and D−4 7→ (−4, 1, 4).
Finally, it is easy to check on the B-chart V5 \Z(x6) that F is mapped to (−4, 0, 1).

The coloured data of the minimal G-germ Z is VZ = {νF }, DB
Z = {Dp | p 6= −4}.

Hence Z is a G-germ of type II and defines a supported coloured hypercone of
type II generated by its coloured data and the polytope P = P0 + P∞ + P−4 =
{−1/2}+ {1/3}+ {0} = {−1/6}. Hence the coloured hyperfan of V5 is as follows:
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Figure 18. Coloured hyperfan of V5

7.8. V22 (1.10).

Description and Homogeneous Space. Let G = SL2 act on k2 with the standard
linear action, and hence on P12 = P(S12k2). By [Fur92], we can realise V22 as the
closure in P12 of the G-orbit of the point

P = [0 : 1 : 0 : 0 : 0 : 0 : 11 : 0 : 0 : 0 : 0 : 1 : 0].

This explicitly shows that V22 is a quasihomogeneous G-variety of complexity one.
The stabiliser of P in G contains

(
ε 0
0 ε−1

)
for ε a primitive tenth root of unity.

Furthermore, the function x12 on V22 is a B-eigenfunction of weight 12α. The only
finite subgroup H of SL2 containing an element of order 10 and such that SL2/H

has a semi-invariant of weight 12α is Ĩ, the binary icosahedral group. Hence V22 is
an embedding of SL2/Ĩ.

Then by 6.6 there are three subregular semi-invariants fv, fe and ff of respective

B-weights 12α, 30α and 20α and multiplicities 5, 2 and 3. Note that Ĩ has no
weights.

The description of V22 in [Fur92] realises it as the subvariety of P12 defined by
the equations

ρ∑

λ=0

(
8

λ

)(
8

ρ− λ

)
(xλxρ+4−λ − 4xλ+1xρ+3−λ + 3xλ+2xρ+2−λ) = 0

for 0 ≤ ρ ≤ 16. It is easy to check using these equations that the rational normal
curve Z of degree 12, defined as the image of the Veronese embedding ν12 : P

1 → P12,
lies inside V22 as a minimal G-germ. We will see that Z is in fact the unique minimal
G-germ of V22, contained in a unique G-stable divisor.
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(Semi)-Invariant Functions. One can find semi-invariants of the correct B-weights
by using a torus action, under which each co-ordinate function has a given weight.
In this case xk has weight (−12 + 2k)α. We have mentioned that x12 is B semi-
invariant of weight 12α, so must be the subregular semi-invariant fv. Likewise
x10x12 − x2

11 is B semi-invariant of weight 20α, so represents ff . Now from Sec-
tion 6.6, we know that fvff/fe is a rational function, so has degree 0. Hence fe
must have degree 3 and B- (hence T -) weight 30α, and therefore must be a linear
combination of the monomials x10x11x12, x

3
11 and x9x

2
12. A simple check shows that

fe = 3x10x11x12 − 2x3
11 − x9x

2
12 suffices.

Hence f3
f /f

2
e is an invariant rational function defining a rational B-quotient

π : V22 99K P1, P 7→ [f3
f (P ) : f2

e (P )]. The pullback of p = [α : β] ∈ P1 defines a
regular colour for all p except the following:

p = 0 : π∗(p) = Z(f2
e ) = D0;

p = ∞ : π∗(p) = Z(f3
v ) = D∞.

We also see that the subregular colour Z(fv) lies over p = −4 = [1 : −4], so we
write D−4 = Z(fv), recalling that this colour has multiplicity 5.

We choose as mentioned the semi-invariant splitting function e2α = fvff/fe of
B-weight 2α, and the colours D0, D∞ and D−4 are distinguished by it.

Coloured Hyperfan. We already know from previous discussions and our choice of
splitting that regular colours Dp for p 6= 0,∞− 4 are mapped to points (p, 0, 1) of
hyperspace, and that D0 7→ (0,−1, 2), D∞ 7→ (∞, 1, 3) and D−4 7→ (−4, 1, 5).

Consider the coloured data of the minimal G-germ Z: we know that DB
Z =

{Dp | p 6= −4}. This is infinite, so Z is a G-germ of type II and defines a coloured
hypercone generated by its coloured data and the polytope P . However, the slice
H−4 does not contain a non-central element of DB

Z , and hence must contain a non-
central element of VZ since Z is of type II. Hence there must be a G-divisor F ⊆ V22

containing Z and lying over −4 ∈ P1. In the slice H−4, CZ is then generated by
P , which is central, and F , and by completeness it must cover the valuation cone.
Hence we must have F 7→ (−4, 0, h) for some h ≥ 0, and the hyperfan is the same
for any such h, so take h = 1. Then P = P0+P∞+P−4 = {−1/2}+{1/3}+{0}=
{−1/6}. Hence the coloured hyperfan of V22 is as follows:

2

−1 ℓ

h

0 = pe

D0

ℓ

h

1

5

−4 = pv

F

D−4
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ℓ

h

1

3

∞ = pf

D∞

ℓ

h

−1

p 6= pf , pv, pe

Dp

Figure 19. Coloured hyperfan of V22

8. Applying Theorem 4.1

In this section we show that Theorem 4.1 applies to the varieties whose combi-
natorial data we have just calculated.

8.1. Action with no Fixed Points. The first case of Theorem 4.1 applies to P3

(1.17), the blow-up of P3 in two lines (3.25) and the blow-up of P3 in three lines
(4.6).

Realise P1 as the unit sphere and consider the action of the symmetric group
A = S3 on P1 consisting of rotations permuting the vertices of an equilateral triangle
inscribed in the equator. This action has no fixed points, one orbit of order 2
consisting of the north and south poles, and various other orbits of orders 3 and 6.

If X = P3, then S3 ⊆ AutX = PGL4. Recall that the slices of the coloured
hyperfan are all identical to each other except for that of the distinguished point,
which lies two units to the left on the ℓ-axis relative to the other slices. Hence we
can shift the slice of the distinguished point p0 one unit to the right and shift the
slice of some other point p1 one unit to the left. Now Hp0

and Hp1
look the same,

so we identify these two points with the north and south poles of the sphere. It
follows that the A-action preserves the coloured hyperfan of X , in the sense that for
a ∈ A and p ∈ P1, we permute the slices of H via Hp → Ha·p and the coloured data
within each slice are invariant with respect to these permutations. This means that
the action of A on X is such that the B-quotient is A-invariant and Theorem 4.1
applies.

If X is the blow-up of P3 along two lines, say Yq and Yr, then let q and r be
the north and south poles of the sphere P1. Shift their slices of the hyperspace two
units to the left each, then choose two other non-distinguished points p1 and p2 and
shift their slices two units to the right each. Then the slices corresponding to p1,
p2 and the distinguished point p0 align, and we can choose these to be the vertices
of the equilateral triangle acted on by S3. Again, S3 acts on X and preserves the
coloured hyperfan up to balanced integral shifts, so Theorem 4.1 applies.

If X is the blow-up of P3 along three lines, Yq, Yr and Ys, the method is the same
as when X = P3, only making sure to choose q, r and s to be the vertices of the
triangle. Again, Theorem 4.1 applies.

As an aside, it is worth mentioning that the blow-up of P3 along one line (2.33)
has non-reductive automorphism group and is thus not K-polystable. It is easy to
see that the method above does not work in this case, since the slice of hyperspace
corresponding to the blown-up line is fundamentally distinct from all other slices
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for this variety, so no action on P1 which does not fix the corresponding point could
ever preserve the coloured hyperfan.

8.2. Action Interchanging Two Points. The second case of Theorem 4.1 applies
to the blow-up of P1 × P2 along a curve of bidegree (1, 1) (3.17).

Consider the Z2-symmetry of P1 given by [α : β] 7→ [β : α]. This interchanges 0
and ∞, fixes 1 and −1, and puts every other point in an orbit of order 2. Recall
that the blow-up of P1 × P2 has subregular colours lying over 0 and ∞, and has a
distinguished point −1. Since the slices of the coloured hyperfan over 0 and ∞ are
identical to each other, the interchange of these points by Z2 leaves the hyperfan
invariant, hence the Z2 action on X respects the B-quotient map and Theorem 4.1
applies.

Oddly, this method seems not to apply to P1×P2 itself, even though this variety
is known to be K-polystable, since in this case, one of the two slices with subreg-
ular colours contains a G-divisor while the other does not, and the Z2-symmetry
therefore does not extend. This may require some further exploration.

8.3. Three or More Subregular Colours. We have seen that any smooth Fano
SL2-threefold whose stabiliser subgroup H is one of {D̃m, T̃ , C̃, Ĩ} has 3 subregular
colours, all lying over distinct points in P1. Then in particular, the third case of
Theorem 4.1 applies to V22 (1.10), V5 (1.15), Q (1.16), the blow-up of Q along a
twisted quartic (2.21), the blow-up of P3 along a twisted cubic (2.27), W (2.32)
and the blow-up of W along a curve of bidegree (2, 2) (3.13).

It remains to verify that each of these varieties satisfies the hypotheses of Corol-
lary 5.1, which we now do one by one.

8.3.1. V22 (1.10). It is known that for X = V22, the Mukai-Umemura threefold, we
can take −KX to be a hyperplane section. The B-invariant hyperplane section of X
for our action is D−4. This variety has subregular colours lying over 0,∞,−4 ∈ P1.
With this representative of −KX , we have

Hλ = −λ

2
[0] +

λ

3
[∞] + min

{
λ+ 1

5
, 0

}
[−4].

Choosing λ = −5 gives degHλ = 1
30 and non-integral coefficients at all three points.

8.3.2. V5 (1.15). This time −KX = 2D−4. We have

Hλ = −λ

2
[0] +

λ

3
[∞] + min

{
λ+ 2

4
, 0

}
[−4].

Again, λ = −5 works, giving degHλ = 1
12 and non-integral coefficients at all three

points.

8.3.3. Q (1.16). Q is a hypersurface of degree 2 in P4 so its anticanonical divisor
is given by its intersection with a divisor of degree 3 in P4. The three subregular
colours D0, D∞ and D−4 of Q are sections of prime divisors in P4 of degrees 3, 2
and 1, respectively, so we may take −KQ = 3D−4. Then

Hλ =
−λ

2
[0] +

λ

3
[∞] + min

{
λ+ 3

3
, 0

}
[−4].

Choosing λ = −5 gives non-integral coefficients at each point and degHλ = 1
6 .
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8.3.4. Blow-up of Q (2.21). With the same −KQ as before, blowing up in the
twisted quartic, which is contained in D0 and D∞ but not in D−4, gives −KX =

3D̃−4−E. Adding div(f0e
−2
2α ), where f0 ∈ C(P1) has divisor [∞]− [0] gives −KX =

D̃−4 + D̃∞. Then

Hλ =
−λ+ 2

2
[0] + min

{
λ+ 1

3
, 0

}
[∞] + min

{
λ+ 1

3
, 0

}
[−4].

Taking λ = −3 gives non-integral coefficients and degHλ = 1
6 .

8.3.5. Blow-up of P3 along a twisted cubic (2.27). P3 with the cubic SL2-action has
subregular coloursD0, D∞ and D−4 of respective degrees 3, 2 and 1. Hence we may

choose −KP3 = 4D−4. Then blowing up the twisted cubic gives −KX = 4D̃−4−E,
where E is the exceptional divisor and lies over ∞. We add div(f0e

−2
2α ) to −KX ,

where div(f0) = [0]− [∞], giving −KX = 2D̃−4 + D̃∞. We then have

Hλ =
λ

2
[0] + min

{
1− 2λ

3
,−λ

}
[∞] + min

{
λ+ 2

2
, 0

}
[−4].

Choosing λ = −3 gives non-integral coefficients at all points and degHλ = 1
3 .

8.3.6. W (2.32). The divisor W on P2 × P2 of bidegree (1, 1) has anticanonical
divisor class given by the intersection with W of a class of bidegree (2, 2) on P2×P2.
The subregular colours D0 and D∞ have bidegrees (1, 0) and (0, 1), so we take
−KW = 2D0 + 2D∞. This gives

Hλ = min

{
λ+ 2

2
, 0

}
[0] + min

{
λ+ 2

2
, 0

}
[∞]− λ

2
[−1].

Taking λ = −3 gives non-integral coefficients at all points and degHλ = 1
2 .

8.3.7. P1×P2 (2.34). The anticanonical divisor of P1×P2 has bidegree (2, 3) which
we can obtain as 2D∞ + 3D−1. This gives

Hλ = −λ

2
[0] + min

{
2− λ

2
,−λ

}
[∞] + min {2λ+ 3, λ} [−1].

Taking λ = −3 gives non-integral coefficients at the points 0,∞ corresponding to
subregular colours and degHλ = 1.

8.3.8. Blow-up of W (3.13). We blow up W in the curve of bidegree (2, 2) obtaining

−KX = 2D̃0 + 2D̃∞ − E. Adding div(e−1
2α ) gives −KX = D̃0 + D̃∞ + D̃−1. Then

Hλ = min

{
λ+ 1

2
, 0

}
[0] + min

{
λ+ 1

2
, 0

}
[∞] + min

{
1− λ

2
,−λ

}
[−1].

Taking λ = −2 gives non-integral coefficients at all points and degHλ = 1
2 .

8.3.9. Blow-up of P1 × P2 (3.17). Blowing up P1 × P2 along the curve of bidegree

(1, 1) gives −KX = 2D̃∞ + 3D̃−1 − E. We can add div(f0e
−1
2α ), where div(f0) =

[−1]− [∞] to get −KX = D̃∞ + 2D̃−1 + D̃0. Then

Hλ = min

{
1− λ

2
,−λ

}
[0] + min

{
1− λ

2
,−λ

}
[∞] + min {2λ+ 2, λ} [−1].

Choosing λ = −2 gives non-integral coefficients at the points 0,∞ corresponding
to subregular colours and degHλ = 1.
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9. Central Divisors of SL2-Threefolds

Here we prove Theorem 4.2 by calculating the β-invariant for the G-stable central
prime divisors over each of our list of SL2-threefolds. By Theorem 4.1, we need to
show that (1): βX(F ) ≥ 0 for central divisors F over each variety and (2): if
βX(F ) = 0 then F corresponds to a product configuration. It will turn out that
(2) is never the case. Throughout we will mostly use the notation and results of
Section 7 for curves, divisors etc. lying in each variety, with any changes to this
notation clearly signalled.

9.1. Existence and Uniqueness of Central Divisors. In this subsection we
will prove the following:

Theorem 9.1. Let X be a smooth Fano SL2-threefold. There exists a unique central
G-divisor over X. If X is of type I, then it contains this central divisor. If X is
of type II, the central G-divisor over X lies on the type I variety over X whose
existence is proved in Proposition 3.10.

Definition 9.1. Let H be the hyperspace of a G-model X of complexity one. The
dimension of H is the common dimension of each half-space Hp for p ∈ P1. If
Cp is a coloured cone in Hp, its dimension is the dimension of a minimal affine
subspace of Hp containing Cp. If C is a coloured hypercone of type II in H, set
dim C = maxp∈P1 dim (C ∩ Hp).

Lemma 9.1. Let X be a G-model of complexity one and rank r, and let H be the
hyperspace of X. We have dimH = 1 + r.

Proof. For each p ∈ P1, the slice Hp of hyperspace corresponding to p is isomorphic
to Λ∗

Q×Q≥0, where Λ is the weight lattice of X , which has dimension 1+dimΛ∗
Q =

1 + rkΛ = 1 + r, by the definition of rank. �

Proposition 9.1. Let X be a G-model and let Y ⊆ X be a G-germ. The dimension
of CY in H is equal to the codimension of Y in X.

Proof. This follows from the fact that the coloured hypercone corresponding to
X itself is {0} and that inclusion of coloured hypercones as faces in one another
corresponds to the reverse inclusion of the associated G-germs. �

Corollary 9.1. Let X be a complete G-model of dimension d, rank r and complexity
1. Then minimal G-germs in X must have dimension d− r − 1.

Proof. Since V is full dimensional in H, it follows from completeness that the
coloured (hyper)cone corresponding to a minimal G-germ Y in X must have the
same dimension as H, i.e. 1 + r. Then codimX Y = dim CY = 1 + r, so dimY =
d− r − 1. �

Now let G = SL2(k) and let X be a complete three dimensional G-model of
complexity one, i.e. a normal projective threefold with a G-action having finite
stabilisers. Then X contains an open orbit isomorphic to G/H for H a finite
subgroup of G.

Let B be the Borel subgroup of G given by the upper triangular matrices. Then
X(B) is of rank 1, generated by the character α which picks out the upper-left
entry. Hence in particular X is a rank 1 variety. The hyperspace H of X then
has dimension 2, so minimal G-germs of X must have codimension 2, i.e. they are
curves, and in particular X can contain no G-fixed points. The centre Z of H is a
line. Most of the following results arise from this fact. In particular, note that for
any finite H ⊆ G, the valuation cone V(G/H) intersects Z in a ray.

Proposition 9.2. X contains at most one central G-divisor.
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Proof. Any central G-divisor must be mapped to the intersection V ∩ Z of the
valuation cone and the central hyperplane. As noted, this intersection is a ray. If
there were two distinct central G-divisors, their coloured (hyper)cones would then
both be the same ray, a contradiction. �

Proposition 9.3. X contains a central G-divisor if and only if X is a model of
type I.

Proof. Suppose X is of type I, i.e. every G-germ of X corresponds to a coloured
cone in some slice of the hyperspace. By completeness, these coloured cones must
cover V . Since V intersects the central line Z in a ray ρ, there must be a G-germ
of X whose coloured cone is ρ, i.e. a central G-divisor.

Now suppose X has a central G-divisor D and that Y ⊆ X is a G-germ of type
II with coloured hypercone CY . We know that CY must intersect Z in V , i.e. it
contains the ray ρ corresponding to D. Then νD lies in the relative interior of CY ,
hence in the support SY of Y . But νD ∈ SD, so the supports of Y and D are not
disjoint, contradicting separation of X . Hence all G-germs of X are of type I, as
required. �

Proposition 9.4. If X is of type II, there exists a central prime divisor over X.

Proof. We know from Proposition 3.10 that there exists a projective birational
morphism ν : X̌ → X where X̌ is of type I. Then by the above proposition there is
a central prime divisor D ⊆ X̌ . �

Proposition 9.5. Let X be of type II. Then X has a unique G-germ of type II, a
curve, which must be a closed G-orbit.

Proof. We know that X contains at least one G-germ of type II. Suppose Y, Y ′ ⊆ X
are both G-germs of type II. Their corresponding coloured hypercones CY , CY ′ must
both intersect the central ray ρ ⊆ V , hence their relative interiors must intersect in
V . It follows that Y = Y ′, and X has exactly one G-germ of type II.

Then all other G-germs of X are of type I and so each defines a coloured cone
in some Hp. In particular, these coloured cones cannot contain CY , so Y does not
contain any other G-germ of X . Hence Y is a minimal G-germ, so in particular a
curve and a closed G-orbit. �

Proposition 9.6. Let X be of type II and suppose that every G-divisor of X maps
to the boundary of the valuation cone. Then the unique minimal G-germ Y ⊆ X of
type II is contained in every G-divisor, and X has no minimal G-germs of type I.
In particular, Y is the unique closed G-orbit of X.

Proof. Let F ⊆ X be a G-divisor mapping to the non-central boundary of Vp =
V ∩Hp. The ray CF defined by F must then be a face of some coloured cone in Hp

or coloured hypercone of type II in H, i.e. F must contain some minimal G-germ.
We know that X contains a unique minimal G-germ Y of type II, and in par-

ticular the coloured hypercone CY must have CF as a face, i.e. F contains Y . Now
suppose F contains another G-germ Z. This must be of type I since Y is the only
G-germ of type II, so CZ must be a coloured cone in Hp with CF as a face. However,
CZ must intersect V in its relative interior, and since CF is the boundary of V , it
follows that CZ and CY intersect in their relative interiors, a contradiction.

Hence for each Hp containing a G-divisor, the only minimal G-germ whose
coloured (hyper)cone intersects Hp is Y . If Hp does not contain a G-divisor, it can
also only support one coloured (hyper)cone since it only contains one B-divisor,
the colour Dp.

Therefore Y is indeed the unique minimal G-germ ofX and hence also the unique
closed orbit. �
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In all cases which we will consider here, we are given a smooth SL2-threefold
X , and either X is of type I and has a central divisor, which is unique, or X is of
type II and we can obtain the unique central divisor over X by blowing up a finite
sequence of G-invariant curves.

Combining Theorem 9.1 with Theorem 4.1, we see that to prove Theorem 4.2,
we need only find the central divisor over each variety and show that its β-invariant
is positive. In the following subsections we will perform this calculation for each of
the examples, thus proving their K-polystability.

9.2. P3 and Blow-Ups Along Two or Three Lines.

9.2.1. P3 (1.17). The anticanonical divisor of P3 = P(M2(C)) is the class of a
divisor of degree 4, which we may take to be 2∆, where ∆ is the G-invariant divisor
of singular matrices. This is also the unique central divisor on P3.

To calculate βX(∆) when X = P3, note that (−KX)3 = 64 and AX(∆) = 1 since
∆ lies on P3. It remains to calculate vol(δ), where δ = −KX − x∆ = (2 − x)∆.
Note that since δ is G-invariant we have λδ = 0.

We have P(δ) = {λ ∈ Λ | 〈λ, ℓ∆〉 ≥ −(2− x)}. Since Λ = Zα ∼= Z and ℓ∆ = −1,
we get P(δ) = {λ ∈ Z | λ ≤ 2− x}.

Consider

A(δ, λ) =
∑

p∈P1

(
min
pD=p

〈λ, ℓD〉+mD

hD

)
.

We have ℓD = mD = 0 for all colours D other than the distinguished colour, which
has mD = 0, ℓD = 2 and hence contributes a value of 2λ to A(δ, λ).

We therefore have P+(δ) = {λ ≤ 2− x | λ ≥ 0} = [0, 2− x]. Hence

vol(δ) = 6

∫ 2−x

0

2λ · 2λ dλ = 8(2− x)3.

We therefore have

β(∆) = 64−
∫ 2

0

8(2− x)3 dx = 64− 32 = 32 > 0.

Hence by Theorem 4.1, P3 is K-polystable.

9.2.2. Blow-up of P3 Along Two Lines (3.25). Starting with −KP3 = 2∆ as before,

the anticanonical divisor after blowing up two lines Yq and Yr is 2∆̃ + Eq + Er.
This time we have (−KX)3 = 44 and again AX(∆) = 1. We must now compute

β(∆̃) by calculating vol(δ) where δ = (2− x)∆̃ + Eq + Er. We still have λδ = 0.
Likewise, P(δ) = (−∞, 2 − x] as before. This time A(δ, λ) receives the same

contribution of 2λ at the distinguished point, and there is no contribution other
than from here and from q and r. At q, we have the exceptional divisor Eq with
ℓ = −1, m = 1 and h = 1, and the colour with ℓ = m = 0. Thus there is
a contribution to A(δ, λ) of −λ + 1 when this is less than or equal to 0, and a
contribution of 0 otherwise. The same holds for r. Hence we have

A(δ, λ) =

{
2 1 ≤ λ ≤ 2− x

2λ λ < 1.

Therefore P+(δ) = [0, 2− x], and

vol(δ) =

{
6
∫ 1

0 4λ2 dλ+ 6
∫ 2−x

1 4λ dλ 0 ≤ x ≤ 1

6
∫ 2−x

0 4λ2 dλ 1 < x ≤ 2.

We thus get

βX(∆̃) = 44−
∫ 2

0

vol(δ) dx = 44− 26 = 18 > 0.
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Hence the blow-up of P3 at two lines is K-polystable.

9.2.3. Blow up of P3 Along Three Lines (4.6). The anticanonical divisor of the

blow-up of P3 along three lines Yq, Yr and Ys is 2∆̃ + Eq + Er + Es. We have

(−KX)3 = 34, AX(∆̃) = 1, δ = (2 − x)∆̃ + Eq + Er + Es, λδ = 0 and P(δ) =
(−∞, 2− x].

The calculation of A(δ, λ) goes much the same as in the previous case, only
A(δ, λ) gains an extra contribution of −λ+ 1 from Es when λ ≥ 1, giving

A(δ, λ) =

{
3− λ 1 ≤ λ ≤ 2− x

2λ λ < 1.

Therefore P+(δ) = [0, 2− x], and

vol(δ) =

{
6
∫ 1

0
4λ2 dλ+ 6

∫ 2−x

1
6λ− 2λ2 dλ 0 ≤ x ≤ 1

6
∫ 2−x

0
4λ2 dλ 1 < x ≤ 2.

We thus get

βX(∆̃) = 34−
∫ 2

0

vol(δ) dx = 34− 23 = 11 > 0.

Hence the blow-up of P3 at three lines is K-polystable.

9.3. Blow-up of P1 × P2.

9.3.1. Central Divisor. Let X = Z(x0y0z2 + x1y1z0 − x0y1z1 − x1y0z1) ⊆ P1 ×
P1 × P2. This variety is the blow up of P1 × P2 along the G = SL2-stable curve
C = Z(x1z0−x0z1, x0y1−x1y0). In X there are G-invariant divisors ∆ = Z(x0y1−
x1y0, x

2
0z2 + x2

1z0 − 2x0x1z1), E = Z(x1z0 − x0z1, x0y1 − x1y0) and F = Z(y1z0 −
y0z1, y0z2−y1z1). The curve Z = F ∩∆∩E is G-invariant and defined by Z(x1z0−
x0z1, x1z1 − x0z2, x0y1 − x1y0).

Taking x1 = y1 = z2 = 1 gives a maximal B-chart U of Z, given by U =
Z(x0y0+z0−x0z1−y0z1) ⊆ A4, so eliminating z0 gives U = Spec k[x0, y0, z1] ∼= A3.
We have ∆ ∩ U = Z(x0 − y0), F ∩ U = Z(y0 − z1), E ∩ U = Z(z1 − x0) and
Z ∩ U = Z(z1 − x0, x0 − y0). We blow up U in this curve to obtain the variety

X̃ = Z(u1(z1 − x0)− u0(x0 − y0)) ⊆ A3 × P1.
The B-invariant rational function

f =
x2
1(z0z2 − z21)

(x0z2 − x1z1)2

on X becomes, on X̃, f = z1−y0

x0−z1
. From this one can see that the exceptional divisor

D = Z(z1 − y0, x0 − z1) of the blow-up σ : X̃ → X is central.

9.3.2. βX(F ) (3.17). We now want to calculate

β(D) = AX(D)(−KX)3 −
∫ ∞

0

volX (−KX − xD) dx.

We have AX(D) = 2 since D is the exceptional divisor on a blow-up of X , and
(−KX)3 = 36, so

β(F ) = 72−
∫ ∞

0

volX (−KX − xD) dx = 72−
∫ ∞

0

volX̃ (σ∗(−KX)− xD) dx.

To calculate σ∗(−KX), first let ∆ = Z(x2
0z2+x2

1z0−2x0x1z1) and F = Z(z0z2−
z21) in P1 × P2. The divisors ∆, F above are the strict transforms of these under
the blow-up µ : X → P1 × P2. Since −KP1×P2 is the class of a divisor of bidegree
(2, 3), we can represent it by ∆ + F = (2, 1) + (0, 2).
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Then −KX = µ∗(∆ + F ) − E = (∆ + E) + (F + E) − E = ∆ + F + E.

Hence σ∗(−KX) = ∆̃ + F̃ + Ẽ + 3D, and so we need to calculate the volume of

δ = ∆̃ + F̃ + Ẽ + (3− x)D. This is given by

vol(δ) = 6

∫

λδ+P+(δ)

2λA(δ, λ− λδ) dλ.

Since δ is G-invariant, we have λδ = 0. We also have

P(δ) = {λ ∈ Λ⊗ R | 〈λ, ℓD〉 ≥ x− 3} = {λ | λ ≤ 3− x}
and

P+(δ) = {λ ∈ P(δ) | A(δ, λ) ≥ 0} = {λ ≤ 3− x | A(δ, λ) ≥ 0}
where

A(δ, λ) =
∑

p∈P1

min
pD=p

〈λ, ℓD〉+mD

hD
.

To calculate A(δ, λ), first note that for p 6= 0,−1,∞, the only B-divisors with
pD = p are the coloursDp with ℓDp

= mDp
= 0, hDp

= 1, so there is no contribution
in these cases.

For p = 0, the two divisors with pD = p are E, with ℓ = −1, m = 1 and h = 1,
and D0 with ℓ = −1, m = 0 and h = 2. Hence there is a contribution to A(δ, λ) of

min

{
1− λ,−λ

2

}
=

{
1− λ λ ≥ 2

−λ
2 λ < 2

.

For p = ∞, the contribution is the same. The two divisors with pD = −1 are ∆
with ℓ = 1, m = 1 and h = 1, and D−1 with ℓ = −2, m = 0 and h = 1, so the
contribution to A(δ, λ) is

min {1 + λ, 2λ} =

{
1 + λ λ ≥ 1

2λ λ < 1
.

Hence we have

A(δ, λ) =





3− λ λ ≥ 2

1 1 ≤ λ ≤ 2

λ λ < 1

.

It follows that P+(δ) = {λ ≤ 3 − x | 0 ≤ λ ≤ 3}, and since x ≥ 0, 3 − x ≤ 3 and
P+(δ) is empty if x > 3. Hence P+(δ) = [0 : 3− x] where 0 ≤ x ≤ 3.

Therefore

vol δ = 6






∫ 3−x

0
2λ2 dλ 2 ≤ x ≤ 3∫ 1

0
2λ2 dλ+

∫ 3−x

1
2λ dλ 1 ≤ x ≤ 2∫ 1

0 2λ2 dλ+
∫ 2

1 2λ dλ+
∫ 3−x

2 2λ(3 − λ) dλ 0 ≤ x ≤ 1

=






4(3− x)3 2 ≤ x ≤ 3

6x2 − 36x+ 52 1 ≤ x ≤ 2

4x3 − 18x2 + 36 0 ≤ x ≤ 1

giving

β(F ) = 72−
∫ 3

0

vol δ dx

= 72−
∫ 1

0

4x3 − 18x2 + 36 dx−
∫ 2

1

6x2 − 36x+ 52 dx−
∫ 3

2

4(3− x)3 dx

= 72− 31− 12− 1 = 28.



52 JACK ROGERS

Hence X is K-polystable.

9.4. The Divisor W on P2 × P2 and Its Blow-Up.

9.4.1. Central Divisor. Let W = Z(x0y2 − 2x1y1 + x2y0) ⊆ P2 × P2 . We know
that W has G-invariant divisors E∞ = Z(x0x2 − x2

1) ∩ W and E0 = Z(y0y2 −
y21) ∩ W whose intersection is a G-stable curve Z. We obtain the smooth Fano
(3.13) by blowing up W along Z. The curve Z has a minimal B-chart U = W \
(Z(x2) ∪ Z(y2)) = Z(x0 − 2x1y1 + y0) ⊆ A4. We eliminate x0 to obtain U =
Spec k[x1, y0, y1] ∼= A3. Introducing new co-ordinates x = x1 − y1, y = y0, z = y1,
the curve Z ∩U is defined by x = y− z2 = 0. The divisors E∞ ∩U and E0 ∩U are
defined by z2 − y − x2 = 0 and y − z2 = 0, respectively.

Hence blowing up U along Z ∩ U we obtain X = Z(vx − u(y − z2)) ⊆ A3 × P1

with exceptional divisor E = Z(x, y− z2) and strict transforms (abusing notation)

Ẽ∞ = Z(ux − v, z2 − x2 − y) and Ẽ0 = Z(y − z2, v). The intersection of these
three G-invariant divisors (in fact any two of them) gives a G-invariant curve Y =
Z(y − z2, x, v), the unique minimal G-germ of X .

Take a chart u = 1 to obtain X = Z(vx − y + z2), then eliminate y so that

X = Spec k[x, v, z] ∼= A3. Then we have Ẽ∞ = Z(x − v), Ẽ0 = Z(v), E = Z(x)
and Y = Z(x, v).

Blowing up this chart along Y , we obtain X̃ = Z(wx − sv) ⊆ A3 × P1. We

now have Ẽ0 = Z(v, w), Ẽ∞ = Z(x − v, w − s), Ẽ = Z(x, s) and an exceptional
divisor F = Z(x, v). The B-quotient map W 99K P1 was originally given by

P 7→ [y22(x0x2 − x2
1) : x

2
2(y0y2 − y21)], which on X̃ reduces to P 7→ [v − x : v]. From

this one can see that the exceptional divisor F is central.
Since F is G-invariant we must have ℓF < 0 (for it to lie in the valuation cone),

and since it is a hyperplane we must then have ℓF = −1. Since the coloured
hyperfan of any model of type I must consist of strictly convex coloured cones, and
the G-invariant valuations map injectively into the hyperspace, F is the unique
central G-invariant prime divisor over W .

9.4.2. βW (F ) (2.32). To calculate βW (F ), we first must calculate −KW and its
pullback to the model containing F . Since W is a hypersurface in P2 × P2, the
adjunction formula gives −KW = (−KP2×P2 − W )|W . The anticanonical class of
P2 × P2 is (3, 3) where we identify the divisor class group with Z⊕Z, and since W
has bidegree (1, 1) we get −KW = (2, 2)|W . Represent the divisor class (2, 2) on
P2 × P2 by Z(x0x2 − x2

1) + Z(y0y2 − y21), so that the restriction to W of this class
is represented by E∞ + E0 = −KW .

After the two blow-ups, this class pulls back to E0 + E∞ + 2E + 4F , and we
must calculate βW (F ) = AW (F )(−KW )3 −

∫∞

0 vol(δ) dx where δ = E0 + E∞ +

2E + (4− x)F . We have (−KW )3 = 48 and AW (F ) = 3 since F is the exceptional
divisor of the second of two nested blow-ups of W .

We have λδ = 0 and P(δ) = (−∞, 4 − x]. To calculate A(δ, λ), first note that
there is no contribution at points other than 0, ∞ and −1. At p = 0,∞, we have
divisors Ep with ℓ = 0, h = 1 and m = 1, and Dp with ℓ = 1, h = 2 and m = 0,

so the contribution in each case is min{1, λ2 }. At p = −1 we have E with ℓ = −1,
h = 1 and m = 2, and D−1 with ℓ = −1, h = 2 and m = 0, so the contribution is
min{2− λ,−λ

2 }. Overall, we have

A(δ, λ) =

{
4− λ λ ≥ 0
λ
2 λ < 2.
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Therefore we have P+(δ) = [0, 4− x], so 0 ≤ x ≤ 4, and:

vol(δ) = 6

∫ 2−x

0

2λA(δ, λ) dλ

=

{
6
∫ 2−x

0
λ2 dλ 2 ≤ x ≤ 4

6
∫ 2

0 λ2 dλ+ 6
∫ 2−x

2 8λ− 2λ2 dλ 0 ≤ x ≤ 2

=

{
2(4− x)3 2 ≤ x ≤ 4

4x3 − 24x2 + 80 0 ≤ x ≤ 2.

Hence

βW (F ) = 3 · 48−
∫ 4

0

vol(δ) dx = 144− 120 = 24 > 0

so W is K-polystable.

9.4.3. βX(F ) (3.13). We now want to calculate

βX(F ) = AX(F )(−KX)3 −
∫ ∞

0

volX (−KX − xF ) dx.

We haveAX(F ) = 2 since F is a prime divisor on a blow-up ofX , and (−KX)3 = 30.
We have −KX = µ∗(−KW ) − E where µ is the blow-up of W in E0 ∩ E∞, which
gives −KX = E0 + E∞ + E. Under the next blow-up to the model containing F ,
this pulls back to E0 + E∞ + E + 3F , so we set δ = E0 + E∞ + E + (3− x)F .

We have λδ = 0 and P(δ) = (−∞, 3−x]. To calculate A(δ, λ), first note that for
p 6= 0,−1,∞, there is no contribution. For p = 0,∞, the two divisors with pD = p
are Ep, with ℓ = 0, m = 1 and h = 1, and Dp with ℓ = 1, m = 0 and h = 2. Hence
in each case there is a contribution to A(δ, λ) of

min

{
1,

λ

2

}
=

{
1 λ ≥ 2
λ
2 λ < 2

.

For p = −1, the two divisors with pD = p are E with ℓ = −1, m = 1 and h = 1,
and Dp with ℓ = −1, m = 0 and h = 2, so the contribution to A(δ, λ) is

min

{
1− λ,−λ

2

}
=

{
1− λ λ ≥ 2

−λ
2 λ < 2

.

Hence we have

A(δ, λ) =

{
3− λ λ ≥ 2
λ
2 λ < 2

.

It follows that P+(δ) = [0, 3− x], so 0 ≤ x ≤ 3
Therefore

vol δ =

{
6
∫ 3−x

0 λ2 dλ 1 ≤ x ≤ 3

6
∫ 2

0 λ2 dλ+ 6
∫ 3−x

2 6λ− 2λ2 dλ 0 ≤ x ≤ 1

=

{
2(3− x)3 1 ≤ x ≤ 3

4x3 − 18x2 + 30 0 ≤ x ≤ 1.

Hence

β(F ) = 60−
∫ 3

0

vol(δ) dx = 60− 33 = 27.

So X is K-polystable.

9.5. Blow up of P3 along the Twisted Cubic.
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9.5.1. Central Divisor. Let G = SL2 act on P3 = P(S3k2). The twisted cubic curve

C = Z(x0x2 − x2
1, x0x3 − x1x2, x1x3 − x2

2)

is G-invariant. The prime divisor

F = Z(3x2
1x

2
2 − 4x3

1x3 − x2
0x

2
3 − 4x0x

3
2 + 6x0x1x2x3).

is G-invariant and contains C - indeed F is the secant variety to C and C is the
singular locus of F , contained with multiplicity 2.

The smooth Fano (2.27) is obtained by blowing up P3 along C. We first take
the open chart given by x3 = 1, which is the minimal B-chart of C. In this chart,

C = Z(x0x2 − x2
1, x0 − x1x2, x1 − x2

2) = Z(x0 − x1x2, x1 − x2
2),

and

F = Z(3x2
1x

2
2 − 4x3

1 − x2
0 − 4x0x

3
2 + 6x0x1x2)

Now consider the change of co-ordinates

(x0, x1, x2) 7→ (x0 + 3x1x2 + x3
2, x1 + x2

2, x2).

It is easily checked to be an isomorphism, and it sends F to Z(x2
0 − 4x3

1) and C to
Z(x0, x1). Hence we see that F is isomorphic to the product of a line (C) and a

cuspidal cubic plane curve. Performing another transformation x1 7→ x1/
3
√
4 gives

F = Z(x2
0 − x3

1) and leaves C invariant.
Now we blow up C, giving X = Z(y1x0 − y0x1) ⊆ A3 × P1 with exceptional

divisor E = Z(x0, x1). We have

F̃ = Z(x2
0 − x3

1, y1x0 − y0x1) \ Z(x0, x1).

It is easy to check that this gives

F̃ = Z(x2
0 − x3

1, y1x0 − y0x1, y0x0 − x2
1y1, y

2
0 − y21x1).

The intersection F̃ ∩ E is then given by Z(x0, x1, y0). Since we don’t yet have a
central divisor, we will blow up this curve.

First, take the chart y1 = 1. Then X becomes Z(x0 −x1y0) ∼= Spec k[x1, x2, y0],

F becomes Z(y20 − x1), and E becomes Z(x1). Hence we obtain X̃ = Z(z0x1 −
z1y0) ⊆ A3×P1, with exceptional divisorD = Z(x1, y0). The strict transforms of F̃
and E are Z(y20 −x1, z0y0− z1) and Z(x1, z1), respectively. It is straightforward to

check that Ẽ, F̃ and D mutually intersect in the curve Z(x1, y0, z1). In particular
this shows that D is not central, so we must blow up again.

Take the chart z0 = 1, giving X̃ = Z(x1 − z1y0) ∼= Spec k[x2, y0, z1], F̃ =

Z(y0 − z1), Ẽ = Z(z1) and D = Z(y0). Blowing up the intersection Z(y0, z1) of

these divisors gives X̃ ′ = Z(u1y0 − u0z1) with exceptional divisor H = Z(y0, z1).

Now the strict transforms Ẽ, F̃ and D̃ all intersect H in different curves and are
disjoint from each other: hence H is a central divisor.

9.5.2. β(H) (2.27). We now want to calculate β(H). We have (−KX)3 = 38, and
AX(H) = 3 since H is a prime divisor on a variety obtained by two blow-ups of X .
Hence

β(H) = 114−
∫ ∞

0

volX (−KX − xH) dx = 114−
∫ ∞

0

volX̃′ (σ
∗(−KX)− xH) dx

where σ : X̃ ′ → X is the birational morphism given by composing the two blow-ups
described above.

To calculate σ∗(−KX), first note that the anticanonical class of P3 is the class of
a prime divisor of degree 4, so we can set −KP3 = F . Then, blowing up C, which
is contained in F with multiplicity 2, gives −KX = (F̃ + 2E) − E = F̃ + E. The
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pullback of this class under the blowing up of F̃ ∩E is then (F̃ +D) + (Ẽ +D) =

F̃ + Ẽ + 2D. Finally, the second blow-up gives

σ∗(−KX) = (F̃ +H) + (Ẽ +H) + 2(D̃ +H) = F̃ + Ẽ + 2D̃ + 4H.

Our next step is the calculate the volume of the divisor δ = F̃+Ẽ+2D̃+(4−x)H.
We have λδ = 0 and P(δ) = (−∞, 4 − x] since we must have ℓH = −1. Now we
calculate A(δ, λ). The points p 6= −4, 0,∞ contribute nothing as pD = p in this
case only for colours Dp with mD = ℓD = 0.

At p = −4, we have two divisors: F̃ , with m = 1, ℓ = 0 and h = 1, and D−4,
with m = 0, ℓ = 1 and h = 2. Hence there is a contribution of

min

{
1,

λ

2

}
=

{
1 λ ≥ 2
λ
2 λ < 2

.

At p = 0, we have two divisors: D̃, with m = 2, ℓ = 0 and h = 1, and D0, with
m = 0, ℓ = 1 and h = 2. Hence there is a contribution of

min

{
2,

λ

2

}
=

{
2 λ ≥ 4
λ
2 λ < 4

.

At p = ∞, we have two divisors: Ẽ, with m = 1, ℓ = −1 and h = 1, and D∞,
with m = 0, ℓ = −2 and h = 3. Hence there is a contribution of

min

{
1− λ,−2λ

3

}
=

{
1− λ λ ≥ 3

− 2λ
3 λ < 3

.

All in all, we have

A(δ, λ) =





4− λ λ ≥ 4

2− λ
2 3 ≤ λ < 4

1− λ
6 2 ≤ λ < 3

λ
3 λ < 2

.

We can then read off P+(δ) = [0, 4− x], so in particular x ≤ 4. Hence

vol(δ) = 6

∫ 4−x

0

2λA(δ, λ) dλ.

That is,

vol(δ) =






∫ 4−x

0
4λ2 dλ 2 ≤ x ≤ 4∫ 2

0
4λ2 dλ+

∫ 4−x

2
12λ− 2λ2 dλ 1 ≤ x < 2∫ 2

0 4λ2 dλ+
∫ 3

2 12λ− 2λ2 dλ+
∫ 4−x

3 24λ− 6λ2 dλ 0 ≤ x < 1

=






− 4
3 (x− 4)3 2 ≤ x ≤ 4

32
3 + 2

3 (x
3 − 3x2 − 24x+ 52) 1 ≤ x < 2

28 + 2(x3 − 6x2 + 5) 0 ≤ x < 1.

Hence we have

β(H) = 114−
∫ 4

0

vol(δ) = 114− 59 = 55.

So X is K-polystable.

9.6. The Quadric Threefold and Its Blow-Up.
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9.6.1. Central Divisor. Let Q = Z(3x2
2 − 4x1x3 + x0x4) ⊆ P4. The twisted quartic

curve

C = Z(x0x2 − x2
1, x0x3 − x1x2, x1x4 − x2x3, x2x4 − x2

3)

is G-invariant. The prime divisor

F = Z(4x3
2 + x2

1x4 + x0x
2
3 − 6x1x2x3) ∩Q

is G-invariant and contains C.
The smooth Fano (2.21) is obtained by blowing up Q along C. The minimal

B-chart of C is given by taking x4 = 1. In this chart, the equation of Q allows us
to eliminate x0, so that Q ∼= Spec k[x1, x2, x3]. Then C is given by

C = Z(x1 − x2x3, x2 − x2
3)

and F by

F = Z(4x3
2 + x2

1 + 4x1x
3
3 − 3x2

2x
2
3 − 6x1x2x3)

One can read off immediately that there is an isomorphism from this B-chart in Q
to the B-chart in P3 we took in the previous example and that this isomorphism
preserves the G-invariant subvarieties F and C (again, F is the secant variety of C).
Hence finding the central divisor is identical in this case to the previous one. Hence
keeping the same notation as above, we must blow Q up three times, obtaining
exceptional divisors E, D and H , with the latter being central.

9.6.2. βQ(H) (1.16). To calculate βQ(H), we must first calculate −KQ and its
pullback to the model containingH . Since Q is a hypersurface in P4, the adjunction
formula gives −KQ = (−KP4 −Q)|Q. The anticanonical class of P4 is the class of
a divisor of degree 5. If we represent this by Q+Z(4x3

2 + x2
1x4 + x0x

2
3 − 6x1x2x3),

we see that F is an anticanonical divisor of Q.
After the three blow-ups described above, this pulls back to F +2E+3D+6H ,

so set δ = F + 2E + 3D + (6 − x)H . We have λδ = 0 and P(δ) = (∞, 6 − x]. To
calculate A(δ, λ), first note that there is no contribution at points p 6= 0,∞,−4. At
p = 0 we have two divisors: D with ℓ = −1, m = 3 and h = 1, and D0 with ℓ = −1,
m = 0 and h = 2. Hence at this point there is a contribution of

min

{
3− λ,−λ

2

}
=

{
3− λ λ ≥ 6

−λ
2 λ < 6.

At p = −4 we have F with ℓ = 0, m = 1, h = 1, and D−4 with ℓ = 1, m = 0, h = 3.
Hence the contribution is

min

{
1,

λ

3

}
=

{
1 λ ≥ 3
λ
3 λ < 3.

Finally, at p = ∞ we have E with ℓ = 0, m = 2, h = 1, and D∞ with ℓ = 1, m = 0,
h = 3. Hence the contribution is

min

{
2,

λ

3

}
=

{
2 λ ≥ 6
λ
3 λ < 6.

All in all, we have

A(δ, λ) =






6− λ λ ≥ 6

1− λ
6 3 ≤ λ ≤ 6

λ
6 λ ≤ 3.

Hence A(δ, λ) ≥ 0 for 0 ≤ λ ≤ 6, so we have P+(δ) = [0, 6− x] and 0 ≤ x ≤ 6.
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Now we have

vol(δ) = 6

∫ 6−x

0

2λA(δ, λ) dλ

=

{
6
∫ 6−x

0
λ2

3 dλ 3 ≤ x ≤ 6

6
∫ 3

0
λ2

3 dλ+ 6
∫ 6−x

3
2λ− λ2

3 dλ 0 ≤ x ≤ 3

=

{
2
3 (6− x)3 3 ≤ x ≤ 6
2x3

3 − 6x2 + 54 0 ≤ x ≤ 3.

We have (−KQ)
3 = 54 and AQ(H) = 4, since we reached H as the final exceptional

divisor after 3 nested blow-ups of Q. Therefore

βQ(H) = 216−
∫ 6

0

vol(δ) dx = 216− 135 = 81 > 0

and Q is K-polystable.

9.6.3. βX(H) (2.21). We now calculate βX(H), where X is the blow-up of Q in
the twisted quartic C, i.e. the smooth Fano (2.21). We have (−KX)3 = 28, and
AX(H) = 3.

Since −KQ = F and the curve C has multiplicity 2 in F , we have −KX =
(F+2E)−E = F+E. Under thw two subsequent blow-ups to the model containing
H , this pulls back to F +E +2D+4H , so we set δ = F +E +2D+ (4− x)H . We
have λδ = 0 and P(δ) = (∞, 4 − x]. Moving on to calculating A(δ, λ): as before,
points p 6= −4, 0,∞ do not contribute.

At p = −4, we have two divisors: F , with m = 1, ℓ = 0, h = 1, and D−4, with
m = 0, ℓ = 1, h = 3. Hence there is a contribution of

min

{
1,

λ

3

}
=

{
1 λ ≥ 3
λ
3 λ < 3

.

At p = ∞, the situation is identical to that at p = −4, so we get the same
contribution again.

At p = 0, we have two divisors: D, with m = 2, ℓ = −1 and h = 1, and D0, with
m = 0, ℓ = −1 and h = 2. Hence there is a contribution of

min

{
2− λ,−λ

2

}
=

{
2− λ λ ≥ 4

−λ
2 λ < 4

.

Hence all things considered, we have

A(δ, λ) =






4− λ λ ≥ 4

2− λ
2 3 ≤ λ < 4

λ
6 λ < 3

.

Therefore A(δ, λ) ≥ 0 for 0 ≤ λ ≤ 4. Hence P+(δ) = [0, 4− x] with 0 ≤ x ≤ 4. We
thus have

vol(δ) = 6

∫ 4−x

0

2λA(δ, λ) dλ

=

{∫ 4−x

0
2λ2 dλ 1 ≤ x ≤ 4∫ 3

0 2λ2 dλ+
∫ 4−x

3 24λ− 6λ2 dλ 0 ≤ x ≤ 1

=

{
2
3 (4− x)3 1 ≤ x ≤ 4

18 + 2(x3 − 6x2 + 5) 0 ≤ x ≤ 1.
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Hence

β(H) = 84−
∫ 4

0

vol(δ) dx

= 84−
∫ 1

0

18 + 2(x3 − 6x2 + 5) dx−
∫ 4

1

2

3
(4− x)3 dx

= 84− 49

2
− 27

2
= 46 > 0,

so X is K-polystable.
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[DS15] V. Datar and G. Székelyhidi. Kähler-Einstein metrics along the smooth continuity

method. Geometric and Functional Analysis, 26:975–1010, 2015.
[Fuj16] K. Fujita. A valuative criterion for uniform K-stability of Q-Fano varieties. arXiv

preprint arXiv:1602.00901v2, 2016.
[Fur92] M. Furushima. Mukai-Umemura’s example of the Fano threefold with genus 12 as a

compactification of C3. Nagoya Math. J., 127:145–165, 1992.
[Hum72] J. Humphreys. Introduction to Lie Algebras and Representation Theory. Graduate

Texts in Mathematics. Springer New York, 1972.
[Hum75] J. Humphreys. Linear Algebraic Groups. Springer-Verlag, 1975.
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