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Abstract

We define the s-order principal component of the jets of a graph and give a description of the primary
decomposition of its edge ideal in terms of the minimal vertex covers of the base graph. As an application,
we show the s-order principal component of the jets of a cochordal graph is cochordal, and connect this
to Fröberg’s theorem on the linear resolution of edge ideals of cochordal graphs. An appendix is provided
describing some computations of jets in the computer algebra system Macaulay2.

Introduction

In this paper, we explore the idea of a jet scheme as applied to graphs. The concept of jets was introduced
by John Nash in [11]. For a set of coordinates x1, . . . , xn in affine n-space, Nash describes the space of arcs
parametrized by the family of formal power series xi(t) =

∑∞
α=0 x

(α)

i t
α, 1 ≤ i ≤ n. By fixing an upper bound

s ∈ Z to this power series, we restrict this family to the s-jets of the coordinates. The geometry of jets has
been explored by, Ein and Mustat, ă [3], Cornelia Yuen [17], Paul Vojta [16] and many others. Of particular
interest to this paper is the work of Košir and Sethuraman [12] which examines the jets of determinantal
varieties. They study the irreducible decomposition of such varieties and discover that they can isolate a
principal component, which can be described as the closure of the jets of the smooth locus of the base space.
In this paper, we use a similar description to isolate a component of the variety of the edge ideal of a graph
(though it turns out not to be irreducible) and explore the connection of this component to minimal vertex
covers of the base graph.

Jets of graphs are defined by Galetto, Helmick and Walsh in [4], where they examine some properties
of graphs, such as their minimal vertex covers and chordality, and whether or not those properties carry
over into the jets of a graph in a meaningful way. We build on that work here by exploring some basic
properties of the edge ideals of the jets of graphs. Starting with a minimal vertex cover W of a graph G,
we describe the ideal generated by the s-jets of elements of W , denoted Js(W ), in terms of the s-jets of
the edge ideal of G, denoted Js(I(G)) (theorem 2.5). We then show that Js(W ) is both a minimal prime
and a primary component of Js(I(G)) (theorem 2.7). Following the work of Košir and Sethuraman[12], we
give a definition for the s-order principal component of a graph (definition 3.1), describe it in terms of the
minimal vertex covers of the base graph (theorem 3.3) and show that the principal component is itself a
graph (proposition 3.5 and corollary 3.6). Finally, we show that if a graph has an edge ideal with a linear
resolution, then so does its principal component (corollary 4.4).

This paper was produced as a master’s thesis at Cleveland State University. It is the culmination of several
semesters of work under the guidance and tutelage of Federico Galetto, the fruits of which also include a
package for the Macaulay2 language which calculates the jets of various algebraic and geometric objects [5],
and an accompanying paper [6] describing the functionality of the package. We include here an appendix
discussing some of this work. The author is eternally grateful to Dr. Galetto for his patience and wisdom,
as well as the ungrudging generosity he showed with his time.
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1 Background

Graphs

A graph G can be described as a pair of sets {V (G), E(G)} where V (G) is the set of vertices of G and E(G)
is a set of pairs of vertices which form the edges of G. Throughout this paper, all graphs are assumed to
be simple and connected. The following definitions, which can be found in [15], allow the construction of an
ideal corresponding to the edge set and set of minimal vertices of a graph.

Definition 1.1. Let G be a graph with vertex set V (G) = {x1, . . . , xn}.

1. A subset W ⊆ V (G) is a vertex cover if W ∩ e 6= ∅ for all e ∈ E(G). A vertex cover is a minimal
vertex cover if no proper subset of W is a vertex cover.

2. The edge ideal corresponding to G is the monomial ideal

I(G) = 〈xixj | {xi, xj} ∈ E(G)〉 ⊆ R = k[x1, . . . , xn]〉

Example 1.2. Let R be the polynomial ring k[v1, . . . , v5] over a field k. Then the vertices of the graphs

Figure 1

v1

v2

v3

v4

v5

(a) G1

v1

v2

v3v4

v5

(b) G2

in fig. 1 are indeterminates of R and we can form their edge ideals. In fig. 1a we have a star on five
vertices. The edge ideal of this graph is given by its four edges, I(G1) = 〈v1v2, v1v3, v1v4, v1v5〉. Its
minimal vertex covers consist of the set {v1} containing only the center vertex, and the set {v2, v3, v4, v5}
containing all of the outer vertices. For G2 in fig. 1b the solid edges yield the monomial ideal I(G2) =
〈v1v3, v1v4, v2v4, v2v5, v3v5〉 along with five minimal vertex covers corresponding to the non-adjacent triples
of vertices {v1, v2, v3}, {v1, v2, v5}, {v1, v4, v5}, {v2, v3, v4} and {v3, v4, v5}. If we include the dashed edge
connecting v4 and v5, updating the edge ideal is simply a matter of adding the ideal generated by that edge:
I(G2) + 〈v4v5〉. For the vertex covers, we lose the set {v1, v2, v3} as it does not account for the new edge
and is therefore not a vertex cover. Notice also, that the minimal vertex covers {v1, v4, v5} and {v3, v4, v5}
contain both of the vertices of the new edge, but we can still find edges containing v4 and v5 whose opposite
vertex is not in the cover.

For a geometric interpretation of these edge ideals, we can turn to the following description of their
decomposition. A graph G with vertex set V (G) = {v1, . . . , vn} and minimal vertex covers W1, . . . ,Wt

has edge ideal I(G) =
⋂t

i=1〈Wi〉 [15, corollary 1.35]. We can write 〈Wi〉 = 〈vi1 , . . . , vir 〉 where the vij are
vertices of G contained in the vertex cover Wi. The 〈Wi〉 are clearly prime, and since I(G) is radical and
completely described by their intersection, we have its decomposition into associated primes, and therefore a
decomposition of the variety V(I(G)) into a union of irreducible components. Furthermore, the components
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of V(I(G)) corresponding to the ideals 〈Wi〉 form coordinate subspaces of An
k . So the variety corresponding

to a graph on n vertices is a union of coordinate subspaces of An.

Example 1.3. Consider the following graphs with vertices in k[x, y, z]. Let G1 be the path of length two
with edge set E(G1) = {{x, z}, {y, z}} and G2 be the 3-cycle with edge set E(G2) = {{x, y}, {y, z}, {x, z}}.
Then we have two graphs on three vertices, which we can think of in terms of their corresponding objects
in affine 3-space. G1 has two minimal vertex covers, {x, y} and {z}, so the variety corresponding to G1 is
V(I(G1)) = V(x, y) ∪ V(z) or the union of the z-axis and the xy-plane. Since the minimal vertex covers of
G2 are all possible pairs of vertices, we have V(I(G2)) = V(x, y)∪V(x, z)∪V(y, z) or the union of the three
coordinate axes.

In addition to this geometric interpretation, [15, corollary 1.35] shows that, for any graph G, each
associated prime of I(G) is minimal, i.e. I(G) has no embedded primes. This fact is guaranteed by the
minimality of the vertex covers we are using to describe its decomposition. For a vertex cover W , we denote
by WC its complement, which consists of all vertices of G not contained in W . We record two properties of
vertex covers in the following remark.

Remark 1.4. Let G be a graph.

1. If W is a minimal vertex cover, for any given x ∈ W there exists y ∈ WC such that {x, y} is an edge
of G. To see this, consider all edges of G containing x which we can label {x, y1}, . . . , {x, yn}. If yi is
in W for all i then x is clearly redundant, contradicting the minimality of W .

2. If W1, . . . ,Wr is the set of minimal vertex covers of G, a vertex x cannot belong to Wα for all α. This
is a direct result of [15, corollary 1.35] since I(G) = 〈W1〉 ∩ · · · ∩ 〈Wr〉 and x ∈ Wα for all α implies
x ∈ I(G) which is impossible.

Jets

Let R be a polynomial ring over a field k. For a positive integer s, define the truncation ring Ts := k[t]/〈ts+1〉.
Then a homomorphism φs : R −→ Ts sends variables of R to degree s polynomials in Ts. Explicitly

φs : xi 7→ x(0)

i + x(1)

i t+ · · ·+ x(s)

i t
s

c 7→ c, c ∈ k

where the x(l)

i take values in k for 0 < l ≤ s. Any polynomial f ∈ R can be considered a function on the
variables of R; applying φs gives

φs(f(x1, . . . , xn)) = f(x(0)

1 + x(1)

1 t+ · · ·+ x(s)

1 t
s, . . . , x(0)

n + x(1)

n t+ · · ·+ x(s)

n t
s).

Example 1.5. Let R = k[x, y, z], s = 2 and f = x2y. Then

φ2(f) = (x(0) + x(1)t+ (x(2))t2)2(y(0) + y(1)t+ y(2)t2)

= ((x(0))2 + 2x(0)x(1)t+ (2x(0)x(2) + (x(1))2)t2)(y(0) + y(1)t+ y(2)t2)

= (x(0))2y(0) + (2x(0)y(0)x(1) + (x(0))2y(1))t+ ((x(0))2y(2) + 2x(0)y(0)x(2) + 2x(0)x(1)y(1) + y(0)(x(1))2)t2

In example 1.5, we see clearly that the image of f under φs is a polynomial in t whose coefficients we can
treat as polynomials in the variables x(l)

i for 1 ≤ i ≤ n and 0 ≤ l ≤ s which exist in their own polynomial
ring. Denote by

Js(R) = k[x(0)

1 , . . . , x
(s)

1 , . . . , x
(0)

n , . . . , x
(s)

n ]

the polynomial ring in these variables. So if R is a polynomial ring in n variables, then Js(R) is a polynomial
ring in n(s+ 1) variables. Now if we have an ideal I = 〈f1, . . . , fr〉 of R, we can restrict φs to the quotient
R/I. Then, as in example 1.5, φs sends each generator fi to some polynomial in t and we can write

φs|R/I(fi) = α(0)

i + α(1)

i t+ · · ·+ α(s)

i t
s (1)
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where the α(l)

i are polynomials in Js(R) for 0 ≤ l ≤ s. Since φs is a homomorphism, its restriction to R/I
must send the generators of I to zero. Therefore α(l)

i = 0 for each l, and we have a new set of relations
defining an ideal of Js(R) which we denote

Js(I) = 〈α(0)

1 , . . . , α
(s)

1 , . . . , α
(0)

r , . . . , α
(s)

r 〉.

If we consider the truncation ring Ts as a vector space, the generators of Js(I) collected from eq. (1) can
be broken up into independent components α(m) each corresponding to the basis element tm. It is easy to
see that for sufficiently large s (precisely s ≥ m), the element α(m) becomes fixed and no longer depends on
s. If we take X to be the variety with coordinate ring R/I, then the s-jets of X form the variety Js(X)
with coordinate ring Js(R)/Js(I)[8]. We refer to Js(R) and Js(I) as the s-jets of R and I respectively, and
the set {x(0)

i , x
(1)

i , . . . } as the jets variables of xi. Finally, it follows from definitions that J0(•) ∼= • for any
applicable object.

Example 1.6. Let X to be the coordinate subspace of A
n
k defined by the ideal I = 〈xi1 , . . . , xir 〉 ⊂

k[x1, . . . xn]. Then the s-jets of I given by Js(I) = 〈x(0)

i1
, . . . , x(s)

i1
, . . . , x(0)

ir
, . . . x(s)

ir
〉 define a variety Js(X) =

V(Js(I)) which is itself a coordinate subspace of A
n(s+1)
k .

If we take a positive integer m < s, there is a natural inclusion ψm,s : Jm(R) −→ Js(R) which embeds
jets of elements of R into a higher order jets ring. In terms of the geometry, for an affine varietyX we have the

canonical projection πX
s,m : Js(X) −→ Jm(X) which projects points in A

n(s+1)
k down to points in A

n(m+1)
k

[3, section 2]. To simplify notation, πX
s : Js(X) −→ J0(X) ∼= X and we can omit the superscript when it is

clear from context. Applying the inclusion ψm,s to α(m) allows each of these components to exist, in a sense,
in every jets ring of higher order. With this in mind, we can view the s- jets of an ideal I = 〈f1, . . . , fr〉 as
being built incrementally as a sum of ideals of lower order. In other words, Js(I) = Js−1(I) + 〈α(s)

1 , . . . , α
(s)
r 〉

gives a recursive definition of the s-jets of I with respect to the image under φs of its generators [8, section
3].

In [4] the authors explore the jets of the edge ideals of a graph. To define the jets of a graph, they make
the following observations. Edge ideals are squarefree monomial ideals. The jets of a monomial ideal do
not, in general, form a monomial ideal. They do, however, form an ideal whose radical is squarefree and
monomial [8, theorem 3.1], and since the base ideal is quadratic, the resulting jets ideal is as well [4, theorem
2.2]. Therefore the radical of the s-jets of an edge ideal is the edge ideal of a graph, which the authors define
as the jets of the base graph. We restate their definition here.

Definition 1.7. [4, section 2] Let G be a graph with edge ideal I(G). Then the s-jets of G, denoted Js(G),
is the graph defined by the ideal

√

Js(I(G)).

They also give a lemma ([4, lemma 2.4]) describing the edge set of the jets of a graph, which we illustrate
in the following example.

Example 1.8. Let G be a graph and {x, y} an edge of G. Then xy is a generator of I(G) and, as in eq. (1),
we can find the corresponding generators of Js(I(G)):

φs(xy) =(x(0) + x(1)t+ · · ·+ x(s)ts)(y(0) + y(1)t+ · · ·+ y(s)ts)

=(x(0)y(0)) +

(x(0)y(1) + x(1)y(0))t +

(x(0)y(2) + x(1)y(1) + x(2)x(2))t2 +

...

(x(0)y(s) + x(1)y(s−1) + · · ·+ x(s)y(0))ts

Since Js(G) is defined by the radical of Js(I(G)), we apply [8, theorem 2.1] to extract the edges of Js(G)
(see appendix A) which are the terms of each of the coefficient polynomials of the powers of t.
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We state the lemma for completeness.

Lemma 1.9. [4, lemma 2.4] Let G be a graph and let x, y be distinct vertices of G. For every non-negative
integer s, the set {x(i), y(j)} is an edge in Js(G) if and only if {x, y} is an edge of G and i + j ≤ s.

Figure 2 gives a visual example of the jets of a path on three vertices.

Figure 2: The jets of the path of length two

x(0) y(0) z(0)

(a) 0-jets
x(0) y(0) z(0)

x(1) y(1) z(1)

(b) 1-jets
x(0) y(0) z(0)

x(1) y(1) z(1)

x(2) y(2) z(2)

(c) 2-jets

2 Jets from a Vertex Cover

In this section we will discuss ideal quotients and refer to the following definition:

Definition 2.1. [2, definition 4.4.5] Let I, J be ideals in a polynomial ring R. Then the ideal quotient and
saturation of I with respect to J are, respectively

1. I : J = 〈f ∈ R | fg ∈ I for all g ∈ J〉

2. I : J∞ = 〈f ∈ R | for all g ∈ J there is an integer N ≥ 0 such that fgN ∈ I〉

If J is principal, we can view the quotient of I with J as the quotient of I with the polynomial f ∈ R
that generates J . To get an idea of what this operation does, we can think of it as a method to “peel off”
factors from elements of an ideal. So if f divides h = fg ∈ I then g will appear in the quotient; if f does
not divide h, then certainly fh ∈ I and h appears in the quotient unaffected. As a consequence of this, if
f = f1R ∈ I then 1R is in the quotient and we have I : f = R. One property of the ideal quotient which
will be applied in this section is illustrated in the following remark.

Remark 2.2. [1, exercise 1.12] For and ideal I ⊆ R and polynomials a, b ∈ R,

(I : a) : b = {g ∈ R | gb ∈ {f ∈ R | fa ∈ I}} = {g ∈ R | gab ∈ I} = I : ab

Let G be a graph with vertices in a polynomial ring R and edge ideal I(G) and let W be a minimal

vertex cover of G. For any non-negative integer s, denote by Js(W ) the subset of Js(R) given by {x(j)i | 0 ≤
j ≤ s and xi ∈ W}. Then Js(W ) is a minimal vertex cover of Js(G) [4, proposition 5.3]. Fix an element
x ∈ W . Since W is minimal, we can find y ∈ WC such that {x, y} is an edge of G, and their product xy is
therefor an element of I(G).

Lemma 2.3. Let G be a graph and fix W , a minimal vertex cover of G. Given any edge {x, y} of G with
x ∈W and y ∈WC , x(i) is an element of the quotient Js(I(G)) : (y

(0))s+1 for all i ≤ s.
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Proof. We prove the claim by induction on the order of jets. The base case is evident from the fact that
J0(I(G)) and I(G) are isomorphic as rings. Consider the following element of Js(I(G)) constructed from
its s−order generator (see example 1.8):

(y(0))s · (x(0)y(s) + x(1)y(s−1) + · · ·+ x(s)y(0)). (2)

Assuming x(i) ∈ Js−1(I(G)) : (y
(0))s for all 0 ≤ i ≤ s−1, we have x(i)(y(0))s ∈ Js−1(I(G)) for all such i. Since

the image of Js−1(I(G)) under inclusion is contained in Js(I(G)) (section 1) each term of eq. (2) with the
exception of the last exists as a monomial in Js(I(G)) implying that the sum

s−1
∑

i=0

x(i)y(s−1−i)(y(0))s (3)

is also an element of Js(I(G)). Taking the difference of eq. (2) and eq. (3) we find x(s)(y(0))s+1 ∈ Js(I(G))
implying x(s) is an element of Js(I(G)) : (y

(0))s+1.

Remark 2.4. More generally, for any monomial f ∈ Js(R) with (y(0))s+1 as factor, x(s)f ∈ Js(I(G)) (see
remark 2.2). We use this fact to find an expression for the ideal generated by the s-jets of a vertex cover.

Theorem 2.5. For any vertex cover W of a graph G,

〈Js(W )〉 = Js(I(G)) : f
∞

where f is the product of the elements of J0(W
C).

Proof. Let f be as stated in the claim. Then for any 0 ≤ i ≤ s, lemma 2.3 guarantees x(i) ∈ Js(I(G)) : f
s+1

for all x ∈ W . Therefor Js(I(G)) : f s+1 ⊆ 〈Js(W )〉. For the opposite containment take an arbitrary
generator x(i) of 〈Js(W )〉. From the proof of lemma 2.3, x(i)(y(0))s−1 is a monomial in Js(I(G)) for any i ≤ s.
By construction, ys−i divides f s+1 and remark 2.4 leads to the conclusion that x(i) ∈ Js(I(G)) : ys−i ⊆
Js(I(G)) : f s+1. We conclude that 〈Js(W )〉 = Js(I(G)) : f s+1, which implies 〈Js(W ) : f〉 = Js(I(G)) :
f s+2. But by construction x(i) does not divide f for any x(i) ∈ Js(W ) so the colon does not change the ideal
of the vertex cover, and Js(I(G)) : f

s+1 = Js(I(G)) : f
s+2 which is a sufficient condition for saturation [2,

proposition 4.4.9 (ii)].

These ideals generated by the elements of a minimal vertex cover appear in the primary decomposition
of the edge ideal of a graph. In general, given an ideal I of a polynomial ring, we can decompose it into an
intersection of primary ideals. All of these primary components corresponding to minimal primes of I are
uniquely determined [1, corollary 4.11], and can be recovered from a given minimal prime using localization.
This is known for Modules in general and is discussed in [14, 13] among others. We could not find a reference
stating this result explicitly for ideals of polynomial rings, so we present it here as a lemma. We will use the
notation Rp for the localization of the ring R at the prime ideal p, φp for the homomorphism from R to Rp

defined by r
φp7−→ r

1R
, and IRp for the image of I under φp.

Lemma 2.6. Let R = k[x1, . . . , xn] and I ⊆ R be an ideal with associated prime p ⊇ I. If p is minimal, it
corresponds to a primary component q of I with q = φ−1

p (IRp).

Proof. Let R and I be as above and write the minimal primary decomposition I = q1 ∩ · · · ∩ qr with√
I = p1 ∩ · · · ∩ pr where pi =

√
qi. We can arrange this decomposition so that p1 is minimal, and set p = p1

and q = q1 which forces q ⊆ p.
Take the intersection of the remaining primary components and denote I∗ =

⋂r
i=2 qi so that I = q ∩ I∗.

Let f ∈ q and g ∈ I∗. Then their product fg is in I and φp(fg) = fg
1R

∈ IRp. If we choose g such that

g /∈ p, then 1
g is an element of Rp and we have f

1R
∈ IRp which implies f ∈ φ−1

p (IRp) (provided such a g

exists). Assume for the sake of contradiction that there is no such g. Then I∗ ⊆ p and qi ⊆ p for some i[1,

6



proposition 1.11], so
√
qi ⊆

√
p = p, which contradicts the minimality of p. Therefore q ⊆ φ−1

p (IRp).

For the opposite containment, take f ∈ φ−1
p (IRp). Then φp(f) ∈ IRp and we have the relation f

1 = h
g

where h ∈ I and g /∈ p, implying h = fg. Since fg is an element of I, it is also an element of the p-primary
ideal q, which contains no power of g (as g /∈ p) and must therefor contain f . We conclude that φ−1

p (IRp) ⊆ q

and the lemma is proved.

Using lemma 2.6 we can describe some of the components of the decomposition of the jets of an edge
ideal.

Theorem 2.7. Let G be a graph and W a minimal vertex cover of G. Then 〈Js(W )〉 is both a minimal
prime and a primary component of Js(I(G)).

Proof. Let W = {x1, . . . , xn} be a minimal vertex cover of a graph G. Then

p = 〈Js(W )〉 = 〈x(0)

1 , . . . , x
(0)

n , . . . , x
(s)

1 , . . . , x
(s)

n 〉

is clearly prime.

For the first claim, to show p is a minimal prime of Js(I(G)), it is sufficient to show that it is a min-
imal prime of

√

Js(I(G)). Since I(G) is a square free monomial ideal, [8, theorem 2.1] guarantees that
√

Js(I(G)) is also a monomial ideal with a generating set obtained by collecting all of the terms of the
generators of Js(I(G)). Furthermore, since I(G) is the edge ideal of a graph, we can describe this generating
set:

√

Js(I(G)) = 〈x(i)y(j) | i+ j ≤ s and xy ∈ I〉

where the x(i) ∈ Js(W ) are generators of p [4, lemma 2.4]. Since W is a vertex cover of G, Js(W ) is a vertex
cover of Js(G) [4, proposition 5.3] and any x(i)y(j) in its edge ideal is also an element of the ideal p. We
therefore have the containment I(Js(G)) =

√

Js(I(G)) ⊆ p. Now assume there exists some prime ideal p′

with
√

Js(I(G)) ⊆ p′ ⊆ p. Given an arbitrary generator xy of
√

Js(I(G)) we have xy ∈ p and xy ∈ p′,
where at least one of x or y is an element of p. In the case that only one (say x) is in p then by containment
and the primality of p′ we must have x in p′. If both x and y are generators of p then the minimality of
W guarantees the existence of elements x′ and y′ such that xx′, yy′ ∈ Js(I(G)) and x

′, y′ /∈ p. Then by the
previous argument both x and y must be elements of p′. Therefor p ⊆ p′ and p is a minimal prime of both
√

Js(I(G)) and Js(I(G)).

For the second claim, since p is minimal, it corresponds to a unique primary ideal q with
√
q = p and q a

primary component of Js(I)[1, corollary 4.11]. As in lemma 2.6, we can construct the local ring Js(R)p and
the corresponding homomorphism φp. Let x

(i) ∈ p. Since p originates from a minimal vertex cover of a graph,

we can find an element y(j) ∈ Js(R) such that x(i)y(j) ∈ Js(I(G)) with y
(j) /∈ p. Then φp(x

(i)y(j)) = x(i)y(j)

1 is in

the extension Js(I(G))Js(R)p which implies x(i)

1 = 1
y(j) (

x(i)y(j)

1 ) is as well. Therefore x(i) ∈ q by lemma 2.6,

and p = 〈Js(W )〉 ⊆ q. Naturally q ⊆ p, and we have equality, showing that 〈Js(W )〉 is a primary component
of Js(I(G)).

3 The principal component of the edge ideal of a graph

Having a description of the variety associated to the jets of a graph, it seems natural to examine its irreducible
components. In [12], Kŏsir and Sethuraman study the jets of determinantal varieties of an m × n matrix
with entries in an algebraically closed field k by mapping the entries ofM into the truncation ring k[t]/〈ts+1〉
(section 1). One particular component of such a variety (if it turns out to be reducible) is referred to as the

7



principal component and can be described as the “closure of the set of jets supported over the smooth points
of the base [variety]”[7]. We can extend this description to the variety defined by the edge ideal of a graph.

Definition 3.1 (Principal Component). Let G be a graph in n vertices with edge ideal I(G). Let X =
V(I(G)). Then the s-order principal component of G is the Zariski closure of the s-jets of the smooth locus
of X.

We note that, in this case, the name principal component can be misleading since, as it turns out, when
applied to the edge ideal of a graph, we get variety that is not irreducible in general. With X as described
in definition 3.1, denote by Xsmooth and Xsing the smooth and singular loci of X respectively. Since X is a
variety corresponding to a squarefree quadratic monomial ideal, it is simply a union of coordinate subspaces
of An and we can easily describe its singular points.

Proposition 3.2. Let G be a graph in n vertices, with corresponding variety X = V(I(G)). Then a point
p ∈ X is singular if and only if it lies on the intersection of two or more irreducible components of X.

Proof. Let X be described by the irredundant irreducible decomposition F1 ∪ · · · ∪ Fr . In section 1 we
saw that each of these components corresponds to a minimal vertex cover of G, and therefore represents a
coordinate subspace of X . Take F ∗ =

⋃

i6=j Fi ∩ Fj . Given a point p ∈ F ∗ it follows immediately from [2,
theorem 9.6.8] that p ∈ Xsing.

For the opposite containment, choose p = (p1, . . . , pn) ∈ X such that p lies on one and only one component
of X , say p ∈ Fα, which is a coordinate subspace defined by the elements of some minimal vertex cover
Wα = {xα1 , . . . , xαt

}. X is also a variety defined by the edges of graph; if ei,j = xixj corresponds to
{xi, xj} ∈ E(G), then X = V(ei,j | {xi, xj} ∈ E(G)). We use both of these descriptions to show p is smooth
by following the procedure, outlined in [2, 9.6]. First, since p is contained only in the irreducible component
Fα, dimp(X) = dimp(Fα) [2, definition 9.6.6]. Next, we can describe the tangent space of X at P

Tp(X) = V(dp(ei,j) | ei,j ∈ I(X))

where

dp(ei,j) =
∂xixj
∂xi

(p)(xi − pi) +
∂xixj
∂xj

(p)(xj − pj) = pjxi + pixj − 2pipj (4)

is the linear part of ei,j at p [2, definition 9.6.1]. Since p lies in a component described by the minimal vertex
cover W , each edge of G has at least one vertex in W , so at least one of pi or pj must be zero. Furthermore,
the minimality of W guarantees we can find an edge {xi, xj} whose second vertex is not in W , that is either
pi = 0 or pj = 0 but not both. Then eq. (4) shows Tp(X) is defined by {pjxi | xi ∈ W}, which, working
over a field, is identical to the generating set of W . Therefore dimTp(X) = dimp(X) and p is non-singular,
showing Xsing ⊆ F ∗ by contraposition.

From the decomposition X = F1 ∪ · · · ∪ Fr we can write the smooth locus of X as

Xsmooth = X\Xsing = (F1 ∪ · · · ∪ Fn)\Xsing = F1\Xsing ∪ · · · ∪ Fn\Xsing = U1 ∪ · · · ∪ Un (5)

where the Ui are proper subsets of the Fi. This is evident since each component of X is a coordinate subspace
of An contained in X , which implies that 0 is an element of the singular locus of X and each of its irreducible
components. Each Ui of eq. (5) is therefore open in its corresponding component Fi and, by proposition 3.2
open in the whole of X as well. The following theorem gives a description of the s-order principal component
of a graph.

Theorem 3.3. Let G be a graph with minimal vertex covers W1, . . . ,Wm. Then the s-order principal
component of G is precisely the union V(〈Js(W1)〉) ∪ · · · ∪ V(〈Js(Wm)〉).

To prove this result, we will appeal to the following lemma of Ein and Mustat, ă.
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Lemma 3.4. [3, lemma 2.3] If U ⊆ X is an open subset and if Js(X) exists, then Js(U) exists and
Js(U) = π−1

s (U).

Proof of theorem 3.3. Let X = V(I(G)). Then [15, corallary 1.35] guarantees a decomposition

X = V(〈W1〉) ∪ · · · ∪ V(〈Wm〉).

Letting Fi = V(〈Wi〉), we can use eq. (5) to write

Js(Xsmooth) = Js(U1 ∪ · · · ∪ Un),

describing the s-jets of the smooth locus of X . Because Xsmooth is open in X [10, theorem 5.3], we can apply
lemma 3.4:

Js(Xsmooth) = π−1
s (U1 ∪ · · · ∪ Un) = π−1

s (U1) ∪ · · · ∪ π−1
s (Un), (6)

and since each Ui is open in X , applying lemma 3.4 again yields

π−1
s (U1) ∪ · · · ∪ π−1

s (Un) = Js(U1) ∪ · · · ∪ Js(Un). (7)

Paired with the fact that the Zariski closure of a union is the union of its Zariski closures [2, lemma 4.4.3,
(iii)], eq. (6) and eq. (7) give an expression for the principal component of X as a union of closures of jets
of open sets:

Js(Xsmooth) = Js(U1) ∪ · · · ∪ Js(Un).

Returning to the decomposition of X , consider an arbitrary component Fi of X along with the following
facts:

1. Js(Ui) is open in Js(Fi) since the projection πFi
s : J (Fi) −→ Fi is continuous, and Ui is an open

subset of Fi. That is, the preimage (πFi
s )−1(Ui) = Js(Ui) is open in Js(Fi).

2. Js(Fi) is irreducible since it is a coordinate subspace (see example 1.6).

Taken together, they show Js(Ui) is Zariski dense in Js(Fi) [2, proposition 4.5.13]. Therefore the Zariski
closure of Js(Ui) is Js(Fi) and we conclude

Js(Xsmooth) = Js(F1) ∪ · · · ∪ Js(Fm) = V(〈Js(W1)〉) ∪ · · · ∪ V(〈Js(Wm)〉)

With this description of the prinipal component, we can find its corresponding ideal.

Proposition 3.5. The ideal of the s-order principal component of a graph is given by

〈x(i)y(j) | {x, y} ∈ E(G)〉

Proof. Let G be a graph with vertices in R and minimal vertex covers W1, . . . ,Wm. Since each 〈Js(Wα)〉 is
radical, by theorem 3.3 the ideal of the s-order principal component of G is

〈V(〈Js(W1)〉) ∪ · · · ∪ V(〈Js(Wm)〉)〉 =
⋂

1≤α≤m

〈Js(Wα)〉.

Let x(i)y(j) ∈ Ĩ with Ĩ = 〈x(i)y(j) | {x, y} ∈ E(G)〉 as above. Then for any given α ∈ {1, . . . ,m}, either x ∈Wα

or y ∈ Wα (or both) which implies x(i) ∈ Js(Wα) for all 0 ≤ i ≤ s or y(j) ∈ Js(Wα) for all 0 ≤ j ≤ s. Since
this is true for all α, x(i)y(j) ∈ ⋂

1≤α≤m〈Js(Wα)〉 and Ĩ ⊆ ⋂

1≤α≤m〈Js(Wα)〉.
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For the opposite containment we apply theorem 2.5 to the intersection, which yields

⋂

1≤α≤m

〈Js(Wα)〉 =
⋂

1≤α≤m

Js(I(G)) : f
∞
α

where fα is the product of the elements of J0(W
C
α ). Since each 〈Js(Wα)〉 is radical, so is the intersection

[2, proposition 4.3.16] and we can write

⋂

1≤α≤m

Js(I(G)) : f
∞
α =

√

⋂

1≤α≤m

Js(I(G)) : f∞
α =

⋂

1≤α≤m

√

Js(I(G)) : f∞
α .

Using [2, proposition 4.4.9 (iii) and proposition 4.4.13 (i)] we can further reduce this expression to conclude

⋂

1≤α≤m

〈Js(Wα)〉 =
√

Js(I(G)) : 〈f1, . . . , fm〉 = I(Js(G)) : 〈f1, . . . , fm〉,

which is the quotient of an edge ideal. Now choose a monomial g ∈ I(Js(G)) : 〈f1, . . . , fm〉. Then for
each fα, gfα is a monomial in I(Js(G)), and therefor a multiple of some edge monomial of Js(G), say
gfα = ρα(x

(i)y(j)) where ρα ∈ Js(R) and {x, y} is an edge of the base graph G. If x(i) divides fα for all α
then x ∈ WC

α for all α which implies y ∈ Wα for all α. This contradicts remark 1.4. Therefore x(i) does
not divide fα for some α which implies x(i) must divide g. By a similar argument y(j) must divide g, and we
conclude that the product x(i)y(j) divides g and g ∈ Ĩ, proving the containment

⋂

1≤α≤m〈Js(Wα)〉 ⊆ Ĩ.

Corollary 3.6. The ideal of the principal component of a graph is itself the edge ideal of a graph.

To end this section we give the following summary of notation and definitions for the s order principal
component of relevant objects:

Remark 3.7. Let G be a graph with vertices in R, edge ideal I, vertex coversW1, . . . ,Wr and corresponding
variety V = V(I). Then

1. PCs(V ) =
⋃

1≤α≤r V(〈Js(Wα))〉

2. PCs(I) = 〈x(i)y(j) | {x, y} ∈ E(G)〉

3. PCs(G) = {V (Js(G)), Ẽ(G)} where Ẽ(G) = {{x(i), y(j)} | {x, y} ∈ E(G)}

4 Chordal graphs and Fröberg’s theorem

For any graph, a cycle of length l is a sequence of vertices denoted (x1 x2 · · · xl x1) which form a closed path
in G. That is, for each adjacent pair xi xj in the sequence, {xi, xj} is an edge of G. If for some non-adjacent
xi and xj in the sequence, {xi, xj} is an edge of G, it is said to be a chord of the cycle. A minimal cycle is
one which has no chords [15, definition 2.10]. We will consider only cycles where the xi are distinct, as any
cycle containing a repeated variable (other than x1) can be split into two cycles in an obvious way. In this
section we will use the following two properties of a graph.

Definition 4.1. [15, section 2] Let G be a graph. Then

1. The complementary graph of G is given by GC = {V (G), E(G)C} where E(G)C = {{x, y} ∈ V (G) | {x, y} /∈
E(G)}.
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2. G is chordal if it has no minimal cycles of length greater than three.

If a graph has a complement which is chordal, then it is itself referred to as cochordal. This quality is
a condition of Fröberg’s theorem, which states that a graph is cochordal if and only if its edge ideal has a
linear resolution [15, theorem 2.13]. We might ask how the jets of a graph interact with this theorem. A
description of the edges of the complement of the jets of a graph can be derived from [4, lemma 2.4]. For a
graph G, we can write the edge set of Js(G) as

E(Js(G)) = {{x(i), y(j)} ⊆ V (Js(G)) | {x, y} ∈ E(G) and i+ j ≤ s}. (8)

then we can obtain the edge set of its complement by negating the conditions of the comprehention in eq. (8):

E(Js(G)
C) = {{x(i), y(j)} ⊆ V (Js(G)) | {x, y} ∈ E(G) and i+ j > s,

or {x, y} /∈ E(G)}. (9)

Notice that x(a) and x(b) are distinct vertices of Js(G) when a 6= b, so this definition includes all edges of
the form {x(a), x(b)} with a 6= b which correspond to a single vertex of the base graph, and therefore cannot
correspond to one of its edges.

Example 4.2. Let G be the path of length three with edges {x, y}, {y, z} and {z, w}. Its complement GC

has edges {y, w}, {x,w}, and {x, z} which is also a path of length three. Since GC has no cycles at all it
cannot have a minimal cycle of length greater than three so it is chordal. G is therefore cochordal. Now
consider J1(G)

C . From eq. (9) we see that {x(0), z(1)}, {x(0), w(0)}, {y(1), w(0)}, and {z(1), w(0)} are all edges
of J1(G)

C . Therefore it contains the cycle (x(0) z(1) y(1) w(0)x(0)). But {x(0), y(1)} and {w(0), z(1)} are edges of
Js(G) and cannot be elements of the complement. So we have found a minimal cycle of length four and the
1-jets of G are not cochordal.

Theorem 4.3. Let G be a cochordal graph. Then for ever integer s ≥ 0, PCs(G) is cochordal.

Proof. Using remark 3.7 we can describe the edge set of the complement of the principal component of G as

E(PCs(G)
C) = {{x(i), y(j)} | {x, y} /∈ E(G)}.

Notice from the definitions that PCs(G
C) is a subset of PCs(G)

C . The containment is not reversible however,
since PCs(G)

C contains edges {x(i), y(j)} for which x = y and i 6= j, but PCs(G
C) is restricted by the edge

set of GC . Now let K = (x1 x2 · · · xl x1) be a cycle of length l > 3 in GC . Then each adjacent pair {xi, xj}
of the cycle is an edge of GC and, following the same indexing, each pair {x(a)

i , x
(b)

j }, 0 ≤ a, b ≤ s, is an edge

of PCs(G
C). So K gives rise to a family of cycles in PCs(G

C) which we denote

K̄ = {(x(a1)

1 x(a2)

2 · · · x(al)

l x(a1)

1 ) | a1, . . . , an ∈ {0, 1, . . . , s}}.

Since G is cochordal, there is an edge {xi∗ , xj∗} of GC where xi∗ and xj∗ are non-adjacent in K. Then
{x(a)

i∗ , x
(b)

j∗} is an edge of PCs(G)
C for all a, b with 0 ≤ a, b ≤ s. So for an arbitrary cycle K of GC , every

cycle in K̄ (which is a cycle of PC(GC) ⊂ PC(G)C) has a chord.
Now let κ = (x(a1)

c1 x(a2)
c2 · · · x(al)

cl x(a1)
c1 ) be an arbitrary cycle in PCs(G)

C with l > 3. If the xci are distinct,
then κ corresponds to a cycle K of GC which implies κ ∈ K̄ and therefore has a chord. If the xci are not
distinct (say xci = xcj for some i 6= j, 0 ≤ i, j ≤ l we must consider two cases:

1. If x(ai)
ci and x(aj)

cj are non-adjacent in κ, they form a chord since PCs(G)
C contains all edges of the form

{x(a), x(b)} with a 6= b and x ∈ V (G).

2. If x(ai)
ci and x(aj)

cj are adjacent in κ, we can arrange the indices so that κ contains a path (x(ai)
ci x(aj)

ci x(aj+1)
cj+1

).

Since {x(aj)
cj , x

(aj+1)
cj+1

} is an edge in PCs(G)
C and xci = xcj , {x(ai)

ci , x
(aj+1)
cj+1

} must also be an edge of PCs(G)
C

by definition. Therefore κ contains a chord.
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We conclude that PCs(G)
C is chordal, and PCs(G) is therefore cochordal.

Corollary 4.4. It follows from Fröberg’s theorem that if I(G) has a linear resolution, so does PCs(I(G)).

Example 4.5. Let G be the complete bipartite graph on the five vertices x1, . . . x5 with edge ideal

I(G) = 〈x1x4, x2x4, x3x4, x1x5, x2x5, x3x5〉.

The complement of this graph is the union of the path of length one and the 3-cycle, which is chordal, so G
is cochordal, and by Fröberg’s theorem has a linear resolution with Betti table:

0 1 2 3 4
total: 1 6 9 5 1
0 : 1 . . . .
1 : . 6 9 5 1

Then J1(I(G)) has a linear resolution with Betti table:

0 1 2 3 4 5 6 7 8 9
total: 1 24 96 194 246 209 120 45 10 1
0 : 1 . . . . . . . . .
1 : . 24 96 194 246 209 120 45 10 1

and J2(I(G)) has a linear resolution with Betti table:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
total: 1 54 351 1224 2871 4920 6399 6426 5004 3003 1365 455 105 15 1
0 : 1 . . . . . . . . . . . . . .
1 : . 54 351 1224 2871 4920 6399 6426 5004 3003 1365 455 105 15 1

We have seen that, in some cases, the principal component preserves some information about the reso-
lution of an edge ideal. It is natural to ask if we can use this fact to predict or recover any information.
For example, is there a connection between the Betti numbers of a cochordal graph and those of its s-order
principal component. The concept of jets could also be defined for simplicial complexes via their Stanley-
Reisner ideals. We can extend the definition of the principal component as well by replacing the edge ideal
of a graph with the Stanley-Reisner ideal of a simplicial complex. Some initial investigation indicates that
this process may preserve some of the homological information of the base complex.

A Calculating Jets with Macaulay2

As a semester project, the author and his advisor constructed a package [5] for the Macaulay2 language [9]
to work with jets in polynomial rings. In this appendix we present some of the methods used to calculate
the jets of a few objects in Macaulay2.

The radical of the s-jets of a monomial ideal

The Jets package offers a method for calculating the radical of the jets of a monomial ideal based on [8,
theorem 3.1]. The theorem states that, given a monomial ideal I ⊆ R, the s-jets of I, Js(I) ⊆ Js(R),
has a radical which is a squarefree monomial ideal. The statement of the theorem describes the monomial
generators of

√

Js(I) as

√

x(i1)

1 x(i2)

1 · · ·x(ia1 )

1 x
(i1+a1 )

2 · · ·x(ia1+a2)

2 · · ·x(ia1+···+ar )

r where
∑

ij ≤ s [8, theorem 3.1]
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ranging over the minimal generators xa1
1 · · ·xar

r of I. This is a combinatorial description of the terms of the
coefficients of our polynomial in t (which we labeled αi) as illustrated in example 1.8. Using this idea, we
define the function jetsRadical in Macaulay2 which returns the radical of the jets of a monomial ideal
without calculating a Gröbner basis. As we have seen, for each monomial generator of I, the s-jets of I has
corresponding generators for each power of t up to s. We can isolate the terms of each these generators
by applying the terms function to the result. This gives us a list of monomials, whose radicals we find by
taking the support of each (yielding a list of variables of Js(R) present non-trivially in the monomial), and
taking the product of the elements of the result. Running this process over each of the generators of Js(I)
gives a set of generators for

√

Js(I). It should be noted that this set is not necessarily a minimal generating
set.

The principal component of an ideal

The Jets package also provides a method principalCompoent which, given any ideal I of a polynomial
ring, returns an ideal I ′ such that V(I ′) is the Zariski closure of the smooth locus of V(I) embedded in the
space of s-jets. This ideal is a sort of generalization of the ideal of the variety defined in definition 3.1. The
process of calculating it relies on [2, theorem 4.4.10] and we summarize here its description given in the
documentation of [5]. Denoting by A the ideal of Xsing and J the ideal of Js(X), the theorem shows that

Js(Xsmooth) = Js(X)\Xsing = V(J)\V(A) = V(J : A∞)

This method returns the ideal J : A∞. To accomplish this we call on the jetsProjection method, which
is an encoding of the canonical projection described in section 1. Mapping the singularLocus of the input
ideal to its 0-jets via the natural isomorphism, we apply jetsProjection to get the result as s-jets. The
function saturate applied to the jets of the input ideal and the projected ideal returns the desired ideal.
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