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A GENERALIZED SECOND MAIN THEOREM FOR

CLOSED SUBSCHEMES

LIANG WANG, TINGBIN CAO, AND HONGZHE CAO

Abstract. Let Y1, . . . , Yq be closed subschemes which are located in
ℓ-subgeneral position with index κ in a complex projective variety X of
dimension n. Let A be an ample Cartier divisor on X. We obtain that
if a holomorphic curve f : C → X is Zariski-dense, then for every ǫ > 0,

q
∑

j=1

ǫYj
(A)mf (r, Yj) ≤exc

(

(ℓ− n+ κ)(n+ 1)

κ
+ ǫ

)

Tf,A(r).

This generalizes the second main theorems for general position case due
to Heier-Levin [AM J. Math. 143(2021), no. 1, 213-226] and subgeneral
position case due to He-Ru [J. Number Theory 229(2021), 125-141]. In
particular, whenever all the Yj are reduced to Cartier divisors, we also
give a second main theorem with the distributive constant. The corre-
sponding Schmidt’s subspace theorem for closed subschemes in Diophan-
tine approximation is also given.

1. Introduction and main results

In 1933, H. Cartan [1] established the important second main theorem for

linearly nondegenerate holomorphic mappings from Cm into PN(C) inter-

secting hyperplanes in general position. He also conjectured that it should

be true for hyperplanes in subgeneral position. In 1983, Nochka [8] confirmed

the Cartan’s conjecture by introducing the Nochka weight and Nochka con-

stant. In 2009, Ru [11] extended the Cartan’s second main theorem to the

case of Cartier divisors in complex projective variety as follows (For more

background of Nevanlinna theory, we refer to [12]). Here we use notations

from Nevanlinna theory which can be found in Section 2.

Theorem 1.1. [11] Let X be a complex projective variety of dimension n

and D1, . . . , Dq be effective Cartier divisors on X, located in general position.

Suppose that there exists an ample Cartier divisor A on X and positive

integers dj such that Dj ∼ djA for j = 1, . . . , q. Let f : C → X be a
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holomorphic map with Zariski dense image. Then, for every ǫ > 0,
q
∑

j=1

1

dj
mf (r,Dj) ≤exc (n+ 1 + ǫ)Tf,A(r),

where ≤exc means the inequality holds for all r ∈ R≥0 outside a set of finite

Lebesgue measure.

In 2017, Ru and Wang [13] considered the case of closed subschemes and

gave the second main theorem as follows.

Theorem 1.2. [13] Let X be a projective variety. Let Y1, . . . , Yq be closed

subschemes of X such that at most ℓ of the closed subschemes meet at any

point x ∈ X. Let A be a big Cartier divisor on X. Let f : C → X be a

holomorphic curve with Zariski-dense image. Let

βA,Yj
= lim

N→∞

∑∞
m=1 h

0(X̃j , Nπ∗
jA−mEi)

Nh0(X,NA)
, j = 0, . . . , q,

where πj : X̃j → X is the blowing-up of X along Yj , with associated excep-

tional divisor Ej . Then, for every ǫ > 0,
q
∑

j=1

mf(r, Yj) ≤exc ℓ(max
1≤j≤q

{β−1
A,Yj

}+ ǫ)Tf,A(r),

where ≤exc means the inequality holds for all r ∈ R≥0 outside a set of finite

Lebesgue measure.

When the closed subschemes Yj = yj are distinct points in X and

dimX = n, then one may take ℓ = 1 in Theorem 1.2, Mckinnon and Roth [7]

have shown that the Seshadri constants ǫyj (A) and βA,yj have the following

relation:

βA,yj ≥
n

n + 1
ǫyj (A).

In order to improve the condition Dj ∼ djA in Theorem 1.1, Heier and

Levin [4] used the notion of Seshadri constant ǫDj
(L) (see Definition 2.1),

and obtained the following generalization of the second main Theorem for

closed subschemes in general position.

Theorem 1.3. [4, Theorem 1.8] Let X be a complex projective variety of

dimension n. Let Y0, . . . , Yq be closed subschemes of X in general position,

f : C → X be a holomorphic map with Zariski dense image. Let A be an

ample Cartier divisor on X. Then, for every ǫ > 0,
q
∑

j=0

ǫYj
(A)mf(r, Yj) ≤exc (n + 1 + ǫ)Tf,A(r),
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where ≤exc means the inequality holds for all r ∈ R≥0 outside a set of finite

Lebesgue measure.

In 2021, He and Ru [3] considered the ℓ-subgeneral position case and gen-

eralized Theorem 1.3 by using somewhat different methods. In this paper,

we continue to generalize them to the case of the index κ of ℓ-subgeneral

position. The concept of the index κ of ℓ-subgeneral position by Ji-Yan-Yu

[5] is generalized from Cartier divisors to closed subschemes.

Definition 1.4. Let X be a projective variety of dimension n which is

defined over an arbitrary field k with characteristic zero and let Y1, . . . , Yq

be q closed subschemes of X. Let ℓ and κ be two positive integers such that

ℓ ≥ dimX ≥ κ.

(a). The closed subschemes {Y1, . . . , Yq} are said to be in general position

in X if for any subset I ⊂ {1, . . . , q} with ♯I ≤ dimX + 1,

codim

(

⋂

i∈I

Yi ∩X

)

≥ ♯I.

(b). The closed subschemes {Y1, . . . , Yq} are said to be in ℓ-subgeneral

position in X if for any subset I ⊂ {1, . . . , q} with ♯I ≤ ℓ+ 1,

dim

(

⋂

i∈I

Yi ∩X

)

≤ ℓ− ♯I.

(c). The closed subschemes Y1, . . . , Yq are said to be in ℓ-subgeneral po-

sition with index κ if Y1, . . . , Yq are in ℓ-subgeneral position and for any

subset J ⊂ {1, . . . , q} with ♯I ≤ κ,

codim

(

⋂

i∈I

Yi ∩X

)

≥ ♯I.

Theorem 1.5. Let f : C →X be a meromorphic map with Zariski dense im-

age, where X is a complex projective variety of dimension n. Let Y1, . . . , Yq

be closed subschemes which is located in ℓ-subgeneral position with index κ

in X, and ℓ ≥ n. Let A be an ample Cartier divisor on X. Then, for any

ǫ > 0,
q
∑

j=1

ǫYj
(A)mf (r, Yj) ≤exc

(

(ℓ− n+ κ)(n + 1)

κ
+ ǫ

)

Tf,A(r),

where ≤exc means the inequality holds for all r ∈ R≥0 outside a set of finite

Lebesgue measure.

To prepare for the proof of Theorem 1.5, we need firstly to obtain a

second main theorem for Cartier divisors with distributive constant, which is



4 L. WANG, T. B. CAO, AND H. Z. CAO

also an interesting topic independently. The concept of distributive constant

was originally given by Quang[10], and we extend it to the case of Cartier

divisors as follows.

Definition 1.6. Let X be a projective variety of dimension n defined over

over arbitrary field k with characteristic zero and let D1, . . . , Dq be q Cartier

divisors of X. The distributive constant ∆ of {D1, . . . , Dq} in X is defined

by

∆ := max
Γ⊂{1,...,q}

♯Γ

n− dim((∩j∈ΓSuppDj) ∩X(k))
.

Here, we note that dim ∅ = −∞.

The second main theorem for holomorphic curves intersecting Cartier

divisors with distributive constant in a complex projective variety is stated

as follows.

Theorem 1.7. Let X be a complex projective variety of dimension n. Let

D1, . . . , Dq be Cartier divisors of X with the distributive constant ∆ in X.

Let A be an ample Cartier divisor on X. Let f : C → X be a holomorphic

curve with Zariski-dense image. Then, for every ǫ > 0,

q
∑

j=1

ǫDj
(A)mf (r,Dj) ≤exc (∆(n + 1) + ǫ))Tf,A(r),

where ≤exc means the inequality holds for all r ∈ R≥0 outside a set of finite

Lebesgue measure.

If D1, . . . , Dq are in ℓ-subgeneral position with index κ, then by Remark

3.3 we have ∆ ≤ ℓ−n+κ
κ

. Hence, Theorem 1.7 generalizes Theorem 1.1, Ji-

Yan-Yu’s work [5, Theorem 1.2] and He-Ru [3, Theorem 2.6].

Whether can Definition 1.6 be generalized to the closed subschemes in

order to obtain a generalized second main theorem for closed subschemes

with distributive constant? This is an open question.

The rest of this paper is structured as follows. In section 2, we briefly

recall some basic notations and definitions about the closed subscheme and

Nevanlinna theory. Some preliminary lemmas and the proof of Theorem 1.7

for Cartier divisors with distributive constant are given in section 3. Then

Theorem 1.5 will be proved in section 4. According to the Vojta’s dictio-

nary ([16, 17]) of the analogy between Nevanlinna theory and Diophantine

approximation, the Schmidt’s subspace theorems will be given in section 5.
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2. Preliminaries

2.1. Seshadri constants. Let X be a projective variety and Y be a closed

subscheme of X, corresponding to a coherent sheaf of ideals IY . Let S =

⊕d≥0I
d
Y be the sheaf of graded algebras, where Id

Y is the d-th power of

IY , with the convention that I0
Y = OX . Then X̃ := ProjS is called the

blowing-up of X with respect to IY , or, the blowing-up of X along Y.

Let π : X̃ → X be the blowing-up along Y. From Proposition II.7.13(a)

in [2], the inverse image ideal sheaf ĨY = π−1IY · OX̃ is an invertible sheaf

on X̃. Let E be an effective Cartier divisor inX̃ whose associated invertible

sheaf is the dual of π−1IY · OX̃ .

Definition 2.1. Let Y be a closed subscheme of a projective variety X. Let

π : X̃ → X be the blowing-up of X along Y. Let A be a nef Cartier divisor

on X. We define the Seshadri constant ǫY (A) of Y with respect to A to be

the real number

ǫY (A) = sup{γ ∈ Q≥0|π
∗A− γE is Q− nef},

where E is an effective Cartier divisor on X̃ whose associated invertible

sheaf is the dual of π−1IY · OX̃ .

2.2. The Weil function and its properties. In this section, we briefly

recall the definition of the Weil function and its properties.

Definition 2.2. Let D be a Cartier divisor on a complex variety X. A local

Weil function for D is a function λD : (X \ suppD) → R such that for

all x ∈ X there is an open neighborhood U of x in X, a nonzero rational

function f on X with D |U= (f), and a continuous function α : U → R

such that

λD(x) = − log |f(x)|+ α(x)

for all x ∈ (U \ SuppD).

A continuous (fiber) metric || · || on the line sheaf OX(D) determines a

Weil function for D given by

λD(x) = − log ||s(x)||

where s is the rational section of OX(D) such that D = (s). For example,

the Weil function for the hyperplanes H = {a0x0 + . . .+ anxn = 0} is given

by
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λH(x) = log
max0≤i≤n |xi|max0≤i≤n |ai|

|a0x0 + . . .+ anxn|
.

The Weil functions with respect to divisors satisfy the following proper-

ties.

(a) Additivity: If λ1 and λ2 are Weil functions for Cartier divisors D1

and D2 on X, respectively, then λ1+λ2 extends uniquely to a Weil function

for D1 +D2.

(b) Functoriality: If λ is a Weil function for a Cartier divisor D on X, and

if φ : X ′ → X is a morphism such that φ(X ′) 6⊂ suppD, then x 7→ λ(φ(x))

is a Weil function for the Cartier divisor φ∗D on X ′.

(c) Uniqueness: If both λ1 and λ2 are Weil functions for a Cartier divisor

on X, then λ1 = λ2 +O(1).

(d) Boundedness from below: If D is an effective divisor and λ is a Weil

function for D, then λ is bounded from below.

For the closed subschemes case, let Y be a closed subscheme of a projec-

tive variety X. Then one can associate a Weil function λY : X\SuppY → R,

well-defined up to O(1). The following lemma indicates that a closed sub-

scheme can be expressed by some Cartier divisors.

Lemma 2.3. [15, Lemma 2.2] Let Y be a closed subscheme of a projective

variety X. There exist effective Cartier divisors D1, . . . , Dℓ such that

Y = ∩ℓ
i=1Di.

Definition 2.4. Let Y be a closed subscheme of a projective variety X. We

define the Weil function for Y as

λY = min{λD1
, . . . , λDℓ

}+O(1),

where Y = ∩ℓ
i=1Di (by Lemma 2.3, such Di exist). Then there is a Weil

function for the closed subscheme λY : X \ SuppY → R, which does not

depend on the choice of Cartier divisors.

We briefly recall the natural operations on subschemes which are similar

to the case of divisors, more details can be found in [15, section 2]. Let Y, Z

be closed subschemes of X,

(i) The sum of Y and Z, denoted by Y +Z, is the subscheme of X with

ideal sheaf IY IZ .

(ii) The intersection of Y and Z, denoted by Y ∩Z, is the subscheme of

X with ideal sheaf IY + IZ .
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(iii) The union of Y and Z, denoted by Y ∪ Z, is the subscheme of X

with ideal sheaf IY ∩ IZ .

(iv) Let φ : X ′ → X be a morphism of projective varieties, the inverse

image of Y is the subscheme of X ′ with ideal sheaf φ−1IY ·OX′ , denoted by

φ∗Y.

In addition, some properties of the Weil functions for closed subschemes

are written as follows.

If Y and Z are two closed subschemes of X, and φ : X ′ → X is a

morphism of projective varieties,

(i) λY ∩Z = min{λY , λZ}.

(ii) λY+Z = λY + λZ .

(iii) If Y ⊂ Z, λY ≤ λZ .

(iv) λY (φ(x)) = λφ∗Y (x).

Lemma 2.5. [15] Let Y be a closed subscheme of X, and let X̃ be the

blowing-up of V along Y with exceptional divisor E. Then for P ∈ X̃ \

SuppE,

λY (π(P )) = λE(P ) +Ov(1).

2.3. Characteristic function and proximity function. Let X be a

complex projective variety and f : C → X be a holomorphic map. Let

L → X be a positive line bundle. Denote by || · || a Hermitian metric in L

and by ω its Chern form. We define the characteristic function of f with

respect to L by

Tf,L(r) =

∫ r

0

dt

t

∫

|z|<t

f ∗ω.

Since any line bundle can be written as L = L1 ⊗ L−1
2 with L1, L2 are both

positive, we define Tf,L(r) = Tf,L1
(r)− Tf,L2

(r).

The characteristic function satisfies the following properties:

(i) Functoriality: If φ : X → X ′ is a morphism and if L is a line bundle

on X ′, then

Tf,φ∗L = Tφ◦f,L(r) +O(1).

(ii) Additivity: If L1 and L2 are line bundle on X, then

Tf,L1⊗L2(r) = Tf,L1
(r) + Tf,L2

(r) +O(1).

(iii) Positivity: If L is positive and f : C → X is non-constant, then

Tf,L(r) → +∞ as r → +∞.
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For an effective divisor D on X, we define a proximity function of r, for

any holomorphic map f : C → X with f(C) 6⊂ SuppD,

mf (r,D) :=

∫ 2π

0

λD(f(re
iθ))

dθ

2π
.

Analogously, for a closed subscheme Y on X, we define a proximity function

of r, for a holomorphic curve f : C → X with f(C) 6⊂ SuppY,

mf (r, Y ) :=

∫ 2π

0

λY (f(re
iθ))

dθ

2π
.

3. Some lemmas for divisors and the proof of Theorem 1.7

The following is a reformulation of [10, Lemma 3.1] by taking the loga-

rithm of both sides of the inequality.

Lemma 3.1. [10, Lemma 3.1] Let t0, t1, . . . , tn be n + 1 integers such that

1 = t0 < t1 < . . . < tn, and let ∆ = max1≤s≤n
ts−t0

s
. Then for arbitrary real

numbers a0, a1, . . . , an−1 with a0 ≥ a1 ≥ . . . ≥ an−1 ≥ 1, we have

n−1
∑

i=0

(ti+1 − ti) log ai ≤ ∆
n−1
∑

i=0

log ai.

Next we need to introduce the definition of (t1, t2, . . . , tn)-subgeneral

position for Cartier divisors, which was originally given by Quang[10] for

hypersurfaces.

Definition 3.2. Let X be a projective variety of dimension n defined over

a number field k and let D1, . . . , Dq be q Cartier divisors of X. We say that

D1, . . . , Dq are in (t1, t2, . . . , tn)-subgeneral position with respect to X if for

every 1 ≤ s ≤ n and ts + 1 Cartier divisors Dj0 , . . . , Djts
, we have

dim∩ts
i=0SuppDji ∩X ≤ n− s− 1,

where t0, t1, . . . , tn are integers with 0 = t0 < t1 < . . . < tn.

Remark 3.3. (i) If D1, . . . , Dq are in (t1, . . . , tn)-subgeneral position with

respect to X, then their distributive constant in X satisfies

∆ = max
1≤k≤n

tk

n− (n− k)
= max

1≤k≤n

tk

k
.

(ii) If D1, . . . , Dq are in ℓ-subgeneral position with index κ with respect

to X, then one has

dim
(

∩k
j=1Dij

)

≤ n− κ− (k − (ℓ− n + κ− 1)) = ℓ− k − 1.



A GENERALIZED SECOND MAIN THEOREM FOR CLOSED SUBSCHEMES 9

Hence, D1, . . . , Dq are in (1, 2, . . . , κ−1, ℓ−n+κ, ℓ−n+κ+1, . . . , ℓ−1, ℓ)-

subgeneral position with respect to X and thus

∆ ≤ max

{

1

n− (n− 1)
,

2

n− (n− 2)
, . . . ,

κ− 1

n− (n− κ + 1)
, . . . ,

(ℓ− n) + κ

n− (n− κ)
,
(ℓ− n) + κ+ 1

n− (n− κ+ 1)
, . . . ,

ℓ

n

}

= max

{

1,
ℓ− n

κ
+ 1

}

=
ℓ− n+ κ

κ
.

The following lemma is just a special case of [10, Lemma 3.2].

Lemma 3.4. [10, Lemma 3.2] Let k be a number field. Let X ⊂ PM
k be

a projective variety of dimension n. Let H0, . . . , Hl be hyperplanes in X

which are in {t1, t2, . . . , tn}-subgeneral position on X where t0, t1, . . . , tn are

integers with 0 = t0 < t1 < . . . < tn = l. Let L1, . . . , Lq be the normalized

linear forms defining H1, . . . , Hq, respectively. Then there exist linear forms

L′
1, . . . , L

′
n+1 of M + 1 variables such that,

(i) L′
0 = L0;

(ii) For every s ∈ {1, . . . , n}, L′
s ∈ spank(L0, . . . , Lts);

(iii) Let H ′
j, j = 0, . . . , n, be the hyperplanes defined by L′

j , j = 0, . . . , n.

Then they are in general position on X.

We need also the following lemma [14, Theorem 1.22], which plays an

important role in the arguments regarding dimension.

Lemma 3.5. [14, 3] Let X be a projective variety over an algebraic closed

field k, and A be an ample Cartier divisor on X. Let F ⊂ X be a proper

irreducible subvariety. Then either F ⊂ A or dim(F ∩ A) ≤ dimF − 1.

For the proof of Theorem 1.5, we need to prove the second main theorem

for Cartier divisors with distributive constant. The basic idea is to consider

the distributive constant for Cartier divisors by making use of methods of

Heier-Levin[4] and He-Ru[3].

Proof of Theorem 1.7. Fix a real number ǫ > 0, choose a rational number

δ > 0 such that

δ∆+ δ∆(n+ 1 + δ) < ǫ,

and for a sufficiently small positive rational number δ′ depending on δ,

δA− δ′Di is Q-ample for all i = 1, . . . , q. By the definition of the Seshadri

constant, there exists a rational number ǫi > 0 such that

ǫDi
(A)− δ′ ≤ ǫi ≤ ǫDi

(A)
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and that A− ǫiDi is Q-nef for all i = 1, . . . , q. Then we have

(1 + δ)A− (ǫi + δ′)Di = (A− ǫiDi) + (δA− δ′Di)

is a Q-ample divisor for all i. Let N be a large enough natural number such

that N(1 + δ)A and N [(1 + δ)A − (ǫi + δ′)Di] become very ample integral

divisors for all i.

We claim that if {D1, . . . , Dq} is in (t1, t2, . . . , tn)-subgeneral position

with respect to X, then we can construct divisors div(si) on X, si ∈

H0(X,N(1 + δ)A−N(ǫi + δ′)Di), i = 1, . . . , q, such that,

(i) div(si) ∼ N(1 + δ)A, i = 1, . . . , q.

(ii) The divisors div(s1), . . . , div(sq) are in {t1, t2, . . . , tn}-subgeneral po-

sition on X.

We define div(s1), . . . , div(sq) by induction as follows. Assume that, for

some j ∈ {1, . . . , q}, div(s1), . . . , div(sj−1) with desired property have

been defined and div(s1), . . . , div(sj−1), Dj , . . . , Dq are in {t1, t2, . . . , tn}-

subgeneral position on X (for j = 1, this reduces to the hypothesis that

D1, . . . , Dq are in {t1, t2, . . . , tn}-subgeneral position).

By the definition of {t1, t2, . . . , tn}-subgeneral position,

(a) For all 1 ≤ s ≤ n, I ′ ⊂ {1, . . . , j − 1}, J ′ ⊂ {j + 1, . . . , q}, and

♯I ′ + ♯J ′ = ts, we have

dim(∩i∈I′div(si) ∩ (∩k∈J ′Dk) ∩X) ≤ n− s,

and

dim(Dj ∩ (∩i∈I′div(si)) ∩ (∩k∈J ′Dk) ∩X) ≤ n− s− 1.

We can find a non-zero section sj ∈ H0(X,N(1 + δ)A − N(ǫj + δ′)Dj)

such that sj does not vanish entirely on any irreducible components of

∩i∈I′div(si) ∩ (∩k∈J ′Dk), for all 1 ≤ s ≤ n, I ′ ⊂ {1, . . . , j − 1}, J ⊂ {j +

1, . . . , q}, and ♯I ′ + ♯J ′ = ts. Then by Lemma 3.5

dim{div(sj) ∩ (∩i∈I′div(si)) ∩ (∩k∈J ′Dk) ∩X}

≤ max (dimDj ∩ (∩i∈I′div(si)) ∩ (∩k∈J ′Dk) ∩X, n− s− 1)

= n− s− 1.

(b) For all 1 ≤ s ≤ n, I ⊂ {1, . . . , j − 1}, J ⊂ {j + 1, . . . , q}, and

♯I + ♯J = ts + 1,

dim(∩i∈Idiv(si) ∩ (∩k∈JDk) ∩X) ≤ n− s− 1.

From this, we get that div(s1), . . . , div(sj−1), div(sj), Dj+1, . . . , Dq are in

{t1, . . . , tn}-subgeneral position on X. Thus, the divisors div(s1), . . . , div(sq)

satisfy the above required properties (i) and (ii). Hence, the claim is proved.
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Denote Fi = div(si) for i = 1, . . . , q. It’s easy to see that the dis-

tributive constant of {F1, . . . , Fq} is equal to the distributive constant of

{D1, . . . , Dq}. Now we’re going to prove the theorem.

It is sufficient for us to consider the case where ∆ < q

n+1
. Note that ∆ ≥

1, and hence q > n + 1. If there exits i ∈ {1, . . . , q} such that ∩q
j=1,j 6=iF

∗
j ∩

X 6= ∅, then

∆ ≥
q − 1

n
≥

q

n + 1
.

This is a contradiction. Therefore, ∩q
j=1,j 6=iF

∗
j ∩X = ∅ for all i ∈ {1, . . . , q}.

We denote by I the set of all permutations of the set {1, . . . , q}. Denote

by n0 the cardinality of I, n0 = q! and we write I = {I1, . . . , In0
}, where

Ii = {Ii(0), . . . , Ii(q− 1)} ∈ Nq and I1 < I2 < . . . < In0
in the lexicographic

order.

For each Ii ∈ I, since ∩q−1
j=1FIi(j) ∩ X = ∅, there exists n + 1 integers

ti,0, ti,1, . . . , ti,n with 0 = ti,0 < . . . < ti,n = li, where li ≤ q − 2 such that

∩li
j=0FIi(j) ∩X = ∅ and

dim(∩s
j=0FIi(j)) ∩X = n− u ∀ ti,u−1 ≤ s < ti,u, 1 ≤ u ≤ n.

Then, ∆ >
ti,u−ti,0

u
for all 1 ≤ u ≤ n.

It means that {F1, . . . , Fq} is in (ti,1, ti,2, . . . , ti,n)-subgeneral position

with respect to X. Denote by φ : X → PÑ (k) the canonical embed-

ding associated to the very ample divisor N(1 + δ)A and let H0, . . . , Hq−1

be the hyperplanes in PÑ(k) with Fj = φ∗Hj−1 for j = 1, . . . , q. We

denote L0, . . . , Lq−1 to be the linear forms defining H0, . . . , Hq−1 respec-

tively. By Lemma 3.4, there exist hyperplanes Ĥ0, . . . , Ĥn with defining

linear forms L̂0, . . . , L̂n, such that L̂0 = L0, and for every s ∈ {1, . . . , n},

L̂s ∈ spank(L0, . . . , Lts) and φ∗Ĥ0, . . . , φ
∗Ĥn are located in general position

on X. Applying Theorem 1.1 to φ∗Ĥ0, . . . , φ
∗Ĥn, we conclude that there

exists a Zariski-closed set Z such that for all x ∈ X(k)\Z,
∫ 2π

0

n
∑

i=0

λφ∗Ĥi
(x)

dθ

2π
≤ [(n+ 1) + δ]Tf,N(1+δ)A(r).

Consider a point P = φ(x) ∈ PÑ(k), fix a element Ii ∈ I, we arrange

such that

||LIi(0)(P )|| ≤ ||LIi(1)(P )|| ≤ . . . ≤ ||LIi(q−1)||,

which implies

Ii(q−1)
∑

j=Ii(0)

λHj(P ) ≤

ti,n
∑

j=ti.0

λHj(P ) +O(1).(3.1)
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(The proof of (3.1) is similar to that of Lemma 20.7 in [17] which is standard

and is omitted here.) Thus using the construction of L̂0, . . . , L̂n, we have

||L̂u(P )|| ≤ B max
0≤j≤ti,u

||Lj(P )|| = B||Lti,u(P )||

for all u = 0, . . . , n and some constant B > 0. Thus, by the definition of

Weil function,

λĤu
(P ) ≥ λHti,u

(P ) +O(1).

Therefore, by Lemma 3.1 and (3.1) we have

q−1
∑

i=0

λHj
(P )(3.2)

=

Ii(q−1)
∑

j=ti,0

λHj
(P )

≤

ti,1
∑

j=ti,0

λHj
(P ) +

ti,2
∑

j=ti,1+1

λHj
(P ) + · · ·+

ti,n
∑

j=ti,n−1+1

λHj
(P ) +O(1)

≤ (ti,1 − ti,0)λHti,0
(P ) + (ti,2 − ti,1)λHti,1

(P ) + · · ·

+(ti,n − ti,n−1)λHti,n−1
(P ) + λHti,n

(P ) +O(1)

≤ ∆
n−1
∑

j=0

λHti,j
(P ) + λHti,n

(P ) + O(1)

≤ ∆
n
∑

j=0

λHti,j
(P ) +O(1)

≤ ∆

n
∑

u=0

λĤu
(P ) +O(1).

By the functoriality of Weil function, we have λHj
(P ) = λHj

(φ(x)) =

λφ∗Hj
(x) = λFj+1

(x), thus,

∫ 2π

0

q
∑

i=1

λFi
(x)

dθ

2π
=

∫ 2π

0

q−1
∑

j=0

λHj
(P )

dθ

2π

≤ ∆

∫ 2π

0

n
∑

i=0

λĤi
(P )

dθ

2π
+O(1)

≤ ∆[(n + 1) + δ]Tf,N(1+δ)A(r) +O(1).

From the construction of divisors Fi = div(si) for i = 1, . . . , q, we know

that Fi −N(ǫi + δ′)Di is effective for each i = 1, . . . , q. By the definition of

the Seshadri constant and the Boundedness from below of a Weil function,

λFi
(x) ≥ N(ǫi + δ′)λDi

+O(1) ≥ NǫDi
(A)λDi

(x) +O(1).
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Then,

N

∫ 2π

0

q
∑

i=1

ǫDi
(A)λDi

(x)
dθ

2π
≤

∫ 2π

0

q
∑

i=1

λFi
(x)

dθ

2π

≤ ∆[(n+ 1) + δ]Tf,N(1+δ)A(r) +O(1).

Note that Tf,N(1+δ)A(r) = N(1 + δ)Tf,A(r), hence we get the inequality as

follow,

∫ 2π

0

q
∑

i=1

ǫDi
(A)λDi

(x)
dθ

2π
≤ ∆[(n+ 1) + δ](1 + δ)Tf,A(r).

It implies that

q
∑

i=1

ǫDi
(A)mf (r,Di) ≤ ∆[(n+ 1) + δ](1 + δ)Tf,A(r).

Recall the choice of δ, we get for every ǫ > 0,

q
∑

j=1

ǫDj
(A)mf (r,Dj) ≤exc (∆(n + 1) + ǫ))Tf,A(r).

�

4. Proof of theorem 1.5

Before the proof of Theorem 1.5, we need a key lemma.

Lemma 4.1. [6, Lemma 5.4.24] Let X be a projective variety, I be a co-

herent ideal sheaf. Let π : X̃ → X be the blowing-up of I with exceptional

divisor E. Then there exists an integer p0 = p0(I) with the property that if

p ≥ p0, then π∗OX̃(−pE) = Ip, and moreover, for any divisor D on X,

H i(X, Ip(D)) = H i(X̃,OX̃(π
∗D − pE))

for all i ≥ 0.

We now prove the second main theorem for closed subschemes in ℓ-

subgeneral position with index κ.

Proof of Theorem 1.5. The proof basically follows Heier-Levin[4] and He-

Ru[3]. Denote by Ii the ideal sheaf of Yi, πi : X̃ → X the blowing-up of

X along Yi, and Ei the exceptional divisor on X̃i. Then, fix a real number

ǫ > 0, choose a rational number δ > 0 such that

δ(ℓ− n+ κ)

κ
+

δ(ℓ− n+ κ)

κ
(n+ 1 + δ) < ǫ,
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and for a sufficiently small positive rational number δ′ depending on δ,

δA − δ′Ei is Q-ample for all i = 1, . . . , q. By the definition of the Seshadri

constant, there exists a rational number ǫi > 0 such that

ǫEi
(A)− δ′ ≤ ǫi ≤ ǫEi

(A),

and that A− ǫiEi is Q-nef for all i = 1, . . . , q. Then we have

(1 + δ)A− (ǫi + δ′)Ei = (A− ǫiEi) + (δA− δ′Ei)

is a Q-ample divisor for all i. Let N be a large enough natural number such

that N(1 + δ)A and N [(1 + δ)A − (ǫi + δ′)Ei] become very ample integral

divisors for all i.

We claim that if {Y1, . . . , Yq} is in ℓ-subgeneral position with index κ

with respect to X, then we can construct divisors Fi on X, i = 1, . . . , q,

such that,

(i) Fi ∼ N(1 + δ)A, i = 1, . . . , q.

(ii) π∗Fi ≥ N(ǫi + δ′)Ei, i = 1, . . . , q.

(iii) The divisors F1, . . . , Fq are in ℓ-subgeneral position with index κ on

X.

Like the special divisor case in the proof of preparation theorem, we can

construct by induction. Assume that, for some j ∈ {1, . . . , q}, div(s1), . . . ,

div(sj−1) with desired property have been defined and F1, . . . , Fj−1, Yj,

. . . , Yq (Fi = div(si)) are in ℓ-subgeneral position with index κ on X (for

j = 1, this reduces to the hypothesis that Y1, . . . , Yq are in ℓ-subgeneral

position with index κ). To find Fj , we let F̃
(j)
i = π∗

jFi, i = 1, . . . , j − 1 and

Ỹ
j
i = π∗

jYi for i = j+1, . . . , q. Since in particular, F1, . . . , Fj−1, Yj+1, . . . , Yq

are in ℓ-subgeneral position with index κ on X, and by noticing that π−1
j

is an isomorphism outside of Yj, we know that F̃1, . . . , F̃j−1, Ỹj+1, . . . , Ỹq are

in ℓ-subgeneral position with index κ on X̃j outside of Ej . Thus it reduces

to the construction in the divisor case, and by the argument in the divisor

case, there are sections

s̃j ∈ H0(X̃j ,OX̃j
(N(1 + δ)π∗

jA−N(ǫi + δ′)Ej)),

such that F̃1, . . . , F̃j−1, div(s̃j), Ỹj+1, . . . , Ỹq are in ℓ-subgeneral position with

index κ on X̃j outside of Ej, where we regard H0(X̃j ,OX̃j
(N((1 + δ)π∗

jA−

(ǫj + δ′)Ej))) as a subspace of H0(X̃j,OX̃j
(N(1 + δ)π∗

jA)).

To guarantee that Fj has the required properties, by Lemma 4.1, we

have, for a big enough N ,

H0(X,OX(N(1+δ)A)⊗I
N(ǫi+δ′)
j ) = H0(X̃j,OX̃j

(N((1+δ)π∗
jA−(ǫj+δ′)Ej))).
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Therefore there is an effective divisor Fj ∼ N(1 + δ)A on X such that

div(s̃j) = π∗
jFj. Since s̃j ∈ H0(X̃j ,OX̃j

(N(1 + δ)π∗
jA − N(ǫi + δ′)Ej)),

we have π∗Fj ≥ N(ǫi + δ′)Ej on X̃j. F̃1, . . . , F̃j−1, div(s̃j), Ỹj+1, . . . , Ỹq are

in ℓ-subgeneral position with index κ on X̃j outside of Ej, and πi is an

isomorphism above the complement of Yj, thus F1, . . . , Fj−1, Fj , Yj+1, . . . , Yq

are in ℓ-subgeneral position with index κ on Xj outside of Yj. Since Yj is in

ℓ-subgeneral position with index κ with F1, . . . , Fj−1, Yj+1, . . . , Yq, it implies

that F1, . . . , Fj−1, Fj, Yj+1, . . . , Yq are in ℓ-subgeneral position with index

κ on X. Thus, we obtain divisors F1, . . . , Fq with the required properties.

Hence, the claim is proved.

Since ∆ ≤ ℓ−n+κ
κ

, as a special case of the result in the proof of Theorem

1.7 in the above section, we can also get
∫ 2π

0

q
∑

i=1

λFi
(x)

dθ

2π
≤

[

ℓ− n+ κ

κ
(n+ 1 + δ)

]

Tf,N(1+δ)A(r) +O(1)(4.1)

on X(k)\Z where Z is a proper Zariski-closed subset of X. By functoriality,

additivity, and the fact that Weil functions of divisors are bounded from

below, for all P ∈ X̃i \ SuppEi,

λFi
(πi(P )) = λπ∗

i Fi
(P ) +O(1)

≥ N(ǫi + δ′)λEi
(πi(P )) +O(1)

= N(ǫi + δ′)λYi
(πi(P )) +O(1)

≥ N(ǫYi
)λYi

(πi(P )) +O(1).

Together with (4.1),
∫ 2π

0

q
∑

i=1

NǫYi
λYi

(x)
dθ

2π
≤

[

ℓ− n+ κ

κ
(n + 1 + δ)

]

Tf,N(1+δ)A(r) +O(1).

Then, by the choice of ǫ, we have
q
∑

j=1

ǫYj
(A)mf (r, Yj) ≤exc

(

(ℓ− n+ κ)(n + 1)

κ
+ ǫ

)

Tf,A(r).

�

5. Schmidt’s subspace theorem

In this section, we give the counterpart in Diophantine approximation of

our main results. The standard notations in Schmidt’s subspace Theorem

can be seen in [4],[3],[16],[17]).

Let k be a number field. Denote by Mk the set of places of k and by kv

the completion of k for each v ∈ Mk. Norms || · ||v on k are normalized so
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that

||x||v = |σ(x)|[kv:R] or ||p||v = p−[kv:Qp]

if v ∈ Mk is an Archimedean place corresponding to an embedding σ : k →

C or a non-Archimedean place lying above the rational prime p, respectively.

An Mk-constant is a collection (cv)v∈Mk
of real constants such that cv = 0

for all but finitely many v. Hights are logarithmic and relative to the number

field used as a base field which is always denoted by k. For x = (x0, . . . , xn) ∈

kn+1, define

||x||v := max{||x0||v, . . . , ||xn||v}, v ∈ Mk.

The absolute logarithmic height of a point x = [x0 : · · · : xn] ∈ Pn(k) is

defined by

h(x) :=
∑

v∈Mk

log ||x||v.

For each v ∈ Mk, we can associate the local Weil functions λY,v which

have similar properties as the Weil function introduced in Section 2.

Similar discussions as in Nevanlinna theory, one can easily obtain the

counterparts of Theorem 1.7, Theorem 1.5 for Schmidt’s subspace theorems

in Diophantine approximation. Thus we omit the details.

Theorem 5.1. Let X be a projective variety of dimension n defined over

a number field k. Let S be a finite set of places of k. For each v ∈ S,

let D1,v, . . . , Dq,v be Cartier divisors of X, defined over k, and with the

distributive constant ∆. Let A be an ample Cartier divisor on X. Then,

for ǫ > 0, there exists a Zariski-closed set Z ⊂ X such that for all points

x ∈ X(k) \ Z,

∑

v∈S

q
∑

j=1

ǫDj,v
(A)λDj,v,v < (∆(n+ 1) + ǫ))hA(x).

Theorem 5.1 generalizes Theorem 2.6 in [3].

Theorem 5.2. Let X be a projective variety of dimension n defined over

a number field k. Let S be a finite set of places of k. For each v ∈ S, let

Y1,v, . . . , Yq,v be closed subschemes of X, defined over k, and in ℓ-subgeneral

position with index κ in X, and ℓ ≥ n. Let A be an ample Cartier divisor

on X. Then, for ǫ > 0, there exists a Zariski-closed set Z ⊂ X such that

for all points x ∈ X(k) \ Z,

∑

v∈S

q
∑

j=1

ǫYj,v
(A)λYj,v,v <

(

(ℓ− n + κ)(n+ 1)

κ
+ ǫ

)

hA(x).
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Theorem 5.2 gives a generalization of Theorem 1.3 in [4] and the Main

Theorem (Arithmetic Part) in [3].
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