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Abstract. We study for each fixed integer g ≥ 2, for all primes ` and p with ` 6= p, finite regular

directed graphs associated with the set of equivalence classes of `-marked principally polarized

superspecial abelian varieties of dimension g in characteristic p, and show that the adjacency

matrices have real eigenvalues with spectral gaps independent of p. This implies a rapid mixing

property of natural random walks on the family of isogeny graphs beyond the elliptic curve

case and suggests a potential construction of the Charles-Goren-Lauter type cryptographic hash

functions for abelian varieties. We give explicit lower bounds for the gaps in terms of the Kazhdan

constant for the symplectic group when g ≥ 2, and discuss optimal values in view of the theory of

automorphic representations when g = 2. As a by-product, we also show that the finite regular

directed graphs constructed by Jordan-Zaytman also has the same property.

Contents

1. Introduction 2

1.1. Main Theorems 3

1.2. Motivation from isogeny-based cryptography 6

1.3. Organization of this paper 10

1.4. Notations 10

Acknowledgements 10

2. Superspecial abelian varieties 11

2.1. Superspecial abelian varieties 11

2.2. Principal polarizations 11

2.3. Class number of the principal genus for quaternion Hermitian lattices 14

2.4. Ibukiyama-Katsura-Oort-Serre’s result in terms of adelic language 15

2.5. Another formulation due to Jordan-Zaytman 17

Date: March 21, 2022.

Key words and phrases. Isogeny graphs, cryptographic hash functions, automorphic forms.

1

ar
X

iv
:2

20
1.

04
29

3v
4 

 [
m

at
h.

N
T

] 
 1

8 
M

ar
 2

02
2



2 YUSUKE AIKAWA, RYOKICHI TANAKA, AND TAKUYA YAMAUCHI

2.6. The Hecke operator at ` 20

2.7. The Hecke action and automorphisms 21

3. A comparison between two graphs 24

3.1. Jordan-Zaytman’s big isogeny graph 24

3.2. The (`-marked) (`)g-isogeny graph 24

3.3. The graph defined by the special 1-complex 25

3.4. Comparison theorem 25

4. Bruhat-Tits buildings for symplectic groups 26

4.1. Symplectic groups revisited for the buildings 26

4.2. Bruhat-Tits building: the construction 27

4.3. Apartments 29

4.4. Self-dual vertices 31

4.5. Special vertices and the special 1-complex 32

5. Property (T) and spectral gaps 34

5.1. Property (T) 34

5.2. A random walk operator 34

5.3. Spectral gap 38

5.4. An explicit lower bound for the spectral gap 41

6. Some remarks on Algebraic modular forms for GUSpg 42

6.1. Gross’s definition 43

6.2. A speculation for bounds of eigenvalues of T (`) 44

6.3. Not being Ramanujan is not necessary fared 45

References 46

1. Introduction

Isogeny graphs are finite graphs associated with elliptic curves, more generally, abelian varieties

over finite fields. They have attracted attention not only in arithmetic geometry but also in

cryptography since the objects consist a building block in a prospective secure encryption scheme.

It is believed that finding a path between an arbitrary pair of points is highly intractable in those

graphs whereas a relatively short random walk path ends up with a fairly randomized vertex. In

this paper, we study a random walk, thus mainly concerning the latter, on the isogeny graphs
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based on principally polarized superspecial abelian varieties over Fp of dimension g at least 2

formed by (`)g-isogenies with p 6= ` for primes p and `. This is one of natural generalizations

beyond the supersingular elliptic curves, the case corresponding to dimension 1.

1.1. Main Theorems. To go into further explanation we need to fix some notation and the

details are left to the relevant sections. Let p be a prime and g be a positive integer. Fix an

algebraically closed field Fp of the finite field Fp = Z/pZ. Let SSg(p) be the set of isomorphism

classes of all principally polarized superspecial abelian varieties over Fp which are of dimension

g. We denote such an abelian variety A endowed with the principal polarization L which is

an ample line bundle L on A with the trivial Euler-Poincaré characteristic. For a principally

polarized superspecial abelian variety (A,L) we write [(A,L)] for the class of (A,L) in SSg(p).

It is known that SSg(p) is a finite set and more precisely that

C1(g)pg(g+1)/2 ≤ |SSg(p)| ≤ C2(g)pg(g+1)/2

for all large enough p and for some positive constants C1(g) and C2(g) depending only on g (it

follows from the mass formula (1.2) in p.1419 of [Yu12]).

Fix a representative (A0,L0) in a class of SSg(p) and a prime ` 6= p. For each (A,L) in a

class of SSg(p), there exists an isogeny φA : A0 −→ A of `-power degree such that Ker(φA) is

a maximal totally isotropic subspace of A[`n] for some n ≥ 0 (it follows from Theorem 2.7 in

Section 2.5 in this paper and Theorem 34 of [JZ21]). We call φA an `-marking of (A,L) from

(A0,L0). Two `-markings of (A,L) from (A0,L0) differ by only an element in

Γ(A0)† := {f ∈ (End(A0)⊗Z Z[1/`])× | f ◦ f † = f † ◦ f ∈ Z[1/`]×idA0}

where † stands for the Rosati involution associated to L0 (see Proposition 2.3).

We define

(1.1) SSg(p, `, A0,L0) := {(A,L, φA)}/ ∼

where [(A,L)] ∈ SSg(p) and φA is an `-marking from (A0,L0). Here two objects (A1,L1, φA1)

and (A2,L2, φA2) are said to be equivalent if there exists an isomorphism f : (A1,L1) −→
(A2,L2) such that f ◦ φA1 and φA2 differ by only an element of Γ(A0)† in which case we write

(A1,L1, φA1) ∼ (A2,L2, φA2). We write [(A,L, φA)] ∈ SSg(p, `, A0,L0) for the class of (A,L, φA)

where (A,L) is a principally polarized superspecial abelian variety with an `-marking φA from

(A0,L0). Let C be a maximal totally isotropic subgroup (or a Lagragian subspace in other words)

of A[`]. Then the quotient AC = A/C yields an object, say (AC ,LC) in a class in SSg(p) and
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the natural surjection fC : A −→ AC is called an (`)g-isogeny (see Proposition 2.1 and Definition

2.3). Any (`)g-isogeny between two objects in SSg(p) arises in this way. We remark that the

number of maximal totally isotropic subgroups A[`] is

Ng(`) :=

g∏
k=1

(`k + 1)

for each A.

We are now ready to define the (`-marked) (`)g-isogeny graph GSSg (`, p) for SSg(p, `, A0,L0) is

defined as a directed graph where

• the set of vertices V (GSSg (`, p)) is SSg(p, `, A0,L0) and

• the set of directed edges between two vertices v1 and v2 is the set of equivalence classes of

(`)g-isogenies between corresponding principally polarized superspecial abelian varieties

commuting with marking isogenies representing v1 and v2. In other words, if v1 and

v2 correspond to [(A1,L1, φA1)] and [(A2,L2, φA2)] with `-markings φA1 : (A0,L0) −→
(A1,L1) and φA2 : (A0,L0) −→ (A2,L2) respectively, then an edge from v1 to v2 is an

(`)g-isogeny f : (A1,L1) −→ (A2,L2) such that two markings f ◦φA1 and φA2 of (A2,L2)

from (A0,L0) differ by an element of Γ(A0)†.

Our graph is regular since it has Ng(`)-outgoing edges from each vertex, possibly loops and

multiple edges from one to another. The associated random walk operator for GSSg (`, p) is self-

adjoint with respect to a weighted inner product by the inverse of the order of the reduced

automorphism group (see Section 5.2). Our first main result is the following:

Theorem 1.1. Let p be a prime. For each fixed integer g ≥ 2 and for each fixed prime ` 6= p,

the finite Ng(`)-regular directed multigraph GSSg (`, p) has the second largest eigenvalue of the

normalized Laplacian satisfying that

λ2(GSSg (`, p)) ≥ cg,` > 0,

where cg,` is a positive constant depending only on g and `.

We defined the normalized Laplacian ∆ on a regular directed multigraph G of degree d by

∆ = 1−(1/d)M for the adjacency matrix M of G. Note that ∆ has the simple smallest eigenvalue

0 provided that the graph is strongly connected, i.e., there exists a directed edge path from any

vertex to any other vertex. In Theorem 1.1, we actually have an explicit lower bound for λ2: For
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every integer g ≥ 2, for all primes ` and p with p 6= `,

λ2

(
GSSg (`, p)

)
≥ 1

4(g + 2)

(
`− 1

2(`− 1) + 3
√

2`(`+ 1)

)2

,

(Corollary 5.5 in Section 5.4). In the course of the proof of Theorem 1.1, we relate GSSg (`, p) to

a finite quotient Γ\Sg (see Subsection 3.3) of the special 1-complex Sg defined in terms of the

Bruhat-Tits building for PGSpg(Q`) (see Theorem 2.7 and Section 4.5). We then move on Sg to

prove the desired property by using Kazhdan’s Property (T) of PGSpg(Q`) for g ≥ 2.

In [JZ21], Jordan and Zaytman introduced a big isogeny graph Grg(`, p) based on SSg(p). We

will show in Section 2 and Section 3 that there exist natural identifications

SSg(p)
1:1←− SSg(p, `, A0,L0)

1:1−→ Γ\Sg

which induce natural isomorphisms as graphs between three objects:

(1) Grg(`, p),

(2) GSSg (`, p), and

(3) the regular directed graph defined by Γ\Sg.

It follows from this that the adjacency matrices of the above three graphs agree with each other.

Therefore, the structure of Jordan-Zaytman’s graph Grg(`, p) is revealed by our main theorem:

Theorem 1.2. Let p be a prime. For each fixed integer g ≥ 2 and for each fixed prime ` 6= p, a

finite Ng(`)-regular directed multigraph Grg(`, p) has the same property as in Theorem 1.1.

This result implies the rapid mixing property of a lazy version of the walk; see [FS21b, Theorem

4.9].

We discuss some theoretical features for each of our work and previous works due to Pizer and

Jordan-Zaytman. Instead of using Gr1(`, p), Pizer handled the moduli space of supersingular

elliptic curves with non-trivial levels to avoid that non-trivial automorphisms happen (see [Piz98],

[Piz90]). Therefore, his graphs are regular undirected graphs so that they are Ramanujan by

Eichler’s theorem via Jacquet-Langlands theory. However, if p ≡ 1 mod 12, then each vertex of

Gr1(`, p) does not have non-trivial automorphisms other than −1.

Jordan-Zaytman’s graphs Grg(`, p) are useful and fit into the computational implementations

(cf. [CDS20], [KT20], [FS21a], [FS21b]) as explained in the next subsection. However, it may be

hard to directly obtain the uniform estimation of the eigenvalues of the normalized Laplacian.

Our graphs do not, unfortunately, well-behave in the computational aspects. However, there is a
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natural correspondence between SSg(p, `, A0,L0) and Sg as explained. A point here is that these

two objects have markings from a fixed object while SSg(p) does not have it. However, fortu-

nately, there is a natural correspondence between SSg(p) and SSg(p, `, A0,L0). Then eventually

we can relate SSg(p) with Sg via the intermediate object SSg(p, `, A0,L0).

It seems interesting to consider the moduli space of principal polarized superspecial abelian

varieties with a non-trivial level so that the reduced automorphism group of any object is trivial.

This will be discussed somewhere else.

1.2. Motivation from isogeny-based cryptography. This study is largely motivated by a

possible approach to cryptographic hash functions from isogeny graphs. Let us begin with a brief

review of the notation of hash functions, which are widely used in computer science. For a general

reference on hash functions in cryptographic context, see Chapter 5 of [KL14] for example.

A hash function H is an efficiently computable function taking as input a message of any length

and outputting a value of fixed length s, i.e. H : {0, 1}∗ → {0, 1}s, where {0, 1}∗ = ∪∞n=1{0, 1}n.

A standard condition required for hash functions in cryptography is collision resistance; it is

computationally hard for any probabilistic polynomial-time algorithm to find a pair of distinct

messages (m1,m2) such that H(m1) = H(m2). Collision resistant hash functions have numerous

applications in cryptography. For example, such functions are used as components of pseudo-

random generators, Hash-based Message Authentication Code, digital signatures and so on.

However, despite its importance, it is hard to construct such a function because to design

a collision resistant hash function requires suitable mixing and compressing bit strings of any

length. As one can see in [Gol11], [CGL09], there is an approach to design hash functions by

employing expander graphs on which random walks mix rapidly. Due to Pizer’s work [Piz90],

[Piz98], isogeny graphs of supersingular elliptic curves have attracted attention as a tool for

realizing a good expansion property. In this subsection, we explain this research direction and

state our research question.

CGL hash functions. Let p and ` are distinct prime numbers. Moreover, we impose p ≡ 1 mod 12.

In thi case, the vertices on Gr1(`, p) have no automorphism other than ±1. Charles, Goren and

Lauter [CGL09] proposed construction of hash functions based on Gr1(`, p).

We explaine the recipe of their construction of a hash function from the graph Gr1(2, p) as

follows. Let E0 : y2 = f(x) be a fixed curve in SS1(p) where f(x) is a monic cubic, and (E0, E−1)

be a fixed edge. We remark that the edges are undirected due to the existence of the dual isogeny.
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The non-trivial 2-torsion points are points P 0
i = (xi, 0) where xi are roots of the cubic f(x) for

i = 0, 1, 2. Subgroups generated by each Pi lead 2-isogenies outgoing from E0. Here, the points

are numbered by some order of Fp2 and we suppose that the edge (E−1, E0) corresponds to the

subgroup 〈P2〉. Let m = (mn−1, . . . ,m0) ∈ {0, 1}n be a random n-bit message. The message m

determines a non-backtracking walk 1 on Gr1(2, p) in the following way.

First, we compute an isogeny φ0 : E0 → E1 with kernel 〈P 0
m0
〉 by using Vélu’s formula [Vél71].

Second, we have non-trivial three 2-torsion points on E1 and we number one of them correspond-

ing the dual of φ0 with P 1
2 . The remaining two 2-torsion points are numbered by the order in Fp2 ;

P 1
0 and P 1

1 . Then, we do a similar procedure for E1 and obtain E2 by computing the isogeny with

kernel generated by P 0
m1

. Finally, by repeating this computation, the end-point En ∈ SS1(p) is

obtained as the terminal of the sequence of supersingular elliptic curves (E0, E1, . . . , En−1) such

that jEi−1 6= jEi for i = 1, . . . , n − 1. To get a compressed value of m from En, in [CGL09], the

authors propose using some linear function f : Fp2 → Fp; that is, H(m) := f(jEn). In this way,

we construct the function H : {0, 1}∗ → {0, 1}blog2(p)c+1 from non-backtracking random walks on

GSS1 (2, p), which is called CGL hash function now. In a similar fashion, the hash function using

3-isogeny is also investigated in [TTT17] .

The Ramanujan property of Gr1(2, p) for p ≡ 1 mod 12 guarantees efficient mixing processing

of these functions (for most precise results, see [LP16, Theorems 1 and 3.5]). In view of security

of these functions, the collision resistant property is supported by assumptions on hardness of

computing a chain of isogenies between given isogenous supersingular elliptic curves. Indeed,

finding collisions yield to pairs of supersingular elliptic curves (E,E′) and two chains of `-isogenies

between them whose kernels are distinct each other.

Isogeny-based Cryptography. We provide a little bit about the recent progress in public-key cryp-

tography using supersingular isogenies. The above construction of the cryptographic hash func-

tion from supersingular isogenies opens the door to a new research area of practical public key

cryptography whose security relies on computational hardness of computing isogenies between

given two supersingular elliptic curves. Public key cryptography in such style is called isogeny-

based cryptography now.

1To avoid trivial collision, we impose the condition of non-backtrack on walks in this construction.
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Here, what is important is that there is currently no known polynomial-time (even quan-

tum) algorithm to compute an isogeny between given two supersingular elliptic curves un-

like the integer factorization problem or the discrete logarithm problem. Indeed, an isogeny-

based cryptography is regarded as an important object in the context of post-quantum cryp-

tography: it has been proposed as cryptographic primitives, for example, SIDH (Supersingular

Isogeny Diffie-Hellman)[DJP14, JD11] and CSIDH (Commutative Supersingular Isogeny Diffie-

Hellman)[CLM+18]. Therefore, isogeny-based cryptography is one of the promising candidates

of post-quantum cryptography among lattice-based cryptography, code-based cryptography and

multivariate cryptography.

Toward higher dimensional analogue of CGL hash functions. There have been several studies on

the big isogeny graph Grg(`, p) defined in [JZ21] from both number theoretic and cryptographic

viewpoints. In the rest of this section, we describe recent progress in studies on the graphs

Grg(`, p) and a contribution of our work in this context.

Concerning the two dimensional case, the CGL-like construction of hash functions was first

attempted by Takashima [Tak18], which used the supersingular (2)2-isogeny graph (i.e., the case

when g = 2 and ` = 2). However, Flynn and Ti [FT19] showed that this graph has many short

cycles from which trivial collisions of random walks may be derived. After these works, Castryck,

Decru and Smith [CDS20] modified Takashima’s construction and suggested to use a subgraph

of isogeny graphs Gr2(2, p) of superspecial abelian varieties consisting of Jacobians of curves of

genus 2. The idea here is to keep choosing paths to become good extension, which allow us to

avoid trivial collisions. Moreover, they counted the number of good extensions of a (2)2-isogeny

(see Proposition 3 in [CDS20]). There are eight good extensions for an isogeny between Jacobians,

which are suitable for associating 3-bit information to one step of a random walk.

In the case of abelian varieties of dimension ≥ 2, the existence of nontrivial automorphisms

complicates the structure of graphs. For g = 2, the classification of possible automorphism groups

arising from Jacobians and elliptic product was done by Ibukiyama, Katsura and Oort [IKO86].

Based on these results, in the case when g = 2 and ` = 2, Katsura and Takashima [KT20]

counted the number of Richelot isogenies and decomposed Richelot isogenies up to isomorphism

outgoing from Jacobians and those outgoing from elliptic products and computed the multiplicity

of each edge. Moreover, advancing this work further, Florit and Smith [FS21a] studied the local

neighborhoods of vertices and edges inGr2(2, p) and gave many illustrations. In [FS21b], they also
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investigated behavior of random walks on the big isogeny graphs and gave numerical experiments

of the mixing rate of Gr2(2, p).

However, we know little about expansion properties of these graphs so far. Our contribution

is to give an affirmative answer to this question in Theorem 1.1 and Theorem 1.2. In this paper,

good mixing property of the big isogeny Grg(`, p) is shown as a result of proving that the isogeny

graphs GSSg (`, p) defined in this paper have good expansion property and they are equivalent to

the big isogeny graphs Grg(`, p). So, random walks on the graphs GSSg (`, p) and Grg(`, p) tend

to the natural stationary distribution rapidly. This gives an evidence that the big isogeny graphs

Grg(`, p), which have been investigated, may be suitable for cnstruction of cryptographic hash

functions from superspecial abelian varieties.

Finally, we give an example of an illustration of a graph considered in this paper, i.e. GSSg (`, p),

which is equivalent to the big isogeny graph Grg(`, p). For ` = 2 and p = 13, the graph Grg(`, p)

is computed in [CDS20] and [KT20] as illustrated below.

Figure 1.1. An illustration of Gr2(2, 13). The vertices v1, v2 and v3 donote

the Jacobians of curves defined by C1 : y2 = (x3 − 1)(x3 + 4 −
√

2), C2 : y2 =

x(x2− 1)(x2 + 5 + 2
√

6) and C3 : y2 = x5− x, respectively. The vertex v4 denotes

the product of supersingular elliptic curves y2 = (x−1)(x−3+2
√

2). The number

on the side of a directed edge denotes the multiplicity of each edge. For a more

detailed illustration, see §7.1 of [KT20].
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1.3. Organization of this paper. In Section 2, we give two interpretations of SSg(p) accord-

ing to works of Ibukiyama-Katsura-Oort-Serre and Jordan-Zaytman. The former is helpful to

compute the cardinality of SSg(p) while the latter is helpful to make the compatibility of Hecke

operators at ` transparent. As mentioned before, this is a crucial step to apply Property (T)

(hence, Theorem 5.4) with our family {GSSg (`, p)}p 6=`. In Section 3, we discuss a comparison

between the graph GSSg (`, p) and that of Jordan-Zaytman Grg(`, p). In Section 4, we study

Bruhat-Tits buildings for symplectic groups. Then, in Section 5, the main result is proved in

terms of the terminology in the precedent sections. Finally, in Section 6.1 we give a speculation

in view of the theory of automorphic forms.

1.4. Notations. For a set X, the cardinality is denoted by |X|. Throughout the paper, we use

the Landau asymptotic notations: for positive real-valued functions f(n) and g(n) for integers

n, we denote by f(n) = o(g(n)) if f(n)/g(n)→ 0 as n→∞, by f(n) = O(g(n)) if there exists a

positive constant C > 0 such that f(n) ≤ Cg(n) for all large enough n, and f(n) = Θ(g(n)) if

we have both f(n) = O(g(n)) and g(n) = O(f(n)).

Let n be a positive integer and In the identity matrix of size n. Put

Jn =

(
0 In

−In 0

)
.

We define a functor G : (Rings) −→ (Sets) from the category of rings to the category of sets by

G(R) := {M ∈M2n(R) | tMJnM = ν(M)M, for some ν(M) ∈ R×}

for each commutative ring R and we call ν(M) the similitude of M . It is well-known that

the functor G is represented by a smooth group scheme GSpn over Z. The similitude defines

a homomorphism ν : GSpn −→ GL1 as group schemes over Z. We define Spn := Ker(ν)

which is called the symplectic group of rank n. The similitude splits and in fact it is given by

a 7→ diag(In, aIn). It follows from this that G ' Spn o GL1. In the sections related to abelian

varieties, we put n = g while we keep n in Section 4 through 5.

For any algebraic group H over a field, we denote by ZH the center of H.
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2. Superspecial abelian varieties

In this section we refer [Mum70] for some general facts of abelian varieties. The purpose here is

to understand Theorem 2.10 of [IKO86] in terms of the adelic language which is implicitly given

there. Another formulation is also given in terms of `-adic Tate modules (see also Theorem 46 of

[JZ21] in more general setting). This explains the compatibility of Hecke operators on principally

polarized superspecial abelian varities and the special 1-complex of the Burhat-Tits building in

question. This result will be plugged into the main result in Section 5 to prove Theorem 1.1.

2.1. Superspecial abelian varieties. Let p be a prime number and k be an algebraically closed

field of a finite field of characteristic p. In our purpose, we may put k = Fp. Let A be an abelian

variety over k of dimension g > 0 and we denote by Â = Pic0(A) the dual abelian variety

(cf. Section 9 of [Mil86]). The abelian variety A is said to be superspecial if A is isomorphic

to Eg =

g︷ ︸︸ ︷
E × · · · × E for some supersingular elliptic curve E over k (see Sections 1.6 and 1.7

of [LO98] for another definition in terms of a-number). As explained in loc.cit., for any fixed

supersingular elliptic curve E0 over k, every superspecial abelian variety of dimension g ≥ 2 is

isomorphic to Eg0 . (Here the assumption g ≥ 2 is essential and indeed, this is not true for g = 1.

See also Theorem 4.1 in Chapter V of [Sil09].) Throughout this section, we fix a supersingular

elliptic curve E0.

2.2. Principal polarizations. Let A be an abelian variety over k = Fp. A polarization is a class

of the Néron-Severi group NS(A) := Pic(A)/Pic0(A) which is represented by an ample line bundle

on A. The definition of polarizations here is different from the usual one but it is equivalent by

Remark 13.2 of [Mil86] since k = Fp.
For each ample line bundle L we define a homomorphism

φL : A −→ Â, x 7→ t∗x(L)⊗ L−1
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where tx stands for the translation by x and we denote by t∗x its pullback. By APPLICATION 1,

p.60 in Section 6 of Chapter II in [Mum70], φL is an isogeny, hence it has a finite kernel since L
is ample. If we write D for an ample divisor on A corresponding to L, namely, L ' O(D), then

by Riemann-Roch theorem in p.150 of loc.cit., we have

(2.1) χ(L) =
(Dg)

g!
, χ(L)2 = deg φL

where χ(L) stands for the Euler-Poincare characteristic of L and (Dg) is the g-fold self-intersection

number of D. Since L is ample, χ(L) > 0.

Definition 2.2. Keep the notation being as above.

(1) An ample line bundle L ' O(D) on A is said to be a principal polarization if deg φL = 1,

equivalently, (Dg) = g!.

(2) For a principal polarization L on A, we call a couple (A,L) a principally polarized abelian

variety. For two polarized abelian varieties (A1,L1), (A2,L2), a morphism between them

is a homomorphism f : A1 −→ A2 such that φL1 = f̂ ◦ φL2 ◦ f where f̂ is the dual of f

defined by the pullback of f on line bundles. Since f̂ ◦φL2 ◦f = φf∗L2, the above condition

is equivalent to φf∗L2 = φL1.

Proposition 2.1. Let (A,L) be a principally polarized abelian variety in characteristic p. Let `

be a prime number different from p and C be a maximal totally isotropic subspace of A[`n] for

n ∈ Z≥0 with respect to the Weil pairing associated to L. Then, there exists an ample line bundle

LC on the quotient abelian variety AC := A/C which is unique up to isomoprhism such that

(AC ,LAC
) is a principally polarized abelian variety in characteristic p such that f∗CLAC

= L⊗`n

where fC : A −→ AC is the natural surjection.

Proof. Notice that L is symmetric. The claim follows from (11.25) Proposition of [EGM]. �

Definition 2.3. Let (A1,L1) and (A2,L2) be two principally polarized abelian varieties in char-

acteristic p. Let ` be a prime different from p.

(1) An isogeny f : A1 −→ A2 is said to be an (`)g-isogeny if

• Ker(f) is a maximal totally isotropic subspace of A[`] with respect to the Weil pairing

associated to L1, and

• f∗L2 ' L⊗`1 .

(2) An isogeny f : A1 −→ A2 is said to be an `-marking of (A2,L2) from (A1,L1) if f∗L2 =

L⊗`m1 for some integer m ≥ 0.
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Proposition 2.2. Keep the notation in Definition 2.3. Let f : A1 −→ A2 be an `-marking of

(A2,L2) from (A1,L1), then there exists an `-marking f̃ : A2 −→ A1 of (A1,L1) from (A2,L2)

such that f ◦ f̃ = [`m]A2 and f̃ ◦ f = [`m]A1 for some integer m ≥ 0.

Proof. By Theorem 34 of [JZ21], we may assume f is an (`)g-isogeny. Put C = Kerf . Then

(A2,L2) = (A1,C ,LA1,C
) where A1,C = A1/C. It is easy to see that D := A1[`]/C is a maxi-

mal totally isotropic subspace of A1,C [`] with respect to the Weil pairing associated to LA1,C
.

Therefore, we have an (`)g-isogeny f̃ : A2 −→ A1,C/D. However, A1,C/D = A/A[`] ' A and

the later isomorphism induces the identification of (A1,C/D,LD) and (A1,L1) where LD stands

for a unique descend of LA1,C
on A1,C/D (see Proposition 2.1). The proportion of f and f̃ is

symmetric and hence we have the claim. �

We study the difference of two `-markings. Let us keep the notation in Definition 2.3. By

using the principal polarization L1 we define the Rosati-involution † on End(A1) by

(2.4) f † = φ−1
L1 ◦ f̂ ◦ φL1 , f ∈ End(A1).

Notice that † is an anti-involution.

Proposition 2.3. Let us still keep the notation in Definition 2.3. Let f, h : A1 −→ A2 be two `-

markings. Then there exists ψ ∈ End(A1)⊗Z[1/`] such that f ◦ψ = h and ψ◦ψ† = ψ†◦ψ = [`m]A1

for some integer m.

Proof. For f , let f̃ : A2 −→ A1 be an (`)g-isogeny in Proposition 2.2. Put ψ1 = f̃ ◦ h ∈ End(A1).

Then we have, by definition,

ψ1 ◦ ψ†1 = (f̃ ◦ h) ◦ (φ−1
L1 ◦ ĥ ◦

̂̃
f ◦ φL1).

It follows from Theorem 34 of [JZ21] and Definition 2.3 that
̂̃
f ◦ φL1 ◦ f̃ = φL⊗`m

2
= `mφL2 and

ĥ ◦ φL2 ◦ h = φ
L⊗`m

′
1

= `m
′
φL1 for some integers m′,m ≥ 0. This yields

ψ1 ◦ ψ†1 = `mf̃ ◦ φ−1
L2 ◦

̂̃
f ◦ φL1 = `m+m′ idA1 .

Further, f ◦ ψ = (f ◦ f̃) ◦ h = `mh. Therefore, we may put ψ = `−mψ1 as desired. �
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2.3. Class number of the principal genus for quaternion Hermitian lattices. In this

subsection we refer Section 3.2 of [Ibu20] for the facts and the notation. Let p be a prime number

and n be a positive integer. Let B be the definite quaternion algebra ramified only at p and

∞ (see Proposition 5.1, p.368 of [Piz80] for an explicit realization). We write B =
(a, b

Q

)
=

Q · 1⊕Q · i⊕Q · j ⊕Q · ij with i2 = a, j2 = b, and ij = −ji. For each x = x0 + x1i+ x2j + x3ij,

the conjugation of x is defined by x = x0−x1i−x2j−x3ij. Then N(x) = xx, Tr(x) = x+x are

called the norm and the trace of x respectively. Let us fix a maximal order O of B which is also

explicitly given in Proposition 5.2 of [Piz80]. The pairing (∗, ∗) on Bn is defined by the following

manner:

(x, y) =
n∑
i=1

xiyi for x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Bn.

A submodule L ⊂ Bn is said to be O-lattice if

• L is a Z-lattice in Bn, hence L⊗Z Q = Bn;

• L is a left O-module.

For an O-lattice L, we define by N(L) the two sided (fractional) ideal of B generated by

(x, y), x, y ∈ L. The ideal N(L) is called the norm of L.

For a commutative ring R, we extend the conjugation on O ⊂ B to O ⊗Z R by x⊗ r := x⊗ r
for each x ∈ O and r ∈ R. Further, for each γ = (γij) ∈Mn(O ⊗Z R) (the set of n× n matrices

over O⊗ZR) we define γ := (γij). We define the algebraic group Gn over Z which represents the

following functor from the category of rings to the category of sets:

Gn : (Rings) −→ (Sets), R 7→ Gn(R) := {γ ∈Mn(O⊗ZR) | γ · tγ = ν(γ)In for some ν(γ) ∈ R×}

where In stands for the identity matrix of size n. The similitude map ν : Gn 7→ GL1 is defined

by γ 7→ ν(γ). Put G1
n := Ker(ν) as an algebraic group. The group scheme Gn (resp. G1

n) over

Z is said to be the generalized unitary symplectic group (unitary symplectic group) and it is

symbolically denoted by Gn = GUSpn (resp. G1
n = USpn). It is easy to see that Gn(R) is

compact modulo center and G1
n(R) is, in fact, compact, since B is definite. By definition, Gn

(resp. G1
n) is an inner form of GSpn (resp. Spn).

Remark 2.4. Historically, automorphic forms on G1
n = USpn for n ≥ 2 were studied by Ihara-

Ibukiyama (see [Ibu18] and suitable references there). After Ibukiyama’s joint works with Ihara,

he and his collaborators have pursued an analogue of Jacquet-Langlands correspondence for GL2.



ISOGENY GRAPHS ON SUPERSPECIAL ABELIAN VARIETIES 15

Let us keep introducing some notation. For two O-lattices L1, L2 of Bn, they are said to be

globally equivalent (locally equivalent at a rational prime p) if L1 = L2γ for some γ ∈ Gn(Q)

(L1⊗ZZp = (L2⊗ZZp)γ for some γ ∈ Gn(Qp)). We also say L1 and L2 belong to the same genus

if L1 is locally equivalent to L2 for each rational prime p. For each O-lattice L, we denote by

L(L) the set of all O-lattices L1 such that L1 and L belong to the same genus. The set L(L) is

called a genus and we denote by L(L)/ ∼ the set of globally equivalent classes of L(L).

Definition 2.5. For each O-lattice L, the cardinality H(L) of L(L)/ ∼ is called the class number

of L. In particular, L(On)/ ∼ is said to be the principal genus class and put

Hn(p, 1) := H(On) = |L(On)/ ∼ |.

Let AQ be the ring of adeles of Q and Af be the finite part of AQ. For an O-lattice L and

each rational prime p, put Kp(L) := {γp ∈ Gn(Qp) | (L ⊗Z Zp)γp = L ⊗Z Zp} which is an open

compact subgroup of Gn(Qp). Then K(L) :=
∏
p

Kp(L) makes up an open compact subgroup of

Gn(Af ). For each element γ = (γp)p of Gn(AQ) and an O-lattice L, put

Lγ :=
⋂
p<∞

Lγp ∩Bn

and it is easy to see that Lγ is also an O-lattice which is locally equivalent to L at each prime p.

Hence we have

(2.6) K(L)\Gn(Af )/Gn(Q)
∼−→ L(L)/ ∼, K(L)γGn(Q) 7→ [Lγ]

where G(Q) is diagonally embedded in Gn(Af ) as h 7→ (h)p. As for the computation of the class

number of the principal genus, the case of n = 1 is due to Eichler [Eic38] (see also Theorem 1.12,

p.346 of [Piz80]) and the case of n = 2 is handled by Hashimoto-Ibukiyama [HI80].

2.4. Ibukiyama-Katsura-Oort-Serre’s result in terms of adelic language. Let us fix a

prime p and put k = Fp. For each positive integer, we denote by SSg(p) the set of all isomorphism

classes of principally polarized abelian variety over k of dimension g. Henceforth we assume g ≥ 2.

According to [IKO86] we describe SSg(p) in terms of adelic language.

Let E0 be a supersingular elliptic curve over k. It is well-known that B := End(E0) ⊗Z Q is

the definite quaternion algebra ramified only at p and ∞ with a maximal order O = End(E0).
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For each prime q, put Oq := O ⊗Z Zq. Put A0 = Eg0 and define a divisor on A0 by

D :=

g−1∑
i=0

Ei0 × {0E0} × E
g−i−1
0

where 0E0 stands for the origin of E0. By using suitable parallel transformations, it is easy to see

that (Dg) = g!. It follows from (2.1) that L0 := O(D) is a principal polarization. Let us fix the

principally polarized abelian variety (A0,L0). Pick another principally polarized abelian variety

(A,L). As explained before, A is isomorphic to A0 and by pulling back L to A0, there is one

to one correspondence between SSg(p) and the set PPg(A0) of isomorphism classes of principal

polarizations on A0. Therefore, we have

(2.7) SSg(p) ' PPg(A0)
⊂
↪→ NS(A0)

j
↪→ End(A0) = Mg(O),

where j is defined by j(L) = φ−1
L0 ◦ φL for each class [L] ∈ PPg(A0). By Proposition 2.8 of

[IKO86], the image of SSg(p) under the map (2.7) is given by

(2.8) {X ∈ GLg(O) | X = tX > 0}.

We remark that the Hauptnorm HNm in p.144 of [IKO86] is nothing but the reduced norm of

Mg(O) and for X ∈Mg(O), HNm(X) = 1 if and only if X ∈ GLg(O). Pick X from the set (2.8).

By Lemma 2.4 of [IKO86], for each prime q, there exists δq ∈ GLg(Oq) such that X = δq
tδq.

Consider an O-lattice L :=
⋂
q

Ogδq ∩Bn. By Corollary 2.2 of [IKO86], there exists γ ∈ GLg(B)

such that L = Ogγ. Since Ogqγ = Lq = Ogqδq = Ogq , h := γtγ ∈ GLg(O) and clearly h = th > 0.

Therefore, by Lemma 2.3 of [IKO86], we conclude that [L] ∈ L(Og)/ ∼. It follows from Lemma

2.3 of [IKO86] again that the association from X to [L] is bijection. Summing up, we have the

following:

Proposition 2.5. (Ibukiyama-Katsura-Oort-Serre’s theorem) There is a one-to-one correspon-

dence between SSg(p) and L(Og)/ ∼.

We denote by ZGg ' GL1 the center of Gg = GUSpg. Recall the open compact subgroup

K(Og) =
∏
p

Kp(Og) from (2.6) for L = Og. For each prime ` 6= p, put K(Og)(`) =
∏
p 6=`

Kp(Og).

Clearly, K(Og) = K(Og)(`) × Gg(Z`). We identify B` = B ⊗Q Q` (resp. O` = O ⊗Z Z`) with

M2(Q`) (resp. M2(Z`)). Under this identification, we have Gg(R) = GSpg(R) for R = Z` or Q`

(cf. Lemma 4 of [Ghi04]). Therefore, for any subring M of Q`, Gg(M) is naturally identified with

a subgroup of Gg(Q`) = GSpg(Q`) under the inclusion M ⊂ Q`.
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Proposition 2.6. For each prime ` 6= p, there is a one-to-one correspondence between SSg(p)

and

Gg(Z[1/`])\GSpg(Q`)/ZGSpg(Q`)GSpg(Z`).

Proof. For any algebraic closed field F , G1
g(F ) = USpg(F ) = Spg(F ). Since Spg is simply

connected as a group scheme over Z, so is G1
g = USpg. Let A(`)

f be the finite adeles of Q outside

`. By the strong approximation theorem (cf. Theorem 7.12, p.427 in Section 7.4 of [PR94]) for

G1
g with respect to S = {∞, `} and using the exact sequence

1 −→ G1
g −→ Gg

ν−→ GL1 −→ 1,

we have a decomposition

(2.9) Gg(Af ) = Gg(A
(`)
f )×Gg(Q`) = Gg(Q)(K(Og)(`) ×Gg(Q`)).

Combining (2.6) with (2.9), we have

L(Og)/ ∼ ∼←− K(Og)\Gg(Af )/Gg(Q)

' Gg(Q)\Gg(Af )/K(Og)(2.10)

= Gg(Q)\(Gg(Q)(K(Og)(`) ×Gg(Q`)))/K(Og)

= Gg(Z[1/`])\GSpg(Q`)/GSpg(Z`)

= Gg(Z[1/`])\GSpg(Q`)/ZGSpg(Q`)GSpg(Z`).

We remark that at the last line ZGSpg(Q`) is intentionally inserted due to the formulation in

terms of Bruhat-Tits building handled later on. Further, the centers of Gg(Z[1/`]) and GSpg(Z`)
are Z[1/`]× and Z×` respectively. The equality Z[1/`]×Z×` = Q×` explains how ZGSpg(Q`) shows

up there. We have also used K(Og)(`) ∩Gg(Q) = Gg(Z[1/`]) to obtain the fourth line. �

2.5. Another formulation due to Jordan-Zaytman. Let ` 6= p be a prime. Both of SSg(p)

and the Bruhat-Tits building GSpg(Q`)/ZGSpg(Q`)GSpg(Z`) endowed with Hecke theory at `.

However, it is not transparent to see the compatibility of Hecke actions on both sides under

the one-to-one correspondence (2.10). To overcome this, due to Jordan-Zaytman [JZ21], we

use another formulation of SSg(p) and its connection to SSg(p, `, A0,L0) by using `-adic Tate

modules.

Pick (A,L) from a class in SSg(p). For a positive integer n, let

A[`n] := {P ∈ A(Fp) | `nP = 0A} ' (Z/`nZ)⊕2g
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and put A[`∞] =
⋃
n≥1

A[`n]. We denote by T`(A) the `-adic Tate module and by V`(A) :=

T`(A)⊗Z`
Q` the `-adic rational Tate module (cf. Section 18 of Chapter IV of [Mum70]). Let us

define the coefficient ring RV to be Z/`nZ if V = A[`n], Z` if V = T`(A), and Q` if V = V`(A).

The principal polarization φL : A
∼−→ Â yields V ' V ∗ = HomRV

(V,RV ) and it induces a

non-degenerate alternating pairing

〈∗, ∗〉 : V × V −→ RV .

Let C be a maximal isotropic subgroup of A[`n] for some n ≥ 1. Consider the exact sequence

0 −→ T`(A)
⊂−→ V`(A)

π−→ V`(A)/T`(A) ' A[`∞] −→ 0.

Then, TC := π−1(C) is a lattice of V`(A). The quotient AC := A/C is also a superspecial

abelain variety and the line bundle L is uniquely descend to a principal polarization LC on AC

by Corollary of Theorem 2 in Section 23 of Chapter IV of [Mum70] (see also Proposition 11.25

of [EGM] for the uniqueness). It follows from this that TC ' T`(AC) has a symplectic Z`-basis

{fC,i}2gi=1 ⊂ Q2g
` which means the matrix PC := (fC,1, . . . , fC,2g) ∈M2g(Q`) belongs to GSpg(Q`).

Another choice of a symplectic Z`-basis of TC yields PCγ for some γ ∈ GSpg(Z`). For each

h ∈ End(A) ⊗Z Z[1/`] which is invertible (hence h is an isogeny of degree a power of `), we see

easily that Ph(C) = h∗PC where h∗ is the endomorphism of V`(A) induced from h. In fact, it

follows from the functorial property of the pairing (see p.228 of [Mum70]). We identify Gg(Z[1/`])

with

(2.11) Γ(A)† := {f ∈ (End(A)⊗Z Z[1/`])× | f ◦ f † = f † ◦ f ∈ Z[1/`]×idA}

under the natural inclusion (End(A)⊗Z Z[1/`])× ↪→ Aut((V`(A), 〈∗, ∗〉)) = GSpg(Q`).

Fix (A,L) in a class of SSg(p). We introduce the following sets which play an important role

in the construction of the isogeny graphs:

(2.12)

Iso`∞(A,L) := {[(AC ,LC)] ∈ SSg(p) | n ≥ 1, C ⊂ A[`n] : a maximal isotropic subgroup}.

and

(2.13) SSg(p, `, A,L) := {[(B,M, φB)] | [(B,M)] ∈ SSg(p)}

where φB : A −→ B is an `-marking and [(B,M, φB)] stands for the equivalent class of

(B,M, φB). Here such two objects (A1,L1, φA1) and (A2,L2, φA2) are said to be equivalent
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if there exists an isomorphism f : (A1,L1) −→ (A2,L2) such that f ◦ φA1 and φA2 differ by

only an element in Γ(A1)†. By definition, the natural map from SSg(p, `, A,L) to Iso`∞(A,L) is

surjective while Iso`∞(A) is included in SSg(p). With the above observation, we have obtained a

map

(2.14) Iso`∞(A,L) −→ Gg(Z[1/`])\GSpg(Q`)/GSpg(Z`), [(AC ,LC)] 7→ Gg(Z[1/`])PCGSpg(Z`)

We then show a slightly modified version of Jordan-Zaytman’s theorem, Theorem 46 of [JZ21] in

conjunction with SSg(p, `, A,L).

Theorem 2.7. Fix (A,L) in a class of SSg(p). Keep the notation being as above. It holds that

Iso`∞(A,L) = SSg(p) and the map (2.14) induces a bijection

Iso`∞(A,L)
∼−→ Gg(Z[1/`])\GSpg(Q`)/GSpg(Z`) = Gg(Z[1/`])\GSpg(Q`)/ZGSpg(Q`)GSpg(Z`).

Further, the natural map SSg(p, `, A,L) −→ Iso`∞(A,L) is also bijective.

Proof. Surjectivity of (2.14) follows in reverse from the construction by using Corollary of The-

orem 2 in Section 23 of Chapter IV of [Mum70] to guarantee the existence of a principal polar-

ization. By Proposition 2.6 and Iso`∞(A,L) ⊂ SSg(p), we have

|SSg(p)| = |Gg(Z[1/`])\GSpg(Q`)/ZGSpg(Q`)GSpg(Z`)| ≤ |Iso`∞(A,L)| ≤ |SSg(p)|

and it yields first two claims. With a natural surjection SSg(p, `, A,L) −→ Iso`∞(A,L) and

(2.14), we have a surjective map

SSg(p, `, A,L) −→ Gg(Z[1/`])\GSpg(Q`)/ZGSpg(Q`)GSpg(Z`).

However, by construction and the identification (End(A)⊗Z Z[1/`])× = Gg(Z[1/`]), two objects

of SSg(p, `, A,L) which go to one element in the target differ by only `-markings. Therefore, the

above map is bijective. Hence, SSg(p, `, A,L)
∼−→ Iso`∞(A,L) = SSg(p).

Note that the factor ZGSpg(Q`) ' Q×` is intentionally inserted in front of GSpg(Z`) as explained

in the proof of Proposition 2.6. �

As a byproduct we have

Corollary 2.8. Let ` be a prime different from p. Let GSSg (`, p) is the isogeny graph defined in

Section 1. Then, GSSg (`, p) is a connected graph.
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Proof. By the proof of Theorem 2.7, we have SSg(p, `, A,L)
∼−→ Iso`∞(A,L) = SSg(p) for any

fixed (A,L) in a class of SSg(p). This means that any two classes are connected by isogenies of

degree a power of ` and such an isogeny can be written as a composition of some (`)g-isogenies

by Theorem 34 of [JZ21]. This shows the claim. �

2.6. The Hecke operator at `. Finally we discuss a relation of the map (2.14) with the Hecke

operator at `. We refer Section 3 in Chapter VII of [CF90] for general facts and Section 16

through 19 of [Gee08] as a reader’s friendly reference. For each prime ` different from p and a

class [(A,L, φA)] ∈ SSg(p, `, A0,L0), we define the (geometric) Hecke correspondences T (`)geo
(A0,L0)

at `:

(2.15) T (`)geo
(A0,L0)([(A,L, φA)]) :=

∑
C⊂A[`]

maximal isotropic

[(AC ,LC , fC ◦ φA)].

where fC : A −→ AC is the natural projection. Similarly, we also define the (geometric) Hecke

correspondences T (`)geo at ` on SSg(p):

(2.16) T (`)geo([(A,L)]) :=
∑

C⊂A[`]
maximal isotropic

[(AC ,LC)].

Recall GSpg(Q`) = GSp(Q2g
` , 〈∗, ∗〉) where 〈∗, ∗〉 is the standard symplectic pairing on Q2g

` ×
Q2g
` . Put V = Q2g

` . As seen before, each element of GSpg(Q`)/GSpg(Z`) can be regarded as

a lattice L of V such that 〈∗, ∗〉L×L gives a Z`-integral symplectic structure on L. Using this

interpretation, each element of GSpg(Q`)/ZGSpg(Q`)GSpg(Z`) can be regard as a homothety

class [L] for such an L. For each L being as above, we define the Hecke correspondence on

GSpg(Q`)/GSpg(Z`) at `

(2.17) T (`)([L]) :=
∑

L⊂L1⊂`−1L
L1/L:maximal isotropic

[L1]

where L1 runs over all lattice enjoying L ⊂ L1 ⊂ `−1L as denoted and that L1/L is a maximal

isotropic subgroup of `−1L/L with respect to the symplectic pairing 〈∗, ∗〉`−1L/L×`−1L/L. Clearly,

the action of Gg(Z[1/`]) (given by multiplication from the left) on lattices are equivariant under

T (`). Therefore, it also induces a correspondence on Gg(Z[1/`])\GSpg(Q`)/ZGSpg(Q`)GSpg(Z`)
and by abusing notation, we denote it by T (`). For a set X, we write Div(X)Z :=

⊕
P∈X ZP .

The identification (2.14) with the bijection

(2.18) SSg(p, `, A0,L0)
∼−→ SSg(p), [(A,L, φA)] 7→ [(A,L)]
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yields a bijection

(2.19) SSg(p, `, A0,L0) −→ Gg(Z[1/`])\GSpg(Q`)/GSpg(Z`).

Then we have obtained the following:

Theorem 2.9. The following diagram is commutative:

Div(SSg(p))Z

(2.18)
∼←−−−− Div(SSg(p, `, A0,L0))Z

(2.19)
∼−−−−→ Div(Gg(Z[1/`])\GSpg(Q`)/ZGSpg(Q`)GSpg(Z`))Z

T (`)geo
y T (`)geo

(A0,L0)

y T (`)

y
Div(SSg(p))Z

(2.18)
∼←−−−− Div(SSg(p, `, A0,L0))Z

(2.19)
∼−−−−→ Div(Gg(Z[1/`])\GSpg(Q`)/ZGSpg(Q`)GSpg(Z`))Z.

2.7. The Hecke action and automorphisms. In this subsection we describe the behavior of

the Hecke action of T (`) on the finite set

Gg(Z[1/`])\GSpg(Q`)/GSpg(Z`) = Gg(Z[1/`])\GSpg(Q`)/ZGSpg(Q`)GSpg(Z`)

in terms of automorphism groups of objects in SSg(p, `, A0,L0).

Put Γ = Gg(Z[1/`]), G = GSpg(Q`), Z = ZGSpg(Q`) and K = GSpg(Z`) for simplicity. We

write

Γ\G/K = {Γx1ZK, . . . ,ΓxhZK}, x1, . . . xh ∈ G

where h = hg(p, 1) = |Γ\G/ZK|. For each i ∈ {1, . . . , h}, the coset ΓxiZK is naturally identified

with

Γ/Γ ∩ xiZKx−1
i = (ΓZ/Z)/((Γ ∩ xiZKx−1

i )Z/Z).

Lemma 2.10. Keep the notation being as above. Let (Ai,Li, φAi) be an element in the class

corresponding to ΓxiK. There is a natural group isomorphism between Γ̃i := (Γ∩xiZKx−1
i )Z/Z

and Aut((Ai,Li))/{±1} where Aut((Ai,Li)) is the group of automorphisms of (Ai,Li).

Proof. By construction, we have T`(Ai) = xiZ2g
` under the inclusion T`(Ai) ↪→ V`(A0) = Q2g

`

induced by the ell-marking of (Ai,Li). Then the group (Γ∩xiZKx−1
i ) obviously acts on T`(Ai).

Thus, we have an injection (Γ ∩ xiZKx−1
i ) ⊂ End(T`(Ai)). On the other hand, by Faltings’

theorem (cf. Theorem 4 of [Fal84]), End(T`(Ai)) ' End(Ai) ⊗Z Z`. Hence we may have (Γ ∩
xiZKx

−1
i ) ⊂ End(Ai)⊗Z Z` which is compatible with the identification Γ ⊂ Γ†(Ai). Since each

element of Γ†(Ai) is an `-isogeny, it preserves the polarization of Ai up to the multiplication by
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Z. It follows from this that Γ̃i ⊂ Aut((Ai,Li))/{±1}. The opposite inclusion follows by Faltings’

theorem again. �

Next we study the image of each element of Γ\G/K = Γ\G/ZK under the Hecke action of

T (`). Since T (`) is defined in terms of lattices (see (2.17)), we define another formulation in

terms of elements in G. Let t` := diag(

g︷ ︸︸ ︷
1, . . . , 1,

g︷ ︸︸ ︷
`, . . . , `) ∈ G. We decompose

(2.20) Kt`K =
∐
t∈T

gtK

where T is the index set so that |T | = Ng(`). For each i, j ∈ {1, . . . , h} we define

(2.21) mij := {t ∈ T | ΓxigtZK = ΓxjZK}

which is independent of the choice of the representatives {gt}t∈T . Let W (`) := {gtZK | t ∈ T}.
Then for each i ∈ {1, . . . , h}, recall Γ̃i = (Γ ∩ xiZKx−1

i )Z/Z. and the finite group x−1
i Γ̃ixi ⊂

KZ/Z acts on W (`) from the left by multiplication. The action induces the orbit decomposition

(2.22) W (`) =
∐
t∈T ′

O
x−1
i Γ̃ixi

(gtKZ)

for some subset T ′ ⊂ T .

Lemma 2.11. Keep the notation being as above. For each i ∈ {1, . . . , h} and t ∈ T ′, if

ΓxigtZK = ΓxjZK for some j ∈ {1, . . . , h}, the stabilizer Stab
x−1
i Γ̃ixi

(gtKZ) is isomorphic

to a subgroup Si of Γ̃j.

Proof. By assumption, xj = γxigtzk for some γ ∈ Γ, z ∈ Z, and k ∈ K. For each αZ ∈ x−1
i Γ̃ixi =

(x−1
i Γxi ∩K)Z/Z, let us consider the element kg−1

t αgtk
−1Z in G/Z. By using xj = γxigtzk, we

see that the element belongs to x−1
j ΓxjZ/Z. Further, if αZ is an element of Stab

x−1
i Γ̃ixi

(gtKZ),

kg−1
t αgtk

−1Z also belongs to K. Therefore, we have a group homomorphism

Stab
x−1
i Γ̃ixi

(gtKZ)
the conjugation by kg−1

t−→ (x−1
j Γxj ∩K)Z/Z ' Γ̃j .

Clearly, this map is injective and we have the claim. �

We also study the converse of the correspondence from ΓxigtZK to ΓxiZK for each i ∈
{1, . . . , h}. Clearly, g−1

t ZK ∈W (`).
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Lemma 2.12. For each i ∈ {1, . . . , h} and t ∈ T ′, if ΓxigtZK = ΓxjZK for some j ∈ {1, . . . , h},
then |Stab

x−1
i Γ̃ixi

(gtKZ)| = |Stab
x−1
j Γ̃jxj

(g−1
t KZ)|. In particular, it holds

|Γ̃j | · |Ox−1
i Γ̃ixi

(gtKZ)| = |Γ̃i| · |Ox−1
j Γ̃jxj

(g−1
t KZ)|.

Proof. As in the proof of the previous lemma, if we write xj = γxigtzk, then the conjugation by

gtk
−1 yields the isomorphism from Stab

x−1
j Γ̃jxj

(g−1
t KZ) to Stab

x−1
i Γ̃ixi

(gtKZ). The claim follows

from this. �

Finally, we study the corresponding results in SSg(p, `, A0,L0) under the identification

(2.23) SSg(p, `, A0,L0) −→ Gg(Z[1/`])\GSpg(Q`)/GSpg(Z`)

given by Theorem 2.7. We write

SSg(p, `, A0,L0) = {wi = [(Ai,Li, φAi)] | i = 1, . . . , h}.

Let us fix i ∈ {1, . . . , h} and we denote by LGi(`) = {Ct}t∈T the set of all totally maximal

isotropic subspace of Ai[`] with respect to the Weil pairing associated to Li. Here we use the

same index T as W (`) defined before. Then the group RAi := Aut((Ai,Li))/{±1} acts on LG(`)

since each element there preserves the polarization. As in (2.22) we also have the decomposition

LG(`) =
∐
t∈T ′

ORAi(Ct).

Suppose ΓxiZK corresponds to wi = [(Ai,Li, φAi)] under (2.23).

Proposition 2.13. Keep the notation being as above. The followings holds.

(1) The pullback of φAi induces an identification between LGi(`) and W (`).

(2) Suppose Ct ∈ LGi(`) corresponds to gtZK ∈ W (`) for t ∈ T under the above identifica-

tion. Let fCt : (Ai,LAi) −→ (Ai,Ct ,LAi,Ct
) be the (`)g-isogeny defined by Ct and suppose

[(Ai,Ct ,L(Ai,Ct
, fCt ◦ φAi)] = wj for some j ∈ {1, . . . , h} and thus fCt is regarded as an

(`)g-isogeny from (Ai,LAi) to (Ai,LAj ). Let f̃Ct : (Ai,LAj ) −→ (Ai,LAi) the (`)g-isogeny

obtained in Proposition 2.2 for fCt. Then it holds

• the kernel of f̃ corresponds to g−1
t ZK under the above identification,

• |RAi| = |Γ̃i|,
• |ORAi(Ct)| = |Ox−1

i Γ̃ixi
(gtKZ)|, |ORAj (Kerf̃Ct)| = |Ox−1

j Γ̃jxj
(g−1
t KZ)|, and

• |RAj | · |ORAi(Ct)| = |RAi| · |ORAj (Kerf̃Ct)|.
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Proof. The claim follows from the construction of (2.23) with Lemma 2.10 through Lemma 2.12.

�

We remark that the fourth claim of (2) in the above proposition was proved in Lemma 3.2 of

[FS21b].

3. A comparison between two graphs

In this section we check, by passing to SSg(p, `, A0,L0), that the graph defined by the spe-

cial 1-complex Gg(Z[1/`])\GSpg(Q`)/ZGSpg(Q`)GSpg(Z`) is naturally identified with Jordan-

Zaytman’s big isogeny graph in [JZ21].

3.1. Jordan-Zaytman’s big isogeny graph. We basically follow the notation in §7.1 and §5.3

of [JZ21]. The (`)g-isogeny (big) graph Grg(`, p) due to Jordan-Zaytman for SSg(p) is defined as

a directed (regular) graph where

• the set of vertices V (Grg(`, p)) is SSg(p), and

• the set of directed edges between two vertices v1 = [(A1,L1)] and v2 = [(A2,L2)] is

the set of equivalence classes of (`)g-isogenies between (A1,L1) and (A1,L1). Here two

isogenies f, h : (A1,L1) −→ (A2,L2) are said to be equivalent if there exist automorphisms

φ ∈ Aut(A1,L1) and ψ ∈ Aut(A2,L2) such that ψ ◦ h = f ◦ φ.

The case when g = 1 is nothing but Pizer’s graph G(1, p; `) handled in [Piz90].

3.2. The (`-marked) (`)g-isogeny graph. Similarly, the (`-marked) (`)g-isogeny graph GSSg (`, p)

for SSg(p, `, A0,L0) is defined as a directed (regular) graph where

• the set of vertices V (GSSg (`, p)) is SSg(p, `, A0,L0) and

• the set of edges between two vertices v1 and v2 is the set of equivalence classes of

(`)g-isogenies between corresponding principally polarized superspecial abelian varieties

commuting with marking isogenies representing v1 and v2 under the identification. In

other words, if v1 and v2 correspond to [(A1,L1, φA1)] and [(A2,L2, φA2)] with `-markings

φA1 : (A0,L0) −→ (A1,L1) and φA2 : (A0,L0) −→ (A2,L2) respectively, then an edge

from v1 to v2 is an (`)g-isogeny f : (A1,L1) −→ (A2,L2) such that two markings f ◦ φA1

and φA2 of (A2,L2) from (A0,L0) differ by only an element in Γ(A0)†.
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3.3. The graph defined by the special 1-complex. Put Γ = Gg(Z[1/`]), G = GSpg(Q`),

Z = ZGSpg(Q`) and K = GSpg(Z`) for simplicity. We consider the graph associated to the

quotient Γ\Sg where Γ = Gg(Z[1/`]) and Sg = GSpg(Q`)/ZGSpg(Q`)GSpg(Z`).
Two elements v1 = Γg1ZK and v2 = Γg2ZK in Γ\G/ZK said to be adjacent if v2 = Γg1gtZK

for some t ∈ T where {gt}t∈T is defined in (2.20).

The graph in question, say BTQ1
g(`, p), is a directed (regular) graph where

• the set of vertices V (BTQ1
g(`, p)) is Γ\G/ZK, and

• the set of directed edges between two vertices v1 = Γg1ZK and v2 = Γg2ZK is defined

by the adjacency condition in the above sense. Namely, an edge from v1 from v2 is gt

with t ∈ T such that v2 = Γg1gtZK.

3.4. Comparison theorem. Let us keep the notation in this section. We define

RA(v) :=

{
RA(A,L) if v = [(A,L)] ∈ SSg(p) or v = [(A,L, φA)] ∈ SSg(p, `, A0,L0),

(Γ ∩ xZKx−1)Z/Z if v = ΓxZK in the case of BTQ1
g(`, p).

Further we also define

Ker(e) :=

{
Ker(f) if e is a class of (`)g-isogeny f in the case of SSg(p) or SSg(p, `, A0,L0),

gt if e is an edge defined by gt, t ∈ T in the case of BTQ1
g(`, p).

We will prove the following comparison theorem which plays an important role in our study:

Theorem 3.1. The identifications (2.18) and (2.19) induce the following graph isomorphisms

Grg(`, p)
(2.18)
∼←− GSSg (`, p)

(2.19)
∼−→ BTQ1

g(`, p).

Further, the following properties are preserved under the isomorphisms:

• the Hecke action of T (`)geo, T (`)geo
(A0,L0), or T (`) on each set of the vertices defines Ng(`)-

neighbors of a given vertex,

• each edge e from v1 to v2 has an opposite ê such that

|RA(v2)| · |ORA(v1)(Ker(e))| = |RA(v1)| · |ORA(v2)(Ker(ê))|

Proof. As in the claim already, the identifications between the sets of vertices are given by (2.18)

and (2.19). The compatibility of the Hecke operators follows from Theorem 2.9 and this yields

the first property in the latter claim. The remaining formula follows from Proposition 2.13. �
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Corollary 3.2. Keep the notation being as above. The random walk matrices for Grg(`, p), GSSg (`, p),

and BTQ1
g(`, p) coincide each other.

We remark that Theorem 2.9 is insufficient to prove the above corollary while Theorem 3.1

tells us more finer information for the relation of the reduced automorphisms and the multiplicity

of each edge.

Remark 3.3. As shown in Theorem 3.1 or Section 3 of [FS21b], the group of reduced automor-

phisms gives a finer structure of its orbit of a given Lagragian subspace defining an (`)g-isogeny.

The edges in Figure 1.1 can be more precise as in the figure in 7A, p.297 of [KT20].

4. Bruhat-Tits buildings for symplectic groups

In this and the following chapter, we introduce a more general framework than the case to

which we apply. The purpose is to simplify the notations and to indicate that the methods we

use are applicable in a wider context. The reader may assume that F = Q` and $ = ` in the

following discussion.

4.1. Symplectic groups revisited for the buildings. Let F be a non-archimedean local field

of characteristic different from 2 and O be the ring of integers. We fix a uniformizer $ and

identify the residue field O/$O with a finite field Fq of order q. Further we denote by F× and

O× the multiplicative groups in F and O respectively. Let ord$ be a discrete valuation in F ,

normalized so that ord$(F×) = Z. For example, we consider the `-adic field Q` for a prime `

with the ring of integers Z`, where ` is a uniformizer and the residue field is F` = Z/`Z.

For a positive integer n, let V := F 2n be the symplectic space over F equipped with the

standard symplectic pairing 〈∗, ∗〉 defined by 〈v, w〉 = tvJnw for v, w ∈ F 2n. For V , there exists

a basis {v1, . . . , vn, w1, . . . , wn} such that

〈vi, wj〉 = δij and 〈vi, vj〉 = 〈wi, wj〉 = 0 for any i, j = 1, . . . , n,

where δij equals 1 if i = j and 0 if i 6= j, and we call it a symplectic basis of (V, 〈∗, ∗〉). Each

choice of a symplectic basis yields an isomorphism between the isometry group and Spn(F ).

Note that the following elements are in GSpn(F ),

tλ := diag(1, . . . , 1, λ, . . . , λ) =

(
In 0

0 λIn

)
for λ ∈ F×.
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(See also Section 1.4). In the subsequent sections, we consider the projectivised groups: let

PSpn(F ) and PGSpn(F ) be the groups Spn(F ) and GSpn(F ) modulo the centers respectively.

If we naturally identify PSpn(F ) with a normal subgroup of PGSpn(F ), then the quotient

group PGSpn(F )/PSpn(F ) is isomorphic to (Z/2Z) × O×, which is generated by the images

of tλ = diag(1, . . . , 1, λ, . . . , λ) for λ ∈ $O×. Similarly, letting PSpn(O) and PGSpn(O) be

the groups Spn(O) and GSpn(O) modulo the centers respectively, we identify PSpn(O) with a

subgroup in PGSpn(O).

4.2. Bruhat-Tits building: the construction. Let (V, 〈∗, ∗〉) be a symplectic space over F

of dimension 2n. We define a lattice Λ in V as a free O-module of rank 2n. Note that if Λ is a

lattice, then Λ/$Λ is a vector space over Fq of dimension 2n. We say that a lattice Λ is primitive

if

〈Λ,Λ〉 ⊆ O where 〈Λ,Λ〉 := {〈v, w〉 | v, w ∈ Λ},

and 〈∗, ∗〉 induces a non-degenerate alternating form on Λ/$Λ over Fq.
Let Λi for i = 1, 2 be lattices in V , and we say that they are homothetic if

Λ1 = αΛ2 for some α ∈ F×.

This defines an equivalence relation in the set of lattices in V . We denote the homothety class

of a lattice Λ by [Λ]. Let us define the set Ln of homothety classes [Λ] of lattices such that there

exist a representative Λ of [Λ] and a primitive lattice Λ0 satisfying that

$Λ0 ⊆ Λ ⊆ Λ0 and 〈Λ,Λ〉 ⊆ $O .

By the definition, if [Λ] ∈ Ln, then a representative Λ yields a subspace Λ/$Λ0 of Λ0/$Λ0

with some primitive lattice Λ0 such that it is totally isotropic, i.e., the induced non-degenerate

alternating form 〈∗, ∗〉 vanishes on Λ/$Λ0 in Λ0/$Λ0. Further we define the incidence relation

in Ln and denote by [Λ1] ∼ [Λ2] for two distinct homothety classes if there exist representatives

Λi of [Λi] for i = 1, 2 and a primitive lattice Λ0 such that

$Λ0 ⊆ Λi ⊆ Λ0 for i = 1, 2,

and either Λ1 ⊆ Λ2 or Λ2 ⊆ Λ1 holds.

The Bruhat-Tits building Bn (in short, building) for the group PGSpn(F ) (or Spn(F )) is the

clique complex whose set of vertices Ver(Bn) is Ln, i.e., σ ⊂ Ver(Bn) defines a simplex if any

distinct vertices in σ are incident. The building Bn is a simplicial complex of dimension n; note
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that each chamber (i.e., a simplex of maximal dimension) [Λ0], [Λ1], . . . , [Λn] corresponds to a

sequence of lattices

Λ0 ⊆ Λ1 ⊆ · · · ⊆ Λn ⊆ $−1Λ0,

where $−1Λ0 is primitive, such that

{0} ⊆ Λ1/Λ0 ⊆ Λ2/Λ0 ⊆ · · · ⊆ Λn/Λ0 ⊆ $−1Λ0/Λ0

forms a complete flag of a maximal totally isotropic subspace Λn/Λ0 in $−1Λ0/Λ0 over Fq.
The group Spn(F ) acts on Bn as simplicial automorphisms: let us fix a symplectic basis

{v1, . . . , vn, w1, . . . , wn} of (V, 〈∗, ∗〉), which we identify with the standard symplectic space over

F . Then the action is defined by [Λ] 7→ [MΛ] for [Λ] ∈ Ver(Bn) and M ∈ Spn(F ), and this

action is simplicial since it preserves the incidence relation. Moreover, this yields the action of

the projectivised group PSpn(F ) on Bn.

We define the label (or, color) on the set of vertices Ver(Bn). For any lattice Λ, there exists

some γ ∈ GL2n(F ) such that γu1, . . . , γwn form an O-basis of Λ. Let

labn[Λ] := ord$(det γ) mod 2n.

Note that this depends only on the homothety class of Λ since det(αγ) = α2n det(γ) for α ∈ F×

and for γ ∈ GL2n(F ), and det γ ∈ O× for γ ∈ GL2n(O). Hence the function labn : Ver(Bn) →
Z/2nZ is well-defined and we call labn[Λ] the label of a vertex [Λ] ∈ Ver(Bn). For example, let

us consider a sequence of lattices Λ0, . . . ,Λn, where

(4.1) Λk := Ou1 ⊕ · · · ⊕Ouk ⊕O$uk+1 ⊕ · · · ⊕O$w1 ⊕ · · · ⊕O$wn for 0 ≤ k < n,

and Λn := Ou1 ⊕ · · · ⊕Oun ⊕O$w1 ⊕ · · · ⊕O$wn. Then Λ0 ⊆ · · · ⊆ Λn ⊆ $−1Λ0 and $−1Λ0

is primitive, and since the chain Λ1/Λ0 ⊆ · · · ⊆ Λn/Λ0 forms a maximal totally isotropic flag

in $−1Λ0/Λ0 over Fq, the corresponding homothety classes [Λ0], . . . , [Λn] define a chamber in

Bn. In this case, we have that labn[Λk] = 2n − k mod 2n for 0 ≤ k ≤ n. We call the chamber

determined by [Λ0], . . . , [Λn] the fundamental chamber C0. Here we note that labn misses the

values 1, . . . , n − 1 in Z/2nZ. It is known that Spn(F ) acts transitively on the set of chambers

[Gar97, Section 20.5], i.e., every chamber is of the form γC0 for γ ∈ Spn(F ). By definition,

the action of Spn(F ) preserves the labels on Ver(Bn). It thus implies that the action is not

vertex-transitive for any n ≥ 1.



ISOGENY GRAPHS ON SUPERSPECIAL ABELIAN VARIETIES 29

4.3. Apartments. Let us introduce a system of apartments in the building Bn, following [Gar97,

Chapter 20] and [She07]. A frame is an unordered n-tuple,

{λ1
1, λ

2
1}, . . . , {λ1

n, λ
2
n},

such that each {λ1
i , λ

2
i } is an unordered pair of lines which span a 2-dimensional symplectic

subspace with the induced alternating form for i = 1, . . . , n, and

V = V1 ⊕ · · · ⊕ Vn where Vi := λ1
i ⊕ λ2

i and Vi⊥Vj if i 6= j,

i.e., 〈v, v′〉 = 0 for all v ∈ Vi and all v′ ∈ Vj if i 6= j. An apartment defined by a frame {λ1
i , λ

2
i }

for i = 1, . . . , n is a maximal subcomplex of Bn on the set of vertices [Λ] such that

Λ =

n⊕
i=1

(
M1
i ⊕M2

i

)
where M j

i is a rank one free O-module in λji for j = 1, 2,

for some (equivalently, every) representative Λ in the homothety class. We define a system of

apartments as a maximal set of apartments.

Following [She07], we fix a symplectic basis {u1, . . . , un, w1, . . . , wn} of V and a uniformizer $

in F and lighten the notation: we denote a lattice

Λ = O$a1u1 ⊕ · · · ⊕O$anun ⊕O$b1w1 ⊕ · · · ⊕O$bnwn for ai, bi ∈ Z, i = 1, . . . , n,

by Λ = (a1, . . . , an; b1, . . . , bn), and the homothety class by [Λ] = [a1, . . . , an; b1, . . . , bn]. For Λ, we

have 〈Λ,Λ〉 ⊂ O if and only if 〈$aiui, $
biwi〉 = $ai+bi ∈ O for all i = 1, . . . , n. This is equivalent

to that ai + bi ≥ 0 for all i = 1, . . . , n, in which case, Λ/$Λ is a non-degenerate alternating space

with the induced form over the residue field O/$O if and only if ai + bi = 0 for all i = 1, . . . , n.

For the fixed basis, let λ1
i := Fui and λ2

i := Fwi for i = 1, . . . , n. The frame {λ1
i , λ

2
i }i=1,...,n de-

termines an apartment Σ0 in the building Bn for Spn(F ). We call Σ0 the fundamental apartment.

The chain of lattice Λ0 ⊆ · · · ⊆ Λn in (4.1) defines a chamber C0 in Σ0 containing [Λ0]:

Λ0 = (1, . . . , 1; 1, . . . , 1) ⊂ (0, 1, 1, . . . , 1; 1, . . . , 1)

⊂ (0, 0, 1, . . . , 1; 1, . . . , 1) ⊂ · · · ⊂ (0, 0, . . . , 0; 1, . . . , 1) ⊂ $−1Λ0.

Moreover, the following chain

Λ0 = (1, . . . , 1; 1, . . . , 1) ⊂ (1, 0, 1, . . . , 1; 1, . . . , 1)

⊂ (0, 0, 1, . . . , 1; 1, . . . , 1) ⊂ · · · ⊂ (0, 0, . . . , 0; 1, . . . , 1) ⊂ $−1Λ0,
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where the lattices are the same as above except for the second one, defines a chamber which

shares a codimension one face with C0.

We shall see the rest of chambers in the apartment Σ0 by an action of the affine Weyl group

attached to the building. Denoting by N0 and by I0 the subgroups preserving Σ0 (as a set) and

C0 (pointwise) in Spn(F ) respectively, the affine Weyl group is isomorphic to N0/(N0∩I0), which

naturally acts on the chambers in Σ0 transitively. For Spn(F ), the affine Weyl group is of type

C̃n with the Coxeter diagram

1 2 3 n− 1 n n+ 1

on (n+ 1) vertices. Each vertex i in the Coxeter diagram corresponds to a reflection si satisfying

that s2
i = 1 and sisj has order mij , where

m12 = mn(n+1) = 4, mi(i+1) = 3 for i 6= 1, n, and mij = 2 otherwise.

The affine Weyl group of type C̃n is generated by s1, . . . , sn+1. Given the symplectic basis

{u1, . . . , un, w1, . . . , wn}, the action on it is realized as in the following:

s1 exchanges un and wn, and fixes the others,

sj (2 ≤ j ≤ n) exchanges un−j+1 and un−j+2, and wn−j+1 and wn−j+2 simultaneously

and fixes the others, and

sn+1 maps u1 to $w1 and w1 to $−1u1 and fixes the others.

In the fundamental apartment Σ0, denoting a vertex by [a1, . . . , an; b1, . . . , bn], we have that

s1[a1, . . . , an; b1, . . . , bn] = [a1, . . . , an−1, bn; b1, . . . , bn−1, an],

sj [a1, . . . , an; b1, . . . , bn]

= [a1, . . . , an−j+2, an−j+1, . . . , an; b1, . . . , bn−j+2, bn−j+1, . . . , bn] for 2 ≤ j ≤ n,

and

sn+1[a1, . . . , an; b1, . . . , bn] = [b1 − 1, a2, . . . , an; a1 + 1, b2, . . . , bn].

A direct computation shows that s1, . . . , sn+1 satisfy the indicated Coxeter data. Deleting either

s1 or sn+1 yields a group isomorphic to the spherical Weyl group of type Cn. Note that the vertex

v = [a1, . . . , an; b1, . . . , bn] is fixed by si for 1 ≤ i ≤ n if and only if ai = bj for all 1 ≤ i, j ≤ n,

and v is fixed by si for 2 ≤ i ≤ n + 1 if and only if ai = bi − 1 for all 1 ≤ i ≤ n. In the

fundamental chamber C0, such vertices are [Λ0] = [1, . . . , 1; 1, . . . , 1] and [Λn] = [0, . . . , 0; 1, . . . , 1]
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[2, 0; 0, 2] [2, 0; 0, 1] [2, 1; 0, 1] [2, 1; 0, 0] [−1, 0; 3, 2]

[1, 0; 0, 2] [1, 0; 0, 1] [1, 1; 0, 1] [1, 1; 0, 0] [1, 2; 0, 0]

[1, 0; 1, 2] [1, 0; 1, 1] [1, 1; 1, 1] [1, 1; 1, 0] [1, 2; 1, 0]

[0, 0; 1, 2] [0, 0; 1, 1] [0, 1; 1, 1]

C0 s1C0

s2C0

s3C0

[0, 1; 1, 0] [0, 2; 1, 0]

[0, 0; 2, 2] [0, 0; 2, 1] [0, 1; 2, 1] [0, 1; 2, 0] [0, 2; 2, 0]

Figure 4.1. A part of the fundamental apartment Σ0 with the chambers

C0, s1C0, s2C0 and s3C0 for n = 2.

respectively. Although we do not use the fact, it is useful to note that the spherical Weyl group

Cn is isomorphic to the signed permutation group (Z/2Z)n oSn whose order is 2nn!.

Example 4.1. If n = 2, then we have 8 chambers containing vertex [Λ0] = [1, 1; 1, 1] in a fixed

apartment, where the fundamental chamber C0 is defined by the chain

Λ0 = (1, 1; 1, 1) ⊂ (0, 1; 1, 1) ⊂ (0, 0; 1, 1) ⊂ (0, 0; 0, 0) = $−1Λ0.

The locations of chambers C0, s1C0, s2C0 and s3C0 are indicated for generators s1, s2, s3 of C̃2 in

Figure 4.1.

4.4. Self-dual vertices. For any lattice Λ in a symplectic space (V, 〈∗, ∗〉), let us define the dual

by

Λ∗ := {v ∈ V | 〈v, w〉 ∈ O for all w ∈ Λ}.

Note that Λ∗ is also a lattice in V . For every α ∈ F×, we have that (αΛ)∗ = α−1Λ∗, whence the

homothety class [Λ∗] depends only on [Λ]. Let us call a vertex [Λ] in the building Bn self-dual if

[Λ∗] = [Λ]. Below we characterize self-dual vertices in terms of labels—it is essentially proved in

[She07, Proposition 3.1]; we give a proof for the sake of completeness.

Lemma 4.2. Fix an integer n ≥ 1. For [Λ] ∈ Ver(Bn), we have that [Λ∗] = [Λ] if and only if

labn[Λ] = 0 or n mod 2n.
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Proof. Fix a symplectic basis of the space over F and identify the space with the standard

symplectic space over F . Let Λ0, . . . ,Λn be the sequence of lattices (4.1) whose homothety

classes form the fundamental chamber C0 in the building Bn. Note that Λ0 is primitive and

Λ∗0 = Λ0. For any lattice Λ, there exist γ1, γ2 ∈ GL2n(F ) such that Λ = γ1Λ0 and Λ∗ = γ2Λ0.

Since 〈Λ∗,Λ〉 ⊂ O , we have that tγ1γ2 ∈ GL2n(O), and thus det tγ1γ2 ∈ O×. This implies that

labn[Λ∗] = ord$(det γ2) = −ord$(det γ1) = −labn[Λ] mod 2n.

Therefore if [Λ∗] = [Λ], then 2labn[Λ] = 0 mod 2n, i.e., labn[Λ] = 0 or n mod 2n. Conversely

if labn[Λ] = 0 or n mod 2n, then Λ = γΛ0 or γΛn for some γ ∈ Spn(F ) since Spn(F ) acts on

Bn transitively on chambers and preserves the labels of vertices. Noting that [Λ∗0] = [Λ0] and

[Λ∗n] = [Λn], as well as Λ∗ = γΛ∗0 if Λ = γΛ0, and Λ∗ = γΛ∗n if Λ = γΛn for γ ∈ Spn(F ), we

conclude that [Λ∗] = [Λ], as required. �

Remark 4.3. If n ≥ 2, then for the vertices [Λ] ∈ Ver(Bn) with labn[Λ] 6= 0, n mod 2n, the

homothety class [Λ∗] does not define a vertex, i.e., [Λ∗] /∈ Ver(Bn). Indeed, for the vertex [Λ] of

label k mod 2n, the homothety class of the dual [Λ∗] has the label 2n− k mod 2n. For example,

if n = 2, then for the lattice Λ1 in (4.1), we have

Λ∗1 = O$−1u1 ⊕O$−1u2 ⊕Ow1 ⊕O$−1w2,

and [Λ∗1] has the label 1 mod 2n, and thus it does not belong to Ver(B2).

4.5. Special vertices and the special 1-complex. For [Λ] ∈ Ver(Bn), let us call [Λ] a special

vertex if [Λ∗] = [Λ]. We define the special 1-complex Sn as a 1-dimensional subcomplex of Bn
based on the set of special vertices

Ver(Sn) :=
{

[Λ] ∈ Ver(Bn) | [Λ∗] = [Λ]
}
,

and 1-simplices (edges) are defined between two incident vertices in Bn (cf. Section 4.1): for [Λ1],

[Λ2] in Ver(Sn), we have [Λ1] ∼ [Λ2] if and only if there exist representatives Λ1 and Λ2 from [Λ1]

and [Λ2] respectively such that either $−1Λ1 is primitive and Λ1 ⊆ Λ2 ⊆ $−1Λ1, or the analogous

relation where the roles of Λ1 and Λ2 are interchanged holds. Note that since special vertices are

those that are self-dual, if $−1Λ1 is primitive, then Λ2/Λ1 is a maximal totally isotropic subspace

of $−1Λ1/Λ1 over Fq.
Lemma 4.2 shows that [Λ] ∈ Ver(Sn) if and only if labn[Λ] = 0 or n mod 2n, and we will see

that Sn is connected (Proposition 4.4 below). Although we do not use it in our main discussion, it
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is useful to point out here that Sn admits a structure of bipartite graph. Namely, if we decompose

the set of vertices into two sets: the one of those with label 0 mod 2n and the other of those

with label n mod 2n, then the two extreme vertices of each edge have distinct labels.

We note that GSpn(F ) does not act on Bn through the linear transformation of lattices. Indeed,

a vertex of label 2n − 1 mod 2n in the fundamental chamber C0 is sent by t$ ∈ GSpn(F ) to a

vertex of label n− 1 mod 2n, which does not belong to Ver(Bn). However, restricted on Sn, the

group GSpn(F ) acts on Sn. Moreover, the action of GSpn(F ) on Sn is vertex-transitive since for

t$ = diag(1, . . . , 1, $, . . . ,$) in GSpn(F ), we have that

t$[Λ0] = [Λn] where t$ =

(
In 0

0 $In

)
and [Λ0], [Λn] ∈ C0.

Note that t$ permutes the labels on Ver(Sn). This defines the action of PGSpn(F ) on Sn.

Letting o := [Λ0], we identify the stabilizer of o in PGSpn(F ) with K := PGSpn(O). If we

define

Son := Spn(F )o and So−n := t$Son,

then

Ver(Sn) = Son
⊔
So−n ,

and every edge in Sn has one vertex in Son and the other vertex in So−n . The following proposition

has been shown by Shemanske; we give a proof for the sake of convenience.

Proposition 4.4 (Proposition 3.6 in [She07]). For every integer n ≥ 1, the special 1-complex Sn
is connected.

Proof. Given two special vertices (which are not incident each other), let us take two chambers in

such a way that each chamber contains either one or the other vertex. Since for any two chambers

there exists an apartment which contains both of them, applying an isometry of the building if

necessary, we may assume that they are within the fundamental apartment Σ0, and further one

of them is the fundamental chamber C0. Noting that each reflection in the affine Weyl group

maps C0 to an adjacent chamber which shares at least one special vertex with C0. The other

chamber is obtained by a successive application of reflections to C0 and in the resulting sequence

of chambers (called a gallery) we find an edge path (consisting of special vertices) connecting the

given two special vertices. This shows that any two special vertices are connected by an edge

path in the subcomplex based on the special vertices, i.e., Sn is connected. �
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5. Property (T) and spectral gaps

5.1. Property (T). Let G be a topological group and (π,H) be a unitary representation of G,

where we assume that any Hilbert space H is complex. For any compact subset Q in G, let

κ(G,Q, π) := inf
{

max
s∈Q
‖π(s)ϕ− ϕ‖ | ϕ ∈ H, ‖ϕ‖ = 1

}
,

and further let

κ(G,Q) := inf κ(G,Q, π),

where the above infimum is taken over all equivalence classes of unitary representations (π,H)

without non-zero invariant vectors. We call κ(G,Q) the optimal Kazhdan constant for the pair

(G,Q). We say thatG has Property (T) if there exists a compact setQ inG such that κ(G,Q) > 0.

It is known that for a local field F , if n ≥ 2, then Spn(F ) has Property (T), while if n = 1, then

Sp1(F ) = SL2(F ) and it fails to have Property (T) [BHV08, Theorem 1.5.3 and Example 1.7.4].

For any n ≥ 2, PSpn(F ) has Property (T) since Spn(F ) does [BHV08, Theorem 1.3.4]. Simi-

larly, for any n ≥ 2, the group PGSpn(F ) has Property (T) since PGSpn(F )/PSpn(F ) admits

a finite invariant Borel regular measure (see Section 4.1 and [BHV08, Theorem 1.7.1]). (We note

that for any n ≥ 1, the group GSpn(F ) does not have Property (T) because it admits a surjective

homomorphism onto Z [BHV08, Corollary 1.3.5].)

We say that a subset Q of G is generating if the sub-semigroup generated by Q coincides with

G. If G has Property (T) and Q is an arbitrary compact generating set of G (provided that it

exists), then κ(G,Q) > 0 [BHV08, Proposition 1.3.2]. We will construct an appropriate compact

generating set in the following.

5.2. A random walk operator. In this section, fix an integer n ≥ 1. Recall that K =

PGSpn(O), and letting o := [Λ0], we identify K with the stabilizer of o in PGSpn(F ). Let

a := [t$] ∈ PGSpn(F ), and let us choose ξi ∈ PSpn(F )(⊂ PGSpn(F )) for i = 0, 1, . . . , n + 1

such that ξ0 := id and for i = 1. . . . , n+1 each ξi projects onto the reflection si in the affine Weyl

group acting on the fundamental apartment Σ0.

Let us define a subset Ω := {kξiak′, k(ξia)−1k′ | k, k′ ∈ K, i = 0, . . . , n + 1} in PGSpn(F ),

where we simply write

Ω = KΩ0K, where Ω0 := {ξ0a, . . . , ξn+1a, (ξ0a)−1, . . . , (ξn+1a)−1}.

Note that Ω is compact and symmetric, i.e., x ∈ Ω if and only if x−1 ∈ Ω. Let ν be a Haar measure

on K normalized so that ν(K) = 1. Let us define the probability measure µ on PGSpn(F ) as
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the distribution of kζk′ where k, k′ and ζ are independent and k, k′ are distributed according to

ν and ζ is uniformly distributed on {ξia, (ξia)−1 | i = 0, . . . , n+ 1}. In other words,

µ = ν ∗UnifΩ0 ∗ ν, where UnifΩ0 :=
1

2(n+ 2)

n+1∑
i=0

(
δξia + δ(ξia)−1

)
,

and δx denotes the Dirac distribution at x; furthermore the convolution µ1 ∗µ2 of two probability

measures µ1, µ2 on a group G is defined by

µ1 ∗ µ2(A) = µ1 × µ2 ({(γ1, γ2) ∈ G×G | γ1γ2 ∈ A}) ,

for any measurable set A in G. Note that the support of µ is Ω. For any positive integers t ≥ 1,

we denote by µ∗t the t-th convolution power of µ, i.e., µ∗1 := µ and µ∗(t+1) = µ∗t ∗ µ for t ≥ 1.

If we define the probability measure µ̌ on PGSpn(F ) as the distribution of x−1 where x has the

law µ, then the definition of µ implies that

(5.1) µ̌ = µ.

Lemma 5.1. We have the following:

(1) The set Ω is generating in PGSpn(F ), i.e., Ω generates PGSpn(F ) as a semigroup.

(2) Fix an integer n ≥ 1. The double coset K\Ω/K is represented by a finite set Ω0 =

{ξia, (ξia)−1, i = 0, . . . , n+ 1} and

min
KγK∈K\Ω/K

µ(KγK) =
1

2(n+ 2)
.

Moreover, if γ is distributed according to µ on PGSpn(F ), then γo is uniformly distributed

on the set of incident vertices to o = [Λ0] in Sn.

Proof. Let us show (1). If we letK0 := PSpn(O) and define ∆ inK(= PGSpn(O)) as the image of

{tλ | λ ∈ O×}, then since K contains K0 and ∆, and Ω contains K{a, a−1}K, the set Ω·Ω contains⋃n+1
i=1 K0ξiK0 as well as K (and thus K0 and ∆). The group K0 acts on the set of apartments

containing o = [Λ0] transitively, and this implies that
⋃n+1
i=1 K0ξiK0 generates PSpn(F ) as a

semigroup, which follows by looking at the induced action of reflections on apartments as in

Proposition 4.4. Since the quotient PGSpn(F ) modulo PSpn(F ) is generated by the images of

{a, a−1} and ∆ (cf. Section 4.1), we conclude that Ω generates PGSpn(F ) as a semigroup.

Let us show (2). The first claim follows since Ω = KΩ0K and the definition of µ shows that

µ yields the uniform distribution on K\Ω/K. Concerning the second claim, in the fundamental

apartment Σ0 we note that ξiao = t$o if i 6= 1 and ξ1ao = s1t$o, and (ξia)−1o = t−1
$ o if
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i 6= n + 1 and (ξn+1a)−1o = s∗t$o where s∗ is a product of s1, s2, . . . , sn with some repetitions;

we note that such an element s∗ fixes o since it belongs to the spherical Weyl group. Furthermore

K0(= PSpn(O)) acts on the set of apartments containing o and if we apply k whose distribution

is the normalized Haar measure on K(= PGSpn(O)) to an incidence vertex v of o, then kv is

uniformly distributed on the incident vertices of o. This implies the claim. �

For simplicity of notation, let G := PGSpn(F ) in the following discussion. Recall that

Ver(Sn) = Go. We define the Hilbert space

`2(Sn) :=

{
ϕ : Ver(Sn)→ C |

∑
v∈Ver(Sn)

|ϕ(v)|2 <∞

}
,

equipped with the inner product

〈ϕ,ψ〉 :=
∑

v∈Ver(Sn)

ϕ(v)ψ(v), for ϕ,ψ ∈ `2(Sn).

Let us define an operator Aµ : `2(Sn)→ `2(Sn) by

Aµϕ(ξo) =

∫
G
ϕ(ξγo)dµ(γ) for ξ ∈ G.

Note that Aµ is well-defined by the definition of µ since Ver(Sn) = Go and K is the stabilizer of

o. Lemma 5.1 (2) shows that Aµ is the normalized adjacency operator on Sn. Since µ̌ = µ by

(5.1), the operator Aµ is self-adjoint on `2(Sn). Similarly if we define Aµ∗t : `2(Sn)→ `2(Sn) for

any positive integer t ≥ 1,

Aµ∗tϕ(ξo) =

∫
G
ϕ(ξγo)dµ∗t(γ) for ξ ∈ G,

then we have that by induction

Atµ = Aµ∗t for all positive integer t ≥ 1.

Let us consider any closed subgroup Γ of G such that Γ acts on Sn from left with a compact

quotient space Γ\Sn, where the action is given by

(γ, v) 7→ γv for γ ∈ Γ and v ∈ Sn.

Since Γ acts on Sn by simplicial automorphisms (as PGSpn(F ) does), the quotient Γ\Sn naturally

admits a finite (unoriented) graph structure induced from Sn. Let us denote the finite graph by

the same symbol Γ\Sn. Note that since Sn is connected by Proposition 4.4, the graph Γ\Sn is

connected for any such Γ. Here, however we do not assume that Γ is torsion-free, thus the graph
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Γ\Sn may have loops and not regular. Although Sn admits a bipartite graph structure, Γ\Sn is

not necessarily bipartite unless Γ factors through PSpn(F ).

For each v ∈ Sn, let

Γv := {γ ∈ Γ | γv = v}.

Note that Γv is finite; indeed, if v = ξo for ξ ∈ G, then ξ−1Γvξ is in K. Since Γ is a discrete

subgroup of G and K is compact, Γv is a finite group. Since Γγv = γΓvγ
−1 for γ ∈ Γ and v ∈ Sn,

whence |Γv| is independent of the choice of representatives for v ∈ Γ\Sn. Similarly, for v, w ∈ Sn
such that v and w are adjacent in Sn, we define

Γv,w := Γv ∩ Γw.

Considering the diagonal action of Γ on Sn×Sn, we note that |Γv,w| is independent of the choice

of representatives for [v, w] in Γ\(Sn × Sn). Let us define `2(Γ\Sn) the space of complex-valued

functions on Γ\Sn equipped with the inner product defined by

〈ϕ,ψ〉 :=
∑

v∈Γ\Sn

ϕ(v)ψ(v)
1

|Γv|
for ϕ,ψ ∈ `2(Γ\Sn).

The group Γ acts on `2(Sn) by ϕ 7→ ϕ ◦ γ−1 for γ ∈ Γ and ϕ ∈ `2(Sn), and since this Γ-action

and Aµ on `2(Sn) commute, the following operator AΓ,µ on `2(Γ\Sn) is well-defined:

AΓ,µϕ(Γξo) =

∫
G
ϕ(Γξγo)dµ(γ) for Γξo ∈ Γ\Sn and ϕ ∈ `2(Γ\Sn).

Note that since Aµ defines the simple random walk on Sn, i.e., at each step the random walk

jumps to a nearest neighbor vertex with equal probability 1/D (where D is the degree of Sn), the

operator AΓ,µ defines a random walk (a Markov chain) on Γ \ Sn with the transition probability

p(Γξo,Γξγo) =
∑
[v,w]

|Γv|
D|Γv,w|

,

where the summation runs over all those [v, w] ∈ Γ\(Sn × Sn) such that v and w are adjacent,

Γv = Γξo and Γw = Γξγo, and we set the probability 0 if there is no such pair [v, w]. (We recall

that D = Ng(`) if F = Q` and n = g.) Since |Γv,w| = |Γw,v| for all [v, w] in Γ\(Sn×Sn), we have

that

1

|Γv|
p(v, w) =

1

|Γw|
p(w, v) for v, w ∈ Γ\Sn,
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the associated random walk on Γ\Sn is reversible with respect to the measure 1/|Γv| for each

vertex v. This implies that AΓ,µ is self-adjoint, i.e.,

〈AΓ,µϕ,ψ〉 = 〈ϕ,AΓ,µψ〉 for ϕ,ψ ∈ `2(Γ\Sn).

Moreover, AΓ,µ∗t is defined by

AΓ,µ∗tϕ(Γξo) =

∫
G
ϕ(Γξγo)dµ∗t(γ) for Γξo ∈ Γ\Sn and ϕ ∈ `2(Γ\Sn),

and AtΓ,µ = AΓ,µ∗t holds for any positive integer t ≥ 1.

5.3. Spectral gap. We normalize the Haar measure on G in such a way that K has the unit

mass. Let L2(Γ\G) denote the complex L2-space with respect to the (right) Haar measure for

which each double coset ΓξK has the mass 1/|ξ−1Γξ ∩ K|. Note that the mass coincides with

1/|Γξo| since Γξo = Γ∩ξKξ−1. We consider L2(Γ\G)K the subspace of K-fixed vectors in L2(Γ\G)

and naturally identify it with `2(Γ\Sn) (including the inner product). Let us define the unitary

representation π of G on L2(Γ\G) by

π(γ)ϕ(Γξ) = ϕ(Γξγ) for ϕ ∈ L2(Γ\G) and ξ, γ ∈ G.

Note that ϕ ∈ L2(Γ\G)K if and only if π(k)ϕ = ϕ for all k ∈ K.

Let

TΓ(γ)ϕ(Γξ) :=

∫
K
ϕ(Γξkγ) dν(k) for ϕ ∈ L2(Γ\G) and γ ∈ G,

where we recall that ν is the normalized Haar measure on K.

Lemma 5.2. For every n ≥ 1, and for all ϕ ∈ L2(Γ\G)K , we have that

AΓ,µϕ =
1

2(n+ 2)

∑
γ∈Ω0

TΓ(γ)ϕ.

Moreover, for all γ ∈ Γ and for all ϕ1, ϕ2 ∈ L2(Γ\G)K , we have that

〈TΓ(γ)ϕ1, ϕ2〉 = 〈π(γ)ϕ1, ϕ2〉.
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Proof. First let us show the first claim. Recalling that µ = ν ∗UnifΩ0 ∗ ν, for ϕ ∈ L2(Γ\G)K and

ξ, γ ∈ G, we have that

AΓ,µϕ(Γξ) =

∫
G
ϕ(Γξγ) dµ(γ)

=

∫
K×Ω0×K

ϕ(Γξk1γk2) dν(k1)dUnifΩ0(γ)dν(k2)

=
1

2(n+ 2)

∑
γ∈Ω0

∫
K
ϕ(Γξkγ) dν(k) =

1

2(n+ 2)

∑
γ∈Ω0

TΓ(γ)ϕ(Γξ),

where the third equality follows since ϕ is a K-fixed vector and the last identity follows from the

definition of TΓ(γ). Hence the first claim holds.

Next let us show the second claim. If we denote the right-invariant Haar measure on Γ\G by

mΓ\G, then

〈TΓ(γ)ϕ1, ϕ2〉 =

∫
Γ\G

(∫
K
ϕ1(Γξkγ) dν(k)

)
ϕ2(Γξ) dmΓ\G(ξ)

=

∫
K

∫
Γ\G

ϕ1(Γξkγ)ϕ2(Γξ) dmΓ\G(ξ) dν(k)

=

∫
K

∫
Γ\G

ϕ1(Γξγ)ϕ2(Γξ) dmΓ\G(ξ) dν(k)

=

∫
Γ\G

ϕ1(Γξγ)ϕ2(Γξ) dmΓ\G(ξ) = 〈π(γ)ϕ1, ϕ2〉,

where the second equality follows by the Fubini theorem and the third equality holds under the

change of variables Γξ 7→ Γξk since mΓ\G is right-invariant, ϕ2 is a K-fixed vector, and ν is

normalized so that ν(K) = 1. We conclude the second claim. �

Let us define

`20(Γ\Sn) :=

{
ϕ ∈ `2(Γ\Sn) |

∑
Γv∈Γ\Sn

ϕ(Γv)
1

|Γv|
= 0

}
,

i.e., `20(Γ\Sn) is the orthogonal complement to the space of constant functions in `2(Γ\Sn). Note

that AΓ,µ acts on `20(Γ\Sn) since the operator is self-adjoint.

Given the right representation (π, L2(Γ\G)), letting L2
0(Γ\G) be the orthogonal complement

to constant functions in L2(Γ\G), we define (π0, L
2
0(Γ\G)) by restricting π to L2

0(Γ\G). The

space `20(Γ\Sn) is identified with the space of K-fixed vectors in L2
0(Γ\G) under the identification

between `2(Γ\Sn) and L2(Γ\G)K . It is crucial that π0 has no non-zero invariant vector.
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Proposition 5.3. For every n ≥ 1, let Γ be a closed subgroup of G = PGSpn(F ) such that Γ\Sn
is finite. For all ϕ ∈ `20(Γ\Sn) with ‖ϕ‖ = 1, we have that

〈(I −AΓ,µ)ϕ,ϕ〉 ≥ 1

4(n+ 2)
κ(G,Ω)2,

where κ(G,Ω) is the optimal Kazhdan constant for the pair (G,Ω).

Proof. For ϕ ∈ `20(Γ\Sn), it follows that

〈(I −AΓ,µ)ϕ,ϕ〉 = 〈ϕ,ϕ〉 − 1

2(n+ 2)

∑
γ∈Ω0

〈TΓ(γ)ϕ,ϕ〉

= 〈ϕ,ϕ〉 − 1

2(n+ 2)

∑
γ∈Ω0

〈π(γ)ϕ,ϕ〉 =
1

4(n+ 2)

∑
γ∈Ω0

‖ϕ− π0(γ)ϕ‖2,

where identifying ϕ with a K-fixed vector, we have used Lemma 5.2 in the first and second lines,

and the last equality follows since π0 is the restriction of π and

‖ϕ− π0(γ)ϕ‖2 = 〈ϕ,ϕ〉 − 〈π0(γ)ϕ,ϕ〉 − 〈π0(γ−1)ϕ,ϕ〉+ 〈π0(γ)ϕ, π0(γ)ϕ〉,

and π0(γ) is unitary, and furthermore γ ∈ Ω0 if and only if γ−1 ∈ Ω0. Moreover, we have that∑
γ∈Ω0

‖ϕ− π0(γ)ϕ‖2 ≥ max
γ∈Ω0

‖ϕ− π0(γ)ϕ‖2 = max
γ∈Ω
‖ϕ− π0(γ)ϕ‖2,

which follows from the first claim of Lemma 5.1 (2) and since ϕ is a K-fixed vector and π0 is a

unitary representation. Therefore we obtain

〈(I −AΓ,µ)ϕ,ϕ〉 ≥ 1

4(n+ 2)
max
γ∈Ω
‖ϕ− π0(γ)ϕ‖2.

Since π0 has no non-zero invariant vector, we conclude the claim. �

Theorem 5.4. If we fix an integer n ≥ 2, then there exists a positive constant cn > 0 such that

for any closed subgroup Γ in PGSpn(F ) with finite quotient Γ\Sn, we have

λ2(∆Γ,µ) ≥ cn,

where ∆Γ,µ = I −AΓ,µ.

Proof. Since we have that

λ2(∆Γ,µ) = inf
ϕ∈`20(Γ\Sn), ‖ϕ‖=1

〈(I −AΓ,µ)ϕ,ϕ〉,

Proposition 5.3 implies that

λ2(∆Γ,µ) ≥ 1

4(n+ 2)
κ(G,Ω)2.
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Furthermore, κ(G,Ω) > 0 since G = PGSpn(F ) has Property (T) if n ≥ 2 and Ω is a compact

generating set of G by Lemma 5.1 (1) (cf. Section 5.1). Letting

(5.2) cn :=
1

4(n+ 2)
κ(G,Ω)2,

we obtain the claim. �

The proof of Theorem 1.1 now follows from Theorem 5.4 with Γ applied to Gg(Z[1/`]) modulo

the center and Corollary 3.2.

5.4. An explicit lower bound for the spectral gap. Appealing to the results by Oh [Oh02],

we obtain explicit lower bounds for the second smallest eigenvalues of Laplacians on the graphs

GSSg (`, p) for g ≥ 2.

Corollary 5.5. For every integer g ≥ 2, for all primes ` and p with p 6= `,

λ2

(
GSSg (`, p)

)
≥ 1

4(g + 2)

(
`− 1

2(`− 1) + 3
√

2`(`+ 1)

)2

.

Proof. We keep the notations in the preceding subsections and put n = g. Let F := Q`. Note

that Ω2 contains K and a2. The definition of the optimal Kazhdan constant shows that

κ
(
G,Ω2

)
≥ κ

(
PSpn(Q`),Ω

2 ∩ PSpn(Q`)
)
.

Furthermore the right hand side is at least κ (Spn(Q`),Ω∗), where

Ω∗ := {Spn(Z`), s} and s := diag(`−1, . . . , `−1; `, . . . , `).

Applying [Oh02, Theorem 8.4] to Spn(Q`) for n ≥ 2 with a maximal strongly orthogonal system

L in the case of Cn (n ≥ 2) [Oh02, Appendix], we have that

κ (Spn(Q`),Ω∗) ≥ χL(s) =

√
2(1− ξL(s))√

2(1− ξL(s)) + 3
,

where

ξL(s) ≤ 2(`− 1) + (`+ 1)

`(`+ 1)
=

3`− 1

`(`+ 1)
.

Hence we have for all n ≥ 2 and all prime `,

κ (Spn(Q`),Ω∗) ≥
√

2(`− 1)√
2(`− 1) + 3

√
`(`+ 1)

,

and since κ(G,Ω) ≥ (1/2)κ(G,Ω2), we obtain

κ(G,Ω) ≥ `− 1

2(`− 1) + 3
√

2`(`+ 1)
.
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Combining the above inequality with (5.2) in the proof of Theorem 5.4, we conclude that for all

n ≥ 2 and all prime `,

λ2(∆Γ,µ) ≥ 1

4(n+ 2)

(
`− 1

2(`− 1) + 3
√

2`(`+ 1)

)2

.

Applying to the case when Γ is Gg(Z[1/`]) modulo the center together with Corollary 3.2 yields

the claim. �

6. Some remarks on Algebraic modular forms for GUSpg

In this section, we study algebraic modular forms on Gg(AQ) = GUSpg(AQ) which can be also

regarded as functions on SSg(p). When g = 1, Pizer applied the Jacquet-Langlands correspon-

dence to study Gr1(`, p) [Piz90] and he showed such graphs are Ramanujan.

However, for g ≥ 2, the Jacquet-Langlands correspondence between Gg and GSpg is not still

fully understood well though in the case when g = 2, there are several important works which

have recently come out (see [Hof21],[RW21]).

It seems morally possible to classify algebraic modular forms on Gg by using the trace formula

approach as in [RW21] and relate them to Siegel modular forms on GSpg though we need to prove

the transfer theorem for Hecke operators with respect to the principal genus. Then Arthur’s

endoscopic classification (cf. [Art04],[Art13]) for GSpg which is not still established except for

g ≤ 2 would be used to obtain desired results for GSS2 (`, p). From this picture, it would be easy

for experts in the theory of automorphic representations to guess the upper bounds of Satake-

parameters at ` for Hecke eigen algebraic modular forms and Hecke eigen Siegel modular forms

as well. It should be remarked that there are some classes of Hecke eigen Siegel modular forms

which does not satisfy Ramanujan conjecture. They are so called CAP forms (cf. Section 3.9

of [Gan08]). However, such forms are expected to be negligible among all forms when p goes to

infinity and this is in fact true for Siegel modular forms on GSpg (see [KWY20],[KWY21]).

In fact, the third author showed that in fact, it is also true for M(K) when g = 2 [Yam]. With

this background from the theory of automorphic representations, in this section, we propose a

conjecture that GSSg (`, p) is asymptotically relatively Ramanujan when p goes to infinity (see

Definition 6.7). We also give a conjecture related to Conjecture 1 of [FS21b] in our setting.

Henceforth, we use the index n to stand for Gn instead of the index g of Gg to avoid the

confusion in which we use g as an element of the groups.
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6.1. Gross’s definition. We refer Chapter II of [Gro99] for the notation and basic facts. Recall

the notation in Subsection 2.3. Put K = K(On). Since B is definite, Gn(R) = GUSpn(R) is

compact modulo its center. It follows from (2.6) that

(6.1) Gn(Q)\Gn(AQ)/(K ×Gn(R)+) = Gn(Q)\Gn(Af )/K

where Gn(R)+ stands for the connected component of the identity element and the cardinality

of (6.1) is nothing but the class number Hn(p, 1) of the principal genus. According to Chapter

II-4 of [Gro99], we define the C-vector space M(K) consisting of all locally constant functions

f : Gn(AQ) −→ C such that

f(γgkg∞) = f(g), g ∈ Gn(AQ)

for all γ ∈ Gn(Q), k ∈ K, and g∞ ∈ Gn(R)+. Put h := Hn(p, 1) and pick {γi}hi=1 with

γi ∈ Gn(Af ) a complete system of the representatives of (6.1). By definition, the space M(K) is

generated by the characteristic functions ϕi, 1 ≤ i ≤ h of Gn(Q)γiK. Hence we have M(K) '
C⊕h. We define a hermitian inner product (∗, ∗)K on M(K) by

(6.2) (f1, f2)K :=
∑

γ∈Gn(Q)\Gn(Af )/K

f1(γ)f2(γ)
1

|Aut(γ)|

for f1, f2 ∈M(K) where Aut(γ) := (Gn(Q)∩γKγ−1)Z(Af )/Z(Af ). Let ϕ be a non-zero constant

function on Gn(AQ). We denote by M0(K) the orthogonal complement of Cϕ in M(K). Clearly,

dim(M0(K)) = h− 1 = Hn(p, 1)− 1.

Definition 6.3. Each element of M(K) is said to be an algebraic modular form on Gn(AQ) =

GUSpn(AQ) of weight zero with level K.

For each prime ` 6= p we define the (unramified) Hecke algebra

H` = C[Gn(Z`)\Gn(Q`)/Gn(Z`)] ' C[GSpn(Z`)\GSpn(Q`)/GSpn(Z`)]

at ` which is generated by the characteristic functions of form Gn(Z`)gGn(Z`) for g ∈ Gn(Q`). Let

e` be the characteristic function of Gn(Z`) which is the identity element of H`. Let T(p) = ⊗′ 6̀=pH`
be the restricted tensor product of {H`}`6=p with respect to the identity elements {e`}`6=p. We call

T(p) the Hecke ring outside p and it is well-known that T(p) acts on M(K) and also on M0(K)

(cf. Section 6 of [Gro99]).

Definition 6.4. Each element of M(K) is said to be a Hecke eigenform outside p if it is a

simultaneous eigenform for all elements in T(p).
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By using the Hermitian paring (6.2), we can check that there exists an orthonormal basis

HE(K) of M0(K) which consists of Hecke eigenforms outside p. For each non-zero F in HE(K)

and an element T ∈ T(p), we denote by λF (T ) the eigenvalue of F for T . Since F has the trivial

central character, λT (F ) is a real number. Recall the Hecke operator T (`) in Section 2.6. By

definition T (`) is the characteristic function of Gn(Z`)t`Gn(Z`) where t` = diag(

n︷ ︸︸ ︷
1, . . . , 1,

n︷ ︸︸ ︷
`, . . . , `).

As explained at the beginning of this section, under the background of the theory of automor-

phic representations, there are CAP forms in HE(K) which do not satisfy Ramanujan conjecture

but they are expected to be negligible among all forms when p goes to infinity. In this vein, we

propose the following:

Conjecture 6.1. Put dn,p := dimM0(K) = |HE(K)| = Hn(p, 1) − 1. For each ` 6= p, it holds

that

lim sup
p→∞

1

dn,p

∑
F∈HE(K)

|λF (T (`))| ≤ 2n`
n(n+1)

4 .

The bound is nothing but the Ramanujan bound for T (`) for Siegel cusp forms on GSpn whose

automorphic representations are tempered at ` (see Section 19 of [Gee08]). It also coincides with

the spectral radius of the special 1-complex Sn (see Proposition 2.6 of [Set13]).

6.2. A speculation for bounds of eigenvalues of T (`). Let us consider the case when n = 2.

Then we have three types of CAP forms in M(K) which are given by

(1) cuspidal forms associated to Borel subgroup;

(2) cuspidal forms associated to Klingen parabolic subgroup;

(3) cuspidal forms associated to Siegel parabolic subgroup.

For the third case, historically, they are also called Saito-Kurokawa lifts [Gan08]. Any form in

M(K) has the trivial central character and this shows the first case occurs only for the constant

function. The second case also can not occur since such a form has a non-trivial central character.

We remark that the eigenvalue of the constant function for T (`) is `3 + `2 + `+ 1 = N2(`).

For the third case, the eigenvalue λFSiegel
(T (`)) for each cuspidal form FSiegel associated to

Siegel parabolic subgroup satisfies

(6.5) `2 + 1− 2`
√
` ≤ λFSiegel

(T (`)) ≤ `2 + 1 + 2`
√
`.

As noticed before, λF (T (`)) is always a real number for each F ∈ M(K) since F has a trivial

central character.
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For each non-CAP form F in M0(K) we would expect that

(6.6) |λF (T (`))| ≤ 4`
√
`

and non-CAP forms are majority of M0(K).

It is easy to see that `2 + 1 + 2`
√
` is the maximum among the upper bounds of (6.5) and (6.6)

when ` ≥ 5. Let 1 = µ1 > µ2 ≥ · · · ≥ µm > −1 be the eigenvalues of the random walk matrix

(the normalized adjacency matrix) for GSS2 (`, p) with m = |SS2(p)| and put λi = 1− µi.

Conjecture 6.2. Assume p ≥ 5. For each prime ` 6= p, it holds that

1− max{4`
√
`, `2 + 1 + 2`

√
`}

N2(`)
≤ λi ≤ 1 +

4`
√
`

N2(`)

In particular, when ` = 2,

1− 8
√

2

15
= 0.24575... ≤ λ2, 2− λm ≤ 1 +

8
√

2

15
= 1.75425....

Remark 6.3. Comparing with Conjecture 1 of [FS21b], let

λ?(GSS2 (`, p)) = min{λ2, 2− λm}.

In particular, when ` = 2, it yields

1− 8
√

2

15
= 0.24575... ≤ λ?(GSS2 (2, p)) ≤ 1 +

8
√

2

15
= 1.75425....

Further, we would be able to check the lower and upper bounds would be sharp by using the classi-

fication of Saito-Kurokawa forms due to Gan [Gan08] and equidistribution for Satake parameters

of newforms in S4(Γ0(p)) when p goes to infinity. Here S4(Γ0(p)) stands for the space of elliptic

cusp forms of weight 4 with respect to Γ0(p) ⊂ SL2(Z). The assumption p ≥ 5 in Conjecture 6.2

is used to guarantee S4(Γ0(p)) 6= {0}.

6.3. Not being Ramanujan is not necessary fared. As is expected naturally for experts in

the theory of automorphic representations, the eigenvalues of the adjacency matrix for GSSg (`, p)

do not satisfy the Ramanujan bound when g ≥ 2. However, in view of the theory of automorphic

forms, it is plausible because of the existence of CAP forms violating Ramanujan property. Even

one can prove, in fact, that it happens for GSS2 (`, p) for each ` ≥ 17 and p ≥ 5 by using the results

in [Gan08]. In Section 10.1 of [JZ21], they gave an example satisfying the Ramanujan bound

but this is just possible only for small ` (less than 13 to be precise). These things would happen

similarly for general g. Nonetheless, GSSg (`, p) has a nice property as Theorem 1.1 speaks out.
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Therefore, a more conceptual, finer notation should be introduced to measure how good a

family of regular graphs is. We here propose the following. Let {Xi}i∈I be a family of d-

regular graphs indexed by an ordered set I such that lim
i→∞
|Xi| = ∞. Let λmean(Xi) be the

average of the absolute values of all eigenvalues of the normalized adjacency matrix for Xi.

Suppose there exist a prime ` and a reductive algebraic group G over Z such that for each i ∈ I,

Xi = Γi\G(Q`)/ZG(Q`)G(Z`) for some lattice Γi in G(Q`) for each i ∈ I. Here ZG is the center

of G.

Definition 6.7. We say {Xi}i∈I is asymptotically relatively Ramanujan if

lim sup
i→∞

λmean(Xi) ≤ ρ(B1(Gder))

where B1(Gder) is a subgraph of the 1-skelton of the building B(G) for G(Q`)/ZG(Q`)G(Z`) such

that G(Q`) acts transitively on B1(Gder) and ρ(B1(Gder)) stands for the spectral radius of the

graph.

Our graph GSSg (`, p) is related toG = GSpg withGder = Spg and its spectral radius is computed

in Proposition 2.6 of [Set13] as already mentioned.
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