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Abstract

We obtain a lower estimate for the Hilbert series of Jacobi algebras and their com-
pletions by providing analogue of the Golog-Shafarevich-Vinberg theorem for potential
case. We especially treat non-homogeneous situation. This estimate allows to answer
number of questions arising in the work of Wemyss-Donovan-Brown on noncommuta-
tive singularities and deformation theory. In particular, we prove that the only case
when a potential algebra or its completion could be finite dimensional or of linear
growth, is the case of two variables and potential having terms of degree three.
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1 Introduction

The Golod-Shafarevich theorem provides a lower estimate for the Hilbert series of an algebra
given by generators and relations in terms of degrees of generators and defining relations [3].
Vinberg generalised the theorem for the case when relations are not homogeneous [7].

We work here in the situation when relations are not arbitrary, but obtained as (non-
commutative) derivatives of one polynomial, called the potential. Such algebras are called
potential or Jacobi and they frequently appear in various contexts, for example, in physics.
This additional constrain allows to improve the estimate, and as a consequence, obtain im-
portant results on possible dimensions, on conditions of finite-dimensionality, other finiteness
conditions, on conditions of linearity of the growth of potential algebras, which are needed
in the study of contraction algebras [2, 1]. Contraction algebras serve as a noncommutative
invariants of curve contractions and appear to be, as shown by Van den Bergh, potential
algebras. Thus, it is important to know conditions when potential algebras are finite di-
mensional or of linear growth. We provide an answer to these questions in the theorem
below.

The methods we develop and apply in this section work for many varieties of twisted
potential algebras as well. We restrict ourselves to potential algebras for the sake of clarity.
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Denote by Fk the kth graded component of the potential F , and by A(n) = K〈X〉/(I+Jn),
where A = K〈X〉/I and Jn is an ideal generated by all monomials of degree strictly bigger
than n.

We also denote here by PA =
∑

dimA(n)tn the generating function of dimensions of
truncated algebras A(n), in stead of usual Poincare series of dimensions of components of the
filtration.

We obtain a lower estimate for the Hilbert series of A by estimating this series PA, which
is obviously componentwise smaller than the Hilbert series of A:

HA > PA > (1− t)−1(1− nt+ ntk−1 − tk)−1.

Note that the series PA does coincide with the Hilbert series HĀ of the completion Ā of
algebra A.

Here we give two equivalent definitions of the completion of an ideal and of an algebra
(??).

Definition. Consider the decreasing sequence of ideals I(n) = I + Jn, where Jn as above
is an ideal generated by monomials of degree strictly bigger than n:

In ⊃ I(n+1) ⊃ ...

Call Ī = ∩I(n) a completion of the ideal I, and corresponding algebra Ā = K〈X〉/Ī, the
completion of an algebra A.

In spite of what the term of completion of an algebra should naively suggest, we have
A ⊃ Ā, however for an ideal the situation is not counterintuitive: Ī ⊃ I.

It is easy to see that we get the same algebra, if we take quotient of the formal power
series K〈〈X〉〉 by the ideal generated by I in K〈〈X〉〉.

Definition. Ā = K〈〈X〉〉/idK〈〈X〉〉I.
One could find these definitions for example in [2].

Theorem 1.1. Let F ∈ K
cyc〈x1, . . . , xn〉 be such that F0 = . . . = Fk−1 = 0, and let n, k ∈ N

be such that n > 2, k > 3 and (n, k) 6= (2, 3). Then ĀF and thereof AF are infinite

dimensional.

Furthermore, ĀF and AF have at least cubic growth if (n, k) = (2, 4) or (n, k) = (3, 3)
with cubic growth being possible in both cases, and they have exponential growth otherwise.

For n, k,m ∈ N such that n > 2 and m > k > 3, denote

P
(m)
n,k = {F ∈ K

cyc〈x1, . . . , xn〉 : Fj = 0 for j < k and for j > m}.

Clearly, P
(m)
n,k is a vector space and P

(k)
n,k = Pn,k. Recall that for j ∈ Z+ and F ∈ P

(m)
n,k , A

(j)
F

is the quotient of AF by the ideal generated by the monomials of degree j + 1.
Then the main lemma about zero divisors state.

Lemma 1.2. Let n, k ∈ N, n > 2, m > k > 3 and (n, k) 6= (2, 3), then for generic F ∈ P
(m)
n,k ,

x1a 6= 0 in ĀF for every non-zero a ∈ ĀF .

Using this lemma and analogue of Golod-Shafarevich-Vinberg theorem for potential al-
gebras we give a lower estimate, which implies the statements of the main theorem above.
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Lemma 1.3. Let n, k ∈ N, n > 2, m > k > 3 and (n, k) 6= (2, 3), F ∈ P
(m)
n,k and A = AF .

Then PA > (1− t)−1(1− nt+ ntk−1 − tk)−1.

Proof given here is a little more detailed version of the argument appeared in [4].

2 Preliminary homogeneous results

We will need two examples. We say that potential algebra is exact if associated potential
complex is exact [5].

Example 2.1. Let n and k be integers such that k > n > 2, k > 3 and (n, k) 6= (2, 3).
Consider the potential F ∈ Pn,k given by

F =
∑

σ∈Sn−1

xk−n+1
n xσ(1) . . . x

	

σ(n−1),

where the sum is taken over all bijections from the set {1, . . . , n − 1} to itself. Then the

potential algebra ĀF = AF is exact. Furthermore, x1u 6= 0 for every non-zero u ∈ A.

Example 2.2. Let n and k be integers such that n > k > 3. Order the generators by

xn > xn−1 > . . . > x1 and consider the left-to-right degree-lexicographical ordering on the

monomials. Consider the set M of degree k−2 monomials in x1, . . . , xn−1 in which each letter

xj features at most once. Let m1, . . . , mn−1 be the top n − 1 monomials in M enumerated

in such a way that mn−k+1 = xn−1 . . . xn−k+2 (the biggest one). Now define the potential

F ∈ Pn,k by

F = xnxn−1 . . . x
	

n−k+1 +
∑

16j6n−1

j 6=n−k+1

xjxnm
	
j .

Then the potential algebra A = AF is exact. Furthermore, x1u 6= 0 for every non-zero u ∈ A.

Lemma 2.3. Let K be uncountable field, n, k ∈ N, n > 2, k > 3 and (n, k) 6= (2, 3). Then

for a generic F ∈ Pn,k, x1a 6= 0 in AF for every non-zero a ∈ AF .

Proof. Let F0 be the potential provided by the appropriate (depending on whether k > n or
k < n) Example 2.1 or Example 2.2. Then x1a 6= 0 in AF0

for every non-zero a ∈ AF0
and

HAF0
= (1− nt+ ntk−1 − tk)−1. As was noticed by Ufnarovskij, the generic Hilbert series is

minimal, hence HAF
= (1 − nt + ntk−1 − tk)−1 for generic F ∈ Pn,k. Applying Lemma 3.9

from [5] to the map a 7→ x1a from AF to AF , we now see that dim x1(AF )j > dim x1(AF0
)j

for all j for generic F ∈ Pn,k. Since dim x1(AF0
)j = dim (AF0

)j = dim (AF )j for generic F ,
the map a 7→ x1a from AF to itself is injective for generic F .

3 Main Lemma about zero divisors

Lemma 3.1. Let n, k ∈ N, n > 2, m > k > 3 and (n, k) 6= (2, 3), then for generic F ∈ P
(m)
n,k ,

x1a 6= 0 in ĀF for every non-zero a ∈ ĀF .
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Proof. Assume the contrary. Then there exist j ∈ Z+ and a ∈ K〈x1, . . . , xn〉 such that a 6= 0

in A
(j)
F and x1a = 0 in A

(j+1)
F . The latter means that

x1a =
∑

j∈N

ujrs(j)vj (mod J (j+1)),

where rj = δxj
F , N is a finite set, s is a map from N to {1, . . . n}, uj, vj are non-zero

homogeneous elements of K〈x1, . . . , xn〉 such that the degree of each ujvj does not exceed
j − k + 2, and the equality f = g (mod J) means f − g ∈ J . Let m be the lowest degree of
ujvj and N ′ = {j ∈ N : deg ujvj = m}. Then the smallest degree part of the above display
reads

x1am+k−2 =
∑

j∈N ′

ujρs(j)vj in K〈x1, . . . , xn〉,

where ρj = δxj
Fk. Note that automatically aq = 0 for q < m+ k − 2.

Consider two cases, depending on whether the left hand side of the lower degree term is
zero or not.

Case I. If x1am+k−2 = 0, then we have an equality

0 =
∑

ujρs(j)vj ,

which means that it is a syzygy of ρith. We will use the following fact.
Definition. We say that F ∈ K

cyc〈x1, . . . , xn〉 is S-trivial if the module of syzygies of
AF presented by generators x1, . . . , xn and relations r1, . . . , rn with rj = δxj

F is generated
by trivial syzygies and the syzygy

∑
[xj , rj].

Proposition 3.2. Any homogeneous potential in general position is S-trivial.

Proof. First, we observe that any ’extra’ syzygy will ’drop’ the dimension of the correspond-
ing component of the ideal of relations thus increasing the dimension of the component of
the algebra compared to the minimal Hilbert series. This follows from the fact that the
module of syzygies of relations is generated by polynomials obtained from the resolutions of
ambiguities of the Gröbner basis [6].

Thus, if Hilbert series is minimal, all syzygies must be generated by one syzygy. Now we
remind the fact observed, for example, by Ufnarovskij [8], that generic series is minimal.

Due to the above proposition we have
∑

j∈N

ujρs(j)vj =
∑

k

αk

∑

i

[ρi, xi] βk.

We can rewrite the initial equality

x1a =
∑

j∈N

ujrs(j)vj (mod J (j+1)),

adding the appropriate combination of syzygies (which is zero) to the right hand side:

x1a =
∑

ujrs(j)vj −
∑

αk

∑

i

[ri, xi]βk (modJ (j+1)).

4



Now the lowest term of the right hand side become bigger. Indeed, the lowest terms
cancel, since the lowest degree term of

∑
j∈N ujrs(j)vj coincides with the lowest degree term

of
∑

j∈N ujρs(j)vj , and the lowest degree term of
∑

αk[ri, xi]βk coincides with the lowest
degree term of

∑
αk[ρi, xi]βk.

Now for newly rewritten equality we again write down the lowest terms of the left and
right hand side. If for the left hand side it is again zero: x1am′+k−2 = 0, we continue the
process of lifting up the lowest degree on the right hand side, as described in Case I.

Case II. Otherwise we are in Case II, when the left hand side x1am′+k−2 6= 0. The lowest
term is from the left hand side now. We will find a presentation, where the lower degree of
the left hand side is bigger.

Due to the fact that the statement of our lemma 3.1 holds true in the case of homogeneous
potential, which is proved in Lemma 2.3, we can deduce that

am′+k−2 =
∑

p∈M

fpρt(p)gp,

where M is a finite set, t is a map from M to {1, . . . n}, fp, gp are non-zero homogeneous
elements of K〈x1, . . . , xn〉, such that the degree of each fpgp is m− 1. Now we replace a by

a′ = a−
∑

p∈M

fprt(p)gp.

Note that a = a′ in ĀF and therefore a = a′ in A
(j)
F and x1a = x1a

′ in A
(j+1)
F . So a′ satisfies

the same properties as a with the only essential difference being that a′m′+k−2 = 0.
Now we can repeat the process chipping off the homogeneous degree-components of left

and right hand sides of equality from bottom up one by one until at the final step we arrive
to a contradiction with a 6= 0 in A

(j)
F .

4 Proof of the main estimate using Golod-Shafarevich-

Vinberg type argument

Lemma 4.1. Let n, k ∈ N, n > 2, m > k > 3 and (n, k) 6= (2, 3), F ∈ P
(m)
n,k and A = ĀF .

Then PA > (1− t)−1(1− nt+ ntk−1 − tk)−1.

Proof. First, observe that exchanging the ground field K for a field extension does not affect
the series PA. Thus we can without loss of generality assume that K is uncountable. For j ∈
Z+, let bj be Taylor coefficients of the rational function Q(t) = (1−t)−1(1−nt+ntk−1−tk)−1

(that is, Q(t) =
∑

bjt
j) and aj = min{dimA

(j)
G : G ∈ P

(m)
n,k }. The proof will be complete if

we show that aj = bj for all j ∈ Z+. Denote P =
∑

ajt
j . First, note that Examples 2.1

and 2.2, provide G ∈ Pn,k ⊆ P
(m)
n,k for which HG = (1 − nt + ntk−1 − tk)−1. It immediately

follows that PG = Q. By definition of P (minimality of aj), we then have P 6 Q, that is,
aj 6 bj for all j ∈ Z+.

For a generic G ∈ P
(m)
n,k PAG

= P according to nonhomogeneous generalisation of Uf-

narovskij’s observation. Moreover, by lemma 3.1, for a generic G ∈ P
(m)
n,k , we have that
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x1a 6= 0 in ĀG for every non-zero a ∈ ĀG. In particular, we can pick a single G ∈ P
(m)
n,k such

that for B = ĀG, PB = P and x1a 6= 0 in ĀG for every non-zero a ∈ ĀG.
According to Lemma 3.1, we then have that for each j ∈ Z+, x1b 6= 0 in B(j+1) for

every b ∈ K〈x1, . . . , xn〉 such that b 6= 0 in B(j). This property allows us to pick inductively
(starting with M0 = {1}) sets Mj of monomials of degree j such that Mj+1 ⊇ x1Mj and
Nj = M0 ∪ . . . ∪ Mj is a linear basis in B(j) for each j ∈ Z+. For every j, let B+

j be
the linear span of Nj and B++

j be the linear span of Nj \ x1Nj−1 in K〈x1, . . . , xn〉. Clearly
PB =

∑
(dimB+

j )t
j and therefore aj = dimB+

j for all j ∈ Z+.

Let also π(j) be the natural projection of K〈x1, . . . , xn〉 onto the linear span of monomials
of length 6 j along J (j) (in fact, π(j) : K[X ] → K[X ](j)). As usual, let V be the linear span
of x1, . . . , xn, rj = δxj

G, R be the linear span of r1, . . . , rn and I be the ideal generated by
r1, . . . , rn (=the ideal of relations of B). For the sake of brevity denote Φ = K〈x1, . . . , xn〉.

Now we argue in a way similar to the Golod-Shafarevich-Vinberg theorem ??, but incor-
porating at some point the syzygy

∑
[xj , rj ] = 0 which holds for any potential algebra.

Obviously, I = V I + RΦ. Then π(j+1)(I) = V π(j)(I) + π(j+1)(RΦ) for every j ∈ Z+.
Using the definition of B+

j and the fact that each rj starts at degree > k − 1, we obtain

π(j+1)(I) = V π(j)(I) + π(j+1)(RB+
j+2−k).

Since
∑

[xj , rj] = 0 in Φ, we can get rid of r1x1:

V π(j)(I) + π(j+1)(RB+
j+2−k) = V π(j)(I) + π(j+1)(R′B+

j+2−k + r1B
++
j+2−k)

where R′ is the linear span of r2, . . . , rn. Thus

π(j+1)(I) = V π(j)(I) + π(j+1)(R′B+
j+2−k + r1B

++
j+2−k).

Hence
dim π(j+1)(I) 6 dimV π(j)(I) + dimR′B+

j+2−k + dim r1B
++
j+2−k

= ndim π(j)(I) + (n− 1)dimB+
j+2−k + dimB++

j+2−k.

Plugging the equalities dimB+
j = aj, dimB++

j = aj − aj−1 (since multiplication by x1 is

injective, we assume also as = 0 for s < 0), and dim π(j)(I) = 1 + n+ . . .+ nj − aj into the
inequality in the above display, we get

1 + . . .+ nj+1 − aj+1 6 n+ . . .+ nj+1 − naj + naj+2−k − aj+1−k.

Hence aj+1 > naj − naj+2−k + aj+1−k − 1 for j ∈ Z+. On the other hand, it is easy to see
that the Taylor coefficients bj of Q satisfy bj+1 = nbj − nbj+2−k + bj+1−k − 1 for j > k − 1.
It is also elementary to verify that aj = bj for 0 6 j 6 k − 1. Now for cj = bj − aj, we have
cj = 0 for 0 6 j 6 k − 1, cj > 0 for j > k and cj+1 6 ncj − ncj+2−k + cj+1−k for j > k − 1.
The only sequence satisfying these conditions is easily seen to be the zero sequence. Hence
aj = bj for all j ∈ Z+, which completes the proof.

Now Theorem 1.1 is a direct consequence of Lemma 4.1. Indeed, every potential F on n
variables starting in degree > k belongs to P

(m)
n,k for m large enough and Lemma 4.1 provides

at least cubic growth of ĀF in the case (n, k) = (3, 3) or (n, k) = (2, 4) and exponential
growth otherwise.
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