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ON CENTRALIZERS IN AZUMAYA DOMAINS

THOMAS BITOUN AND JUSTIN DESROCHERS

Abstract. We prove a positive characteristic analogue of the classical result that the cen-
tralizer of a nonconstant differential operator in one variable is commutative. This leads to a
new, short proof of that classical characteristic zero result, by reduction modulo p.

1. Introduction

The theory of commuting differential operators in one variable goes back at least a century
[4]. Of special interest is the following fundamental result:

Theorem. Let P “ an
dn

dx
`¨ ¨ ¨`a1

d
dx

`a0, ai P Crxs, be a differential operator of positive degree.

Then the algebra of differential operators that commute with P is commutative.

The modern version of this result is attributed to Flanders in [1] and has been given at least
two rather different proofs [1, 2]. In this note, we are interested in an analogous statement
in positive characteristic. Namely for the first Weyl algebra A1pkq over a field k of positive
characteristic. We prove a generalization of the following:

Theorem. Let k be a field of positive characteristic and let P P A1pkq be noncentral. Then the

centralizer of P is a commutative algebra.

We also prove that the fraction field of the centralizer is isomorphic to the fraction field of
ZrP s, where Z is the center of A1pkq. Note that this is simpler than the analogous assertion for a
complex differential operator Q, for which the fraction field of the centralizer is in general only a
finite extension of the field of rational functions in Q, see [1, Corollary 1]. Unfortunately, neither
the elementary methods from [1] (because of operators of degree divisible by the characteristic),
nor those from [2] (because all operators are algebraic over the center, which is of dimension 2)
do adapt to the positive characteristic. Nevertheless, we present here a simple argument based
on a dimension count. We note finally that, in the spirit of [6] and [3], this provides a new and
very short proof of the classical characteristic zero theorem above, by reduction modulo primes.
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2. Main result

Here is the main result of this note.

Lemma 2.0.1. Let A be a domain that is a finitely generated module of rank p2 over its center

Z, for p a prime number. Then the centralizer Ba of every noncentral element a is a commutative

ring. Moreover, the natural embedding Zras Ď Ba induces an isomorphism of fields of fractions.
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Proof. Let a P A be an element which does not belong to the center Z, and let B “ Ba be the
centralizer of a in A. We let K be the fraction field of Z,L be the fraction field of the center R
of B, and L1 be the fraction field of Zras. Note that L1 Ď L.

Consider AK :“ KbZA,BL :“ LbRB, and BL1 :“ L1bZrasB. Since these are all localizations

of domains, they are domains. Note that AK is of finite dimension p2 over its central subfield K.

Hence it is a division ring, as multiplication by a nonzero element is injective and hence invertible,
by the finite dimension. Thus there are natural inclusions of the localizations BL1 Ď BL Ď AK ,

and BL and BL1 are also division rings, since they are finite dimensional over their central
subfield K. Moreover the dimension dimKpBLq (resp. dimKpBL1 q) divides dimKpAKq “ p2.

Thus dimKpBLq (resp. dimKpBL1 q) is 1, p or p2. But the inclusions K Ĺ BL Ĺ AK (resp.
K Ĺ BL1 Ĺ AK) are proper, since a is a noncentral element. Hence dimKpBLq “ p “ dimKpBL1 q.
Thus BL1 “ BL.

Finally, we have that dimLpBLq (resp. dimL1 pBL1 q) divides dimKpBLq “ p. Thus dimLpBLq
(resp. dimL1 pBL1 q) is either 1 or p. But the inclusion K Ĺ L (resp. K Ĺ L1) is proper as a

is not central, hence dimLpBLq ă dimKpBLq (resp. dimL1pBL1 q ă dimKpBL1 q). We conclude
that dimLpBLq “ 1 “ dimL1 pBL1 q, thus B Ď L is commutative and the fraction field of B is
BL “ BL1 “ L1. �

Remark 2.0.2. If A is as in the lemma and is also an algebra over a field k, then kras is included
in Ba. However Ba is not necessarily finite over kras. For example, in the first Weyl algebra over

a field k of positive characteristic p with coordinate x, we have Bx “ krx, p d
dx

qps. This algebra is

not a finitely generated module over krxs.

Remark 2.0.3. In the case of a domain of higher rank pn over its center, the centralizer of

a noncentral element is not necessarily commutative. For example, the centralizer of x in the

second Weyl algebra A2pkq, with coordinates x and y, is generated over the positive characteristic

p field k by x, Bp
x, y and By, and is thus not commutative. Nevertheless, we believe that the rank

of a centralizer over the center is a useful invariant here too, and hope to consider it in a future

work.

3. A corollary

The lemma applies in particular to the first Weyl algebra over a field of positive characteristic.
This leads to a proof by reduction modulo p of the following classical result [1, 2].

Theorem 3.0.1. Let k be a field of characteristic zero. Then the centralizer of every nonconstant

polynomial differential operator in one variable over k is a commutative ring.

Proof. For an arbitrary commutative ring k1, we denote by Apk1q the ring of polynomial dif-
ferential operators in one variable over k1, i.e. the first Weyl algebra over k1. Moreover, for
all a P Apk1q, we let the total degree totpaq of a be the degree of the total symbol of a as a
k1-polynomial in 2 variables.

Let a P Apkq be nonconstant and let P,Q P Apkq be operators commuting with a. We want
to show that the commutator C :“ rP,Qs vanishes. We let S be the ring generated by the
coefficients of a, P, and Q, lying in k. We have a, P,Q,C P ApSq Ď Apkq.

Let n be the total degree of a “ Σi`jďnaijx
i d

j

dx
, and let u “ N ˆ Πi`j“naij , where N is the

factorial of n and the product Π is taken over nonzero coefficients only. We note that the ring
Sr 1

u
s is Jacobson [5, Cor.10.4.6]. Hence the closed points of SpecpSr 1

u
sq form a dense subset, and

for each closed point s, the residue field kpsq is a finite field. Let us denote by as, Ps, Qs, and Cs

the images of a, P,Q, and C in Apkpsqq, respectively. Then by the choice of u, for all closed point
s of SpecpSr 1

u
sq, the element as is of positive total degree which is prime to the characteristic of

kpsq. Hence as is not central, Ps and Qs commute with as, and Cs “ rPs, Qss.
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Since the ring Apkpsq) is a domain of rank p2s over its center [7, Thm. 2 and §4], for ps the
characteristic of kpsq, we can apply the lemma. Hence we conclude that Cs “ 0 for all closed
points s of SpecpSr 1

u
sq. This holds generically since the closed points of SpecpSr 1

u
sq are dense.

Thus C “ 0. �
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