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Abstract

The main purpose of the present paper is to study the numerical properties of
supersolvable resolutions of line arrangements. We provide upper-bounds on the so-
called extension to supersolvability numbers for certain extreme line arrangements in
P2
C and we show that these numbers are not determined by the intersection lattice

of the given arrangement.
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1 Introduction

The present note is strongly motivated by an interesting article due to Ziegler [7],
where he studied Terao’s conjecture in arbitrary characteristics. This conjecture states
that the freeness of the module of logarithmic vector fields of an arrangement should de-
pend only on the intersection poset. This conjecture is widely open and difficult to verify.
In most cases, interesting examples of free hyperplane arrangements are rigid, i.e., the
arrangements are projectively uniquely, defined up to an automorphism of PGL(n+1,K),
and because of that they cannot lead to potential counterexamples to Terao’s conjecture.
In order to study the aforementioned conjecture, Ziegler introduced the notion of super-
solvable resolutions of arrangements. The key advantage of this construction is that it
depends on the embedding of the arrangement and thus on the specific representation of
the intersection poset.

Definition 1.1. Let A ⊂ PnK be an arrangement of hyperplanes and denote by L(A) the
intersection lattice of A. We say that A is supersolvable if L(A) is supersolvable as a
lattice.

As proved by Jambu and Terao in [3], supersolvable hyperplane arrangements are
free and their freeness is determined by the combinatorics. This is the main reason
why supersolvable hyperplane arrangements play an important role in the world of free
arrangements. Based on that, we can formulate the main definition of the present note.

Definition 1.2. Let A ⊂ PnK be a hyperplane arrangement. A supersolvable resolution
of A is a finite sequence of arrangements

Y• : X = Y0 ⊆ Y1 ⊆ ... ⊆ Yk = Y

such that |Yi| = |A| + i for 0 6 i 6 k and Y is supersolvable. We will denote, in more
specific situations, the resulting arrangement Y as ARS .
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It is very natural to wonder to what extent we can find supersolvable resolutions of
arrangements efficiently, i.e., when the chains Y• are essentially the shortest possible. This
motivates the following definition.

Definition 1.3. Let A ⊂ PnK be an arrangement of hyperplanes. Then we define the
extension to supersolvability number of A as

extSS(A) = min{k : Y• is a supersolvable resolution of A and Yk is supersolvable}.

In the present paper we focus on the case of line arrangements in the complex projec-
tive plane and our main goal is to provide some numerical results on extSS numbers of
certain line arrangements. It is worth pointing out that this setting is not very restrictive
since even in that case it is very difficult to compute the actual values of extSS(A) in
general.

Remark 1.4. (cf. [7, Lemma 3.3]) Let A ⊂ P2
C be an arrangement of lines (we may

assume that A is not supersolvable), then the number extSS(A) is well-defined and finite.

Proof. Let A be an arbitrary line arrangement and P a general point in the plane. Let
B be the arrangement consisting of all lines in A and lines joining P with all intersection
points of A. Then B is supersolvable.

It follows immediately that for any arrangement of lines A one has

extSS(A) 6 |Sing(A)|.

Note that this upper bound is very rough. For example, if A is already supersolvable,
then extSS(A) = 0. It is thus natural to state the following fundamental question.

Problem 1.5. Find extSS(·) numbers for relevant line arrangements in P2
C.

Our investigations on extSS numbers start from certain Böröczky’s arrangements of
lines. These are line arrangements defined over the reals which have the maximal possible
number of triple intersection points, according to Green-Tao’s result. We point out, by
giving an explicit example of two line arrangement which have the same weak combina-
torics, that the problem of finding extSS numbers is not a lattice dependent task, and
this is the reason why we can provide only upper bounds for extSS’s in the course of the
paper. Furthermore, we present estimates on the extSS numbers for classical reflection
line arrangements, namely the Klein and the Wiman arrangements of lines. In the last
section, we discuss a possible application of our work towards the theory of unexpected
curves in the complex projective plane.

2 Preliminaries

Let K be any field. Consider A = {`1, ..., `d} ⊂ P2
K an arrangement of d > 3 lines. For

each line `i we choose a linear form αi ∈ S := K[x, y, z] such that `i = ker(αi). Now we
can define the module of A-derivations as

D(A) = {θ ∈ DerK(S) : θ(αi) ∈ 〈αi〉 for all i ∈ {1, ..., d}},

where DerK(S) = S · ∂x ⊕ S · ∂y ⊕ S · ∂z.
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Definition 2.1. We say that an arrangement A ⊂ P2
C is free when D(A) is a free S-

module. In this case, the degrees of the generators of D(A) are called the exponents.

Let us recall that the Poincaré polynomial of an arrangement A ⊂ P2
C can be defined

(you may consider this as a small exercise) by

π(A, t) = 1 + |A| · t+

(∑
r>2

(r − 1)tr

)
· t2 +

(∑
r>2

(r − 1)tr + 1− |A|
)
· t3,

where tr is the number of r-fold points, i.e., points in the plane where exactly r lines
from the arrangement meet. If the arrangement A is free, then by Terao’s factorization
theorem [5] the Poincaré polynomial splits over Z into linear factors, i.e.,

π(A, t) =

3∏
i=1

(1 + di · t),

and the numbers (d1, d2, d3) are the exponents. Since the Euler derivation E := x∂x +
y∂y + z∂z always sits in D(A), then E is always one of the generators of D(A) giving
d1 = 1, and due to this reason it is customarily to call (d2, d3) the exponents of A.

3 extSS numbers for line arrangements in the complex plane

In this section, we compute the actual values and upper bounds on extensions to
supersolvability numbers. We start with a somewhat extreme class of line arrangements
in the complex projective plane. We say that Ad ⊂ P2

C is general with d > 3 if the lines
are in general position and the only intersection points are double points.

Proposition 3.1. Let A ⊂ P2
C be an arrangement of d general lines. Then

extSS(A) 6

(
d− 2

2

)
.

Proof. Indeed, let P be any double intersection point of A and let `,m be the lines from
A intersecting at P . We denote by A′ = A \ {`,m}. Then we need to join singular points
of A′ with P . There are exactly

(
d−2
2

)
such points.

Here is a good moment to explain why we can provide, in general, only upper bounds
on the extSS numbers.

Example 3.2. We are going to present an example which shows that extSS numbers can-
not be computed directly from the (weak) combinatorics. Consider the poset L defining
the combinatorics of 6 lines intersecting only at double intersection points. The space of
all possible geometric realizations M of L is extremely large, and this is the key spot in
our example.

If we take an arrangement L consisting of 6 general lines with the equations listed
below:

`1 : x− y + 2z = 0,
`2 : x− y − 2z = 0,
`3 : x+ y − 2z = 0,
`4 : x+ y + 2z = 0,
`5 : 9x− y + 9z = 0,
`6 : 9x+ y − 9z = 0.
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Then one has
extSS(L) = 6.

The claim follows from the fact that there is no triple of double intersection points which
lie on a line ` such that ` 6∈ L. This justifies the equality above.

Consider now another element P from the space of realizations depicted on Figure 1.
This arrangement is constructed with the use of the Pappus theorem, the only difference
is that we remove those three lines that are making the intersection points triple in the
configuration. By this trick, we obtain an honest arrangement of 6 lines with only double
intersection points. It is easy to see that in this case

extSS(P) < 6,

and it follows from the fact that we have an additional collinearity, denoted by the dashed
line, which existence is guarantee by the Pappus theorem.

Figure 1: A Pappus realization of the combinatorics of d = 6 lines and 15 double points.

It means that the problem of calculating extSS numbers for arrangements does not
depend exclusively on the intersection lattice, i.e., if the parameter space of a given
arrangement A (which is nothing else as a space of geometric realizations) is positive
dimensional, then we can only hope to find reasonable upper-bounds for extSS(A) based
on the weak combinatorics.

Now we pass to Böröczky arrangements of lines. The construction goes as follows.
Consider a regular 2n-gon inscribed in the unit circle in the real affine plane. Let us fix
one of the 2n vertices and denote it by Q0. By Qα we denote the point arising by the
rotation of Q0 around the center of the circle by angle α.

Then we take the following set of lines

Bn =

{
QαQπ−2α, where α =

2kπ

n
for k = 0, . . . , n− 1

}
.

If α ≡ (π − 2α)(mod 2π), then the line QαQπ−2α is the tangent to the circle at the point

Qα. The arrangement Bn has
⌊n(n−3)

6

⌋
+ 1 triple points by [2, Property 4], and exactly
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n− 3 + ε(n) double intersection points, where ε(n) is equal to either 2 or 0, depending on
the divisibility of n. Let us denote the set of these triple points by Tn.

Now we recall a simple fact concerning the distribution of triple points on the arrange-
ment lines.

Proposition 3.3. Every line in the Bn arrangement contains at least
⌊
n−3
2

⌋
triple points

and there exists a line containing at least one more triple point.

Proof. By construction the triple points are distributed on the arrangement lines almost
uniformly, that means that the difference between the number of points from Tn on two
arrangement lines is at most 1. Let s be the minimal number of triple points on an
arrangement line. Then it must be

sn

3
6 1 +

⌊n(n− 3)

6

⌋
and

⌊n(n− 3)

6

⌋
6

(s+ 1)n

3

and the claim follows.

From the above result we can also derive the following consequence of Proposition 3.3,
which is interesting on its own right.

Corollary 3.4. For a fixed n > 8 let C be a plane curve (possibly reducible and non-
reduced) of degree d passing through every point in the set Tn with multiplicity at least 3.
Then d > n. Moreover, if d = n, then C is the union of all arrangement lines in Bn.

Proof. Assume to the contrary, that d < n. By Proposition 3.3 an arrangement line `
contains at least

⌊
n−3
2

⌋
triple points. If ` is not a component of C, then it must be, by

Bézout Theorem,

n > d > 3
⌊n− 3

2

⌋
.

It follows that
n+ 3 > 3bn

2
c,

which contradicts the assumption n > 8.

Using some particular symmetries of Böröczky arrangements of n = 6k lines with
k > 2 we can show the following result. Observe in the meantime that for k = 1 our
arrangement B6 is supersolvable.

Theorem 3.5. Let n = 6k for k > 2. Then

extSS(B6k) 6 6k2 − 6k.

In our construction, the supersolvable resolution BRS
6k have 6k2 lines and the following

combinatorics:

t3+6k2−6k = 1, t4 = 6(k − 1)2, t3 = 15k − 12, t2 = 36k3 − 72k2 + 42k − 3.

Finally, the exponents of free arrangement BRS
6k are d1 = 6k − 3, d2 = 6k2 − 6k + 2.

Proof. Here we present a detailed sketch of our construction. Take one of the points of
multiplicity 3 of B6k and denote this point by O. Take the three lines passing through
O. Observe that each of the three lines contains exactly 3k singular points from the
arrangement. Since the only intersection point of the three lines is O, then on the three
lines we have altogether exactly 9k− 2 intersection points, among them exactly 3 double
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points. Now we construct our extension BRS
6k by joining O with each singular point except

those 9k−2 lying on the three lines. Simple calculation tells us that we add the following
number of lines

6k − 3 +
6k(6k − 3)

6
+ 1− (9k − 2) = 6k − 3 + 6k2 − 3k + 1− 9k + 2 = 6k2 − 6k.

Now we can describe the combinatorics of BRS
6k . By the construction, the vertex O has

multiplicity 6k2 − 6k + 3, and this is the only point of such multiplicity. Next, we ob-
tain quadruple points by joining the previous triple points with the vertex O, we have
altogether

t4 = 6k2 − 3k + 1− (9k − 5) = 6k2 − 12k + 6 = 6(k − 1)2.

We get also new triple point (out of old double points), there are exactly 6k − 6 such
points. Altogether we have

t3 = 6k − 6 + 9k − 5− 1 = 15k − 12,

where the last −1 in the middle equality comes from the fact that O is no longer a triple
point. Finally, we can compute the number of double points. Using the combinatorial
count we obtain that

t2 =
6k2(6k2 − 1)

2
−3 ·(15k−12)−6 ·(6(k−1)2)−

(
6k2 − 6k + 3

2

)
= 36k3−72k2+42k−3.

By the construction, BRS
6k is supersolvable and by Jambu-Terao’s result [3], the arrange-

ment is free. We compute the exponents of the arrangement with use of the Poincaré
polynomial. Observe that

π(BRS
6k ; t) = (1 + t)

(
1 + (6k2 − 1)t+ (36k3 − 54k2 + 30k − 6)t2

)
.

Since 4t = (6k2− 12k+ 5)2 and 6k2− 12k+ 5 is non-negative for k > 2, we can compute
rational roots of the polynomial, namely

a1 =
−6k2 + 1 + 6k2 − 12k + 5

12(2k − 1)(3k2 − 3k − 1)
=

−(2k − 1)

2(2k − 1)(3k2 − 3k + 1)
=

−1

6k2 − 6k + 2
,

a2 =
−6k2 + 1− 6k2 + 12k − 5

12(2k − 1)(3k2 − 3k − 1)
=

−12k2 + 12k − 4

12(2k − 1)(3k2 − 3k + 1)
=

−1

3(2k − 1)
.

This gives us finally that

π(BRS
6k ; t) = (1 + t)(1 + (6k − 3)t)(1 + (6k2 − 6k + 2)t),

and the exponents are d2 = 6k − 3, d3 = 6k2 − 6k + 2.

Now we turn to the Klein arrangement of lines K (see [4]). Let us recall that the
arrangement K consists of d = 21 lines and t3 = 28, t4 = 21.

Proposition 3.6. For the Klein arrangement of lines K we have extSS(K) 6 20.
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Proof. Each line from the arrangement contains exactly 4 triple and 4 quadruple singular
points. Choose one of the quadruple points and the four lines passing through it. Denoting
this quadruple point by O, we observe that these four lines contain exactly 4 · 8− 3 = 29
singular points, so we are left with 12 triple points and 8 quadruple points. Next, we join
each of the remaining 20 singular points with O, so altogether our line arrangement KRS

consists of 21 + 20 = 41 lines and the following intersection points:

t24 = 1, t5 = 8, t4 = 24, t3 = 16, t2 = 272.

By the construction, KRS is supersolvable, and we can compute the exponents. Observe
that

π(KRS ; t) = (1 + t)

(
1 + 40t+ 391t2

)
= (1 + t)(1 + 17t)(1 + 23t),

so the exponents are d2 = 17, d3 = 23.

Finally, we consider the last arrangement of our interests, namely the Wiman arrange-
ment of lines [6], denoted by W. This remarkable arrangement consists of 45 lines and it
has

t3 = 120, t4 = 45, t5 = 36.

Proposition 3.7. For the Wiman arrangement of lines W one has extSS(W) 6 125.

Proof. Let us recall the most crucial fact about the singular points of Wiman’s arrange-
ment of lines. We observed that each line from the arrangement contains exactly 4
quintuple, 4 quadruple, and 8 triple singular points. Choose one of the quintuple points
and the five lines passing through this point. Denoting this point by O, we observe that
these five lines contain exactly 76 singular points, so we are left with 80 triple points, 25
quadruple points, and 20 quintuple points. Next, we join each of the mentioned singular
points with O, so altogether our line arrangement WRS consists of 45 + 125 = 170 lines
and it has the following intersection points:

t130 = 1, t6 = 20, t5 = 40, t4 = 100, t3 = 40, t2 = 4560.

By the construction, WRS is supersolvable, and we can compute the exponents. Observe
that

π(WRS ; t) = (1 + t)

(
1 + 169t+ 5160t2

)
= (1 + t)(1 + 40t)(1 + 129t),

so the exponents are d2 = 40, d3 = 129.

4 Supersolvability and unexpected curves

In the last section, let us present another motivation that leads us to study the men-
tioned extensions to the supersolvability property. Very recently, the theory of unexpected
curves has appeared and gained a lot of attention by researchers.

Let P = {P1, ..., Ps} ⊂ P2
C be a finite set of points and let m1, ...,ms be the multi-

plicities of P. Denote by X = m1P1 + ... + msPs a fat point scheme and consider the
associated ideal

I(X) =
s⋂
i=1

I(Pi)
mi .
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Now we can define the expected dimension by

expdim I(X)d = max

{(
d+ 2

2

)
−

s∑
i=1

(
mi + 1

2

)
, 0

}
,

where by I(X)d we mean the homogeneous component of degree d. Geometrically speak-
ing, the vector space I(X)d is the linear system of plane curves of degree d passing through
each point Pi’s with multiplicity at least mi. The expected dimension informs us whether
we can expect the existence of such curves, and in general dim I(X)d > expdim I(X)d.

Definition 4.1. Let d be a non-negative integer. We say that a finite set of points Z
in the complex projective plane admits an unexpected curve in degree d with a general
point P of multiplicity d− 1 if

dim(I(Z + (d− 1)P ))d > max

{
dim I(Z)d −

(
d

2

)
, 0

}
.

Definition 4.2. We say that an arrangement of lines L ⊂ P2
C admits an unexpected curve

if the set of points Z dual to the configuration of lines in L admits an unexpected curve.

In the context of supersolvable line arrangements, Di Marca, Malara, and Oneto [1]
proved the following result.

Theorem 4.3. A supersolvable line arrangement L admits an unexpected curve if and
only if d > 2m where d is the number of lines and m is the maximum multiplicity of an
intersection point of the lines in L.

This theorem provides as a very nice criterion for the existence of unexpected curves
and once we are able to extend a well-known arrangement in such a way that the resulting
object is supersolvable and satisfies the condition that d > 2m, then we have a new
example of an unexpected curve. Let us start with a baby-case of Fermat arrangements
of lines.

Example 4.4. Fermat arrangement of lines Fn is defined in the complex projective plane
by the linear factors of the following polynomial

F (x, y, z) = (xn − yn)(yn − zn)(zn − xn),

where n > 3. It is well-known that the arrangement consists of 3n lines and tn = 3,
t3 = n2. It is easy to observe that this is not a supersolvable arrangement since the three
fundamental points (which are the intersection points) cannot be joined by lines from the
arrangements. One of the smallest extensions of Fermat arrangements looks as follows:

F̃ (x, y, z) = xy(xn − yn)(yn − zn)(zn − xn),

where as previously n > 3. The new arrangement consists of 3n+ 2 lines and

t2 = 2n, t3 = n2, tn+1 = 2, tn+2 = 1.

This arrangement is clearly supersolvable and the exponents are d1 = n + 1, d2 = 2n.
Moreover, we see that 3n+ 2 = d > 2m = 2n+ 4, since n > 3, so our new family of line
arrangements, denoted in the literature by A2

3(n), leads to new examples of unexpected
curves. Moreover, one has

extSS(Fn) = 2

provided that n > 3. Please note for n = 2 the arrangement F2 is combinatorially
equivalent to B6, thus supersolvable and extSS(F2) = 0.
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