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AZUMAYA ALGEBRAS WITH ORTHOGONAL INVOLUTION

ADMITTING AN IMPROPER ISOMETRY

URIYA A. FIRST∗

Abstract. Let (A,σ) be an Azumaya algebra with orthogonal involution over
a ring R with 2 ∈ R×. We show that if (A, σ) admits an improper isometry,
i.e., an element a ∈ A with σ(a)a = 1 and NrdA/R(a) = −1, then the Brauer
class of A is trivial. An analogue of this statement also holds for Azumaya
algebras with quadratic pair when 2 /∈ R×. We also show that at this level of
generality, the hypotheses do not guarantee that A is a matrix algebra over R.

Let R be a (commutative) ring and let (A, σ, f) be an Azumaya algebra with a
quadratic pair over R. This means that A is an Azumaya R-algebra of even degree,
σ : A → A is an orthogonal involution and f is a semi-trace for (A, σ), i.e., an
R-linear map from Sym(A, σ) := {a ∈ A : σ(a) = a} to R satisfying f(a+ σ(a)) =
TrdA/R(a) for all a ∈ A. See [4, §2.7, §4.4] or [9, §4] for all relevant definitions and

also [11] for the case where R is a field.1 The isometry group of (A, σ, f), denoted
O(A, σ, f), is the subgroup of A× consisting of elements a ∈ A satisfying σ(a)a = 1
and f(axa−1) = f(x) for all x ∈ Sym(A, σ). The functor mapping an R-ring S to
the group O(AS , σS , fS) (with AS = A ⊗R S, etc.) is represented by an affine R-
group scheme O(A, σ, f), and there is a unique R-group scheme homomorphism ∆
from O(A, σ, f) to the constant R-group scheme (Z/2Z)R whose kernel is (fiberwise
over SpecR) the identity connected component of O(A, σ, f) [4, 4.4.0.43, 5.0.0.13,
2.7.0.32]. As usual, elements of O(A, σ, f) are called isometries, and an isometry a
is called proper if ∆(a) = 0 + 2Z and improper if ∆(a) = 1 + 2Z.

When 2 ∈ R×, our setting becomes simpler: The map f must coincide with
1
2 TrdA/R, so we omit it from the notation and just write O(A, σ) for the isometry
group. The elements of O(A, σ) are the a ∈ A satisfying σ(a)a = 1, and if we
identify (Z/2Z)R with µ2,R (the R-group scheme of square roots of 1), then the map
∆ becomes the reduced norm NrdA/R : O(A, σ) → µ2,R. An isometry a ∈ O(A, σ)
is therefore improper precisely when NrdA/R(a) = −1.

Write BrR for the Brauer group of R and let [A] denote the Brauer class of A.
When R is a field F of characteristic not 2, a result of Kneser [10, Lem. 2.6.1b]
says that (A, σ, f) admits an improper isometry if and only if [A] = 0. A proof
working in any characteristic was given later in [11, Cor. 13.43]. The statement
was extended to the case where R is a semilocal ring with 2 ∈ R× in [6], where
it was also shown that the “if” part of the statement is false for a general ring R.
Here we complete the picture by proving that the “only if” part holds for any ring
R, thus settling Question 3 in op. cit.

Theorem 1. Let (A, σ, f) be an Azumaya algebra with a quadratic pair over a ring
R. If (A, σ, f) admits an improper isometry, then [A] = 0 in BrR.
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1Following [4] and [9], we call an R-involution σ on an Azumaya algebra A orthogonal if there

is a faithfully flat R-ring R′ splitting A and such that σR′ : AR′ → AR′ is adjoint to a regular
symmetric bilinear form over R′. We caution that this is different from the definition used in [11]
if 2 /∈ R×.
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The proof is very different from the argument in [6]. It relies on the existence
of generic Azumaya algebras with quadratic pair constructed implicitly in [7], and
earlier in [2, §5] assuming 2 ∈ R×, in order to reduce the theorem to the known
case where R is a field. It does not generalize to Azumaya algebras with orthogonal
involutions over schemes, or more generally, locally ringed topoi, and so it remains
open whether Theorem 1 holds in this broader context (consult [4] and [8, Dfn. 5.1,
Ex. 7.4] for the definitions at this level of generality).

We show in Example 8 below that the conclusion [A] = 0 in Theorem 1 cannot
be improved to A ∼= Mn(R) for some n ∈ N, even if R is connected.

Remark 2. Theorem 1 addresses only the case of even-rank Azumaya algebras.
However, if (A, σ) is an Azumaya algebra with orthogonal involution of constant
odd rank n, then 2[A] = 0 because A ∼= Aop and n[A] = 0 by a theorem of Saltman
[13], so we must have [A] = 0.

Acknowledgement. An earlier version of this work treated only rings in which 2
is invertible. We are grateful to an anonymous referee for insisting that we prove
Theorem 1 for all rings, and giving many helpful suggestions toward achieving this.

Proof of Theorem 1

In what follows, an R-ring means a commutative R-algebra and an R-domain is
an R-ring which is moreover an integral domain.

We first prove the following result, which may be of independent interest. We
use the same conventions about torsors as those in [7, §2].

Theorem 3. Let R0 be a noetherian ring and let G be a linear R0-group scheme
which is an extension of a finite locally free R0-group scheme by a reductive R0-group
scheme. Then every G-torsor over an affine R0-scheme arises as the base-change
of a G-torsor over a smooth R0-scheme with connected geometric fibers.

Proof. Let R be an R0-ring and let E be a G-torsor over R. We need to show
that there is a smooth R0-ring R′, a G-torsor E′ over R′ and a morphism f :
SpecR → SpecR′ such that E ∼= E′ ×SpecR′ SpecR as G-torsors over R and
SpecR′ → SpecR0 has connected geometric fibers. Write R as a direct limit of
its finitely generated R0-algebras {Ri}i∈I . Since G-torsors over Ri are classified by
the first Čech cohomology group H1

fppf(Ri, G) and since H1
fppf(−, G) commutes with

direct limits of rings [12] (see also [1, Cor. 5.9, Rem. 5.14a]), there is i ∈ I and a
G-torsor Ei over Ri such that E is the base change of Ei along Ri → R. Replacing
R with Ri and E with Ei, we may assume that R is finitely generated over R0,
hence noetherian. In particular, R has finite Krull dimension. The existence of E′

and R′ now follows from [7, Thm. 8.1]. �

Corollary 4. Let (A, σ, f) be an Azumaya algebra with quadratic pair of constant
degree 2n over a ring R. Then there is a smooth Z-domain S, an Azumaya S-
algebra with quadratic pair (B, τ, g) and a homomorphism ϕ : R → S such that
(BR, τR, gR) ∼= (A, σ, f).

Proof. Let PGO2n denote the automorphism Z-group scheme of the split Azumaya
algebra with quadratic pair (M2n(Z), η2n, f2n) over Z constructed in [4, p. 57] or
[9, Ex. 4.5b]; it is an extension of the finite contant Z-group scheme (Z/2Z)Z by
a reductive Z-group scheme [4, 4.4.0.37, 8.1.0.55]. By [4, 4.4.0.34], there is an
equivalence of fibered categories over SpecZ between the PGO2n-torsors and the
degree-2n Azumaya algebras with quadratic pair. With this at hand, the corollary
is just Theorem 3 in the special case R0 = Z and G = PGO2n. The resulting
R0-ring S is a domain by the following lemma. �
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Lemma 5. Let f : X → Y be a smooth morphism of schemes. If Y is irreducible
(resp. integral) and f has connected fibers, then X is also irreducible (resp. integral).

Proof. The morphism f is smooth, hence open [15, Tag 056G]. For y ∈ Y , let Xy

denote the scheme-theoretic fiber of f over y, i.e., X ×Y Specκ(y), where κ(y)
is the residue field of y; we use similar notation for open subschemes of X . Our
assumptions on f imply that Xy is a smooth connected κ(y)-scheme, hence integral.
Note also that Xy is subspace of X when both are viewed as topological spaces.

We first prove that X is irreducible. Let U,U ′ be two nonempty open subsets
of X . Then f(U), f(U ′) are nonempty open subsets of the irreducible scheme Y ,
hence f(U) ∩ f(U ′) 6= ∅. Let y ∈ f(U) ∩ f(U ′). Then Uy and U ′

y are nonempty
open subschemes of Xy. Since Xy is irreducible, Uy ∩ U ′

y 6= ∅, so U ∩ U 6= ∅. This
proves that X is irreducible.

Suppose now that Y is integral and let y be its generic point. Choose an open
affine covering {Vi}i of Y and, for each i ∈ I, an open affine covering {Uij}j of
f−1(Vi). Then each Uij → Vi is smooth, and so corresponds to a smooth ring
map Bi → Aij , where Bi is a domain with fraction field κ(y). Since Bi → Aij is
flat, Aij → κ(y) ⊗Bi

Aij is injective. Observe that Spec(κ(y) ⊗Bi
Aij) is an open

subscheme of Xy, which is integral, so κ(y)⊗Bi
Aij is a domain. This means that

each Aij is a domain, and in particular reduced. We have therefore shown that
X is covered by reduced open affine subschemes, so X is reduced. Since X is also
irreducible, it is integral. �

Remark 6. When 2 ∈ R×, we can give a shorter, more direct proof of Corollary 4
using the generic Azumaya algebras with involution of [2] as follows: We may
forget about the semi-trace f . Regard R as an algebra over Ω = Z[ 12 ]. Let m ∈ N

denote the Formanek number of A as defined in [2, §5.1], let (B, τ) denote the
Azumaya algebra with orthogonal involution (A(m, 2n), t) constructed in op. cit.
using the coefficient ring Ω, and let S = Cent(B). By [2, Thm. 17] (see also [14,
Cor. 2.9b]), S is a domain and there is a ring homomorphism φ : S → R such that
(A, σ) ∼= (BR, τR). Furthermore, by [2, Prop. 20], S is a smooth Ω-algebra, hence
smooth over Z.

Lemma 7. Let R, (A, σ, f) be as in Corollary 4 and let a be an improper isometry
of (A, σ, f). Then there is an smooth Z-domain S, an Azumaya S-algebra with
quadratic pair (B, τ, g) admitting an improper isometry b, and a morphism ϕ :
R → S such that (BR, τR, gR) ∼= (A, σ, f) and the isomorphism maps b⊗ 1 to a.

Proof. We apply Corollary 4 to (A, σ, f) to get a smooth Z-domain S and an Azu-
maya S-algebra with quadratic pair (B, τ, g) such that (A, σ, f) ∼= (BR, τR, gR) (it
will not be our final S).

Let O+(B, τ, g) denote the S-group scheme of proper isomerties of (B, τ, g);
it is semisimple [4, 8.1.0.55] and therefore smooth and has connected geometric
fibers over S. We further let O−(B, τ, g) be the pullback of ∆ : O+(B, τ, g) →
(Z/2Z)S along the (1 + 2Z)-section u : SpecS → (Z/2Z)S . Then O−(B, τ, g) the
affine S-group scheme representing the functor mapping an S-ring T to the set of
improper isometries of (BT , τT , gT ), denoted O−(BT , τT , gT ). The product in the
group O(BT , τT , gT ) restricts to an action of O+(BT , τT , gT ) on O−(BT , τT , gT ),
which is free provided O−(BT , τT , gT ) 6= ∅. By [4, 4.4.0.46, 4.4.0.37], there is
a faithfully flat étale S-algebra T with O−(BT , τT , gT ) 6= ∅, so O−(B, τ, g) is a
O+(B, τ, g)-torsor over S. SinceO+(B, τ, S) → SpecS is smooth and has connected
geometric fibers, the same holds for O−(B, τ, g) → SpecS. Our choice of S and
Lemma 5 now imply that O−(B, τ, g) is an integral scheme that is smooth over
SpecZ.

https://stacks.math.columbia.edu/tag/056G
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Let S′ denote the coordinate ring of the affine scheme O−(B, τ, g); it is a smooth
Z-domain by what we have shown. Put B′ = BS′ , τ ′ = τS′ , g′ = gS′ . The
identity map S′ → S′ corresponds to a improper isometry b′ ∈ O−(B′, τ ′, g′),
which may be thought of as the universal improper isometry of (B, τ, g). Since
(A, σ, f) ∼= (BR, τR, gR), the improper isometry a ∈ O−(A, σ, f) = O−(B, τ, g)(R)
corresponds to an S-ring homomorphism α : S′ → R. Viewing R as an S′-algebra
via α, we get (B′, τ ′, g′)⊗S′ R ∼= (B, τ, g)⊗S R ∼= (A, σ, f). Moreover, the equality
α ◦ idS′ = α translates into the fact the image of b ∈ O−(B, τ ′, g′) under the map
O−(B, τ ′, g′) → O−(A, σ, f) is a. Thus, the data α : S′ → R, (B′, τ ′, g′), b′ are
what we were looking for. �

We can now deduce Theorem 1 from its known special case where R is a field.

Proof of Theorem 1. Recall that degA denotes the function from SpecR to N map-
ping p to

√

dimκ(p) Aκ(p), where κ(p) is the fraction field of R/p. If degA is not

constant, then we can write R as a product of rings R =
∏t

i=1 Ri such that degARi

is constant for all i. It is enough to prove that [ARi
] = 0 in BrRi for each i, so we

may work with each factor separately. We thus restrict to the case where degA is
constant.

Let a be an improper isometry of (A, σ, f) and let ϕ : S → R, (B, τ, g) and b be
as in Lemma 7. Since ϕ∗ : BrS → BrR maps [B] to [A], it is enough to prove that
[B] = 0.

By construction, S is a regular domain. Let K be the fraction field of S. By the
Auslander–Goldmann–Grothendieck Theorem [3, Thm. 7.2] (here we need S to be
regular), the map BrS → BrK is injective, so it enough to show that [BK ] = 0
in BrK. But this follows from [10, Lem. 2.6.1b] and [11, Cor. 13.43], because
(BK , τK , gK) is a central simple K-algebra with quadratic pair admitting an im-
proper isometry. �

Example 8. We now give an example of a connected ring R with 2 ∈ R× and
an Azumaya R-algebra with an orthogonal involution (A, σ) having an improper
isometry, but such that A ≇ Mn(R) for all n ∈ N.

Let R be a Dedekind domain with 2 ∈ R× and PicR ∼= Z/2Z, and let L be a
rank-1 projective R-module representing the nontrivial element of PicR; such rings
R exist, e.g., use [5]. In fact, any integral domain R admitting a rank-1 projective
module L such that 2[L] = 0 in PicR and [L] /∈ 2PicR will work. The former
condition implies that there exists an R-module isomorphism φ : L⊗R L → R.

Put M = R⊕L (we write elements of M as column vectors), A = EndR(M), and
define a symmetric R-bilinear form b : M ×M → R by b([ xy ], [

z
w ]) = xz+φ(y⊗w).

If we were to choose L = R, then b would be a diagonal bilinear form ([ xy ], [
z
w ]) =

xz + αyw, where α ∈ R× depends on φ. Since L becomes isomorphic to R over

some Zariski covering of R, this means that the R-linear map b̂ : M → M∗ =

HomR(M,R) given by (b̂x)y = b(x, y) is an isomorphism Zariski-locally on R, hence
an isomorphism; otherwise said, b is regular. Thus, b is adjoint to an orthogonal
involution σ : A → A; for a ∈ A, the element σ(a) is the unique R-endomorphism
of M satisfying b(ax, y) = b(x, σ(a)y) for all x, y ∈ M .

Let a = idR ⊕(− idL) ∈ A. Then σ(a) = a, hence aσ(a) = a2 = 1A and
a ∈ O(A, σ). Writing F for the fraction field of R, we have

NrdA/R(a) = NrdM2(F )/F (idF ⊕(− idF )) = −1,

so a is an improper isometry of (A, σ).
We now show that A ≇ Mn(R) as R-algebras for any n ∈ N. For the sake of

contradiction, suppose that such an isomorphism exists; rank considerations then
force n = 2. Consider R2 as a left A-module via the isomorphism EndR(R

2) ∼=



AZUMAYA ALGEBRAS WITH ORTHOGONAL INVOLUTION 5

M2(R) ∼= A and put P = HomA(R
2,M). We claim that P is a projective R-module

of rank 1. That P is finitely generated and projective follows readily from the fact
that that M and R2 are projective left A-modules. This also implies that P ⊗R k ∼=
HomA⊗k(k

2,M⊗Rk) for everyR-field k. Since A is an AzumayaR-algebra of degree
2 with trivial Brauer class, A⊗R k ∼= M2(k), and under this isomorphism M⊗R k ∼=
k2 as left M2(k)-modules. Thus, dimk P ⊗R k = dimk EndM2(k)(k

2) = 1, proving

that P is of rank 1. Consider the morphism ϕ : P ⊗RR2 = HomA(R
2,M)⊗RR2 →

M given by ϕ(p ⊗ x) = p(x) (p ∈ P , x ∈ R2). It is an isomorphism because
the source and target are finitely generated projective R-modules, and because
ϕ ⊗R idk is an isomorphism for any R-field k by our earlier observations. Thus,
P 2 ∼= P ⊗R R2 ∼= M = R ⊕ L as R-modules. Taking the second exterior power
of both sides, we find that P ⊗R P ∼= L, or rather, 2[P ] = [L] in PicR. This
contradicts our choice of L, so an isomorphism A → Mn(R) cannot exist.
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