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HOMOTOPY DOUBLE COPY AND THE KAWAI-LEWELLEN-TYE RELATIONS FOR THE

NON-ABELIAN AND TENSOR NAVIER-STOKES EQUATIONS

VALENTINA GUARÍN ESCUDERO, CRISTHIAM LOPEZ-ARCOS, AND ALEXANDER QUINTERO VÉLEZ

To the memory of Jorge Alberto Naranjo Mesa

ABSTRACT. Recently, a non-abelian generalisation of the Navier-Stokes equation that exhibits a manifest du-
ality between colour and kinematics has been proposed by Cheung and Mangan. In this paper, we offer a new
perspective on the double copy formulation of this equation, based on the homotopy algebraic picture suggested
by Borsten, Kim, Jurčo, Macrelli, Saemann, and Wolf. In the process, we describe precisely how the double
copy can be realised at the level of perturbiner expansions. Specifically, we will show that the colour-dressed
Berends-Giele currents for the non-abelian version of the Navier-Stokes equation can be used to construct the
Berends-Giele currents for the double copied equation by replacing the colour factors with a second copy of
kinematic numerators. We will also show a Kawai-Lewellen-Tye relation stating that the full tree-level scat-
tering amplitudes in the latter can be written as a product of tree-level colour ordered partial amplitudes in the
former.

1. INTRODUCTION

In 1985, Kawai, Lewellen and Tye [1] discovered an astonishing relation between tree-level closed and
open string amplitudes, which after taking the field theory limit implies that the tree-level gravity amplitudes
can be represented by the “square” of the tree-level colour-ordered Yang-Mills amplitudes. It was only
realised much later by Bern, Carrasco, and Johansson [2] that if the Yang-Mills amplitudes can be arranged
so that their numerator factors satisfy a specific color-kinematics duality, it is possible to directly generate
gravity amplitudes from these by squaring the numerators. This method for obtaining gravity amplitudes is
known as the double copy construction (see Ref. [3] for a review).

Since its original formulation, it has become clear that the double copy construction is not restricted to
just gravity and Yang-Mills theory. Identical squaring relations hold for a much larger “web” of theories.
Notable examples include the non-linear sigma model, the special Galileon, and Born-Infeld theories [4, 5,
6, 7, 8, 9]. Even more, it turns out that the double copy can also be used to engineer scattering amplitudes
in nonrelativistic theories, emphasising the widespread applicability of these ideas. Let us comment briefly
on this, as it will be our main focus.

In a recent article [10], Cheung and Mangan initiated the study of scattering amplitudes for a natural non-
abelian generalisation of the Navier-Stokes equation, which they dubbed the non-abelian Navier-Stokes
equation. Essentially following the steps of the analysis given in Ref. [11], these authors derived the Feyn-
man rules for the perturbative scheme to this equation and used them to calculate the tree-level amplitudes
for the scattering of three and four fluid quanta. They also showed that the tree-level amplitude for the scat-
tering of an arbitrary number of fluid quanta is “on-shell constructible” by carefully examining its infrared
properties. But perhaps more significant was their observation that for any triplet of off-shell Feynman dia-
grams describing the s, t and u channel fluid quanta exchanges, the kinematic Jacobi identities required for
colour-kinematics duality to hold are automatically satisfied. This enabled them to apply the double copy
procedure at the classical level to “square” the non-abelian Navier-Stokes equation, thus obtaining the tensor
Navier-Stokes equation that governs the dynamics of a bi-fluid velocity distribution.

In the present paper, we will explore the duality between colour and kinematics and the double copy of
the non-abelian Navier-Stokes equation in more depth. Our approach relies on the remarkable description
of the double copy formalism in terms of factorisations of strict L∞-algebras introduced by Borsten et. al.
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in Ref. [12]. However, in contrast to the point of view taken in that reference, here we will be working
with perturbiner expansions, which are multiparticle solutions to the non-abelian and tensor Navier-Stokes
equations that arise in the construction of the minimal model of the strict L∞-algebras underlying these
equations [13, 14]. This provides us with a unified picture for treating the various realisations of the double
copy procedure that we will consider.

To make things concrete, let us sketch the main qualitative results of this paper. We will first show that
the strict L∞-algebra L that controls both the colour-stripped and the colour-dressed perturbiner expansions
for the non-abelian Navier-Stokes equation factorises into a colour factor, a kinematic factor, and a scalar
theory factor. To be precise,

L= g⊗ (Kin⊗τ Scal),

where g is the colour factor corresponding to the Lie algebra of internal symmetries, Kin is the kinematic
factor corresponding to the kinematic degrees of freedom, and Scal is the scalar theory factor corresponding
to the strict L∞-algebra that encodes the trivalent interactions. Furthermore, just as the general construction
of Ref. [12] dictates, the tensor product between the last two factors is twisted by a twist datum τ . Next we
will verify that this factorisation of L is suitable, which means that it is compatible with colour-kinematics
duality. This will be done by showing that it is possible to reorganise the colour-dressed Berends-Giele cur-
rents produced by the non-abelian Navier-Stokes equation so as to extract kinematic numerators that satisfy
the same generalised Jacobi identities as their colour counterparts. As a matter of fact, we will identify the
kinematic Lie algebra that gives rise to these numerators with the Lie algebra of “Fourier coefficients” of in-
finitesimal spatial diffeomorphisms, in complete agreement with the statement made in Ref. [10]. Once this
is realised, we will demonstrate that the strict L∞-algebra L′ controlling the perturbiner expansions for the
tensor Navier-Stokes equation can be represented by a “homotopy double copy”, in the sense of Ref. [12], of
the strict L∞-algebra L. What this means concretely is that, from the above factorisation of L, we obtain L′

by replacing the colour factor g with another copy of the kinematic factor Kin and twist the tensor product
by τ :

L′ = Kin⊗τ (Kin⊗τ Scal).

Within this context, we next address the question of how this factorisation can be practically implemented
both at the level of perturbiner expansions and at the level of scattering amplitudes. For the former, we
will show that the double copy Berends-Giele currents can be obtained from the colour-dressed Berends-
Giele currents by simply substituting the colour factors for another copy of kinematic numerators. For the
latter, we will show a Kawai-Lewellen-Tye relation that provides a representation of the tree-level scattering
amplitudes of bi-fluid quanta described by the tensor Navier-Stokes equation as the “square” of tree-level
colour ordered partial amplitudes of fluid quanta described by the non-abelian Navier-Stokes equation. Of
course, as with the standard Kawai-Lewellen-Tye factorisation of gravity amplitudes into products of Yang-
Mills amplitudes [15, 16, 17], the role of the momentum kernel will be played by the inverse of a matrix
which is constructed out of Berends-Giele double currents derived from a strict L∞-algebra L′′ that controls
the perturbiner expansions of a bi-adjoint analogue of the Navier-Stokes equation. This strict L∞-algebra, in
turn, will be shown to be represented by a “homotopy zeroth copy” of the the strict L∞-algebra L, again in
the spirit of Ref. [12]. In other words, L′′ is obtained by replacing the kinematic factor Kin with a different
colour factor ḡ in the prescribed factorisation of L:

L′′ = g⊗ (ḡ⊗Scal).

To summarise, we will find that the homotopy algebraic perspective on the double copy advocated in
Ref. [12] gives us a complete and elegant formulation of this operation at all levels for the non-abelian
Navier-Stokes equation.

It is significant to point out that the scalar factor Scal is common to all three strict L∞-algebras: L,
L′ and L′′. Since, as we have already stated, the strict L∞-algebra Scal describes a scalar theory with
only trivalent interactions that underlies the non-abelian, tensor, and bi-adjoint Navier-Stokes equations,
which are manifestly nonrelativistic, this means that none of these three equations can be obtained from the
extremisation of an action functional.1 What this translates to from the algebraic standpoint is that none

1The overall reason for this is that the nonrelativistic scalar field encased in Scal is necessarily complex, and it is therefore not
possible to write a suitable action functional with a cubic interaction. It is also worth noting here that this fact is not too surprising
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of the three strict L∞-algebras L, L′ and L′′ can be equipped with a cyclic inner product giving rise to a
homotopy Maurer-Cartan action; see Ref. [18] for an explanation.

One motivation for this investigation is that the non-abelian Navier-Stokes equation is rich enough to elu-
cidate the general structure of the double copy prescription, avoiding many of the technical complications
that arise in the generic situation, where a specific strictification compatible with colour-kinematics duality
of the L∞-algebra describing the dynamics needs to be singled out before one can actually apply the recipe
developed in Ref. [12]. Another motivation is to show how perturbiner methods will help give perspective
and a deeper understanding of the results in loc. cit. This is fully in line with the arguments and findings pre-
sented in Ref. [19], where it was confirmed that our proposal for determining the double copied perturbiner
coefficients works out for several other theories.

The organisation of this paper is as follows. In Section 2, we discuss the non-abelian Navier-Stokes
equation and outline some of its basic properties. After these preparations, we explain the construction of
the strict L∞-algebra L relevant to such equation in Section 3. In Sections 4 and 5, we determine multipar-
ticle solutions to the non-abelian Navier-Stokes equation in the form of colour-stripped and colour-dressed
perturbiner expansions. In Section 6, we tackle the task of factorising the strict L∞-algebra L, so that the
construction described above can be carried out. Section 7 is devoted to the verification of the fact that this
factorisation is compatible with colour-kinematics duality. In Section 8 we introduce the strict L∞-algebra
L′ associated to the tensor Navier-Stokes equation and show that it can be obtained as the homotopy double
copy of L. In Section 9 we work out the multiparticle solution to the tensor Navier-Stokes equation in the
shape of a perturbiner expansion. Section 10 is concerned with the precise relation between the double
copy Berends-Giele currents and the colour-dressed Berends-Giele currents. In Section 11 we introduce
the strict L∞-algebra L′′ that describes the bi-adjoint Navier-Stokes equation and show that it can be char-
acterised as the homotopy zeroth copy of L. Section 12 is dedicated to the determination of multiparticle
solutions to the bi-adjoint Navier-Stokes equation by way of colour-stripped and colour-dressed perturbiner
expansions. Following this, scattering amplitudes for the non-abelian and tensor Navier-Stokes equations
are discussed on Section 13. We then proceed in Section 14 to show the Kawai-Lewellen-Tye relations.
Finally, in Section 15 we offer our conclusions and speculations.

Notation. The physical space will be represented isometrically by the 3-dimensional Euclidean space R3.
To specify its points we use a rectangular coordinate system (x1,x2,x3). We refer to the coordinate triple
(x1,x2,x3) as the position and denote it by x. Latin indices i, j, etc. run over the coordinate labels 1,2,3.
The parameter t is identified with the time, and we may suppose its range to be −∞ < t < ∞. The coordinate
basis corresponding to (xi) is denoted ei, and the dual basis is denoted ei. The terminology “vector” is
reserved for ei and the terminology “1-form” is used for ei. We also adopt the shorthand notation ∂i for the
partial derivative ∂

∂xi .
We use Ωr

t.d.(R
3) to denote the space of time-dependent r-forms on R3. We also write d: Ωr

t.d.(R
3) →

Ωr+1
t.d. (R

3) for the spatial exterior differential, ∗ : Ωr
t.d.(R

3) → Ω3−r
t.d. (R

3) for the spatial star operator with
respect to the usual metric on R3, δ = ∗d∗ : Ωr

t.d.(R
3) → Ωr−1

t.d. (R
3) for the corresponding spatial exterior

codifferential, and ∂
∂ t

: Ωr
t.d.(R

3)→ Ωr
t.d.(R

3) for the partial derivative with respect to time.
If u is a time-dependent vector field on R3, we use the symbol u♭ to denote the associated time-dependent

1-form on R3. In terms of the coordinate system (xi), the components of u♭ are obtained by lowering the
indices of the components of u. Of course, we can also pass from a time-dependent 1-form u to a time-
dependent vector field u♯ by raising the indices of the components of u. This enables us to define a Lie
bracket on the space Ω1

t.d.(R
3) by setting

[u,v] = [u♯,v♯]♭,

where the bracket on the right-hand side is just the Lie bracket of two time-dependent vector fields on R3.
If we write this out explicitly in components, we have

[u,v]i = u j∂ jvi − v j∂ jui.

when we recall that the classical Navier-Stokes equation, of which the equations in question are generalisations, does not admit a
least action principle.
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The Einstein summation convention where repeated indices implies addition has been employed in this
formula and, in the sequel we shall adhere to this notation.

We also frequently make use of a notation based on the combinatorics of words. By a word we mean
a finite string P = p1 p2 · · · pk of positive integers p1, p2, . . . , pk ≥ 1. The word consisting of no symbols,
called the empty word, is represented by ∅. Given a word P = p1 p2 · · · pk, we denote by P̄ = pk pk−1 · · · p1

its transpose and by |P| its length k. The scalar product of two words P and Q is defined to be

(P,Q) = δP,Q,

where δP,Q is the ‘Kronecker delta’, that is, δP,Q = 1 if P = Q and δP,Q = 0 if P 6= Q. Clearly, this definition
may be extended by linearity to arbitrary finite linear combinations of words. We too shall need the shuffle
product on words, which will be denoted by the symbol�. It is defined inductively by setting

∅�P = P�∅= P, pP�qQ = p(P�qQ)+q(pP�Q),

for any words P and Q and for any positive integers p and q.
We shall implicitly work with the free Lie algebra Ln−1 generated by the set {1,2, . . . ,n− 1}. This is

defined as the span of the letters in {1,2, . . . ,n− 1} and all brackets of letters in {1,2, . . . ,n− 1}. By a
Lie polynomial of length n− 1 we mean an element of Ln−1. The left to right bracketing of a word P =
p1 p2 · · · pk with letters in {1,2, . . . ,n−1} is denoted ℓ[P] = [[. . . [[p1, p2], p3], . . . ], pk]. Any Lie polynomial
Γ of length n−1 may be expanded as

Γ = ∑
P

(1P,Γ)ℓ[1P],

where the sum ranges over all permutations P of 23 · · · (n−1).
Finally we shall need the notion of an object labelled by words satisfying the generalised Jacobi identities.

Specifically, let UP be an arbitrary object which is labelled by words P with letters in {1,2, . . . ,n−1}. Then
UP is said to satisfy the generalised Jacobi identity of order k if

UQℓ[R]+URℓ[Q] = 0

for every pair of non-empty words Q and R such that |Q|+ |R|= k. In this case, we shall write Uℓ[P] instead
of UP. In particular, this implies that U[ℓ[Q],ℓ[R]] =Uℓ[Qℓ[R]].

2. NON-ABELIAN NAVIER-STOKES EQUATIONS

We shall start in this section by discussing the non-abelian analogue of the Navier-Stokes equations. Such
analogue has been introduced recently by Cheung and Mangan in Ref. [10]. However, our presentation
differs from theirs in that we follow an intrinsic, and basically coordinate free approach. We begin by
reviewing the main ingredients associated with the classical Navier-Stokes equations.

The mathematical description of the state of a homogeneous and incompressible Newtonian fluid with
unit density is effected by means of a vector field u = u(x, t) which gives the distribution of the fluid velocity
and a function p= p(x, t) which gives the pressure. Its dynamics is governed by the Navier-Stokes equations
expressed as

divu = 0, (2.1a)

∂u

∂ t
−ν∆u+(u ·grad)u+grad p = 0, (2.1b)

where ν is the kinematic viscosity. Using the formulas well known in vector analysis, ∆u = grad(divu)−
rot(rot u) and (u · grad)u = 1

2 grad(u ·u)−u× rot u, and the incompressibility condition (2.1a), we may
put Eq. (2.1b) in the form

∂u

∂ t
+ν rot(rot u)+ 1

2 grad(u ·u)−u× rotu+grad p = 0. (2.2)

When the velocity distribution is known, the pressure distribution in the fluid can be found by solving the
Poisson-type equation

∆p =− 1
2∆(u ·u)+div(u× rotu), (2.3)

which is obtained by taking the divergence of Eq. (2.2).
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In order to derive a non-abelian version of the Navier-Stokes equations it is convenient to first translate
Eqs. (2.1a) and (2.2) into the language of time-dependent differential forms. To this end, we use the identities

(divu)♭ = δu♭,

(rot(rot u))♭ = δdu♭,

(grad(u ·u))♭ = d∗(u♭∧∗u♭),

(u× rotu)♭ = ∗(u♭∧∗du♭),

(grad p)♭ = dp,

where the notation is the one described in the introduction. Substituting these formulae in Eqs. (2.1a) and
(2.2), the Navier-Stokes equations are then expressed as

δu♭ = 0, (2.4a)

∂u♭

∂ t
+νδdu♭+ 1

2d∗(u♭∧∗u♭)−∗(u♭∧∗du♭)+dp = 0. (2.4b)

When written in this fashion, the distribution of the fluid velocity is now represented by the time-dependent
1-form u♭, and the pressure by the time-dependent 0-form p.

Having this, we can formulate what we mean by a homogeneous and incompressible non-abelian Newto-
nian fluid. We begin with a colour gauge group, which we take to be a compact Lie group G with Lie algebra
g. We are given a time-dependent 1-form u on R3 with values in g, representing the distribution of the fluid
velocity, and a time-dependent 0-form p on R3 with values in g, representing the pressure. Taking inspi-
ration from the universal form that the Navier-Stokes equations assume in the language of time-dependent
differential forms, Eqs. (2.4a) and (2.4b), one may be tempted to stipulate that its non-abelian version is
obtained by changing the wedge product by the Lie bracket on the space of time-dependent r-forms on R3

taking values in g. However, this recipe does not reproduce the correct interaction term in the fluid velocity.
To abstract such term properly, we must make a more educated guess. But first a little notation.

Let Ta be the generators of g, with structure constants f c
ab satisfying [Ta,Tb] = f c

ab Tc. Then an element u

of the space of time-dependent 1-forms onR3 with values in g is specified by giving time-dependent 1-forms
ua on R3. This makes it possible to define a binary operation on such space by means of

{{u,v}} = λ f a
bc [ub,vc]Ta. (2.5)

Here [, ] stands for the Lie bracket on the space of time-dependent 1-forms on R3 and the coupling constant
λ has been inserted for later convenience. Written out in components, this equals

{{u,v}}a
i = λ f a

bc (ub j∂ jv
c
i − vc j∂ ju

b
i ). (2.6)

That the operation so defined is independent of the choice of the generators Ta is clear.
Armed with this implement, we may now write down the non-abelian Navier-Stokes equations. They

read

δu = 0, (2.7a)

∂u

∂ t
+νδdu+ 1

2{{u,u}}+dp = 0. (2.7b)

To help understand these equations, we work out their component form. In the notation of the preceding
paragraph, the components of u and p relative to the generators Ta might be labeled as ua and pa, respectively.
Hence we may use Eq. (2.6) to rewrite Eqs. (2.7a) and (2.7b) in the forms

∂iu
ai = 0, (2.8a)

∂ua
i

∂ t
−ν∆ua

i +λ f a
bc ub j∂ ju

c
i +∂i p

a = 0. (2.8b)

These coincide precisely with the the sourceless non-abelian Navier-Stokes equations of Ref. [10]. The
equations written in the form (2.7a) and (2.7b) have, however, a more intrinsic geometric meaning.
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One other point we shall notice is this. Applying the spatial exterior codifferential δ to Eq. (2.7b) and
using Eq. (2.7a) gives

∆p =− 1
2δ{{u,u}}. (2.9)

In components, this implies that

∆pa =−λ f a
bc ∂i(u

b j∂ ju
ci) =−λ f a

bc ∂iu
b j∂ ju

ci, (2.10)

which is identically zero due to the antisymmetry of the structure constants f a
bc in their two lower indices.

Thus Eq. (2.9) becomes simply

∆p = 0. (2.11)

From this we conclude that in a homogeneous and incompressible non-abelian Newtonian fluid, the velocity
distribution u and the pressure distribution p are decoupled and may therefore be treated independently. This
is in sharp contrast with the abelian situation, as evidenced by Eq. (2.3).

In view of the preceding remarks, we choose to ignore the pressure term in Eq. (2.7b) altogether, so that
the non-abelian Navier-Stokes equations take the form

δu = 0, (2.12a)

∂u

∂ t
+νδdu+ 1

2{{u,u}} = 0, (2.12b)

or, in terms of components,

∂iu
ai = 0, (2.13a)

∂ua
i

∂ t
−ν∆ua

i +λ f a
bc ub j∂ ju

c
i = 0. (2.13b)

We shall also find it convenient to treat Eq. (2.12a), or its component counterpart Eq. (2.13a), as a subsidiary
solenoidal condition.

3. THE NON-ABELIAN NAVIER-STOKES STRICT L∞-ALGEBRA

In this section we shall describe the strict L∞-algebra associated to the non-abelian Navier-Stokes equation
(2.12b). This is the algebraic object that will enable us to construct multiparticle solutions via the perturbiner
method advocated in Refs. [13] and [14].

Denote by Ω1
t.d.(R

3,g) the space of time-dependent 1-forms on R3 with values in g. As a cochain com-
plex, the non-abelian Navier-Stokes strict L∞-algebra L is

Ω1
t.d.(R

3,g)[−1]
∂
∂ t
+νδd

−−−−→ Ω1
t.d.(R

3,g)[−2].

Thus, Ω1
t.d.(R

3,g) is concentrated in degrees 1 and 2, and the differential l1 is the operator ∂
∂ t
+νδd acting

on Ω1
t.d.(R

3,g). The bracket l2 : Ω1
t.d.(R

3,g)[−1]⊗2 → Ω1
t.d.(R

3,g)[−2] is defined by

l2(u,v) = {{u,v}}. (3.1)

Recalling the definition (2.5), this is evidently skew-symmetric and since the graded Jacobi identity is triv-
ially satisfied, it turns the graded vector space L = Ω1

t.d.(R
3,g)[−1]⊕ Ω1

t.d.(R
3,g)[−2] into a strict L∞-

algebra. From the definitions it follows immediately that, for all u ∈ Ω1
t.d.(R

3,g)[−1],

l1(u)+
1
2 l2(u,u) =

∂u

∂ t
+νδdu+ 1

2{{u,v}},

and hence the Maurer-Cartan equation for the strict L∞-algebra L reproduces exactly the non-abelian Navier-
Stokes equation (2.12b).

Now, the definition of the strict L∞-algebra L requires a slight modification that allows to deal with
perturbiner expansions. First we must establish some notation. Let (ap)p≥1 be an infinite multiset of colour
indices associated with the Lie algebra g and let (kp,ωp)p≥1 be an infinite set of pairs with kp ∈R

3 and ωp ∈
R and such that iωp +k2

p = 0 for each p ≥ 1. Let also Wn be the set of words of length n. If P = p1 p2 · · · pn
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is one such word, we put TaP
= Tap1

Tap2
· · ·Tapn

, kP = kp1 +kp2 + · · ·+kpn
and ωP = ωp1 +ωp2 + · · ·+ωpn

.
We denote by E0

t.d.(R
3,g) the space of time-dependent formal series of the form

h(x, t) = ∑
n≥1

∑
P∈Wn

hP ei(kP·x+ωPt) TaP
, (3.2)

and by E1
t.d.(R

3,g) the space of time-dependent 1-forms on R3 with coefficients on E0
t.d.(R

3,g). Borrowing
the terminology from Ref. [13], elements of E1

t.d.(R
3,g) are called colour-stripped perturbiner ansatzs.

We would next like to extend the operator ∂
∂ t
+νδd to all of E1

t.d.(R
3,g). This can be achieved using the

colour-dressed version of the perturbiner ansatzs. In terms of the rectangular coordinates of R3, an element
of E1

t.d.(R
3,g) may be represented as u = ui(x, t)e

i where, in accord with Eq. (3.2), the components ui(x, t)
are formal series of the form

ui(x, t) = ∑
n≥1

∑
P∈Wn

uiP ei(kP·x+ωPt) TaP
. (3.3)

With this in mind, for each sequence of positive integers p1 < p2 < · · ·< pn, we set

f a
p1 p2···pn

= fap1 ap2

b fbap3

c · · · fdapn−1

e feapn

a, (3.4)

and define the coefficients ua
ip1 p2···pn

by

u
a
ip1 p2···pn

= ∑
σ

f a
p1 pσ(2)···pσ(n)

uip1 pσ(2)···pσ(n)
, (3.5)

the summation being taken over all permutations of the set {2,3, . . . ,n}. With the help of the latter, Eq. (3.3)
may be rewritten as ui(x, t) = ua

i (x, t)Ta, where the coefficients ua
i (x, t) are formal series of the form

ua
i (x, t) = ∑

n≥1
∑

P∈OWn

u
a
iP ei(kP·x+ωPt) . (3.6)

Here OWn denotes the set of words P = p1 p2 · · · pn of length n with p1 < p2 < · · · < pn. This allows us to
define the operator ∂

∂ t
+νδd acting on the space E1

t.d.(R
3,g) by putting

(

∂

∂ t
+νδd

)

ua
i (x, t) = ∑

n≥1
∑

P∈OWn

(iωP +νk2
P)u

a
iP ei(kP·x+ωPt) (3.7)

and extending by linearity.
This digression out of the way, we can now write down the strict L∞-algebra L that conceals the pertur-

biner expansions for the non-abelian Navier-Stokes equation. The cochain complex underlying L is

E
1
t.d.(R

3,g)[−1]
∂
∂ t
+νδd

−−−−→ E
1
t.d.(R

3,g)[−2]. (3.8)

Thus, as before, the differential l1 is here the operator ∂
∂ t
+ νδd acting on E1

t.d.(R
3,g). As for the bracket

l2 : E1
t.d.(R

3,g)[−1]⊗2 → E1
t.d.(R

3,g)[−2], it is given by the same formula as that of Eq. (3.1). That this is
well-defined follows easily from the argument presented in §2.2 of [20].

4. COLOUR-STRIPPED MULTIPARTICLE SOLUTION TO THE NON-ABELIAN NAVIER-STOKES EQUATION

Now we turn our attention to the multiparticle solution to the non-abelian Navier-Stokes equations. As we
have already stated, this type of solution is obtained in the form of a perturbiner expansion [21, 22, 20]. We
take up first the case in which the perturbiner expansion is colour-stripped. The philosophy here is the same
as that exposed in Ref. [13] in that the determination of such expansion can be reduced to the construction
of a minimal model for the strict L∞-algebra L.

To begin with, using the defining cochain complex (3.8), we see that the cohomology of L is concentrated
in degrees 1 and 2. It is given by the solution space H1(L) = ker(l1) of the linearaised equation ∂u

∂ t
+νδdu=

0 and the space H2(L) = coker(l1) of linear on-shell colour-stripped perturbiner ansatzs. It follows that the
cochain underlying the cohomology H•(L) of L is

ker(l1)[−1]
0

−−−→ coker(l1)[−2].
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In order to construct the minimal L∞-structure on H•(L), we must define a projection p : L→ H•(L) and a
contracting homotopy h : L→ L. To this end, we consider the Wyld propagator GW defined on the space of
time-dependent 0-forms on R3. Its explicit expression, when acting on plane waves of the form ei(k·x+ωt), is

GW =
1

iω +νk2
, (4.1)

as long as we assume that iω + νk2 6= 0. We extend GW to all of E1
t.d.(R

3,g) so that we obtain a linear
operator GW : E1

t.d.(R
3,g)→ E1

t.d.(R
3,g) satisfying

l1 ◦GW =

(

∂

∂ t
+νδd

)

◦GW = idE1
t.d.(R

3,g). (4.2)

With the help of GW, we may define the projection p(1) : E1
t.d.(R

3,g)→ ker(l1) by

p(1) = idE1
t.d.(R

3,g)−GW ◦ l1. (4.3)

As for the other projection p(2) : E1
t.d.(R

3,g)→ coker(l1) we simply take the quotient map. In terms of these
choices, the only non-zero component of the contracting homotopy h turns out to be

h(2) = GW : E1
t.d.(R

3,g)−→ E
1
t.d.(R

3,g). (4.4)

Having this, the quasi-ismorphism between H•(L) and L is readily determined by maps fn : H•(L)⊗n → L

which are constructed recursively using h, whereas the higher order brackets l′n : H•(L)⊗n → H•(L) are
constructed recursively using p. We shall not reproduce here the explicit expressions, but instead refer the
reader to the Appendix A of Ref. [23] (see also Ref. [18]).

We shall now obtain the perturbiner expansion for the non-abelian Navier-Stokes equation by using the
minimal L∞-structure on H•(L). To reach that goal, we consider a Maurer-Cartan element u′ ∈ H1(L) =
ker(l1) with components of the form

u′i(x, t) = ∑
p≥1

uip ei(kp·x+ωpt) Tap
, (4.5)

where ωp is related to kp through the dispersion relation iωp + νk2
p = 0. This, of course, is the simplest

multiparticle solution to the linearised equation. We then define the colour-stripped perturbiner expansion
to be the Maurer-Cartan element u of L given by the formula

u = ∑
n≥1

1
n!

fn(u
′, . . . ,u′). (4.6)

The task is to work out the components ui(x, t) of u. Here we may borrow from the analysis carried out in
Ref. [13]. To start off, a detailed calculation gives the term fn(u

′, . . . ,u′) in Eq. (4.6) as

fn(u
′, . . . ,u′) =− 1

2

n−1

∑
k=1

(

n

k

)

GW({{ fk(u
′, . . . ,u′), fn−k(u

′, . . . ,u′)}}
)

. (4.7)

Next, using mathematical induction and taking note of Eqs. (2.5) and (4.1), the components of the above
result in the form

fn(u
′, . . . ,u′)i = n! ∑

P∈Wn

uiP ei(kP·x+ωPt) TaP
, (4.8)

where the coefficients uiP are determined from the recursion relations

uiP =
λ

iωP +νk2
P

∑
P=QR

{

(u♯
Q ·kR)uiR − (u♯

R ·kQ)uiQ

}

. (4.9)

Here the notation ∑P=QR instructs to sum over deconcatenations of the word P into non-empty words Q and
R. In line with the terminology used in Ref. [20], we refer to the coefficients uiP as the colour-stripped
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Berends-Giele currents for u. Inserting Eq. (4.8) back in Eq. (4.6) gives then the components of the pertur-
biner expansion as

ui(x, t) = ∑
n≥1

∑
P∈Wn

uiP ei(kP·x+ωPt) TaP
. (4.10)

So our conclusion is that the recursion relations for the perturbiner coefficients are preset by the recursion
relations for the L∞-quasi-isomorphism from H•(L) onto L.

It is possible to put Eq. (4.9) into a somewhat more pliable form. In the first place, we can eliminate the
ωP from the denominator of the right-hand side of Eq. (4.9) by using the dispersion relation for each of the
terms entering in Eq. (4.5), and find that such denominator is given by

sP = 2ν ∑
{p,q}⊂P

kp ·kq. (4.11)

This expression may be considered as the nonrelativistic analogue of the Mandelstam variables. In the sec-
ond place, it is very convenient to invoke a combinatorial gadget, termed the “binary tree map” in Ref. [24],
that allows us to keep track of the bracketed words obtained by iterated recursion of Eq. (4.9). We shall here
refer to it as the colour-stripped Berends-Giele map. It is defined as the map bcs acting on all words and
determined recursively by

bcs(p) = p,

bcs(P) =
1
sP

∑
P=QR

[bcs(Q),bcs(R)].
(4.12)

In the third place, as a matter of notation, for an arbitrary labelled object UP, we bring the definition from
Ref. [24] for the replacement of words by such object as

JUK◦P =UP. (4.13)

And in the fourth and last place, for every pair of bracketed words ℓ[P] and ℓ[Q], we recursively set

εi[ℓ[P],ℓ[Q]] = (ε ♯
ℓ[P] ·kQ)εiℓ[Q]− (ε ♯

ℓ[Q] ·kP)εiℓ[P], (4.14)

with the agreement that εip = uip. Later we shall see that the labelled objects εiℓ[P] are to be identified
with kinematic numerators satisfying generalised Jacobi identities. With all this in mind, we can rewrite the
recursion relation in Eq. (4.9) in the form

uiP = λ JεiK◦bcs(P). (4.15)

We have then a clear-cut way in which the colour-stripped Berends-Giele map bcs provides a purely com-
binatorial realisation of the colour-stripped Berends-Giele current uiP. From this, in particular, follows the
shuffle constraint uiP�Q = 0, which can be equivalently stated as uiPpQ = (−1)|P|uip(P̄�Q). This is seen at
once by appealing to the general abstract argument presented in Appendix C.1 of Ref. [24].

5. COLOUR-DRESSED MULTIPARTICLE SOLUTION TO THE NON-ABELIAN NAVIER-STOKES EQUATION

We are now concerned with the determination of a multiparticle solution to the non-abelian Navier-Stokes
equations in the form of a colour-dressed perturbiner expansion. All conventions, notation and terminology
introduced in the previous section remain in force.

The treatment of colour-dressed perturbiner expansions can be carried out along lines parallel to the
treatment employed for colour-stripped perturbiner expansions and is in many respects simpler (see, for
example, Ref. [14]). We start with a Maurer-Cartan element u ∈ H•(L) = ker(l1) which has components

u′ai (x, t) = ∑
p≥1

u
a
ip ei(kp·x+ωpt), (5.1)

with ωp and kp obeying the dispersion relation iωp+νk2
p = 0. We next define the colour-dressed perturbiner

expansion u ∈ L by means of the same formula as Eq. (4.6). Again our basic problem will be to work out
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the components ua
i (x, t) of u. This calculation proceeds exactly as before, using mathematical induction. We

obtain

ua
i (x, t) = ∑

n≥1
∑

P∈OWn

u
a
iP ei(kP·x+ωPt), (5.2)

where the coefficients ua
iP are determined from the recursion relations

u
a
iP =

λ

sP
∑

P=Q∪R

1
2 f̃ a

bc

{

(ub♯
Q ·kR)u

c
iR − (uc♯

R ·kQ)u
b
iQ

}

. (5.3)

Here the notation P = Q∪R instructs to distribute the letters of the ordered words P into non-empty ordered
words Q and R. We have also introduced, for later notational convenience, the combination f̃ a

bc =−2i f a
bc .

From now on the coefficients ua
iP will be referred to as the colour-dressed Berends-Giele currents for u. It

is, perhaps, worth mentioning that, in terms of the ua
iP, the solenoidal condition (2.13a) translates into the

transversality condition u
a♯
P ·kP = 0.

We shall find the colour-dressed version of the perturbiner expansion extremely useful in our later work.
In fact, we shall see that from the colour-dressed Berends-Giele currents we can extract kinematic numer-
ators that naturally satisfy the generalised Jacobi identities of a nested commutator, an attribute that can be
reconciled with a manifestation of colour-kinematics duality.

6. FACTORISATION OF THE NON-ABELIAN NAVIER-STOKES STRICT L∞-ALGEBRA

In this section the problem of factoring the non-abelian Navier-Stokes strict L∞-algebra L is considered.
More precisely, we are interested in establishing a factorisation of L into three parts: a colour part, a kine-
matic part and a strict L∞-algebra which fully describes the interaction of the perturbiner coefficients. This
will be accomplished building upon the ideas and constructions of Ref. [12]. We shall therefore use the
notation and terminology used there.

There are two steps in defining the required factorisation of the strict L∞-algebra L. The first step amounts
to showing that L admits a factorisation into a colour or gauge Lie algebra and a kinematical strict C∞-algebra
C. We start with the definition of the latter. As a cochain complex, it is given by

Ω1
t.d.(R

3)[−1]
∂
∂ t
+νδd

−−−−→ Ω1
t.d.(R

3)[−2].

In other words, the differential m1 is identified with the operator ∂
∂ t
+ νδd acting on Ω1

t.d.(R
3). The multi-

plication m2 : Ω1
t.d.(R

3)[−1]⊗2 → Ω1
t.d.(R

3)[−2] is defined by taking

m2(u,v) = λ [u,v]. (6.1)

Clearly, this operation is graded commutative. Moreover, for degree reasons, the Leibniz rule is trivially
satisfied. In this way, the graded vector space C= Ω1

t.d.(R
3)[−1]⊕Ω1

t.d.(R
3)[−2] acquires the structure of a

strict C∞-algebra. We claim that this strict C∞-algebra allows for a factorisation

L= g⊗C, (6.2)

where the colour Lie algebra g is concentrated in degree zero. To verify this, identify Ω1
t.d.(R

3,g) with the
tensor product g⊗Ω1

t.d.(R
3) in the usual way, so that, we may write an element u∈Ω1

t.d.(R
3,g) as u= Ta⊗ua

with ua ∈ Ω1
t.d.(R

3). Then, recalling the definition of the differentials l1 and m1, we see that

l1(Ta ⊗ua) = Ta ⊗

(

∂

∂ t
+νδd

)

ua = Ta ⊗m1(u
a).

Also, from Eqs. (3.1) and (6.1), we find that

l2(Ta ⊗ua,Tb ⊗ vb) = JTa ⊗ua,Tb ⊗ vbK = λ f c
ab Tc ⊗ [ua,vb] = [Ta,Tb]⊗m2(u

a,vb).

These last two equalities show that l1 = id⊗m1 and l2 = [, ]⊗m2, and consequently the claim holds true.
We remark in passing that the factorisation (6.2) corresponds to colour-stripping the strict L∞-algebra L.
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In order to make further progress it is necessary to adjust the definition of the strict C∞-algebra C so as
to include perturbiner expansions. Following the notation of Section 3, we denote by E0

t.d.(R
3) the space of

time-dependent formal series of the form

ϕ(x, t) = ∑
n≥1

∑
P∈OWn

ϕP ei(kP·x+ωPt), (6.3)

and by E1
t.d.(R

3) the space of time-dependent 1-forms on R3 with coefficients on E0
t.d.(R

3). In line with the
preceding discussion, we refer to the elements of E1

t.d.(R
3) as colour-stripped perturbiner ansatzs. We must

also say a bit about how to extend the operator ∂
∂ t
+ νδd to act on the space E1

t.d.(R
3). This is done in the

standard way: we first extend the definition of ∂
∂ t
+νδd to the space E0

t.d.(R
3) by putting

(

∂

∂ t
+νδd

)

ϕ(x, t) = ∑
n≥1

∑
P∈OWn

(iωP +νk2
P)ϕP ei(kP·x+ωPt), (6.4)

and then extend ∂
∂ t
+νδd uniquely to E1

t.d.(R
3) by linearity.

Equipped with all this information, the cochain complex underlying the strict C∞-algebra C controlling
the perturbiner expansion is

E
1
t.d.(R

3)[−1]
∂
∂ t
+νδd

−−−−→ E
1
t.d.(R

3)[−2].

Hence, the differential m1 is simply the operator ∂
∂ t
+νδd acting on E1

t.d.(R
3). Regarding the multiplication

m2 : E1
t.d.(R

3)[−1]⊗2 → E1
t.d.(R

3)[−2], this is determined by the exact same formula (6.1) as above. Using
this prescription, and recalling the definition of the strict L∞-algebra L that results in dealing with colour-
dressed perturbiner expansions, we deduce that the factorisation (6.2) remains valid.

With this background in mind, the second step consists of showing that the strict C∞-algebra C admits a
further factorisation which strips off the kinematical factor. For this purpose, we use the notion of twisted
tensor product of homotopy algebras introduced in Ref. [12]. We proceed to give some of the necessary
definitions.

Let Kin= (R3)∗ be the dual space of covectors in R3, which we regard as being a graded vector space sit-
ting in degree zero. We continue to write ei for the natural basis of Kin relative to the rectangular coordinates
of R3. We also consider the strict L∞-algebra Scal built from the cochain complex

E
0
t.d.(R

3)[−1]
∂
∂ t
+νδd

−−−−→ E
0
t.d.(R

3)[−2],

whose differential we write as µ1 and whose bracket µ2 : E0
t.d.(R

3)[−1]⊗2 → E0
t.d.(R

3)[−2] is defined as
follows: for any two elements ϕ(x, t),ψ(x, t) ∈ E0

t.d.(R
3) we set

µ2(ϕ(x, t),ψ(x, t)) = ∑
n≥1

∑
P∈OWn

(

∑
P=Q∪R

λϕQψR

)

ei(kP·x+ωPt), (6.5)

where ϕP and ψQ are the coefficients in the expansions of ϕ(x, t) and ψ(x, t) as formal series. We are
interested here in computing the twisted tensor product between Kin and Scal. To do so, we need to define
a twist datum τ = (τ1,τ2) consisting of a pair of maps τ1 : Kin → Kin⊗End(Scal) and τ2 : Kin⊗Kin →
Kin⊗End(Scal)⊗End(Scal). We put

τ1(e
i) = ei ⊗ id (6.6)

and

τ2(e
i ⊗ e j) = e j ⊗ id⊗∂ i − ei ⊗∂ j ⊗ id. (6.7)

Using the above formulae for τ1 and τ2 as well as the prescription of Ref. [12], it is a fact that the tensor
product Kin⊗Scal carries the structure of a strict C∞-algebra with differential

mτ
1(e

i ⊗ui(x, t)) = ei ⊗µ1(ui(x, t)) (6.8)
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and multiplication

mτ
2(e

i ⊗ui(x, t),e
j ⊗ v j(x, t))

= e j ⊗µ2(ui(x, t),∂
iv j(x, t))− ei ⊗µ2(∂

jui(x, t),v j(x, t)).
(6.9)

This strict C∞-algebra is defined to be the twisted tensor product of Kin and Scal and is denoted by Kin⊗τ

Scal.
Now to the point. We claim that the strict C∞-algebra C factorises as

C= Kin⊗τ Scal. (6.10)

To substantiate the claim, we identify E1
t.d.(R

3) with the tensor product (R3)∗⊗ E0
t.d.(R

3) so that we may
write any element u ∈ E1

t.d.(R
3) as u = ei ⊗ ui(x, t) with ui(x, t) ∈ E0

t.d.(R
3). Under this identification, it is

clear that C=Kin⊗Scal as graded vector spaces. Thus, to show (6.10), we only need to verify that m1 = mτ
1

and m2 = mτ
2. That the first equality holds follows immediately from the definitions of m1 and mτ

1. In fact,
both are given by the formula (6.8). For the second equality, we simply calculate both sides separately. So
fix two elements ei ⊗ui(x, t) and e j ⊗ v j(x, t) of E1

t.d.(R
3). Then Eq. (6.1) may be expressed more explicitly

as

m2(e
i ⊗ui(x, t),e

j ⊗ v j(x, t)) = ei ⊗λ
{

u j(x, t)∂
jvi(x, t)− v j(x, t)∂

jui(x, t)
}

. (6.11)

If we further write uiP and vjQ for the coefficients in the expansions of ui(x, t) and v j(x, t) as formal series,
this is

m2(e
i ⊗ui(x, t),e

j ⊗ v j(x, t))

= ei ⊗ ∑
n≥1

∑
P∈OWn

(

∑
P=Q∪R

iλ
{

(u♯
Q ·kR)viR − (v♯

R ·kQ)uiQ

}

)

ei(kP·x+ωPt) .
(6.12)

On the other hand, using Eq. (6.5) gives

µ2(ui(x, t),∂
iv j(x, t)) = ∑

n≥1
∑

P∈OWn

(

∑
P=Q∪R

iλ (u♯
Q ·kR)vjR

)

ei(kP·x+ωPt) . (6.13)

and

µ2(∂
jui(x, t),v j(x, t)) = ∑

n≥1
∑

P∈OWn

(

∑
P=Q∪R

iλ (v♯
R ·kQ)uiQ

)

ei(kP·x+ωPt) (6.14)

Inserting Eqs. (6.13) and (6.14) into Eq. (6.9) we find that mτ
2(e

i ⊗ui(x, t),e
j ⊗ v j(x, t)) is also equal to the

right-hand side of Eq. (6.12), which proves what we set out to show.
To summarise, we have shown that the strict L∞-algebra L encoding the colour-dressed perturbiner ex-

pansion for the non-abelian Navier-Stokes equation factorises as

L= g⊗ (Kin⊗τ Scal). (6.15)

In terms of this factorisation, the double copy prescription becomes quite readily apparent. First, however,
we need to verify that the factorisation is compatible with colour-kinematics duality. We shall do so in the
following section.

7. COLOUR-KINEMATICS DUALITY

In this section we investigate how colour-kinematics duality can be made manifest for the colour-dressed
Berends-Giele currents produced by the non-abelian Navier-Stokes equation. Specifically, we identify an
infinite-dimensional Lie algebra which determines the kinematic numerators of the colour-dressed pertur-
biner coefficients satisfying the same generalised Jacobi identities as their colour factors. This means, among
other things, that the latter Lie algebra is dual to the colour Lie algebra g, in the sense suggested by the work
of Bern, Carrasco and Johansson [2].
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To begin with it is of course evident that we can always decompose the colour and kinematic degrees of
freedom of the single index colour-dressed Berends-Giele currents ua

ip by writting

u
a
ip = δ a

ap
εip. (7.1)

Here the εip may be regarded as the components of a covector εp in R3. That said, let us consider the
infinite-dimensional Lie algebra g′ that is spanned by the εp and whose Lie bracket is defined by

[εp,εq] = (ε ♯
p ·kq)εq − (ε ♯

q ·kp)εp. (7.2)

By treating the infinite integer index p as the “Fourier transform” of a continuous variable in R3, this algebra
may be recognised as the Lie algebra of infinitesimal spatial diffeomorphisms. This is to be contrasted with
the discussion made in the last section of Ref. [10].

In what follows, we will make believe that the Lie algebras g and g′ are reciprocal in the sense of allowing
the duality between color and kinematics, also referred to as color-kinematics duality. To simplify the
expressions that occur in the calculation, for each bracketed word ℓ[P] = ℓ[p1 p2 · · · pn] of length n, we
employ the notation ca

P to indicate the product of colour factors determined by

ca
ℓ[P] = f̃ap1 ap2

b f̃bap3

c · · · f̃dapn−1

e f̃eapn

a, (7.3)

with the understanding that ca
p = δ a

ap
. We also set

ca
[ℓ[P],ℓ[Q]] = f̃ a

bc cb
ℓ[P]c

c
ℓ[Q] (7.4)

for every pair of bracketed words ℓ[P] and ℓ[Q]. Using this notation we shall proceed to write down explicitly
the Berends-Giele currents ua

iP by making direct reference to the components εip of the generators of g′. By
way of preparation, we first take P = 12 in Eq. (5.3). In this case, the possible ways of distributing the
letters are (Q,R) = (1,2),(2,1). Then, using Eqs. (7.1)–(7.4), we find that the colour-dressed Berends-
Giele current ua

i12 acquires the form

u
a
i12 = λ

(

ca
[1,2]εi[1,2]

s12

)

, (7.5)

where we have introduced, for convenience, the kinematic numerator εi[1,2] = [ε1,ε2]i. It follows immedi-
ately that the εi[1,2] satisfy the same antisymmetry properties under interchange of 1 and 2 as the colour
factor ca

[1,2]. Next take P = 123 in Eq. (5.3). In this case, the possible ways of distributing the letters are

(Q,R) = (12,3),(13,2),(23,1),(1,23),(2,13),(3,12). Therefore, after a straightforward calculation mak-
ing use of Eqs. (7.1)–(7.5), we obtain for the colour-dressed Berends-Giele current ua

i123 the formula

u
a
i123 = λ 2

(

ca
[[1,2],3]εi[[1,2],3]

s12s123
+

ca
[[1,3],2]εi[[1,3],2]

s13s123
+

ca
[[2,3],1]εi[[2,3],1]

s23s123

)

, (7.6)

where now the kinematic numerators are εi[[1,2],3] = [[ε1,ε2],ε3]i, εi[[1,3],2] = [[ε1,ε3],ε2]i and εi[[2,3],1] =
[[ε2,ε3],ε1]i. Notice in particular that the last two terms in the parenthesis in Eq. (6.6) are obtained from
the first by permuting the indices 1, 2 and 3 cyclically. Furthermore, it may be emphasised again that the
Jacobi identity, which requires εi[[1,2],3] to vanish when antisymmetrised on 1, 2 and 3, mirrors the Jacobi
identity satisfied by the colour factor ca

[[1,2],3]. This matter can perhaps be made a little plainer if we subse-
quently take P = 1234 in Eq. (5.3). In this case, the possible ways of distributing the letters that contribute
to the sum are (Q,R) = (123,4), (124,3), (134,2), (234,1), (12,34), (13,24), (23,14), (1,234), (2,134),
(3,124), (4,123). By analogy with the calculation leading to Eq. (7.6), it is not difficult, though perhaps a
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little tedious, to verify that the colour-dressed Berends-Giele current ua
i1234 may be represented in the form

u
a
i1234 = λ 3

(

ca
[[[1,2],3],4]εi[[[1,2],3],4]

s12s123s1234
+

ca
[[[1,2],4],3]εi[[[1,2],4],3]

s12s124s1234
+

ca
[[[1,3],2],4]εi[[[1,3],2],4]

s13s123s1234

+
ca
[[[1,3],4],2]εi[[[1,3],4],2]

s13s134s1234
+

ca
[[[1,4],2],3]εi[[[1,4],2],3]

s14s124s1234
+

ca
[[[1,4],3],2]εi[[[1,4],3],2]

s14s134s1234

+
ca
[[[2,3],1],4]εi[[[2,3],1],4]

s23s123s1234
+

ca
[[[2,3],4],1]εi[[[2,3],4],1]

s23s234s1234
+

ca
[[[2,4],1],3]εi[[[2,4],1],3]

s24s124s1234

+
ca
[[[2,4],3],1]εi[[[2,4],3],1]

s24s234s1234
+

ca
[[[3,4],1],2]εi[[[3,4],1],2]

s34s134s1234
+

ca
[[[3,4],2],1]εi[[[3,4],2],1]

s34s234s1234

+
ca
[[1,2],[3,4]]εi[[1,2],[3,4]]

s12s34s1234
+

ca
[[1,3],[2,4]]εi[[1,3],[2,4]]

s13s24s1234
+

ca
[[1,4],[2,3]]εi[[1,4],[2,3]]

s14s23s1234

)

,

(7.7)

where, as the notation implies, the kinematic numerators are εi[[[1,2],3],4] = [[[ε1,ε2],ε3],ε4]i, εi[[1,2],[3,4]] =
[[ε1,ε2], [ε3,ε4]]i, and so on. Thus we are once more led to conclude that these kinematic numerators share
the same symmetry properties as the corresponding colour factors.

The above pattern continues as we keep increasing the length of the word P. To see it, we need yet some
more notation. In the first place, for any bracketed word ℓ[P] = ℓ[p1 p2 · · · pn] of length n, the kinematic
numerator εiℓ[P] is defined to be

εiℓ[P] = [[. . . [[εp1 ,εp2 ],εp3 ], . . . ],εpn
]i. (7.8)

We further put

εi[ℓ[P],ℓ[Q]] = [εℓ[P],εℓ[Q]]i (7.9)

for every pair of bracketed words ℓ[P] and ℓ[Q]. One easily checks by employing Eq. (7.2) that this re-
produces Eq. (4.14). In the second place, we need to modify the colour-stripped Berends-Giele map by a
colour-dressed version of it. To be more precise, here we consider the map bcd acting on ordered words and
determined recursively by

bcd(p) = p,

bcd(P) =
1

2sP
∑

P=Q∪R

[bcd(Q),bcd(R)].
(7.10)

Parenthetically it may be worth remarking that the factor of 2 in the denominator on the right-hand side of
the second formula in Eq. (6.9) can be dropped if we impose the condition that |Q| ≥ |R|. And, in the third
place, given two arbitrary labelled objects UP and VP, we define the replacement of ordered words by the
product of such objects as

JU ⊗V K◦P =UPVP. (7.11)

With all the foregoing, it can be shown that the recursion relation in Eq. (5.3) is expressible in the form

u
a
iP = λ |P|−1Jca ⊗ εiK◦bcd(P). (7.12)

Taking note of Eq. (7.10), this amounts to saying that the generalised Jacobi identities associated to the
colour factors ca

ℓ[P] are also obeyed by the kinematic numerators εiℓ[P]. Since the latter are, according to

Eq. (7.7), built out of structure constants of the infinite dimensional Lie algebra g′, we may conclude that g′

constitutes a particular realisation of the “kinematic Lie algebra” that underlies the duality between colour
and kinematics.2 It should also be borne in mind that the “factorisation” of the colour-dressed Berends-Giele
currents given in Eq. (7.12) is a manifestation of the factorisation (6.2) of the strict L∞-algebra L.

2It is worth noting that this algebra has been studied before in the context of colour-kinematics duality for the self-dual sector
of Yang-Mills theory in Refs. [25, 26, 27, 28], 3-dimensional Chern-Simions theory in Ref. [29], the non-linear sigma model in
Ref. [30], and 10-dimensional super Yang-Mills theory in Ref. [31].
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The preceding discussion provides the specific justification for using the double copy prescription. In
doing so, we shall appreciate more fully the power of the L∞-language at work for us.

8. THE DOUBLE COPY OF THE NON-ABELIAN NAVIER-STOKES EQUATION

It is our intention in this section to implement the double copy of the non-abelian Navier-Stokes equation.
We shall begin by discussing the strict L∞-algebra which captures the dynamics described by such double
copy. Following this we shall show that this strict L∞-algebra may be obtained directly from the “homotopy
double copy” procedure outlined in Ref. [12], which is implied by the factorisation of the non-abelian
Navier-Stokes strict L∞-algebra L examined in Section 6.

Let Ω1
t.d.(R

3)⊗Ω0
t.d.(R

3) Ω1
t.d.(R

3) denote the tensor product of Ω1
t.d.(R

3) with itself considered as a module

over Ω0
t.d.(R

3). We think of the elements of Ω1
t.d.(R

3)⊗Ω0
t.d.(R

3) Ω1
t.d.(R

3) as time-dependent 1-forms on R3

with values in the Lie algebra Ω1
t.d.(R

3). Thus, with reference to a basis eī corresponding to a rectangular
coordinate system (xī), an element u ∈ Ω1

t.d.(R
3)⊗Ω0

t.d.(R
3) Ω1

t.d.(R
3) is decomposed as u = eī ⊗uī with uī ∈

Ω1
t.d.(R

3). We may therefore extend the operator ∂
∂ t
+νδd to act on Ω1

t.d.(R
3)⊗Ω0

t.d.(R
3) Ω1

t.d.(R
3) by putting

(

∂

∂ t
+νδd

)

u = eī ⊗

(

∂uī

∂ t
+νδduī

)

. (8.1)

Bearing this in mind, the cochain complex underlying the double copy strict L∞-algebra L′ is simply

Ω1
t.d.(R

3)⊗Ω0
t.d.(R

3) Ω1
t.d.(R

3)[−1]
∂
∂ t
+νδd

−−−−→ Ω1
t.d.(R

3)⊗Ω0
t.d.(R

3) Ω1
t.d.(R

3)[−2].

Henceforth, as is customary, the symbol l1 is used to represent the differential. To define the bracket, we first
define a binary operation on Ω1

t.d.(R
3)⊗Ω0

t.d.(R
3) Ω1

t.d.(R
3) as follows. Let u ∈ Ω1

t.d.(R
3)⊗Ω0

t.d.(R
3) Ω1

t.d.(R
3)

and let uī the components of u relative to the basis eī. We also write uīi for the components of uī relative to
the given basis ei. Since xi and xī are independent variables the partial derivatives ∂ i and ∂ ī commute and
hence it makes sense to define ∂ j̄uī as the time-dependent 1-form on R3 whose components relative to ei are
∂ j̄uīi. With this understood, we define the binary operation by the formula

{{u,v}} = eī ⊗
κ

2

{

[u j̄,∂
j̄vī]+ [v j̄,∂

j̄uī]
}

, (8.2)

where κ is a coupling constant. Written explicitly in components this formula has the form

{{u,v}}īi =
κ

2
(u j̄ j∂

j̄∂ jvīi −∂ j̄vī j∂
ju j̄i + v j̄ j∂

j̄∂ juīi −∂ j̄uī j∂
jv j̄i). (8.3)

The bracket l2 : (Ω1
t.d.(R

3)⊗Ω0
t.d.(R

3) Ω1
t.d.(R

3)[−1])⊗2 → Ω1
t.d.(R

3)⊗Ω0
t.d.(R

3) Ω1
t.d.(R

3)[−2] can now be ob-
tained by simply setting

l2(u,v) = {{u,v}}. (8.4)

As this is clearly skew-symmetric and trivially satisfies the graded Jacobi identity, the graded vector space
L′ = (Ω1

t.d.(R
3)⊗Ω0

t.d.(R
3) Ω1

t.d.(R
3)[−1])⊕ (Ω1

t.d.(R
3)⊗Ω0

t.d.(R
3) Ω1

t.d.(R
3)[−2]) is indeed a strict L∞-algebra.

With the help of the foregoing we may now obtain an expression for the field equation that governs the
dynamics of the double copy. This is an extremely simple matter: just set down the Maurer-Cartan equation
associated to L′. From the definitions which we have given of the differential l1 and the bracket l2, the latter
equation reads

∂u

∂ t
+νδdu+ 1

2{{u,u}} = 0. (8.5)

It should be specially noted that this equation is identical in form with the non-abelian Navier-Stokes equa-
tion (2.12b). To emphasise this we have adopted the same symbol {{,}} to designate the relevant binary
operation. By using Eqs. (8.1) and (8.3), we find the component form of Eq. (8.5) to be

∂uīi

∂ t
−ν∆uīi +

κ

2
(u j̄ j∂

j̄∂ juīi −∂ j̄uī j∂
ju j̄i) = 0. (8.6)
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On account of the similarity between Eqs. (2.13b) and (8.6) we could speak of the latter as a tensor Navier-
Stokes equation describing the dynamics of a bi-fluid velocity distribution with components uīi. The termi-
nology is taken from Ref. [10] with a view towards our precise needs.

To complete our consideration of the double copy strict L∞-algebra L′ we must now readjust its definition
to contend with perturbiner expansions. Here we return to the notation described in Section 6. Consider
the tensor product E1

t.d.(R
3)⊗E0

t.d.(R
3) E

1
t.d.(R

3) and expand once again its elements as u = eī ⊗uī with uī ∈

E1
t.d.(R

3). Of course, this means that each of the components uīi(x, t) of uī with respect to the basis ei is
expressible by means of a formal series of the form

uīi(x, t) = ∑
n≥1

∑
P∈OWn

uīiP ei(kP·x+ωPt) . (8.7)

The cochain complex underlying the strict L∞-algebra L′ that encodes the perturbiner expansion for the
tensor Navier-Stokes equation is thus

E
1
t.d.(R

3)⊗E0
t.d.(R

3) E
1
t.d.(R

3)[−1]
∂
∂ t
+νδd

−−−−→ E
1
t.d.(R

3)⊗E0
t.d.(R

3) E
1
t.d.(R

3)[−2]. (8.8)

The differential l1 is therefore given simply by the obvious extension of Eq. (8.1). As regards the bracket
l2 : (E1

t.d.(R
3)⊗E0

t.d.(R
3) E

1
t.d.(R

3)[−1])⊗2 → E1
t.d.(R

3)⊗E0
t.d.(R

3) E
1
t.d.(R

3)[−2], it has the same formula as that
of Eq. (8.3).

We go on now to cast the definition the double copy strict L∞-algebra L′ into a somewhat more elegant
form by connecting it up with the homotopy double copy construction. The claim is that L′ can be obtained
by replacing the colour factor g in the factorisation (6.15) of L with another copy of the “twisted” kinematic
factor Kin, while sending λ to κ

2 . Explicitly,

L′ = Kin⊗τ (Kin⊗τ Scal). (8.9)

To establish this claim we must first specify the strict L∞-algebra structure on the twisted tensor product of
the right hand side. To do this we note that an arbitrary element of Kin⊗τ (Kin⊗τ Scal) can be represented in
the form eī ⊗ei⊗uīi(x, t) with uīi(x, t) ∈ E0

t.d.(R
3). Referring back to Eqs. (6.8) and (6.9) and the discussion

in the ensuing paragraph, we consider Kin⊗τ (Kin⊗τ Scal) as a strict L∞-algebra with differential

lτ
1 (e

ī ⊗ ei ⊗uīi(x, t)) = eī ⊗ ei ⊗µ1(uīi(x, t)) (8.10)

and bracket

lτ
2 (e

ī ⊗ ei ⊗uīi(x, t),e
j̄ ⊗ e j ⊗ v j̄ j(x, t))

= e j̄ ⊗ e j ⊗µ2(uīi(x, t),∂
ī∂ iv j̄ j(x, t))− e j̄ ⊗ ei ⊗µ2(∂

juīi(x, t),∂
īv j̄ j(x, t))

+ eī ⊗ ei ⊗µ2(∂
j̄∂ juīi(x, t),v j̄ j(x, t))− eī ⊗ e j ⊗µ2(∂

j̄uīi(x, t),∂
iv j̄ j(x, t)).

(8.11)

Having clarified this point, let us return to the verification of (8.9). The first point to be noticed is that
E1

t.d.(R
3)⊗E0

t.d.(R
3) E

1
t.d.(R

3) can be naturally identified with (R3)∗⊗(R3)∗⊗E0
t.d.(R

3) so that every element
of the former can be expanded in the form described above. Evidently then, L′ = Kin⊗ (Kin⊗Scal) as
graded vector spaces. Hence we are left to check that l1 = lτ

1 and l2 = lτ
2 . The first equality is obvious

since both l1 and lτ
1 are determined by the same formula (8.10). For the second, let us take two elements

eī⊗ei⊗uīi(x, t) and e j̄ ⊗e j ⊗v j̄ j(x, t) of (R3)∗⊗(R3)∗⊗E0
t.d.(R

3). By use of Eq. (8.3) we see that Eq. (8.4)
may be rewritten as

l2(e
ī ⊗ ei ⊗uīi(x, t),e

j̄ ⊗ e j ⊗ v j̄ j(x, t))

= eī ⊗ ei ⊗
κ

2

{

u j̄ j(x, t)∂
j̄∂ jvīi(x, t)−∂ j̄vī j(x, t)∂

ju j̄i(x, t)

+ v j̄ j(x, t)∂
j̄∂ juīi(x, t)−∂ j̄uī j(x, t)∂

jv j̄i(x, t)
}

.

(8.12)
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Denoting the coefficients in the expansions of uīi(x, t) and v j̄ j(x, t) by uīiP and v j̄ jQ, respectively, this
becomes

l2(e
ī ⊗ ei ⊗uīi(x, t),e

j̄ ⊗ e j ⊗ v j̄ j(x, t))

= eī ⊗ ei ⊗ ∑
n≥1

∑
P∈OWn

(

∑
P=Q∪R

κ

2

{

k
j̄
Rvī jRk

j
Quj̄iQ −uj̄ jQk

j̄
Rk

j
RvīiR

+ k
j̄
Quī jQk

j
Rv j̄iR − v j̄ jRk

j̄
Qk

j
QuīiQ

}

)

ei(kP·x+ωPt) .

(8.13)

At the same time, applying Eq. (6.5), but with λ replaced with κ
2 , we obtain

µ2(uīi(x, t),∂
ī∂ iv j̄ j(x, t)) =− ∑

n≥1
∑

P∈OWn

(

∑
P=Q∪R

κ

2
uīiQkī

Rki
Rv j̄ jR

)

ei(kP·x+ωPt),

µ2(∂
juīi(x, t),∂

īv j̄ j(x, t)) =− ∑
n≥1

∑
P∈OWn

(

∑
P=Q∪R

κ

2
k

j
QuīiQkī

Rv j̄ jR

)

ei(kP·x+ωPt),

µ2(∂
j̄∂ juīi(x, t),v j̄ j(x, t)) =− ∑

n≥1
∑

P∈OWn

(

∑
P=Q∪R

κ

2
k

j̄
Qk

j
QuīiQv j̄ jR

)

ei(kP·x+ωPt),

µ2(∂
j̄uīi(x, t),∂

iv j̄ j(x, t)) =− ∑
n≥1

∑
P∈OWn

(

∑
P=Q∪R

κ

2
k

j̄
QuīiQki

Rv j̄ jR

)

ei(kP·x+ωPt) .

(8.14)

Substituting these expressions back into Eq. (8.11), we find that lτ
2(e

ī ⊗ ei ⊗uīi(x, t),e
j̄ ⊗ e j ⊗ v j̄ j(x, t)) also

equals the right-hand side of Eq. (8.13), as was to be shown.
To sum up, we could have avoided the guesswork of figuring out precisely what the double copy procedure

is supposed to do to the non-abelian Navier-Stokes equation by appealing directly to the homotopy double
copy recipe. In our opinion, this framework offers a more systematic and rigorous method of tackling the
problem.

9. MULTIPARTICLE SOLUTION TO THE TENSOR NAVIER-STOKES EQUATION

We may now turn to the multiparticle solution to the tensor Navier-Stokes equation. Again we use what
we have learned in the preceding section to write this solution in the form of a perturbiner expansion.

We first describe the minimal L∞-structure on the cohomology H•(L′) of the double copy strict L∞-
algebra L′. Like before, all we need to do is to define a projection p : L′ → H•(L′) and a contracting
homotopy h : L′ → L′. As a preliminary remark, note that by virtue of the definition (8.8), the cochain
complex underlying H•(L′) is

ker(l1)[−1]
0

−−−→ coker(l1)[−2].

This is formally identical to the one we encountered in Section 4. We thus proceed as we did there. To start,
we extend the Wyld propagator GW so that we obtain a linear operator GW : E1

t.d.(R
3)⊗E0

t.d.(R
3) E

1
t.d.(R

3)→

E1
t.d.(R

3)⊗E0
t.d.(R

3) E
1
t.d.(R

3). This enables us to define the projection p(1) : E1
t.d.(R

3)⊗E0
t.d.(R

3) E
1
t.d.(R

3)→

ker(l1) by the formula

p(1) = idE1
t.d.(R

3)⊗
E0

t.d.(R
3)
E1

t.d.(R
3)−GW ◦ l1. (9.1)

The other projection p(2) : E1
t.d.(R

3)⊗E0
t.d.(R

3) E
1
t.d.(R

3) → coker(l1) we take simply as the quotient map.

Lastly, it can be seen that the only non-zero component of the contracting homotopy h is given by h(2) =GW.
We are now ready to formulate the perturbiner expansion for the tensor Navier-Stokes equation. First of

all, we pick a Maurer-Cartan element u′ ∈ H1(L′) = ker(l1), for which we have

u′
īi
(x, t) = ∑

p≥1

uīip ei(kp·x+ωpt) . (9.2)
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Then we define the perturbiner expansion to be the Maurer-Cartan element u in L′ given by the formula

u = ∑
n≥1

1
n!

fn(u
′, . . . ,u′). (9.3)

We want to calculate the components of u. Obviously the same argument that led to Eq. (5.2) applies here,
and gives the components of u as

uīi(x, t) = ∑
n≥1

∑
P∈OWn

uīiP ei(kP·x+ωPt), (9.4)

where the double copy Berends-Giele currents uīiP are determined from the recursion relations

uīiP =
κ

sP
∑

P=Q∪R

1
2

(

uj̄ jQk
j̄
Rk

j
RuīiR − k

j̄
Ruī jRk

j
Quj̄iQ

)

. (9.5)

Thus the problem of determining the perturbiner expansion has once again been reduced to that of deter-
mining the L∞-quasi-isomorphism from H•(L′) to L′. In the next section we shall see how the double copy
prescription can be articulated in terms of the perturbiner coefficients (9.5).

10. DOUBLE COPY RELATIONS FOR BERENDS-GIELE CURRENTS

So far, we have seen that the double copy structure of the non-abelian Navier-Stokes equation is implied
by the factorisation of the strict L∞-algebra L. Our object is now to uncover this structure at the level of
perturbiner expansions. What we shall see is that, from the double copy Berends-Giele currents (9.5), we
can extract numerators that can be written as the “square” of the kinematic numerators obtained from the
colour-dressed Berends-Giele currents. This result will be exceedingly useful in permitting us to derive a
Kawai-Lewellen-Tye type relation, giving the double copy Berends-Giele currents as a sum of products of
two colour-stripped Berends-Giele currents.

First of all it is to be remarked that, in close parallel with development described in Section 6, the single
index double copy Berends-Giele current uīip may be decomposed into its kinematic degrees of freedom
according to

uīip = ε̄īpεip. (10.1)

Here it must be recalled that ε̄īp and εip are regarded as the components of two covectors ε̄p and εp in
R

3. Thus it is possible to consider not one but two infinite-dimensional Lie algebras ḡ′ and g′ generated
respectively by the ε̄p and the εp and with the same Lie bracket as the one defined in Eq. (7.2).

The next step is to write down explicitly the Berends-Giele currents up to multiplicity four and compare
them with the expressions given in Section 7. We set P = 12 in Eq. (9.5) first. A simple calculation, using
Eq. (10.1), gives

uīi12 =
κ

2

(

ε̄ī[1,2]εi[1,2]

s12

)

, (10.2)

where, as before, we have used the notation ε̄ī[1,2] = [ε̄1, ε̄2]ī and εi[1,2] = [ε1,ε2]i. We can compare this result
directly with Eq. (7.5). The equations are identical if we just identify ε̄ī[1,2] with ca

[1,2], while sending λ to
κ
2 . Next we take P = 123 in Eq. (9.5). In this case, the computation is slightly more complicated, but still
straightforward. One finds that

uīi123 =
(κ

2

)2
(

ε̄ī[[1,2],3]εi[[1,2],3]

s12s123
+

ε̄ī[[1,3],2]εi[[1,3],2]

s13s123
+

ε̄ī[[2,3],1]εi[[2,3],1]

s23s123

)

, (10.3)

where this time we have used ε̄ī[[1,2],3] = [[ε̄1, ε̄2], ε̄3]ī, ε̄ī[[1,3],2] = [[ε̄1, ε̄3], ε̄2]ī, ε̄ī[[2,3],1] = [[ε̄2, ε̄3], ε̄1]ī, and
likewise for the unbarred factors. Thus once again we see that this equation is identical to Eq. (7.6) except
for the fact that ca

[[1,2],3], ca
[[1,3],2] and ca

[[2,3],1] are replaced by ε̄ī[[1,2],3] , ε̄ī[[1,3],2] and ε̄ī[[2,3],1], respectively, and
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λ is sent to κ
2 . Finally, we take P = 1234 in Eq. (9.5). By following the same arguments used to derive

Eq. (10.3), it is not too hard, but somewhat tedious, to show that

uīi1234 =
(κ

2

)3
(

ε̄ī[[[1,2],3],4]εi[[[1,2],3],4]

s12s123s1234
+

ε̄ī[[[1,2],4],3]εi[[[1,2],4],3]

s12s124s1234
+

ε̄ī[[[1,3],2],4]εi[[[1,3],2],4]

s13s123s1234

+
ε̄ī[[[1,3],4],2]εi[[[1,3],4],2]

s13s134s1234
+

ε̄ī[[[1,4],2],3]εi[[[1,4],2],3]

s14s124s1234
+

ε̄ī[[[1,4],3],2]εi[[[1,4],3],2]

s14s134s1234

+
ε̄ī[[[2,3],1],4]εi[[[2,3],1],4]

s23s123s1234
+

ε̄ī[[[2,3],4],1]εi[[[2,3],4],1]

s23s234s1234
+

ε̄ī[[[2,4],1],3]εi[[[2,4],1],3]

s24s124s1234

+
ε̄ī[[[2,4],3],1]εi[[[2,4],3],1]

s24s234s1234
+

ε̄ī[[[3,4],1],2]εi[[[3,4],1],2]

s34s134s1234
+

ε̄ī[[[3,4],2],1]εi[[[3,4],2],1]

s34s234s1234

+
ε̄ī[[1,2],[3,4]]εi[[1,2],[3,4]]

s12s34s1234
+

ε̄ī[[1,3],[2,4]]εi[[1,3],[2,4]]

s13s24s1234
+

ε̄ī[[1,4],[2,3]]εi[[1,4],[2,3]]

s14s23s1234

)

,

(10.4)

where, of course, we have defined ε̄ī[[[1,2],3],4] = [[[ε̄1, ε̄2], ε̄3], ε̄4]ī, ε̄ī[[1,2],[3,4]] = [[ε̄1, ε̄2], [ε̄3, ε̄4]]ī, etc., and
similarly for the unbarred factors. Upon comparing the expression in Eq. (7.7) with that of Eq. (10.4), we
see that they are identical except that the colour factors in the numerators are replaced by barred factors, and
λ is sent to κ

2 .
Making use of the notation introduced in Section 7, we can proceed directly to find a general expression

for uīiP. Either by explicit calculation based on Eq. (9.5) or by inference from Eqs. (10.2), (10.3) and (10.4),
we arrive at

uīiP =
(κ

2

)|P|−1
Jε̄ī ⊗ εiK◦bcd(P). (10.5)

We can compare this with the expression we obtained for the colour-dressed Berends-Giele current given by
Eq. (7.12). The similarity of these expressions leads us to conclude that they are identical if ca is replaced
by ε̄ī, and if λ is sent to κ

2 . This is what we mean when we say that the numerators of the double copy
Berends-Giele current uīiP can be built as the “square” of the kinematic numerators of the colour-dressed
Berends-Giele current ua

iP. We must point out, however, that from the perspective we have taken here, this
is a reflection of the homotopy algebraic treatment which yields the double copy strict L∞-algebra L′.

11. THE ZEROTH COPY OF THE NON-ABELIAN NAVIER-STOKES EQUATION

Having pinned down the double copy of the non-abelian Navier-Stokes equation, we would now like to
address its zeroth copy. We proceed in essentially the same way as in the double copy case and first formally
define the strict L∞-algebra that governs the dynamics of the theory.

For starters, unlike the initial formulation of the non-abelian Navier-Stokes equation, to specify the zeroth
copy, we need not one but two compact Lie groups G and Ḡ. The corresponding Lie algebras are written
g and ḡ. We pick generators Ta and T̄ā for g and ḡ respectively, and let the associated structure constants
be given by f c

ab and f̄ c̄
āb̄

. We also let Ω0
t.d.(R

3,g⊗ ḡ) be the space of time-dependent 0-forms on R3 with
values in the bi-adjoint representation of G× Ḡ on g⊗ ḡ. Explicitly, an element u ∈ Ω0

t.d.(R
3,g⊗ ḡ) can

be written as u = uaāTa ⊗ T̄ā with uaā ∈ Ω0
t.d.(R

3). Hence, we can allow the operator ∂
∂ t
+ νδd to act on

Ω0
t.d.(R

3,g⊗ ḡ) by
(

∂

∂ t
+νδd

)

u =

(

∂

∂ t
+νδd

)

uaāTa ⊗ T̄ā. (11.1)

There is, moreover, a binary operation on Ω0
t.d.(R

3,g⊗ ḡ) given by the rule

{{u,v}} = γ f a
bc f̄ ā

b̄c̄
ubb̄vcc̄Ta ⊗ T̄ā, (11.2)
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where γ is a coupling constant. With this understanding, we choose the cochain complex underlying the
zeroth copy strict L∞-algebra L′′ to be

Ω1
t.d.(R

3,g⊗ ḡ)[−1]
∂
∂ t
+νδd

−−−−→ Ω1
t.d.(R

3,g⊗ ḡ)[−2].

As usual, we reserve l1 to designate the differential. Regarding the bracket l2 : Ω1
t.d.(R

3,g⊗ ḡ)[−1]⊗2 →

Ω1
t.d.(R

3,g⊗ ḡ)[−2], we simply set

l2(u,v) = {{u,v}}. (11.3)

Since this is evidently skew-symmetric and the graded Jacobi identity is trivially satisfied, the graded vector
space L′′ = Ω1

t.d.(R
3,g⊗ ḡ)[−1]⊗Ω1

t.d.(R
3,g⊗ ḡ)[−2] is, in effect, a strict L∞-algebra.

It is now quite straightforward to derive the field equation that governs the dynamics of the zeroth copy.
We just have to write down the Maurer-Cartan equation associated to L′′. Using the definitions of the
differential l1 and the bracket l2, this equation takes the form

∂u

∂ t
+νδdu+ 1

2{{u,u}} = 0. (11.4)

It is crucial to note that, once again, the notation has been chosen to ensure that this equation looks exactly
the same as Eqs. (2.12b) and (8.5). In terms of components, Eq. (11.4) is written as

∂uaā

∂ t
−ν∆uaā +

γ

2
f a
bc f̄ ā

b̄c̄
ubb̄ucc̄ = 0. (11.5)

This can be regarded as a fluid analog of the bi-adjoint scalar theory (see, for instance, Refs. [26, 32, 33, 15]).
For this reason it is natural call Eq. (11.5) the bi-adjoint Navier-Stokes equation.

We now indicate briefly how to recast the definition of the strict L∞-algebra L′′ in a form which enables
us to handle perturbiner expansions. Analogously to what we did in Section 3, let us fix infinite multisets
of colour indices (ap)p≥1 and (āp)p≥1 associated with the Lie algebras g and ḡ, respectively, as well as an
infinite set (kp,ωp)p≥1 of pairs with kp ∈ R3 and ωp ∈ R and such that iωp + νk2

p = 0 for each p ≥ 1.
Denote by E0

t.d.(R
3,g⊗ ḡ) the space of formal series of the form

u(x, t) = ∑
n≥1

∑
P,Q∈Wn

uP|Q ei(kP·x+ωPt) TaP
⊗ T̄āQ

, (11.6)

where the coefficients uP|Q are supposed to vanish unless the word P is a permutation of the word Q. We
keep on calling the elements of E0

t.d.(R
3,g⊗ ḡ) colour-stripped perturbiner ansatzs. The next step is to

extend the operator ∂
∂ t
+νδd and the binary operation {{,}} to E0

t.d.(R
3,g⊗ ḡ). For this, we use the colour-

dressed version of the pertubiner ansatz. We therefore introduce, for each ordered sequence of positive
integers p1 < p2 < · · ·< pn, the notations

f a
p1 p2···pn

= fap1 ap2

b fbap3

c · · · fdapn−1

e feapn

a,

f̄ ā
p1 p2···pn

= f̄āp1 āp2

b̄ f̄
b̄āp3

c̄ · · · f̄
d̄āpn−1

ē f̄ēāpn

ā,
(11.7)

and define

u
aā
p1 p2···pn

= ∑
σ ,τ

f a
p1 pσ(2) ···pσ(n)

f̄ ā
p1 pτ(2)···pτ(n)

up1 pσ(2)···pσ(n)|p1 pτ(2)···pτ(n)
, (11.8)

where the sums extends over all permutations of the set (2, . . . ,n). Using the latter, we can rewrite Eq. (11.6)
as u(x, t) = uaā(x, t)Ta ⊗ T̄ā, where the coefficients uaā(x, t) are formal series of the form

uaā(x, t) = ∑
n≥1

∑
P∈OWn

u
aā
P ei(kP·x+ωPt) . (11.9)

With this expression in hand, it is now straightforward to extend the definition of ∂
∂ t
+νδd and {{,}} to all of

E0
t.d.(R

3,g⊗ ḡ).
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In light of the above discussion, the cochain complex underlying the strict L∞-algebra L′′ that encapsulates
perturbiner expansions for the bi-adjoint Navier-Stokes equation is

E
0
t.d.(R

3,g⊗ ḡ)[−1]
∂
∂ t
+νδd

−−−−→ E
0
t.d.(R

3,g⊗ ḡ)[−2]. (11.10)

That is to say, the differential l1 is the operator ∂
∂ t
+ νδd acting on E0

t.d.(R
3,g⊗ ḡ). As for the bracket

l2 : E0
t.d.(R

3,g⊗ ḡ)[−1]⊗2 → E0
t.d.(R

3,g⊗ ḡ)[−2] it is again determined by the binary operation {{,}}.
Before leaving this section it will be well to comment on the homotopy algebraic structure implicit in the

zeroth copy prescription. We assert that L′′ can be obtained by replacing the kinematic factor Kin in the
factorisation (6.15) of L with the colour factor ḡ, while sending λ to γ . In other words,

L′′ = g⊗ (ḡ⊗Scal). (11.11)

To justify this assertion, we first observe that E0
t.d.(R

3,g⊗ ḡ) can be identified with g⊗ ḡ⊗ E0
t.d.(R

3) and
hence we may write each element u(x, t) ∈ E0

t.d.(R
3,g⊗ ḡ) in the form u(x, t) = Ta ⊗ T̄ā ⊗ uaā(x, t) with

uaā(x, t) ∈ E0
t.d.(R

3). With this identification, it follows at once that L′′ = g⊗ (ḡ⊗Scal) as graded vector
spaces. Furthermore, calling to mind the definition of the differential µ1 on Scal, we have

l1(Ta ⊗ T̄ā ⊗uaā(x, t)) = Ta ⊗ T̄ā ⊗

(

∂

∂ t
+νδd

)

uaā(x, t) = Ta ⊗ T̄ā ⊗µ1(u
aā(x, t)).

So there only remains to verify that

l2(Ta ⊗ T̄ā ⊗uaā(x, t),Tb ⊗ T̄b̄ ⊗ vbb̄(x, t)) = [Ta,Tb]⊗ [T̄ā, T̄b̄]⊗µ2(u
aā(x, t),vbb̄(x, t))). (11.12)

To begin with, from Eqs. (11.2) and (11.3) we see that

l2(Ta ⊗ T̄ā ⊗uaā(x, t),Tb ⊗ T̄b̄ ⊗ vbb̄(x, t)) = Tc ⊗ T̄c̄⊗ γ f c
ab f̄ c̄

āb̄
uaā(x, t)vbb̄(x, t)

= [Ta,Tb]⊗ [T̄ā, T̄b̄]⊗ γuaā(x, t)vbb̄(x, t).
(11.13)

If we denote by uaā
P and vbb̄

Q the coefficients in the expansions of uaā(x, t) and vbb̄(x, t), respectively, then
Eq. (11.13) can also be written in the form

l2(Ta ⊗ T̄ā ⊗uaā(x, t),Tb ⊗ T̄b̄ ⊗ vbb̄(x, t))

= [Ta,Tb]⊗ [T̄ā, T̄b̄]⊗ ∑
n≥1

∑
P∈OWn

(

∑
P=Q∪R

γuaā
Q v

bb̄
R

)

ei(kP·x+ωPt) .
(11.14)

On the other hand, from Eq. (6.5), but with λ replaced with γ , we get

µ2(u
aā(x, t),vbb̄(x, t))) = ∑

n≥1
∑

P∈OWn

(

∑
P=Q∪R

γuaā
Q v

bb̄
R

)

ei(kP·x+ωPt) . (11.15)

Combining Eq. (11.14) and Eq. (11.15), we arrive at Eq. (11.12), as we wished to check.

12. MULTIPARTICLE SOLUTION TO THE BI-ADJOINT NAVIER-STOKES EQUATION

We now briefly address the problem of finding a multiparticle solution to the bi-adjoint Navier-Stokes
equation. Just as we have done above, we can build up such solution in the form of a perturbiner expansion
and comes in two flavours: a colour-stripped version and a colour-dressed version.

We begin as usual by considering the minimal L∞-structure on the cohomology H•(L′′) of the zeroth copy
strict L∞-algebra L′′. For this, we need to specify a projection p : L′′ → H•(L′′) and a contracting homotopy
h : L′′ → L′′. In the first place, as a consequence of the definition (11.10), the cochain complex underlying
H•(L′′) is

ker(l1)[−1]
0

−−−→ coker(l1)[−2],
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which is formally identical with those found in Sections 4 and 9. We then proceed as before, extending
the Wyld operator GW to a linear operator GW : E0

t.d.(R
3,g⊗ ḡ) → E0

t.d.(R
3,g⊗ ḡ), taking the projection

p(1) : E0
t.d.(R

3,g⊗ ḡ)→ ker(l1) to be given by

p(1) = idE0
t.d.(R

3,g⊗ḡ)−GW ◦ l1, (12.1)

and the projection p(2) : E0
t.d.(R

3,g⊗ ḡ)→ coker(l1) to be given by the quotient map. Using these, one can
deduce that h(2) = GW is the only non-zero component of the contracting homotopy h.

We are now in a position to consider the perturbiner expansion for the bi-adjoint Navier-Stokes equation.
First we discuss the colour-stripped version. On that account, we select a Maurer-Cartan element u′(x, t) ∈
H1(L′′) = ker(l1) of the form

u′(x, t) = ∑
p,q≥1

up|q ei(kP·x+ωPt) Tap
⊗ T̄āq

. (12.2)

Then the colour-stripped perturbiner expansion may be defined as the Maurer-Cartan element u(x, t) of L′′

given by the formula

u(x, t) = ∑
n≥1

1
n!

fn(u
′(x, t), . . . ,u′(x, t)). (12.3)

Using precisely the same technique as we used in Section 4, we can evaluate the right hand side of Eq. (12.3).
We obtain

u(x, t) = ∑
n≥1

∑
P,Q∈Wn

uP|Q ei(kP·x+ωPt) TaP
⊗ T̄āP

, (12.4)

where the coefficients uP|Q are determined from the recursion relations

uP|Q =
γ

sP
∑

P=RS
∑

Q=TU

(uR|T uS|U −uS|T uR|U ). (12.5)

Notice that, because of the antisymmetry of the right-hand side of Eq. (12.5) under interchange of the words
R and S and T and U , these coefficients obey the shuffle constraint uP�Q|R = 0. In view of this and the
similarity already remarked with the bi-adjoint scalar theory, we adopt the terminology of Ref. [16], and
refer to the uP|Q as the Berends-Giele double currents. It is also worth pointing out that, if we choose
up|q = δpq, the recursion relation in Eq. (12.5) can be rewritten in terms of the colour-stripped Berends-
Giele map bcs as

uP|Q = γ(P,bcs(Q)), (12.6)

where (,) stands for the scalar product of words. This formula will play a crucial role in our further treat-
ment.

We next discuss the colour-dressed version of the perturbiner expansion. To that effect, we pick a Maurer-
Cartan element u′(x, t) ∈ H1(L′′) = ker(l1) with components of the form

u′aā(x, t) = ∑
p≥1

u
aā
p ei(kp·x+ωpt) . (12.7)

One may then define the colour-dressed perturbiner expansion u(x, t) ∈ L′′ by exactly the same formula as
Eq. (12.3). The problem is to work out its components. By a virtually identical calculation to that followed
in Section 5, we find that

uaā(x, t) = ∑
n≥1

∑
P∈OWn

u
aā
P ei(kP·x+ωPt), (12.8)

where the coefficients uaā
P , which we shall refer to as the zeroth copy Berends-Giele currents, are determined

from the recursion relations

u
aā
P =

γ

sP
∑

P=Q∪R

1
4 f̃ a

bc
˜̄f ā
b̄c̄

u
bb̄
Q u

cc̄
R . (12.9)
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Here we found it convenient, as in Section 5, to introduce the notations f̃ a
bc =−2i f a

bc and ˜̄f ā
b̄c̄

=−2i f̄ ā
b̄c̄

.
Of course, this equation can be cast in a form analogous to Eq. (7.12). To this end, for each bracketed word
ℓ[P] = ℓ[p1 p2 · · · pn] of length n, we set

ca
ℓ[P] = f̃ap1 ap2

b f̃bap3

c · · · f̃dapn−1

e f̃eapn

a,

c̄ā
ℓ[P] =

˜̄fāp1 āp2

b̄ ˜̄f
b̄āp3

c̄ · · · ˜̄f
d̄āpn−1

ē ˜̄fēāpn

ā,
(12.10)

with the conventions ca
p = δ a

ap
and c̄ā

p = δ ā
āp

. We further define ca
[ℓ[P],ℓ[Q]] = f̃ a

bc cb
ℓ[P]c

c
ℓ[Q] and c̄ā

[ℓ[P],ℓ[Q]] =

˜̄f ā
b̄c̄

c̄b̄
ℓ[P]c̄

c̄
ℓ[Q] for every pair of bracketed words ℓ[P] and ℓ[Q]. Then it is an easy matter to show that, in the

notation of Section 7, the recursion relation of Eq. (12.9) can be rewritten more simply as

u
aā
P =

(γ

4

)|P|−1
Jca ⊗ c̄āK◦bcd(P). (12.11)

By comparing this with Eq. (7.12), we see that the effect of the zeroth copy construction at the level of
colour-dressed perturbiner expansions is equivalent to replace εi by c̄ā and send λ to γ

4 . Once again this
is a reflection of the homotopy algebraic perspective we have adopted to produce the zeroth copy strict
L∞-algebra L′′.3

13. SCATTERING AMPLITUDES FOR THE NON-ABELIAN AND TENSOR NAVIER-STOKES EQUATIONS

Tree-level scattering amplitudes of “fluid quanta” described by the non-abelian Navier-Stokes equation
have been explored in Ref. [10]. In this section we use the pioneering results of Berends and Giele in
Ref. [34] to construct multiparticle generalisations of such amplitudes. Naturally this approach also allows
for a multiparticle description of tree-level scattering amplitudes of “bi-fluid quanta” described by the tensor
Navier-Stokes equation. We shall learn in the next section that, through the double copy, the latter can be
expressed as sums of products of the former.

Following the path of the previous sections, we shall start by examining the colour-ordered partial ampli-
tudes associated to the non-abelian Navier-Stokes equation which are directly related to the colour-stripped
Berends-Giele currents. Throughout the discussion, we let P denote an arbitrary but fixed permutation of
23 · · · (n−1). The external data for a scattering amplitude involve a specification of a momentum kp and an
energy ωp for each of the n fluid quanta, subject to the dispersion relation iωp + νk2

p = 0 and momentum
conservation −kn = ∑n−1

p=1 kp. One often uses the phrase “on-shell constraint” to refer to the first of these
two conditions. We also recall that the single index colour-stripped Berends-Giele currents uip = εip sat-

isfy the transversality condition ε ♯
p ·kp = 0, so that they may be assimilated to polarisations of fluid quanta.

With these general considerations in mind and motivated by the Berends-Giele prescription, the tree-level
colour-ordered partial amplitude for the scattering of the n fluid quanta is defined through the formula

Atree(1Pn) = s1Pui1Pε i
n. (13.1)

Here the factor s1P is inserted to cancel the 1/s1P pole inside ui1P. It is also worth stressing that Eqs. (4.14)
and (4.15) imply that the right-hand side of Eq. (13.1) is manifestly energy independent in the sense that it
depends only on dot products of momenta and polarisations. Finally, we note that, as a consequence of the
shuffle constraint for the colour-stripped Berends-Giele currents, the partial amplitude given by Eq. (13.1)
manifestly satisfies the Kleiss-Kuijf relations

Atree(Q1Rn) = (−1)|Q|Atree(1(Q̄�R)n), (13.2)

where the words Q and R involve the labels 2, . . . ,n−1. As usual, these relations allow for a basis of (n−2)!
tree-level colour-ordered partial amplitudes with letters 1 and n held fixed (see, for instance, Refs. [35] and
[3]).

3It is important to notice that the realisation of the L∞-algebra L′′ as a zeroth copy required λ to be sent to γ and not to γ
4 . This

is because in the argument presented in Section 11 we worked with the structure constants f c
ab and f̄ c̄

āb̄
instead of the rescaled

ones f̃ c
ab and ˜̄f c̄

āb̄
.
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Our object now is to consider the amplitudes associated to the non-abelian Navier-Stokes equation that
are linked to the colour-dressed Berends-Giele currents. The formula to evaluate such amplitudes turns out
to be a straightforward generalisation of the one considered in the colour-stripped case. Indeed, following
the analogy developed in Ref. [20], the full amplitude for the scattering of n fluid quanta can be determined
using

A
tree
n = s12···(n−1)u

a
i12···(n−1)u

i
an (13.3)

or, equivalently, in view of Eq. (7.1),

A
tree
n = s12···(n−1)u

an

i12···(n−1)ε
i
n. (13.4)

We may also express this another way. We first note that by use of Eq. (7.3) we can rewrite Eq. (3.5) in the
form

u
a
i12···(n−1) =

(

i
2

)n−2
∑
P

ca
ℓ[1P]ui1P, (13.5)

where the sum over P represents the sum over all permutations of 23 · · · (n−1). Substituting Eq. (13.5) back
into (13.4), we obtain

A
tree
n =

(

i
2

)n−2
∑
P

c
an

ℓ[1P]s12···(n−1)ui1Pε i
n =

(

i
2

)n−2
∑
P

c
an

ℓ[1P]s1Pui1Pε i
n, (13.6)

where the last equality follows from the identity s12···(n−1) = s1P for P a permutation of 23 · · · (n−1). From
the definition (13.1), we conclude then that

A
tree
n =

(

i
2

)n−2
∑
P

c
an

ℓ[1P]A
tree(1Pn). (13.7)

The significance of this equation is that we can always decompose the tree-level scattering amplitude An in
terms of colour factors c

an

ℓ[1P] and tree-level colour-ordered partial amplitudes Atree(1Pn), which, as we have
seen, contain all kinematical information.

It remains to say a word about amplitudes associated to the tensor Navier-Stokes equation which are
obtainable directly from the double copy Berends-Giele currents. The external data to specify them is as
above: a momentum kp and an energy ωp for each of the n bi-fluid quanta, subject to the on-shell constraint
iωp +νk2

p = 0 and momentum conservation −kn = ∑n−1
p=1 kp. The above description then shows (or rather,

suggests) that the amplitude for the scattering of the n bi-fluid quanta can be represented as

M
tree
n = s12···(n−1)uīi12···(n−1)u

īi
n , (13.8)

or, equivalently, using Eq. (10.1),

M
tree
n = s12···(n−1)uīi12···(n−1)ε̄

ī
nε i

n. (13.9)

However, for the analogy with scattering of fluid quanta to be complete, we would like the amplitude Mtree
n

to be expressed in terms of a sum of colour-ordered partial amplitudes times kinematic factors. This will be
shown to follow from the basic property (10.5) of double copy Berends-Giele currents.

14. KAWAI-LEWELLEN-TYE RELATIONS

We must turn now to a more detailed examination of the foregoing proposed form of the scattering ampli-
tude of bi-fluid quanta. We shall show that these amplitudes can be expressed either in terms of a sum over
products of colour-ordered partial amplitudes and master numerators that depend on the kinematics vari-
ables, or in terms of a sum over products of pairs of colour-ordered partial amplitudes “glued” together by
kinematic factors contained in the so-called momentum kernel. The latter of these two provides an analogue
of the Kawai-Lewellen-Tye relations that link products of Yang-Mills amplitudes to gravity amplitudes at
tree level [3, 36, 37, 38, 39, 40, 41]. To get somewhat cleaner looking expressions, throughout our discussion
we shall set λ = 1, κ = 1 and γ = 1.
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We begin the treatment by determining a simple relationship between the colour-dressed Berends-Giele
map and the Berends-Giele double currents. The first thing to notice is that, since bcd(12 · · · (n−1)) is a Lie
polynomial of length n−1, it may be expanded as

bcd(12 · · · (n−1)) = ∑
P

(1P,bcd(12 · · · (n−1)))ℓ[1P], (14.1)

where the sum runs over all permutations of 23 · · · (n−1). Referring back to Eq. (12.11), we see, then, that

u
aā
12···(n−1) =

(

1
4

)n−2
∑
P

ca
ℓ[1P](1P,bcd(12 · · · (n−1)))c̄ā

ℓ[1P]. (14.2)

On the other hand, making use of Eqs. (11.8) and (12.10), we can easily obtain

u
aā
12···(n−1) = (−1)n

(

1
4

)n−2
∑
P

ca
ℓ[1P]

(

∑
Q

u1P|1Qc̄ā
ℓ[1Q]

)

. (14.3)

In order that Eqs. (14.2) and (14.3) both hold we must have

(1P,bcd(12 · · · (n−1)))c̄ā
ℓ[1P] = (−1)n ∑

Q

u1P|1Qc̄ā
ℓ[1Q]. (14.4)

And for Eq. (14.4) to be true, we must have

(1P,bcd(12 · · · (n−1)))ℓ[1P] = (−1)n ∑
Q

u1P|1Qℓ[1Q]. (14.5)

This is the expression that we want. It shows that the coefficients in the expansion of the right-hand side
as a Lie polynomial of length n− 1 are, modulo the global sign (−1)n, given by the Berends-Giele double
currents u1P|1Q.

We next explore some of the consequences of the above relation. To begin with, for any permutation P of
23 · · · (n−1), bcs(1P) may be expanded analogously to Eq. (14.1) as

bcs(1P) = ∑
Q

(1Q,bcs(1P))ℓ[1Q], (14.6)

which, on use of Eq. (12.6) and the identity u1Q|1P = u1P|1Q, becomes

bcs(1P) = ∑
Q

u1P|1Qℓ[1Q]. (14.7)

Plugging this back into Eq. (4.15), one finds that

ui1P = ∑
Q

u1P|1Qεiℓ[1Q]. (14.8)

Alternatively, we could of course use Eq. (14.5) to express Eq. (14.8) as

ui1P = (−1)n(1P,bcd(12 · · · (n−1)))εiℓ[1P]. (14.9)

Now let us go back to Eq. (10.5). Using Eqs. (14.1) and (14.9), this is

uīi12···(n−1) = (−1)n
(

1
2

)n−2
∑
P

ε̄īℓ[1P]ui1P. (14.10)

Inserting this result into Eq. (13.9) gives then

M
tree
n = (−1)n

(

1
2

)n−2
∑
P

ε̄īℓ[1P]ε̄
ī
ns12···(n−1)ui1Pε i

n = (−1)n
(

1
2

)n−2
∑
P

ε̄īℓ[1P]ε̄
ī
ns1Pui1Pε i

n, (14.11)

where, as before, we have used the identity s12···(n−1) = s1P for P a permutation of 23 · · · (n−1). This leads
us to introduce the coefficients

n̄ℓ[1P]n = ε̄īℓ[1P]ε̄
ī
n, (14.12)
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to which we will refer to as master numerators.4 By substituting these in Eq. (14.11), and remembering the
definition (13.1), we finally obtain

M
tree
n = (−1)n

(

1
2

)n−2
∑
P

n̄ℓ[1P]nAtree(1Pn). (14.13)

A comparison with Eq. (13.7) shows a deep underlying similarity between the tree-level scattering ampli-
tudes Atree

n and Mtree
n . We need merely replace the colour factor c

an

ℓ[1P] by the master numerator n̄ℓ[1P]n to ob-

tain the same looking decomposition in terms of the tree-level colour-ordered partial amplitudes Atree(1Pn).
Needless to say, this circumstance is a proper manifestation of the color-kinematics duality that was de-
scribed in Section 7.

We are now in a position to derive the Kawai-Lewellen-Tye relations. In fact, we shall prove a more
general Kawai-Lewellen-Tye type relation which expresses double copy Berends-Giele currents as sums of
products of colour-stripped Berends-Giele currents. The key ingredient here is the introduction of a matrix
of objects S(P|Q)p, labelled by permutations P and Q of 23 · · · (n− 1) and a positive integer p, which is
known in the literature as the momentum kernel, and which works as an inverse for the matrix of objects
whose entries are the Berends-Giele double currents upP|pQ. This latter statement translates to the algebraic
relations

∑
R

upP|pRS(R|Q)p = ∑
R

S(P|R)pupR|pQ = δP,Q. (14.14)

The existence of such an inverse can be established by adapting the construction of Ref. [42] to the present
context. Indeed, it is possible to demonstrate that a recursive formula for its entries is given by

S(∅|∅)p = 1,

S(Pq|QqR)p = 2νkq ·kpQS(P|QR)p.
(14.15)

With this implement at our disposal we may next proceed with the derivation. Let us write ūī1P for the
colour-stripped Berends-Giele current associated with the kinematic numerator ε̄īℓ[1P]. We have, according
to Eq. (14.8), that

ūī1P = ∑
Q

u1P|1Q ε̄īℓ[1Q]. (14.16)

With Eq. (14.14), this tells us that

ε̄īℓ[1Q] = ∑
P

S(Q|P)1ūī1P. (14.17)

Substituting this back into Eq. (14.10), and using the property S(Q|P)1 = S(P|Q)1, then gives

uīi12···(n−1) = (−1)n
(

1
2

)n−2
∑
P,Q

ūī1PS(P|Q)1ui1Q. (14.18)

This is the equation that we desire. It is in a perfect agreement with the proposal put forward in Ref. [20]. If
we now enter all this information into Eq. (13.9), we find that

M
tree
n = (−1)n

(

1
2

)n−2
∑
P,Q

ūī1Pε̄ ī
nS(P|Q)1s1Qui1Qε i

n, (14.19)

which, upon use of the definition (13.1), yields up

M
tree
n = (−1)n

(

1
2

)n−2
∑
P,Q

1
s1P

Ātree(1Pn)S(P|Q)1Atree(1Qn). (14.20)

The equality within this expression gives what is known as the (n−2)! version of the Kawai-Lewellen-Tye
relations (see Ref. [37] for further details). More accurately, it can be seen as the natural adaptation of these
relations to a nonrelativistic setting.

4The terminology “master numerators” is taken from the literature in colour-kinematics duality. They are associated with “half-
ladder” diagrams which are characterised by a fixed choice of endpoints 1 and n as well as permutations of the remaining legs
2,3, . . . ,n−1.
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This is the result which we have been seeking: a prescription for realising the double copy directly at
amplitude level. Once we know the colour-ordered partial amplitudes for the non-abelian Navier-Stokes
equation we can determine automatically the scattering amplitudes for the tensor Navier-Stokes equation
via Eq. (14.20).

15. CONCLUSIONS

We investigated how the colour-kinematics duality and the double copy of the non-abelian Navier-Stokes
equation can be realised in terms of the homotopy algebraic treatment adduced in Ref. [12]. We showed
that by using only information that is intrinsic to the factorisation of the strict L∞-algebra encoding the
perturbiner expansions for the non-abelian Navier-Stokes equation, one can pull out kinematic numerators
from the colour-dressed Berends-Giele currents that obey the same generalised Jacobi identities as the colour
factors, thus manifesting a kinematic Lie algebra. Moreover, we showed that the homotopy double copy
prescription applied to such factorisation can be matched with the strict L∞-algebra encoding the perturbiner
expansions for the tensor Navier-Stokes equation. Armed with this understanding, we went on to explore
the implications of the double copy construction at the level of perturbiner coefficients. We showed that
the double copy Berends-Giele currents are obtained by replacing the colour factors of the colour-dressed
Berends-Giele currents with kinematic factors. In physical terminology, this is what one would refer to as
an “off-shell” formulation of the double copy. We also learned that the double copy construction can be
made manifest at the level of scattering amplitudes. More specifically, we proved a symmetric form of the
Kawai-Lewellen-Tye relations which relate tree-level scattering amplitudes of bi-fluid quanta to products of
tree-level colour ordered partial amplitudes of fluid quanta. Again in physical terminology, this is what one
would mean by an “on-shell” formulation of the double copy.

The approach that we have followed has the virtue of giving us the proper arena for understanding the
algebraic origins and different incarnations of the double copy procedure. It is crucial to notice that, although
there are a number of features peculiar to the non-abelian Navier-Stokes equation, the constructions that we
have presented are completely general and not limited to this example. This is particularly apparent in
our proof of the Kawai-Lewellen-Tye relations, which does not rely on any other properties of the double
copy Berends-Giele currents than those provided by the “factorisation” with respect to the colour-stripped
Berends-Giele map. We therefore expect that results analogous to those described here in connection to
the non-abelian and tensor Navier-Stokes equations can be obtained for other theories as well. Natural
candidates include the self-dual sectors of Yang-Mills and gravity in the light-cone formulation [43] and
topologically massive 3-dimensional Yang-Mills theory [44]. Work along these lines is in progress.
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