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FROM LOCAL TO GLOBAL CONGRUENCES
FOR AUTOMORPHIC REPRESENTATIONS

by

Boyer Pascal

Abstract. — Given a irreducible automorphic representation IT of a
similitude group G/Q giving rise to a KHT-Shimura variety, given a lo-
cal congruence of the local component of II at a fixed place p, we justify
the existence of a global automorphic representation II' with the same
weight and the same level outside p than II, such that II and II' are
weakly congruent. The arguments rest on the separation of the various
contributions coming either from torsion or on the distinct families of au-
tomorphic representations, to the modulo [ reduction of the cohomology
of Harris-Taylor perverse sheaves.
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1. Introduction

The first appearance of automorphic congruences can be trace back to
Ramanujan’s works on the 7-functions. Now existence and construction
of higher dimension automorphic congruences play an essential role in
particular in the Langlands program.

One possible approach is to look at the cohomology groups of some
7Z,-local system on a Shimura variety associated to some reductive group
G/Q, whose free quotients are expected to be of automorphic nature.
The idea is then to take two (or two families of ) such local systems those
modulo [ reduction is related and be able to relate the modulo [ reduction
of their cohomology groups. We then face two main problems.

(a) The torsion may interfere and prevent us to relate the modulo [
reduction of the free quotients of the cohomology groups of our two
Z;-local systems.

(b) Even if we can manage about the torsion, the Q;-cohomology of our
local systems may involve different sorts of automorphic representa-
tions and we would only be able to construct imprecise automorphic
congruences.

In this article we are able, playing with all the Harris-Taylor local

systems associated to one cuspidal representation, to deal with this two
problems when G is a similitude group with signature (1,d — 1) and
the associated Shimura variety is of Kottwitz-Harris-Taylor type. More
precisely we first prove the conjecture 5.10 of [4] which says that the mod-
ulo [ reduction of the torsion submodule of the cohomology groups of the
Harris-Taylor perverse sheaves only depends on the modulo [ reduction
of the perverse sheaf. Secondly we are able to separate the contribution
of the automorphic representations according to the shape of their local
component at the place considered, in the following sense.
Main result: We start with a irreducible automorphic representation
IT of G(A) which locally at some place v looks like Speh, (Sty, (1) X
---SttT(ﬂU,,ﬂ)) where 7,4, -+ ,m,, are irreducible cuspidal represen-
tations. We then consider some local congruence m, ; of m,; which
we suppose to be supercuspidal modulo [, and we then construct a
irreducible automorphic representation II" of G(A) such that

— locally II" at the place v is isomorphic to Speh(Sty (7, ;) x -+ X
Sty (7, ) with ¢} = ¢, and 7, ;, for i = 2,--- 7" irreducible cuspidal

representations,
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— globally II’ share with II the same weight and the same level outside
v.

More precisely theorem gives a quantitative version in terms of a
equality between multiplicities in the space of automorphic forms.

2. Notations about representations of GL,(K)

We fix a finite extension K/Q, with residue field F,. We denote by
| — | its absolute value.

2.1. Definition. — Two representations m and 7' of GL,(K) are said
inertially equivalent and we denote by m ~* «', if there exists a character
X 1 Z — Q[ such that

7~ 7' ® (xovalodet).

We then denote by e, the order of the set of characters x : Z — QJ,
such that ™ ® x o val(det) ~ 7.

For a representation 7 of GL4(K) and n € 37Z, set
ﬂ_{n} = 7_l_@)qfnvalodet.

2.2. Notations. — For m and my representations of respectively

GL,,(K) and GL,,(K), we will denote by

e AGLnyany(K) (M2 m
M X g 1= mdPnl,:L;;(K) W1{3}®7T2{_?}7

the normalized parabolic induced representation where for any sequence
r=0<mr <ry<---<r,=d), we write P, for the standard parabolic
subgroup of G L4 with Levi

GL,, Xx GLyy_p, X -+ x GLy, _p,_,.

Recall that a representation ¢ of GL4(K) is called cuspidal (resp.
supercuspidal) if it is not a subspace (resp. subquotient) of a proper
parabolic induced representation. When the field of coefficients is of
characteristic zero then these two notions coincides, but this is no more
true for F;.
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2.3. Definition. — (see [8] §9 and [2] §1./) Let g be a divisor of d = sg
and 7 an irreducible cuspidal Q,-representation of GL,(K). The induced
representation

7r{1 23} ><7T{32 s} y ---><7r{$ 1}
holds a unique irreducible quotient (resp. subspace) denoted Sts(m) (resp.
Speh, () ); it is a generalized Steinberg (resp. Speh) representation.

Any generic irreducible representation I1 of GL4(K) is isomorphic to
Sty, (1) X -+ X Sty (m,.) where for ¢ = 1,--- r, the m; are irreducible
cuspidal representations of GL,, (K) and ¢; > 1 are such that > _, t;g; =
d. For II a irreducible generic representation and s > 1, we denote by

Speh, (IT) = Speh, (St (m1)) x --- x Speh, (St (7))

the Langlands quotient of the parabolic induced representation H{%} X
I{22} x -+« x [I{#1}. In terms of the local Langlands correspondence,
if o is the representation of Gal(F'/F') associated to II, then Speh,(IT)
corresponds to c @ o(1)®---Do(s —1).

2.4. Definition. — Let Dg 4 be the central division algebra over K with
invariant 1/d and with maximal order denoted by Dy 4.

The local Jacquet-Langlands correspondance is a bijection JL between
the set of equivalence classes of irreducible admissible representations of
Dlx(’d and the one of irreducible admissible essentially square integrable
representations of G Lg(K).

2.5. Notation. — For © a cuspidal irreducible Q;-representation of
GLy(K) and for t > 1, we then denote by =[t|p the representation
JLH(Sty(m))Y of Dic 1y

3. KHT-Shimura varieties and Harris-Taylor local systems

Let F' = F*E be a CM field where F/Q is quadratic imaginary and
F*/Q totally real with a fixed real embedding 7 : F'* < R. For a place
v of F', we will denote by

— F, the completion of F' at v,
— O, the ring of integers of F},,
— w, a uniformizer,

— @y the order of the residual field x(v) = O,/(w,).
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Let B be a division algebra with center F, of dimension d? such that
at every place x of F', either B, is split or a local division algebra and
suppose B provided with an involution of second kind = such that «z is
the complex conjugation. For any 8 € B*=~! denote by f3 the involution
x> 1% = Br*3~! and G/Q the group of similitudes, denoted G, in [6],
defined for every Q-algebra R by

G(R) ~{(A g) € R* x (B ®q R)" such that gg* = A}
with B? = B®p. F. If z is a place of Q split = yy© in F then

G(Q.) ~ (BP) < Q; ~Q; x | [(BM), (3.1)

where, identifying places of F'* over x with places of F over y, z = [ [, 2
in BT,
Convention: for x = yy° a place of QQ split in £ and 2 a place of F' over
y as before, we shall make throughout the text, the following abuse of
notation by denoting G(F;) in place of the factor (B%)* in the formula
&),

In [6], the author justify the existence of G like before such that more-
over

— if z is a place of Q non split in E then G(Q,) is quasi split;

— the invariants of G(R) are (1,d — 1) for the embedding 7 and (0, d)

for the others.

3.2. Definition. — Define Spl as the set of places v of F such that
Py 1= vjg # 1 is split in E and B ~ GLq4(F,). For each I € I, write
Spl(1) the subset of Spl of places which do not divide the level I.

As in [6] bottom of page 90, a compact open subgroup U of G(A®) is
said small enough if there exists a place x such that the projection from
U’ to G(Q,) does not contain any element of finite order except identity.

3.3. Notation. — We denote by I the set of open compact subgroups
small enough of G(A*). For I € I, then Shy, — Spec F is the associ-
ated Shimura variety said of Kottwitz-Harris-Taylor type.

In the sequel, v will denote a fixed place of F' in Spl. For such a place
v the scheme Shy ,, has a projective model Sh;, over Spec O, with special
fiber Shy,. For I going through Z, the projective system (Shy,)rez is
naturally equipped with an action of G(A™) x Z such that w, in the
Weil group W, of F, acts by —deg(w,) € Z, where deg = valo Art™!
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and Art™' : W ~ F* is the Artin isomorphism which sends geometric
Frobenius to uniformizers.

3.4. Notations. — (see [1] §1.3) For I € Z, the Newton stratification
of the geometric special fiber Shy s, is denoted by

Shrs, =:Shy: >Sh72 >+ 5 Sh7¢
where Sh;gv = Shi’;v —Shi;‘jl is an affine schemd®, smooth of pure

dimension d — h built up by the geometric points whose connected part of
its Barsotti-Tate group is of rank h. For each 1 < h < d, write
in : Shit < Shiy . j7":Shik — Shil

and j=" =iy 0 7=

Consider now the ideals 1”(n) := IVK,(n) where
K,(n) := Ker(GL4(O,) - GL4(O,/ M?)).

Recall then that Sh?ﬁn%gv is geometrically induced under the action of
the parabolic subgroup P 4(O, /./\/l") Concretely this means that there
exists a closed subscheme Sh7 1 stabilized by the Hecke action of

Py 4(F,) and such that
Shlzvhin),’ Shl_”(n ),80,1p Ph,d(ov/Mﬁ)GLd(OU/MZ)v

1Y (n),5

meaning that Shfv(n)jv is the disjoint union of copies of Shpfzn )5, T 0

dexed by GL4(O,/M?})/Pa(O,/ M) and exchanged by the action of

3.5. Notations. — For 1 <t < s, := |d/g|, let I, be any representa-
tion of GLq_1y(F,). We then denote by

T (o, T0) 2= £ ) © T © =

the Harris-Taylor local system on the Newton stratum Shl S where
Sv,ltg
— L(my[t]p)5; is defined thanks to Igusa varieties attached to the rep-
resentatz’on o|t]p,

_ —Z — Zz 15 defined by = (%) = q'2.

(Msee for example [7]
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We also introduce the induced version
—~— tg—d
HT (m,,11,) = (ﬁ(m[t]D)E(@Ht ® ET> % by o) GLa(F),

where the unipotent radical of Py 4(F,) acts trivially and the action of

= (5 )0 G < PyalB) < W,

v

1S given
tg—d

— by the action of g5 on 11, and deg(o,) € Z on =72 |, and
— the action of (g™, g, val(det g¢)—deg 0,,) € G(A™")x G L4—1y(F,) x

tg—d

Z on Lg,(m[t]p); ®="7 .
We also introduce

HT (7, )1 = H/\T(ﬂ'v, Ht)m[d — tg],
and the perverse sheaf
Plt, mo)re 1= ST (my, $tu(m) i ® L),
and their induced version, HT (m,,I1;) and P(t,,), where
j="=i"o0jZ" Shit < Sh7l < Shyg,

and LY, the dual of L, is the local Langlands correspondence.

For Q, or F, coefficients, we will mention it in the index of the local
system, as for example HTg (m,, I1;) or HTg (my, IL).

4. Q-cohomology groups

From now on, we fix a prime number [ unramified in £. Let us first
recall some known facts about irreducible algebraic representations of G,
see for example [6] p.97. Let 0 : E < @, be a fixed embedding and et
write ® the set of embeddings o : F' < Q, whose restriction to £ equals
0o. There exists then an explicit bijection between irreducible algebraic
representations & of G over Q; and (d+ 1)-uple (ag, (@5)ses) where ag € Z
and for all o € ®, we have a, = (4,1 < -+ < Agq)-

For K — Q a finite extension of Q; such that the representation :~* o &
of highest weight (ao, ((T;)Ueq)), is defined over K, write W i the space
of this representation and W¢ o a stable lattice under the action of the
maximal open compact subgroup G(Z,;), where O is the ring of integers
of K with uniformizer \.
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Remark. if € is supposed to be [-small, in the sense that for all 0 €  and
all 1 <i<j<nwehave 0 <a,;—a,; <l then such a stable lattice is
unique up to a homothety.

4.1. Notation. — We will denote by Ve o/an the local system on Shy,,
as well as

Veo =limVeonn and Veg = Veo ®o K.

For Z; and Q, version, we will write respectively Vez, and Vg,

Remark. the representation & is said regular if its parameter (ao, (cTa’)oeq))
verifies for all 0 € ® that a,; < -+ < apq.

4.2. Definition. — For a Z;-sheaf F on Shy,, we will denote by Fe
the sheaf F @V 7.

4.3. Definition. — Let & be a irreducible algebraic C-representation
with finite dimension of G. Then a irreducible C-representation Il of
G(Ay) is said £-cohomological if there exists an integer i such that

H((Lie G(R)) ®& C, Uy, T, ®EY) # (0)

where U, 1s a mazimal open compact modulo center subgroup of G(R),
cf. [6] p.92. We then denote by dé(Hoo) the dimension of this cohomology

group.

Remark. If € has Q-coefficients, then a irreducible Q;-representation I1*
of G(A™) is said &-cohomolocal if there exists a C-representation Il of

G(Ay) such that 4 (H”) ® Il is an automorphic C-representation of

G(A), where 1, : Q, ~ C.

Recall that G(Q,) ~ Q) x GL4(F,) x [ [;_,(BZ)*, for a fixed place v
of F" above p. For II a irreducible representation of G(A), its component
for the similitude factor le facteur Q) is denoted as in [6], IT,0: as all
the open compact subgroup of Z contain Z, the representation IT which
appear in the cohomology groups will all verify that (Hno)\zg =1. We
now consider

— an admissible irreducible representation II of G(A) with multiplicity

m(II) in the space of automorphic forms,
— and let 7, be a cuspidal irreducible representation of GL,(F,).
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— We also fix a finite level I and we denote by S the set of places x
such that I, is maximal and we moreover impose v € 5. We then
denote by T* the Z;-unramified Hecke algebra outside S.

From [2] and more precisely from [4], we now recall the main results
about the Q;-cohomology groups of Harris-Taylor perverse sheaves. We
first introduce some notations.

— For any Qp-perverse sheaf P on the projective system of schemes
ShI:vh(n%gv with IY(n) := I"K,(n) where K,(n) := Ker(GL4(O,) —
GL4(O,/ M), we consider

Hi(Sh]v(oo)vgv, P) = h‘]f{lHi(Sh[v(n)“gv, P)

n

It is then equipped with an action of ']I%l x GL4(F,) x W, and we
denote by [H*(P¢)] the image of >, (=1)"H'(Shyv () s,, P ® Ve g,)
in the Grothendieck group of admissible representations of T x
GL4(F,) x W,.

— For a fixed maximal ideal m of T%l, and a Qp-perverse sheaf
P as above, we then denote by H'(P:)z the localization at m
of H'(Shyv(w)s,, Pe) and [H*(P¢)]s will denote its image in the
Grothendieck group of admissible representations of GLg4(F,) x W,.
If m is associated to a irrreductible representation I of G(A*"),
we might also denote it by [Hj(P)[{II*"}.

— In particular for HT(m,,Il;) a Harris-Taylor local system, we de-
note by [HX(HT (m,,11;))]s (resp. [H}, (HT(m,,11;))]s), the image of
H'(Shzos,, jr"HT (1, 1)) (vesp.  H'(Shzvs,, Pjn" HT (1, 11;))s)
in the Grothendieck group of GL4(F,) x W, admissible representa-
tions. We also use a similar notation for HT},,(m,, II;) by replacing
GLd<Fv) by Ptg,d(Fv>-

It is also well known, cf. lemma 3.2 of [4] that if IT is a irreducible
automorphic representation of G(A) then its local component II, is iso-
morphic to

Speh, (St (11..)) x- - -xSpeh, (Sty, (u2)) ~ Speh, (Sttl (m1.) %+ xSty (m,z))

where the 7, , are irreducible cuspidal representations.
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4.4. Notation. — For m, a irreducible cuspidal representation of
GLy(F,), we denote by Ag¢ (1, s) the set of equivalence classes of auto-
morphic irreducible representations of G(A) which are &-cohomological
and such that

— (po)izx = 1,

— its local component at v looks like Speh,(Sty(w)))x? withr = s+t—1,
m, ~'m, and ? is a irreducible representation of GLg—s,(F,) which
we do not want to precise.

Remark. An automorphic irreducible representation Il of G(A) which is
¢-cohomological and such that

I1, ~ Speh, <Stt1 (1) X -+ X Sttu(ﬂ'um))
belongs to Ag,ww(s +t;—1,5)fori=1,--- ,u.

4.5. Proposition. — (proposition 3.6 of [4])
Let 7, be a irreducible cuspidal representation of GLy(F,) and 1 < r <
d/g. Then we have

ex, Ker'(Q.C)
d
2 Y X mldIr) (@R, (s, 1)(r,i)(TT))

(s,t) Vel (I1%°V) mg ¢ (r,i)=1
HGA;’:J‘-U (s+t—1,s)

[H!i*(HTm,g(ﬂ-va Hr))] {Hoo,v} =

where

— U (TI™?) is the set of equivalence classes of automorphic irreducible
representation II' of G(A) such that (II')*" ~ [1*7;
— 11, s the local component of all the II' € Ug(II™") such that
de(IT,) # 0, is the common value of the di(I,)) fori=s mod 2,
cf. corollary VI.2.2 of [6] and corollary 3.3 of [4]
Concerning Ry, (s,t)(r,i)(IL,) as a sum of representations of GLg_q(F,) x
Z, for 11, ~ Speh (Ste, (m1,)) X - -+ x Speh,(Ste, (muy)), it is given by the
formula

R, (r,i)(II,) = Z Mg, (7, 1) R, (5, 1) (7, 1) (T, k) ® (fk ® Ez/z)
k: T,0~iTv
where

— the characters &, are such that my, ~ m, ® &, o val odet;
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— R, (s,tg)(r,9)(IL,, k) can be written as

R, (s, tg)(r,i)(IL,, k) := Speh, (St (m1,)) % - -+ x Speh,(Sty, | (Tr—14))
X R, (8,tk)(r, )X
Spehs(SttkH (7Tk+17v)) X -+ X Spehs(Sttu(ﬂ'u,v)).

— Ry, (s,tk)(r,1) is a representation of G Lq_4(F,) which can be com-
puted combinatorially as explained below
— and mg(r,i) € {0, 1} is given in the next definition.

The representation Ry,  (s,tx)(r,i) is computed as follows: we first
apply the Jacquet functor Jpor , 10 Speh,(Sty, (mx,)) which can written

D an) ®{az)

where ay,as are multisegments in the Zelevinsky line of 7,; the precise
computation is given in corollary 1.5.6 of [2]. We then consider the sum

2 R (<a1>> ay = Z ey ® 1, € Groth (FvX X GL(St_T)g(Fv)>
Y

where 1 describe the set of characters of F,* and €, € {—1,1}.
Remark. In the previous formula when 7, = m,[r]p, the ¢ such that II,
are non zero, looks like | — [¥/2 with k € Z, and

Rm,v (57 tk)(r, Z) = H|_‘—i/2.

We do not need the precise computation of Ry, (s,t)(r,i), we just want
to use the fact that if 7] is any irreducible cuspidal representation, then
R (s,t)(r,4) is obtained from R (s,t)(r,7) by replacing m, by 7, in its
combinatorial description. In particular if the modulo [ reduction of = is
isomorphic to the modulo [ reduction of m,, then the modulo [ reduction
of Rr,(s,t)(r,i) and those of R (s,t)(r,7), are isomorphic.

The assumptions on ¢ in proposition 3.6.1 of [2] are contained in the
following definition of my(r, 7).

4.6. Definition. — The point with coordinates (r,i) such that
ms+(r,i) = 1, are contained in the convexr hull of the polygon with
edges (s +t — 1,0), (t, (s — 1)) and (1,x(s —t)) if s = t (resp.
(t—s+41,0) if t = s); inside it for a fized v, the indexes i start from the
boundary en grows by 2, i.e. mgy(r,i) = 1 if and only if
—max{l,s+t—1-2(s—-1)}<r<s+t—1;
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—ift<r<s+t—1then0<|i|<s+t—1—-randi=s+t—1-—r
mod 2;
—difmax{l,s+t—1-2(s—=1)}<r<tthen0<|i|<s—1—(t—r)
andi=s—t—1+7r mod 2,
as represented in figures [ and [2.

A A
AN
AN
1 AN
N 1 -
| N s=1 t=5
TR
I A
T x x \\
| N
| > . >—p
’
| /
n x T x x Ve
| ’
’
x T x Ve
I /
! T /’/
| 7
'
FIGURE 1. The squares indicate the (r,i) such that

ms (1, 1) = 1 for a Speh (¢ = 1) at left and a Steinberg (s = 1)
on the right

Remark. For
I1, ~ Speh(St, (m1,5)) x - -+ x Speh,(Sts, (7u0))

the set of (r,i) such that [H' (P Fg,¢(mo,r)[d — rg])][{II®"} # 0 is
obtained by superposition of the u previous diagrams as in the fig-
ure Bl More precisely for a fixed (r,4), the contribution of diagram of
Speh,(Sty, (mx,»)) is the same as in the starting point (s +tx — 1,0) after
replacing Speh, (St (7x.)) by Ry, (s,tx)(r,i). We can then trace back
any

Ry, (s, ) (r,i)(I1,) ® <§k ® EW)
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R— —%— —% — =% — — — X — —x — X — —x
x
\\ x
AN

I
[0)]

X I
iR

» — X —

FIGURE 2. mg4(r,i) = 1 when s >t at left and ¢ > s on the right

of [H'(Pji." Fg,e(mo, r)1[d — rg])[{IT**}, to
R, (5 + t, 0)(r (gk )
)

of [HO(rjZet) Y Fo,e(mo, s + ti)1[d — (s + t)g])[{II”"}. Note although
that for i = 0, some of the constituants of [HO(Pj" Fg, ¢(mu, r)1[d —
rg])]{HOO’”} may or may not come from r’ > r.
Comments about the exemple of figure[3 for r = 4:

— Spehy(m,) x Speh,(St3(m,)) x R, (4,5)(4,0) comes from (8,0);

- Speh () % Ry, (4,3)(4,0) x Speh,(Sts(m,)) comes from (6,0);

R, (4,1)(4,0) x Speh, (St3(m,)) x Speh, (St5(7,)) does not come from
any (T’, 0) for ' > 4.

5. Integral Harris-Taylor perverse sheaves

We now consider a fixed irreducible cuspidal representation m, such
that its modulo [ reduction is still supercuspidal. Then for any ¢ > 1, the

representation ,[t]p remains irreducible modulo [ so that L(m,[t]p)%;



14 BOYER PASCAL

FIGURE 3. Superposition to compute m(r,i) for II, =~
Spehy (m,) x Speh,(Sts(m,)) x Speh,(Sts(my))

has an unique, up to homothety, stable Z;-lattice. Then for a Z-
representation II; of GL;,(F,), we have a well defined Zyi-local system
HT(m,, I1;).

Remark. 11, is called the infinitesimal part of the Harris-Taylor local
system and it does not play any role here, we only mention it as it
appears everywhere in [4] or [1].

Over Z;, we have two natural ¢-structures denoted p and p+ which are
exchanged by Grothendieck-Verdier duality. We then have two notions
of intermediate extension, ?j, and P*j,. In [3] we explain, using the
Newton stratification, how to construct Z;-filtrations of perverse sheaves,
with torsion free graded parts. In [5] we then prove the following results.

— When the modulo [ reduction of 7, remains supercuspidal, the two

intermediate extensions 75" HT (m,,I1;) and **5 " HT(r,,I1;) are
isomorphic, as it is, essentially formally, the case when 7, is a char-
acter.
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— The following resolution of ?j;-* HT (,, II;), proved over Q, in [1], is
still valid over Z;:

t—s

}) x Speh,_(m,{t/2})) ®E7F — ---
— G T HT (o, T{=1/2} % 7, {t/2}) ® 2
G HT (1, 11;) — Pt HT (m,, 1) — 0. (5.1)

— By the adjunction property, the map

0— 5 *HT(m,, I1;{

N[

—

g HT (0, T {—) x Spehy(m, {t/2})) @ =72

1-9§ 51

}) x Spehg_ (m,{t/2})) ® E

s I g (7, T1 (5.2)

is given by

—0
HT(my, L {—-} x Spehy(mo{t/2})) ®E"? —

Pyt DI (o, T 2)) x Spehy y (m, {1/2))) 7. (5.3)

We have then

Pt HT (m,, =5 =1) % Spehs (moft/2}) @7

1-9

~ HT(wv, T {=—"})x (Spehy_ (1, {—1/2}) xm{‘s%l}){m})@aé/%

(5.4)

— In particular, up to homothety, the map (5.4]), and so those of (5.3)),
is unique. Finally as the map of (51l are strict, the given maps
(52) are uniquely determined, that is if we forget the infinitesimal

parts, these maps are independent of the chosen ¢ in (B.1).
— We also have a filtration

Fill ™ (m,, T1,) < Fill =+ (7, II,) <> - - -
— Fil} (7, 11;) = j, YHT (m,,11;), (5.5)
with graded parts gr, (m,, IT;) ~ pji(tJré)gHT(ﬂU, IT, % Sts(7,)) (6/2).
We fix a level IY outside v and a maximal ideal m of T®: recall that

fixing m means that we focus on liftings m < m, i.e. on £-cohomological
automorphic representations I of G(A) such that their modulo [ Satake
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parameters are prescribed by m. As usual we then denote with an index
m for the localization ®Ts']I'§1.

5.6. Notation. — For 1 < h < d, we denote by i(h) the smaller index
1 such that Hi(Shlv(oo),gv,pj!:hHTg(ﬂ'U, I1,))m has non trivial torsion: if it
does not ezists then set i(h) = +0o0.

Remark. By duality, as Pj;."* = P75 for Harris-Taylor local systems asso-
ciated to a irreducible cuspidal representation whose modulo [ reduction
remains supercuspidal, note that when i;(h) is finite then i(h) < 0.

We now suppose for the rest of this section, that /¥ and m are chosen
so that there exists 1 <t < s, with 4(¢) finite and we denote by ¢, the
bigger such t.

5.7. Lemma. — For 1 <t <tg, we have i(t) =t —ty and
o) (Shy (o) 50 P HT (o, 1)) @, By =~

to —t t._
: } x Speht—to (Wv){ﬁ}:

t—tg

2 )®z

H?or(ShIU(OO)7§v7 pj!:togHT(ﬂ-U’ Ht{ 1 Fl'
(5.8)
Proof. — Note first that for every ty < ¢t < s,4, then the cohomology
groups of j,~ MHT, ¢(my, I1;,) are torsion free. Indeed consider the spectral
sequence associated to the filtration (B.5): by definition of ¢y, note that
the EP are torsion free. Moreover as explained in [2] over Q;, we remark

that all the d?? for p + ¢ > 0 are zero. So torsion can also appear in
degree < 0 but as the open Newton stratum Sh;;‘g are affine, then the

cohomology of jlzhg HT¢(m,,1I}) is zero in degree < 0 and torsion free for
1 =0.

Consider then the spectral sequence associated to the resolution (5.1])
for t > ty: its E; terms are torsion free and it degenerates at Ey. As by
hypothesis the aims of this spectral sequence is free and equals to only
one F, terms, we deduce that all the maps

- —0 —
HO (Shioys, i HTe(m, T -}) x Spehy(m{t/2))) ©=7%), —
1-9
2 }
6—1
x Spel;_ (mo{t/2})) ®E'F),, (5.9)

HO(Shyogey s i 07 H T (m,, T
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are strict. Then from the previous fact stressed after (5.4]), this property
remains true when we consider the associated spectral sequence for 1 <
t' < tp.

Consider now t = ty where we know the torsion to be non trivial. From
what was observed above we then deduce that the map

m

— -1 —
H° (ShIU(OO),ij! (t0+1)gHT§(7TU> Hto{7}) X 71-v{tO/Q})) ® :‘1/2)
— H°(Shyo(w) s, J; Y HTe(my, 1y,)) - (5.10)

has a non trivial torsion cokernel so that i(ty) = 0.

Finally for any 1 < ¢ < t, the map like (5.10) for t+d—1 < t, are strict
so that the H*(Shyo(o) s, Pire P HTe (0, I1;))m are zero for i < ¢ — t, while
when ¢t + 0 — 1 = t; its cokernel has non trivial torsion which gives then
a non trivial torsion class in H'™%(Shyu (o) s, e H Te (70, 1) ). O

6. Automorphic congruences

From now on we consider

— two irreducible cuspidal representations m, and 7 such that their
modulo [ reduction are isomorphic and supercuspidal,
— and as before, a maximal ideal m of T.

For V a Z-free module, we denote by r(V) = V ®; F, its modulo
reduction.

6.1. Notation. — For v, a F;-representation of GLy(F,), we denote
by dimg, ,, ¥ the set

{dimE PO N}.

6.2. Theorem. — (cf. conjecture 5.2.1 of [4])
Let r be mazimal such that there exists s and m < m with Iz € Ag (1, s)
and TI5 ¢ # (0). Then we have

> m(I)de(I,) dimg, ()" dimg, , v Ry, (r, 7)(IL,))
MeAg r, (1,9)

> m(I)de(IT,) dimg (IT%)" dimg, ,, o (Ra, (r,7)(IT})). (6.3)

H,G‘AE,M’J (r,s)
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Remark. The result is still valid without the maximality hypothesis on r
but it is more tricky to expose, cf. the remark after the proof.

A qualitative version of the previous theorem could be formulated as
follows.

— Given a irreducible £-cohomological automorphic representation II
of G(A) such that IT, ~ Speh,(St;(m,))x?, with m, cuspidal with
modulo [ reduction still supercuspidal,

— and 7 such that its modulo [ reduction is isomorphic to those of
Ty,

then there exists a irreducible £-cohomological automorphic representa-
tion IT" such that

— outside v, IT and II" share the same level 1Y,

— their also share the same modulo [ Satake parameters at the places

outside S, i.e. they are weakly automorphic congruent,

— at v, we have II/, ~ Speh_(Sty(m,)) x?’,
where by convention, the symbols ? and 7" mean any representation we
do not want to precise.

The strategy of the proof is the same as in [4]. The main point
to notice is that the left hand side of (6.3)) is a part of the image of
H(Shyo(o0) 5., Pire P HTe (0, 11) ). In [4] §5.3, we look at the particular
case where the localized cohomology groups at m are concentrated in

degree 0: this is for example the case when ¢ is very regular, or if p,, is
irreducible. Then

[ (Shre (o) 5,5 P HTe(m00, 1) )] = [HO(Shre (o) 5,5 P O H T (70, I1y) Y]
and its modulo [ reduction is then equal to
(ShI”(OO) 50> FPJ_THHTg(ﬂ':}, Hr))m = H*(Shlv(oo)7gv7j|* HTg ]Fl< Hr))m
=T <HO(Sh1v(oo ),50 9 Jr* gHT&( 1 ))m)v
where F(e) = 0®%E and by the main result of [5], as Pj,,"Y HT¢(w), I1,) ~
Pty W HTe(m), 11,) for m) such that (7)) remains supercuspidal, then
F ];TgHTﬁ(ﬂ-z/ﬂH ) - ]l* gHT ( Hr)

To isolate the various contribution in these cohomology groups, we
start from r = d towards r = 1 so that for a fixed r, as for ' >
r, the modulo [ reduction of elements of A¢. (r',1) was, by an in-
ductive argument, already identified with those of A¢ . (r',1), we can



FROM LOCAL TO AUTOMORPHIC CONGRUENCES 19

then identify the contribution of A ., (r,1) in the modulo [ reduction of
[H*(Shyv(e),s,5 Ve T HTe (7, 11,) )] to that of Ag i (1, 1).

In the general case where s is not necessary equal to 1 but its congru-
ence modulo 2 is fixed, the first problem is that Ag . (7, s) and Ag ., (7, 5')
with s > ¢ first contribute to [H®(Shyv(w)s,, dre @ HTe(my, I1))m] at
the same time. To separate them, the only solution seems to look
at [H'"*(Shye (o) 5., PG (7, T1,) )] where only A . (7, s) con-
tributes. We are then led to argue on individual cohomology groups
where we recall the following short exact sequence for a torsion free Z;-
perverse sheaf P over a F,-scheme X:

0 — FH'(X, P) — H'(X,FP) — H"(X, P)[l] — O,

where in our situation P = pj!:tg HT(m,,11;) and, as recall before, as the
p and p+ intermediate extension of HT'(m,, I1;) are isomorphic, then

F?j Y HT (my, Iy) = ji . HTg, (my, 11y).

We then must face the problem of understanding the [-torsion and its
contribution in the modulo [ reduction of the cohomology. In [4] §5.4, we
formulate the conjecture that, for a fixed representation II; of G L, (F,),
the modulo ! reduction of the torsion in each cohomology group of
Pj Y9 HT(m,,11;) should depend only on the modulo [ reduction of m,
and we explain how this conjecture implies the previous theorem.

Proof. — We first look at H°(Shyv(eos,, “rs @ HTe(my, II;))m which, by
maximality of r and the spectral sequence associated to (B.1), is iso-
morphic to H°(Shyv(we)s,, jr  HTe(my, 1;))m and so is torsion free. To
this cohomology group contribute the irreducible automorphic represen-
tations of A¢ ., (r,s) with r = s + ¢ — 1 for some set

B(m,) = {(s,t) s. t. 3M < m, g € Ae - (1, s) and (IIZ")s (0)}

The qualitative version of the theorem asks to prove that B(m,) = B(n),)

and the quantitative one then follows from the formula of the multiplic-

ities in

(a) About the quantitative version, consider first the easiest case when
the qualitative version tells us B(rw,) = B(n,) = {(s,t)}. Then the mod-
ulo [ reduction of

[HO(ShI“(OO),Em pj!:rgHTf(ﬂ'va I))m] = [H*(ShIU(OO),Ev ) pj!:rgHTE(ﬂ'vv I1;) )]
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is equal to that of H*(Shye(o)s,, Pdrs ~HTe (), II;))m which is also equal to
that of H°(Shrv(o)5,s Pirg " HTe (), ;) )m. We can then conclude, as these
two cohomology groups are torsion free, from the explicit computation
of the multiplicities in

(b) We now focus on the sequence of the dimension

dyn = dimg, H*(Shpouys,, i HTe (70, 1o—y) ) @, Fi,

where 1,, is the trivial representation of G L(, gy (F}), for k =0,--- ,r—1
and n € N. More specifically we will focus on the din, — diy1 - Note the
following facts:

— By maximality of -, we have H*"'(Shyv(n) 5, ,pj’(r k)gHTg(m, 1)) =
(0) so that

H*(Shpomy s Pdn P HT (10, 1-1) ) @5, T
=(r—k
~ H*(Shrogys,dia’ " HT 5, (0, Lrog) e

— By lemma 5.7 the dimension of the modulo [ reduction of the tor-
sion of H*(Shy. M9 BT (m,, 1)) is prescribed by those of

(n),501 jl*
HY(Shpoimy.s, Pt Y HTe (7, 1) ).

— From (.5 and the description in .6 of the m4(r,7), the behavior of
the contribution to the sequence dy, ,, — di+1 ,, of the modulo [ reduc-
tion of the free quotients of each cohomology groups is completely
determined by B(m,). Indeed note that the contribution of some au-
tomorphic representation IT such that II, ~ Speh,(St;(7,))x? with
s+t —1 = r, only contributes to dy, for £ = 0,---,s — 1 so that
ds—1,, — dsp, after eliminating the contribution of the torsion part,
will detect such II.

So as the contribution of the torsion to the sequence (dj. ;) k>1nen depends
only on (dy,)nen, we can then infer the elements (s,t) € B(m,) (resp.
B(w!)) with s > 2 and prove the qualitative previous theorem for s > 2.
To deduce the result for s = 1, we then look at (don)neny Where the
contribution of the torsion is zero and where the contribution of the free
quotient of each of the s > 2 are the same for 7, and 7. The remaining

part for 7, and 7, should then match which give us the case of s = 1.
O

Remark. We could keep on tracing the contribution of the torsion sub-
modules, to the modulo [ reduction of the others cohomology groups.
Once the contribution coming from r maximal is understood, we could
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consider the next r’ < r and repeat the previous argument taking into
account what is already known about the contribution of what is related
to r.
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