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COMPOSITION OPERATORS ON HERZ-TYPE TRIEBEL-LIZORKIN SPACES
WITH APPLICATION TO SEMILINEAR PARABOLIC EQUATIONS

DOUADI DRIHEM

ABSTRACT. Let G : R — R be a continuous function. In the first part of this paper, we
investigate sufficient conditions on G such that
{G(f): fe Ky, F3} C K I3

holds. Here K;ng are Herz-type Triebel-Lizorkin spaces. These spaces unify and
generalize many classical function spaces such as Lebesgue spaces of power weights,
Sobolev and Triebel-Lizorkin spaces of power weights. In the second part of this paper
we will study local and global Cauchy problems for the semilinear parabolic equations

Ou — Au = G(u)

with initial data in Herz-type Triebel-Lizorkin spaces. Our results cover the results
obtained with initial data in some know function spaces such us fractional Sobolev
spaces. Some limit cases are given.
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1. INTRODUCTION

Let G : R — R be a function. In this paper we consider the Cauchy problem for
semilinear parabolic equations on R" of the following form:

ou
ot
subject to the initial value condition
u(0,2) = ug(x) on R"™
The most classical examples of such equations are the semilinear heat equations

ou

(t,x) = Au(t,z) + G(u(t,z)), (t,z)€ (0,00) x R" (1.1)

E@’ r) = Au(t,z) +ulul", (t,z) € (0,00) x R", > 1, (1.2)
the Burgers viscous equations
%(t,x) = Au(t,z) + 0. (Jul"), (t,x) € (0,00) x R" > 1
and the Navier-Stokes equation
ou

L) = Multa) + PV ), (12) € (0,00) X B> 1
where P denotes the projector on the divergence free vector field. Let us recall briefly
some results on most known function spaces. For Lebesgue space, Weissler in [62] and [63]
studied (L.2)) with singular data in certain Lebesgue spaces LP. In [62] he proved the local

existence of ([[L2]) with initially data in LPe with p. = @ > 1 and the solution belongs
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to C([0,7T), L?), and that T' can be taken as infinity for sufficiently small data in LPe.
Giga [30] proved that the solution belongs to L9([0,T"), L?) with % = %(pi — ) Dsq > De
and q > p.

Weissler [62] proved the local existence of (L2)) for initial values in L” with p > p. and
p = p. See [30] for further results.

In case of 1 < p < p. there exist some non-negative initial data in L” for which there
is no non-negative solution for any positive time 7' > 0, see e.g. [3] and [63].

Further results, for the well-posedness of the Cauchy problem of (L2) can be found in
[17], [55], [56] and [61].

In the framework of fractional Sobolev spaces, [45] established local well-posedness of

problem (L.1)) With some suitable assumptions on GG and obtained existence of global small
2

solutions in H, z *. Miao and Zhang, ﬂﬂﬂ establish the local well-posedness and small
global well-posedness in Besov spaces B?,. Also, they establish the local well-posedness

and small global well-posedness of problem (LI in the critical space B; 5
In [27] the author study the equation (LI]) with

G(z) = Gy)| < |z —yl(lo" + |y1" ™), z,y €R,u>1,G(0)=0 (1.3)

and initial data in Herz spaces KK(I' Herz spaces play an important role in Harmonic
Analysis. After they have been introduced in [29], the theory of these spaces had a
remarkable development in part due to its usefulness in applications. For instance, they
appear in the characterization of multipliers on Hardy spaces [4], in the summability of
Fourier transforms [28] and in regularity theory for elliptic equations in divergence form
[43]. They unify and generalize the classical Lebesgue spaces of power weights. More
precisely, if « =0 and p = ¢, then Kgp coincides with the Lebesgue spaces LP and

K, ,=L(R",|-[*), (Lebesgue space equipped with power weight).

The aims of the present paper is to study the equation (1)) in Herz-type Triebel-
Lizorkin spaces K oo F3. These spaces unify and generalize the classical Lebesgue spaces
of power weights, fractlonal Sobolev spaces of power weights and Triebel-Lizorkin spaces
of power weights. We will assume that G belongs to G € Lipu, see Section 3 for the
definition of the spaces Lipj.

We recall that the solution in the function space K oo L5 of the integral equation

t
u(t, z) = e®ug +/ eIAG (u) (1, x)dr (1.4)
0

is usually defined as the mild solution of the Cauchy problem (). Under some as-
sumption on p,q B, and s we prove that for all initial data ug in K F 5 with s >

s=5+a- %, there exists a maximal solution u to (L)) in C(]0, TO) o F5) with
1
To > C’HuOHK;qFE. If 0 < (s—5)(u— 1), then we prove that

u—eug € C([0, ), K5 F5t0). (1.5)
Now if = (s — 5)(u — 1), s > 1 with G € Lips, and
So = P

Sta—s+1
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then we have (LH)), which was not treated in [45]. Our results cover the corresponding
results of [45]. Moreover, we present the limit case

-1
s:1+'u—(ﬁ+oz)
poop

and the case when s > 2 4 a. To study (L) we investigate sufficient conditions on G
such that

{G(f): [ € K3, F3} C KJ Fj.

In Sobolev space, [41] have presented the necessary and sufficient conditions on G such
that

G(W,(R")) C W, (R"),

except the case p = n > 2. A complete characterization of this problem in Sobolev spaces
has been given by Bourdaud in [6] and [11]. The surprise result in Sobolev spaces is that
under some assumptions there is no non-trivial function G which acts via left composition
on such spaces. More precisely, in 1978 Dahlberg [I§] proved that

G(f) e WI'R™), feWM™R"), 1<p<oo, 2<m< %
implies G(t) = ct for some ¢ € R. In the framework of Sobolev spaces with fractional
order, H*(R),0 < s < 1, s # 2, Igari in [33] gave the necessary and sufficient conditions on
G such that G(H*(R)) € H*(R). He observed the necessity of local Lipschitz continuity
for the first time. See [35] for the Hardy-Sobolev space F,*(R").

The extension of the above results to Besov and Triebel-Lizorkin spaces is given by
Bourduad in [7] and [§], Runst in [46], and Sickel in [51], [52] and [53]. Further results
concerning the composition operators in Besov and Triebel-Lizorkin spaces are given [5],
[9], [10], [12], [14] and [47]. Recently, Bourdaud and Moussai [13] proved the continuity
of the composition operator in W)™ (R™) N W,},LP(R") to itself, for every integer m > 2 and
any 1 < p < oo and in Sobolev spaces W (R"), with m > 2 and 1 < p < co. The author
in [24] and [25] gave the necessary and sufficient conditions on G such that

GWM(R™, |- %) c WM(R™, |- [*),  (Sobolev space of power weight),

with some suitable assumptions on m,p and «. The extension of Dahlberg result to
Triebel-Lizorkin spaces of power weights F; (R",|-[*) is given in [26].

1.1. Notation and conventions. Throughout this paper, we denote by R™ the n-dimensional
real Euclidean space, N the collection of all natural numbers and Ny = NU{0}. The letter
Z stands for the set of all integer numbers. The expression f < g means that f < cg
for some independent constant ¢ (and non-negative functions f and g), and f ~ g means
f <9< f.o Asusual for any o € R, |z] stands for the largest integer smaller than or
equal to x.

For x € R™ and r > 0 we denote by B(z, ) the open ball in R™ with center = and radius
r. By suppf we denote the support of the function f, i.e., the closure of its non-zero set.
If £ C R"is a measurable set, then |E| stands for the (Lebesgue) measure of £ and yg
denotes its characteristic function. For any u > 0, we set C'(u) = {x € R" : § < |z| < u}.
By ¢ we denote generic positive constants, which may have different values at different
occurrences.
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Given a measurable set £ C R" and 0 < p < oo, we denote by LP(E) the space of all
functions f : E — C equipped with the quasi-norm

sy = ([ @)™ < o0

with 0 < p < oo and

HfHLOO(E) = esi‘esbllp |f(z)] < 0.

If £ =R", then we put LP(R") = LP and HfHLp(Rn) = Hpr
Let w denote a positive, locally integrable function and 0 < p < co. Then the weighted
Lebesgue space LP(R™, w) contains all measurable functions f such that

[ isny = ([ U@ wla)de) " < o

If1<p<ooand % + ]% =1, then p’ is called the conjugate exponent of p.

By S(R™) we denote the Schwartz space of all complex-valued, infinitely differentiable
and rapidly decreasing functions on R" and by &'(R™) the dual space of all tempered
distributions on R"™. We define the Fourier transform of a function f € S(R™) by

F()(E) = (2m) " / i (1) d

n

Its inverse is denoted by F~!f. Both F and F~! are extended to the dual Schwartz space
S'(R™) in the usual way.

For v € Z and m = (my,...,m,) € Z", let Q,,, be the dyadic cube in R", Q,,, =
(e, mn) tmy < 2% <my + 1,4 = 1,2,...,n}. Also, we set Xjm = XQ;n:J € Z,m €
/e

Recall that ng,(x) = R*(1 + R|z|)™™, for any z € R™ and m, R > 0. Note that
Nrm € L*(R™) when m > n and that |||, = ¢ is independent of R, where this type
of function was introduced in [19] and [31].

2. FUNCTION SPACES

In this section we present the Fourier analytical definition of Herz-type Triebel-Lizorkin
spaces and we present their basic properties such us Sobolev embeddings. We start by
recalling the definition and some properties of Herz spaces. For convenience, we set

B, =DB(0,2%), By={reR":|z|<2"}, keZ
and

Ry =By \ Br-1, Xk = Xr,, kE€Z.

Definition 2.1. Let 0 < p,q < 00 and a € R. The homogeneous Herz space Kl‘jﬁq 15 defined
as the set of all f € LY (R™\ {0}) such that

loc
7\ /4
HfHKgq = (szquXka> < 00

kEZ

(with the usual modifications when q = 00 ).
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Remark 2.2. Let 0 < p,q < oo and a € R.
(i) The space K}, coincides with the Lebesgue space LP(R", |- |*"). In addition

oo
KO =P
(ii) Let 0 < ¢1 < g2 < 00. Then
Kyg = Ky,

(iii) The spaces Kl‘jﬁq are quasi-Banach spaces and if min(p, q) > 1 then Kl‘jﬁq are Banach
spaces.

Remark 2.3. A detailed discussion of the properties of Herz spaces my be found in [32]
and [40], and references therein.

To present the definition of Herz-type Triebel-Lizorkin spaces, we first need the concept
of a smooth dyadic resolution of unity. Let ¢ be a function in S(R™) satisfying

1, if |z
0<¥ <1 and 1/1(55):{0 if ||:L‘|‘

Y

<1
> 3.
We put Foo =, For = ¥(5)—v¢ and Fp; = F1(279:) for j = 2,3,.... Then {Fp;}jen,
is a smooth dyadic resolution of unity, Z;io Foji(x) =1 for all x € R". Thus we obtain
the Littlewood-Paley decomposition

F=> @ixf
j=0

of all f € S'(R") (convergence in S'(R")).
We are now in a position to state the definition of Herz-type Triebel-Lizorkin spaces.

Definition 2.4. Let o, s € R,0 < p,q < o0 and 0 < § < oo. The Herz-type Triebel-
Lizorkin space K F§ is the collection of all f € S'(R™) such that

00 A 1/8
HfHKgng - H(;zﬁﬁ P f|ﬁ> HK;},Q R

with the obvious modification if f = oo.

Remark 2.5. Let s € R,0 < p,q < 00,0 < f < o0 and a > —%. The spaces Klﬁqug are
independent of the particular choice of the smooth dyadic resolution of unity {F¢;};en, (in
the sense of equivalent quasi-norms). In particular K]‘in i are quasi-Banach spaces and
if p,q, 0 > 1, then they are Banach spaces. Further results, concerning, for instance ,
lifting properties, Fourier multiplier and local means characterizations can be found in

[20]-[21]-[22], [65] and [66].

Now we give the definition of the spaces F ;.

Definition 2.6. Let s € R,0 < p < o0 and 0 < § < oo. The Triebel-Lizorkin space ) 5 is
the collection of all f € S'(R™) such that

1, = (210 12)] <o
j=0
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The theory of the spaces F} ; has been developed in detail in [48], [58] and [59] but
has a longer history already 1nclud1ng many contributors; we do not want to discuss this

here. Clearly, for s e R,0 < p < o0 and 0 < 8 < o0,
0
Ky 5 = Fy g

Let w € A,, Muckenhoupt classes, s € R, 0 < § < oo and 0 < p < oo. We define
weighted Triebel-Lizorkin space F; 5(R",w) to be the set of all distributions f € S'(R")
such that

171

< 1/
Fs y(Rrw) — H(Zzwm*ﬂﬁ) ‘
, pr

is finite. In the limiting case S = co the usual modification is required.

The spaces F; 5(R", w) = F}; 5(w) are independent of the particular choice of the smooth
dyadic resolution of unity {F¢;},en, appearing in their definitions. They are quasi-
Banach spaces (Banach spaces for p,q > 1). Moreover, for w = 1 we obtain the usual
(unweighted) Triebel-Lizorkin spaces. We refer, in particular, to the papers [15] and [34]
for a comprehensive treatment of weighted function spaces. Let w, be a power weight,
i.e., wy(x) = |z|” with v > —n. Then we have

e
;,6<w'y) = Kpp,pFﬁsa

in the sense of equivalent quasi-norms.

Lr(R™,w)

Definition 2.7. (i) Let 1 <p < 00,0 < g <oo,—2 <a <n(l - 1—1)) and s € R. Then the
Herz-type Bessel potential space k;‘g is the collection of all f € §'(R™) such that

HfHkg;g = [|(1 +[¢]*)% * fHKg’q < 0.

(ii) Let 1 < p < 00,0 < g < o0, =% < <n(l- %) and m € N. The homogeneous
Herz-type Sobolev space W‘W is the collection of all f € S8'(R™) such that

1l = Z HM

18]<m

where the derivatives must be understood in the sense of distribution.

In the following, we will present the connection between the Herz-type Triebel-Lizorkin
spaces and the Herz-type Bessel potential spaces; see [39] and [64]. Let 1 < p,q < oo and
——<0z<n(1——) If s € R, then

i s = g
with equivalent norms. If s =m € N, then
Ky By =Wt
with equivalent norms. In particular
Kgpr = WP (R",|-|*?) (Sobolev spaces of power weights)

and
Kg’pFZm = WP  (Sobolev spaces), K;QFQO = K;,q- (2.8)
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Let 0 <0 <1,0 < po,p1,9,q0 <oo,0< by, 1 <ooand ag, aq, sg, 51 € R. We set
1 1-0 0 1-0 0 1 1-60 0

1
p_ Do yai q_ qo Q1’ B Bo B

and
=(1—-0)ag+0a1, s=(1—0)so+0s;.

As an immediate consequence of Holder’s inequality we have the so-called interpolation
inequalities:

1 i < WMl w0 o, (2.9)

P0-90- 5 P1,91 6

holds for all f € K20 Faon Ko Fgl.

Po,q90 P1,91
We collect some embeddmgs on these functions spaces as obtained in [21].

Theorem 2.10. Let oy, an,81,80 € R,0 < s,p,q,r < 00,0 < 8 < 00,1 > —7% and
g > —3. We suppose that

n n
S1— — — Q1 = S9 — — — (9.
S

Let 0 < g < s < o0 and as = ay. The embedding

« s o s
Ke2Fs — KO Fg

q,r* 00

holds if 0 <r < p < c0.

Let 0 < p,q < oo. For later use, we introduce the following abbreviations:

1 1 1
crp:nmax<——1,0) and ap7q:nmax<——1,——1,0).
p p q

In the next we shall interpret L{ . as the set of regular distributions, see [23].

loc

Theorem 2.11. Let 0 < p,q < 00,0 < 5 < 00, a0 > —% and s > max(o,, % +a—n). Then
KO‘ FB — Lloc

For any a > 0, f € §'(R") and x € R", we denote, Peetre maximal function,

a [ * f(y)] ,
2 f(r) = su A , € Np.
@) = s ey €

We now present a fundamental characterization of the above spaces, which plays an
essential role in this paper, see [66, Theorem 1].

Theorem 2.12. Let s e R0 <p, g <o00,0< <00 anda>—2. Leta > Then

g = | (f;zfsﬁw;@ff)”ﬁ!!%’

is an equivalent quasi-norm in K7 Fj.

mnf)
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3. COMPOSITION OPERATORS

Let G : R — R be a continuous function. To solve (L4]), we study the action of the
nonlinear function G' on Herz-type Triebel-Lizorkin spaces. Let us recall some results
obtained in [26], where they proved for Triebel-Lizorkin spaces of power weights, but
the results can be easily expanded to Herz-type Triebel-Lizorkin spaces. Let 1 < p,q <
00,0 < <0, 0<a< n—%. Let T be a composition operator, or Nemytzkij operators,
such that

Tao(Ke F5) € K F5 (3.1)

where Kgin% is the real-valued part of K;‘,ng. If s > 2+ a, then G" € L7 (R) is
necessary. In the the case 0 < s < 2 + a, we have G’ € LOO(R) is necessary.

Now, let 1 < p,g < 00,0 < f <o00,0<a<n—7and G € C?(R). Let Tg be a
composition operator with ([B.1]) and

1 n
1+-<s<—+a.
p p

Then G(t) = ct for some constant c.

In this section we investigate sufficient conditions on G such that (8.]) holds. First we
need the following lemma, which is basically a consequence of Hardy’s inequality in the
sequence Lebesgue space £,.

Lemma 3.2. Let0 <a <1 and 0 < g < oo. Let {5k}k€NO be a sequences of positive real

numbers and denote ), = Zf:o ak*jsj and n = Z;’;k aj*ksj, k € Ny. Then there exists
a constant ¢ > 0 depending only on a and q such that

(Sa) " (50 <o (50"

As usual, we put

M(P)(z) = sup |Q‘/\f \ldy, fe Ll

where the supremum is taken over all cubes with sides parallel to the axis and x € Q.
Also, we set M, (f) = (M(|f]7)7,0 < o < . |

Various important results have been proved in the space K, under some assumptions
on «,p and g. The conditions —2 < a<n(l— —) l<p< oo and 0 < g < o0 is crucial
in the study of the boundedness of classical operators in K g SPaces. This fact was first

realized by Li and Yang [38] with the proof of the boundedness of the maximal function.
Some of our results of this paper are based on the following result, see Tang and Yang

5.

Lemma 3.3. Let 1 < f < 00,1 <p < oo and 0 < g < oo. If {fj}jen, is a sequence of
locally integrable functions on R™ and -2 <a< n( — ) then

| (iw(fj))ﬁ)”ﬁ”% < (Z18r)"”] .
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Let £ >0and f € L) Define

loc
H(D@ = [ 1fw+2) - f@)lds ceRM ke
B_j
Lemma 3.4. Let 0 < p,q < 00,0 < f < 00,0 > —% and
max <ap75,ﬁ+a—n> < 8§ < .
p

Then there exists a constant ¢ > 0 such that

It fj 2<"+8>’“B|I:<f>|ﬁ)”5HK <dlfls 35

PH;q B;L

holds for all f € Lm"“(1 W with
F=> ¢l
=0

in Lt ., with the obvious modification if 5 = oo.

loc?

Proof. We will do the proof in two steps.
Step 1. We set A, f(z) = f(z+y) — f(x),z,y € R". A change of variable yields

2RI ) () = 2% [ [Bpesf (@) dx S Tue(F)(@) + Jos( )

Bg
for all x € R™, where the implicit constant is independent of x and k,

Jir(f)(z) = ZSk/ }ZAzQ k(Pj * f)(x)‘”dz
Bo =0
and

Jo i (f = 2% /BO | Z Ao f)(2)|"dz.

j=k+1
Estimate of Jy. Let U, ¥, € S (R") be two functions such that FU =1 and F¥y = 1
on suppy; and supp, respectively. Using the mean value theorem we obtain for any
reR" jeNyand 2] <1

[ALor(ps* [(@)] = Ak (V)@ f)(2)]
< 2% sup ) [D( kg x f)(y)

_ —k
lz—y[<c 2 18|=1

I

with some positive constant ¢ independent of x, 7 and k, and
() =20 np(2971) for j=1,2,....
We see that if || =1 and a > 0
| D2(W; % 05 % )(y)]

/n D? (U (27 (y — 2))) @ * f(2)dz

< 20700 | (D7) (27 (= 9) ey » £ d= (3.6)

9(i=1)n
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The right-hand side in (3.6]) may be estimated as follows:

c 23("“)% f(y)/ ’(Dﬁllf) (2j_1 (y — Z))’ (1 + 27 |y — z|)adz
< 29 f(y).
Then we obtain for any = € R", |z| < 1 and any j, k € Ny

[Aco-i(pi )(@)] < 27" sup @7 f(y)

le—y|<c 27k

~ a 0 f(y)
< e ¥R (14207 sup I =
S XA o e -

< c27h (),

if 0 <j <k keNyand x € R". Therefore
k .
Joe(H)(@) S2H(D 27 e f (2))",
=0

where the implicit constant is independent of x and k, and this yields that

(S menr)”]

’ «
KEq

can be estimated by

00 k
k) (1—2)njS  xa p\MB L/uB ||
(3 (o aomeprigepy )
k=0 ]:0 pH,qp
Using Lemma the last expression is bounded by
> S wa mpB\ V/HBH
(o @) g, g g
kZ:O ( F ) Klﬁ"q H HKP#L’ QI‘FHH

where we have used Theorem 2.121
Estimate of Jo5. We can distinguish two cases as follows:
e Case 1. min(p, B) > 1. Therefore s > max (0, Tt a— n). Assume that oo > n(1 — —)

Letl—%<)\<mm(

f) be a strict positive real number, which is possible

n+ap’
because of
np(2+a—n
s>ﬁ+a—n> - <p ) = ‘n (1— np )
p min(p, 8)(n +ap)  min(p, B) n+ap
Let Mmm(p &) <a< (1 NE Then
Z s a(l-\). (3.7)

]
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If -2 <a<n(l- —) then we take A = 1. From this we deduce that for all x € R",
2 SkJM(f)( ) can be estimated by

e 30 0 [ 8ty o)t

j=k+1
ke 1-A A
S 3 2 s [Asley - NP [ [ty e N
j=k+1 € By Bo

where 0 < 2 < i — a(l — \) and the positive constant ¢ is independent of k and x.

Observe that
/ A ures (i % f) (@) a2
Bg

< \soj*f(x)\“k+2'm/ |05 % f(y)]"\dy
ly—z|<27F

< ey F@)] + M(Jes* f) ()

This estimate combined with

[Asar (g % f) ()] < e 20797 f () (3.8)
for any x € R",|2| < 1 and any j > k + 1, yield

Jou(f) S Jowa(f) + 22 (f),
where
JZ,k,l(f) _ Z 2(j—k)(6+au(1—)\)—s) (jSso;,af)ﬂ(lfk) ‘QJiQO] % f‘,uA
j=k+1
and
J2,k,2(f) _ Z 2(j—k)(€+au(1—)\)—s) (2]%%0;@]0)”(1_)\)./\/1 (2j% |§03 % f|)u>\
j=k+1
By similarity we estimate only J5 5 2(f). Using Lemma [3.21and Holder’s inequality we get

o0

(S )

k=0

< (Z (QkigoZ’af)u(l_A)ﬁ (M (zkﬁwk N fDW\)ﬁ)

k=0

1/8

o0 o0

S (Z(2kﬁ902“ >(H (Z 2i|<pk*f|)“k)ﬁ/k>k/ﬁ.

k=0 k=0

Again by Holder’s inequality

. Y
«
Kp’q

I(S et
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can be estimated by

H(i ‘@k*f\)“’\)ﬁ/)‘y\/ﬁ}

k=0 K?%
o0
(1M s B\ /1B || A
< IS (0 @t ) ™y

where we have used Theorem 2.12] and Lemma Obviously we can estimate the last
term by
el /12

e Case 2. min(p,f) < 1. If =2 < a < n(l - —) then s > =t — n. Taking

max(0,1 — M) < A < min(1,p,3). The same arguments as in Case 1 yield the
desired estimate. Now assume that a > n(1 — 5) Therefore

Kp“ o FB“ '

- ( n n n )
s>max|(————~—n,—+a—n|.
min(p, ) p

Taking max(0, 1 — 220 ’ﬁ)) < A < min(p,
the same manner as in Case 1.
Step 2. We will estimate

! 1/8
(55 amstmind) ],
k=—o00 p.q

We employ the same notations as in Step 1. Recall that

F= eixlf
j=0

P , ). The desired estimate can be done in
P

Define

Myo(f /B sz ey * f)(@)] “dz.

7=0
As in the estimation of Jyj, we obtain

Myp(f) S Maga(f) + Maga(f),

where

—Rap{l— o ap(l—=X)—s < x,a 1-A is A
M) = 0N 3 o 0 O g
7=0

and
—ka _ - 1 a —AN)—s i< xa 1-X = A
Mo f) = 27Fn=0) § ™ gileran1=X)= (935 puet 1y 100 pg (975 f1),
j=0

with the help of (38.§). By similarity we estimate only M, ;. Obviously

a s xa 1-X i s A
Mawalf) € 27407 sup (FF 1) M (@ 1))

J€Np
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and this yields that

-1

(5 2) " 5 s (@ =m0 1)

— J€No

By the same arguments as used in Step 1 we obtain the desired estimate. The proof is
complete. O

Now we present the case of s = u, where the proof is very similar to Lemma [3.4

Lemma 3.9. Let 0 < p,q < 0o, a0 > —% and
n
max(ap,g—i—a—n) < p.

Then there exists a positive constant ¢ such that

(ntpk| rh H
sup 2 [f‘.gcf,g
H keZ ‘ k( )‘ Kg H HKP‘L,q/LFll
holds for all f € LM with
F=> @i*f
j=0

TR
in L.

Using the fact that H f HZ% f Hgofl, we we immediately arrive at the
PH,q

“Fﬁﬁu < HfHKg’ng
following results.

Lemma 3.10. Let 0 < p,qg < 00,0 < f < 00,0 > —% and
n
max(l,crp,g,—+a—n) <5< .
p

Then there exists a positive constant ¢ such that

[( 3 2eomzzcnr) |
k=—00

holds for all f € K¢ ,F5n L.

Remark 3.11. Corresponding statements to Lemmas [B.4] and B.I0 were proved by
Runst [40, Lemma 1], with « = 0,p = ¢ and the case of bounded functions, while with

a = 0,p = ¢ has been given by Sickel in [50, Lemmas 1,2] . In our proof we have used
the ideas of [50, Lemmas 1, 2].

pn—1
I

<l fllgg s
K;?,q P,q° B

The next two lemmas are used in the proof of our results, see e.g. [2].

Lemma 3.12. Let s ¢ R, A, B > 0,0 < p,q < 00,0 < < 00 and o > —%. Let { fi}en,
be a sequence of functions such that

suppF fo C{E € R": [¢] < A}

and
suppF f; C {¢ € R™: B2 [¢] < A2},
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There exists a constant ¢ > 0 such that the following inequality

IS4l <S> 1ar)]

Kg,
holds.

Lemma 3.13. Let A,B > 0,0 < p,q < 00,0 < 8 <00 and o > —2. Let s > max(ap,%+
a—mn). Let {fi},cy, be a sequence of functions such that

suppF f; C {5 eR™: [ < A2l+1}.
Then it holds that

<c

Hiﬁ’ (i2185|ﬁ|ﬁ>1/6’
1=0 =0

Let G : R — R be a continuous function. We shall deal with sufficient conditions on
G to guarantee an embedding

TG(K;ng) = G(K;ng) C K;ng.

Kpal's K

First we begin with the case where G is polynomial.

Theorem 3.14. Let 0 < p,q < 00,0 < § < 00, s}%—%,a}() and

max(0,2+a—ﬁ><s<ﬁ+a, m=123, .. (3.15)
p m p
We put
Sm=58—(m— 1)(3—1-04—5).
p
Then

177 g = 171 .16

holds for all f € K¢ F5.

Proof. We will do the proof into three steps.
Step 1. Preparation. Let {Fp;} en, be a partition of unity and f € S’(R™). We define
the convolution operators A; by the following:

Aif=¢;*xf, j€N and ANof =po* f=F Y« f.
We define the convolution operators @);, j € Ny by the following:

Q;f =F "y f, jeN,
where F 1), = 20" F~14)(27.) and we see that

Qif =) _Auf. jeEN,
k=0

For all f; € S'(R"), ¢ = 1,2, ...,m the product [[", f; is defined by

1'1;[1 fi= jh_{go 211 Q; fis
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if the limit on the right-hand side exists in S'(R™). The following decomposition of this
product is given in [47, Chapter 4]. We have the following formal decomposition:

Hfi— Z H (A, fi) -

The fundamental idea is to split [ [~ fl- into two parts, both of them being always defined.
Let N be a natural number greater than 1 + log, 3 (m — 1). Then we have the following
decomposition:

Hfz = D [Qjnfr o Qi1 Ajfm +
7=0
+ (M Qi-n fi) A fi + oo+ D f1 - Qi-nfo oo - QN [

+ZZ (A f1) oo (D, f)

where the Zj is taken over all k € Z such that

max ky = ky,, =j and 2&X|£— ke| < N.
mo

Of course, if £ < 0 we put A,f = 0. Probably Zj becomes more transparent by
restricting to a typical part, which can be taken to be

(TT2:5) TT@ %
el i€l
where
]1,]2C{1,...,m}, Ilﬁlgz(b, 11UIQZ{]_,...,’ITL}:I, |Il| > 2

We introduce the following notations

Dl foron ) = 3 (TI@, o f)Ashi

j=N itk

and
oo J m

Mo(frs for s ) = DD (HAkfz>

=0 i=1
The advantage of the above decomposition is based on
supp F((HQj_Nfi)Ajfk) C{eeR": 27 g <2}, j=N
ik
and

suppf(Z(HAkfz)) {eer: g <P} jeN.

Step 2. We will prove ([B.I6). Observe that we need only to estimate

(e}

Hl(f, I f) - Z(ijNf)m_lAjf

J=N
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and
o(f, fro f) = f:(Ajf)m(ij)uQ.
Define o~
=00

Therefore we have the following Sobolev embeddings
K{mEy — K& Fsm.
Lemma gives
ITL(f fre )

a¥p
can be estimated by

H(Z 27°(Q, )", f|5)

Kam

v,q

S

suplQ, ) (3 17
j=N =N

Kep
By Holder’s inequality we estimate the last term by
m—1
llsup @, flllzg 17l s,
with % =1 _ 5 Recall that

lsup i@y = Nsupl@unsll,

=

T
< Wl (3.7
see [15, Theorem 1.4, because of —% < a < n(1 — %) Since, s > it thanks to the
embedding
Ka L5 = K{f‘bFQO, (3.18)

see Theorem .10 we obtain

IS Dl S 1102 s

at's
Now we estimate IIy(f, f, ..., f). Define
1 I I
——M+M, a—ﬁ—am:sm—ﬂ—a.
U P b U P

Observe that o = |I;|s. Hence

m PP e Ko Fim.

e \11\

|Q
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From (B.15) it follows that o > max <O, 2+ am — n) Lemma gives
HH2(f7 f7 SEE) f)HKamq Flials

U
Ml T

1]

: H(iﬂj””(@wb<Ajf>h'\%)B

1]

F 2] N isnLf18) P
(sup |2, 1) (]Z%u 1)

S

Fom
w, 1
[T1]

Again, by Holder’s inequality we estimate the last term by
oo 1
12| s B
el sup 1@, £l [1(32 12 s1)
j=N b N0
where we have used (B17) and [BIS).

Theorem 3.19. Let 0 < p,q < 00,0 < B < o0, >0 and

1]
oo S g, e
Kg, p,q’'p

S>max(0,ﬁ+a—n), m=2,3,....
p

Then .
III%

17 s S 1l
holds for all f € Kgng N L.
Proof. First, we estimate I1;(f, f, ..., f). Recall that
sup |Q, f| S || f]|. and  sup [A;f] S| f]].-
J€Ng j€Np
Lemma B.12] gives
HH1<f7 f7 ) f)H[’(g’ng

can be estimated by

C

(S 125@, o817

j:N KI?,Q

o 1

m— s B8

S el v (3 A s) |
j=N =N

m—1
< A Al g

where we used ([B.20). Lemma B.I3] gives

[a(f, fooes g e S H (i |2js<ij)u2|(Ajf)lm|/3> é)

B

< [e3
Kp.q

0 1
S A ()|,
j=0 p.q
S Al g

with the help of ([3.20).

17

(3.20)
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Remark 3.21. Theorem B4l in the case m = 2,p = g and o = 0 is contained in [68] and
also in 49]. For m > 2,p = ¢ and a = 0 see [50, Remark 17] and [47, p. 291]. We refer
the reader to the monograph [47] and the paper [36] for further details, historical remarks
and more references on multiplication in Besov and Triebel-Lizorkin spaces.

Definition 3.22. Let > 0. Let L € Ny, and let 0 < v < 1 such that uw = L+ v. The
spaces Lipu is the collection of all f € CH1°¢(R) such that

fQ0)=0, 1=0,1,2,....L

and
(L) t _ (L) t
) = O]

to,t1€R |t0 — tl‘y
Then we put

L-1 (¢ (L) (+.) — FE) (¢

£, :ZsupLQu qp ) = fO@)]
o R L7 o ner lto — t1]¥

Remark 3.23. H . H Lipu defines not a norm, but for simplicity we will use this notation,

see [47, p. 295]. A typical example of a function belongs to Lipu is f(t) = |t|*, u > 1.
Recall that Lipu is not monotone with respect to pu.

We follow the same notations as in [47, Chapter 5].
Definition 3.24. (i) For f € S'(R") we define a distribution f by
flp)=f(g). ¢e€SR).
(ii) The space of real-valued distributions S'(R™) is defined to be
SR ={f€S'R"):[=/}
(ili) Let A be a complez-valued, quasi-normed distribution space such that A — S'(R™).

Then we define the real-valued part A of A to be the restriction of A to S'(R™) equipped
with the same quasi-norm as A.

Now we are in position to state the first result of this section.

Theorem 3.25. Let0<p,q<oo,0<ﬁ<oo,,u>1,0420,52%—% and

n
O0<s< —+4a.
p

We put

sﬂzs—(,u—l)(%jLoz—s).
Let G € Lipu and

max (O, D a- n) < s, < . (3.26)

p
Then
NG g, e S NG ipull g

holds for any f € K F*

Dp,q— o0°
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Proof. We will do the proof in three steps. '
Step 1. Preparation. Consider the partition of the unity {F¢;}jen,. Let f € K$ F3

p,q— o0
We set
1 Tta—s
b_pn+ap and al:%
Then
n , n
max(l,p) <b<oo and — 3 < oq < min (a,n — 3) (3.27)
Hence
Ky F5, = Kpy, max(lqp) <. (3.28)

Since G € Lipu, % > 1 and ayp < n — =F, we have

G(f) € Ky — S'(R")

and so we can interpret GG as a mapping of a subspace of S'(R") into §’'(R"). In addition
F= g f i KT (3.29)
=0

Indeed, let

K
o= ¢j*f kel

=0

Obviously {gx} converges to f in S'(R") and by the embedding ([B.28) we derive that
{or} C K. Furthermore, {g;} is a Cauchy sequences in K;'} and hence it converges to

g€ Kg‘}, Let us prove that f = g a.e. Let ¢ € D(R™). We write

Here (-, -) denotes the duality bracket between D’(R"™) and D(R"). Clearly, the first term

tends to zero as N — oo, while by Holder’s inequality there exists a constant C' > 0
independent of N such that

g — on, ) < Cllg = ox | gon
which tends to zero as N — oo. Therefore f = g almost everywhere. Consequently,

f= Z]O‘io ;j* [ in K{j‘; Finally, (8.29), follows by the embedding K,?; — Kil;frg. We
have also

F=Y wj*f in L.
7=0
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_n_ n
u+b

because of qur — LI . Indeed, let B(0,2™) Cc R", M € Z. Holder’s inequality and
the fact that oy — 2 + § =3 +a— 2 —s <0, see 3.20), give

110,200

1=—00

= Z g-ilan= i+ Pugiter =3+ Pu ) by 1
Y

1=—00

M A . u
< C(M)( Z 22(041—54‘3)7"”in”;>*

i=—00

S e

n
"
K,

n.
Ty

We put = L + v, where 0 < v < 1. The function G has the Taylor expansion

L1 ()
G(t) = Z ¢ l'(z) (t—2)' 4+ R(t, 2), tz€eR,
1=0 '

where
1 /[t B
R(t2) = 35 [ (=0 GV .

Since f € KgqFjo and s > maX(O 4+ «a —n) there exists a set A of Lebesgue-measure

zero such that |f(x)| < oo for all = E R™\ A. We can we suppose that |f(x)| < oo for all
x € R™. Therefore

1
G(f(y) = Z,Z ) IO () (o + f () GO (g ()

where, x,y € R",

k
=0

d
o 1 /W . .
Rl ) = 35 [ (#0) = 16O ).
Ypxf(2)
We put K, = (—1)"7Cl5, with 0 <1< L—1,0 < j <. Consequently
L-1 1
o GUN@) = [ pule = GUWNY = YY" i) + Hualo),
" 1=0 j=0
where

Hiaga(r) = K f(2)) G0 (W  f(2) / (@ —y) ! (y)dy

Rn

= Kulwn* f(2) GO (W x f (@) + ()
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with0<I<L—-1,0<7 <! and

@)
fax@=5545%@—yy/ (F(9) — )G (h)dhy

Yxf(x)
We will estimate each term separately.
Step 2. Estimate of Hj1 ;. First assume that 0 < j < L — 1. Recall that

si:s—(i—l)(%+a—s), i>1

and s; < S,,7 > v > 1. Define

B n -+ ap
P ) ra—s)
and
B n—+ ap
p2_§—sj+g+a’
where

s, < § <min(y,s),

21

(3.30)

with 0 < j <,0< I < L—1 Since sj — % —a=—j(F+a—s) <0, B30 is well

11, 1
defined. We put 5= o +p Hence
_ n+ap n _ . .
L p<p<min((u—7)p1,p2)-
In addition
n -n ap n . n ap
s———a= — — : and s;———a=85—-—— —.
p (w=J)pr (k= J)p p P2 Do

These choices guarantee the Sobolev embeddings
) 0 s
z?,q ;,B = K(: ;);11 ooF17 quFoso — KgqFBH
and

ap

o B8y KO F% s Kp2 B8 0 <r < oo,

see Theorem .10l We will prove that

|

By Holder’s inequality and the fact that
GO0 < |G|, el teRI=0,. L1

sup 2* ’Hkl,jl+Hk2} i ¥ S HfHMa L
keNy pq

we obtain that

2k§HHk,17j,lHK% < e FITGO *f)HK% 25| o *fJH

P1

S NGl = 71 a2 lons ] e
(u J)p1,00 p2q
SN e 1
u])moo 2.4
S G il g, s \f]HKaFJ
.

(3.31)

(3.32)

(3.33)
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for any k € Ny, where we have used the embeddings (3.31]) and ([3.32), and Theorem B.14]
with the fact that
n n
3>max<0,—+a——>,
p M
see ([B.26). Now we estimate Hy o, Let us recall some properties of our system

{Fer}ren,- It holds

/ ¢r(y)dy =0 and / vo(y)dy=c#0 keN.
Therefore we need only to estimate Hy 1,0 <1< L —1. We have, again by (3.33),

1Hosoull 52 S NG pllloo * SV oz S NG L1122

p q p q Kﬁﬁqugo .
Thanks to the embeddings
K5 B3 o Kt P K FY (3.34)
because of N
S s —a) and g p,
p p
we obtain

1Hoxoall sz S NG il 1F kg,

Py B

Step 3. Estimate of Hyo. We have

f(y)
/w (f(y) — W) GB (h)dh

kxS (@)
(f(y) = vw * f(2))"
L

)
[ () = G — 6w £
Ypxf(2)
= Hpp1(7,y) + Hy22(2,9y).
The estimation of Hy s can be obtained by the same arguments given in Step 2. We
estimate Hy22. Using the fact that

IGB () — GP(ty)] < HGHMWHO — )", to,t €R,

G (g * f())

we obtain
[ Hioo(2,9)] S (|G| lton % f2) = F@)I, 2y € R™

Obviously

[ f(x) = FW)l < [vn+ f2) = f@)] + [f (@) = Fy)],
which yields that

[ e = wllHiaalo )ld < Sia(9)(@) + Sual ) )
where
51000 = Gl [ lorte = )llox 1(0) — Sy
S (Gl F@) — F@I
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and
51a(0)@) = |G, [ lionle = )l50) = Sl
First we estimate Sk 1(f). Observe that

f=texf=Y wixf, keN,

i=k+1
Therefore

2

|

ap (50| 5 < 161,

(3l )

kEN, Kb i—k+1
< (€l 50w 245 sowﬂ)w
PH,q
< e >>Lipuwwf>>;gg

where we used Lemma B2l We conclude our desired estimate by the embeddings (3.34)).
Now we estimate Sy o(f). Since 9, ¢ € S(R™), this yields

or(2)] S Mo ae(2), 2 € R,
where M is an arbitrary positive real number and the implicit constant is independent of
z and k € Ny. By means of this inequality we find

Rnlsok( 2| f(z) = flz+ 2)|"dz

N B|<Pk( | f(2) = fz + 2)["d=

x+ z)|Mdz
+zz;/3kll\3kl|‘p’“( | f(x) = fz+2)]

< gy g [ ) a2
=0

Bi_1—1
S 2y oM (f)(a),

where the implicit constant is independent of x and k. Let d = min(1,p). Taking M
large enough such that M —n — s —1 > 0 and using Lemma B.4] we obtain

‘ sup 2 }Skg H
keNp

d
< lall* 22 —IMd ok(n-+3) i ’ op
~ H HL@pu — kGI\IT?) ( k:fl(f)) Kp,ﬁ:

L d
sup (2’("“)[2”(]0)) H _ap

) P
1= Ky

< 6115, Z g

s le HLWHfHKW .t

Our desired estimate follows by the embedding (834]). The proof is complete. O
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From Theorem [B.28 and the fact that G(t) = | f|* € Lipp, p > 1, we immediately arrive
at the following result.

Corollary 3.35. Under the hypotheses of Theorem 324, we have

71 g o < ell 5]

I
Ky Fs

holds for any f € K;"qIFgo.

Remark 3.36. The valued s, in Theorem [3.25]is optimal. Indeed, we put
ful@) = 0(x)]z[",

where £ > 0 and ¢ is a smooth cut-off function with suppf C {z : |z[ < J}, ¥ > 0
sufficiently small. As in [24] we can prove that f, € K I 5 if and only if s < % + a+ K.
Let G(z) = |z|*,u > 1,z € R. Then

G(fl@) ¢ K;ng’
ifd>%+a+/{u>su.
Theorem 3.37. Let 0 < p,g < 00,0< < oo,u>1, >0 and
max(O,ﬁJroz—n) < s < .
p
Let G € Lipu. Then
pn—1

IGUM kg, 5 < NG il g s | 115
holds for any f € Kg,qF% N1Le.
Proof. We employ the notation of Theorem We will prove that

pn—1
SN il | i s 112

pq- B

k
sup 2 S’Hk,l,j,l + Hk,Q’
keNy

Thanks to (333) and Theorem it follows
o il S s IGO0 s D] 2 o P
Gyl = S22 on * P,
< 1 I g
ST 1 e P

where we used Hwk * fHOO < HfHOO, by Young’s inequality. Now

< (o3
K5

AN

HHO,LOJHK;q S HGHLipum(pO*wakﬁq
< NGl 11 o Fll g,
< NGl A5 M W, -

Observe that
Ska(£)(@) S NG| lton % F@) = F@ S G £ % £(2) = F(2)].
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Then

A\

sup (2°55,1(/))

keNp ’

(5 )],

=k+1

16l
S 161 P i

161 LA 1 g s
by Lemma B.2] Using Lemma [B.4] we obtain

d
< ‘GHLZP,LLZQ lMdH sup 2k n+s) i (f)))Kgq
S Gl Z gz

s lle HLWHfH b

< (23
K5

sup 2~
keNy

A\

d
sukaS‘Skg )H .
keNo Kpq

d

sup (211 (f))

i>—1 ‘

< «
KP.q

The desired estimate follows by the fact that
s e S A gy
The proof is completed. O

Now we present some limit case.

Oy

Theorem 3.38. Let 0 < p,q <oo,a 2 0,p 2 w55 and
q

max(l,ﬁ—l—a—n)<u<ﬁ—l—a. (3.39)
p p

Let G € Lipp and
pw—1
s=14+——(—+0a). 3.40
H (p ) ( )
Then

HG(f)HKg’ngg S CHGHMWHJCHH&QF&

holds for any f € K F*

p,q— 00"

Proof. We employ the notation of the proof of Theorem B.28 From (3.39) and (3.40), we
obtain p < s < % + . With the help of .39) we get ([3.27), % > 1and ajp < n— £
Consequently the embedding (3.28)) holds. We have s, = p and we will take 5 = s, and
p = p. The proof is very similar as in Theorem B.25 but here we use Lemma [B.9 instead

of Lemma 3.4 O

From Theorem B.38 and the fact that G(t) = |f|* € Lipu, pu > 1, we get the following
result:
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Corollary 3.41. Under the hypotheses of Theorem[3.38, we have
(g e < ll Gl 1]

I
Ky Fs

holds for any f € K F*

P,q— 0°

Remark 3.42. Corresponding statements to Theorems [3.25] B.37 and B.38 were proved in
[47] and [49, Theorem 6] with oo = 0, see also [46].

4. SEMILINEAR PARABOLIC EQUATIONS IN HERZ-TRIEBEL-LIZORKIN SPACES
4.1. Heat kernel estimates. Let t > 0,2z € R” and f € §’'(R"). We put
e f(x) = F ! (exp(—t[¢[*) F f)(2).
Recall that
g(z) = FHexp(~tl¢]")) () = (47t) "% exp(—4t'|z*), 2 €R"

We will give some key estimates of heat kernel e'® needed in the proofs of the main
statements. First, we estimate the heat kernel e*® in Herz-type Triebel-Lizorkin spaces.
We follows the arguments of [I] and [60]. We need the so called molecular and wavelet
characterizations of Herz-type Triebel-Lizorkin spaces.

Definition 4.1. Let K, L € Ny and M > 0. A K-times continuous differentiable function
pis called a [K, L, M]-molecule concentrated in Q) if for some j € Ny and m € Z"

1D ()| < 2MV(1 4 27|z —277m|)™, 0< 7| < K
and

/x”u(x)dx:() if 0<|v|<L,jeN.

Notice that for L = 0 or j = 0 there are no moment conditions on p. If 1 is a molecule
concentrated in Q);,, then it is denoted 1t} p,.

We introduce the sequence spaces associated with the function spaces Kgng. Let
a,s €R,0<p,g<ooand 0< [ < oo. We set

Ky fs = {2 = {Njm}jenomezn € C: HAHKﬁqf; < oo},

where

= : 1/8
H)‘Hkg’qu - H(Z Z 2]Sﬁ|)\j7m‘6Xj7m> ‘

=0 mezn

Kgo
Now we come to the molecule decomposition theorem for Kg .5 spaces. For the proof,
see [21] and [67].

Theorem 4.2. Let s € R,0 < p,q < 00,0 < g < o0 and a > —%. Furthermore, let
K, L € Ny and let M > 0 with

L>o,3—5, K>sandM large enough.

If aj ., are [K, L, M]-molecules concentrated in Q;,, and

A= {)\j,m}jGNo,mEZ" € qufﬁs’

F=2 0 Nt (4.3)

7=0 mezn

then the sum
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converges in S'(R™) and
HfHK;;qF; S H)\Hkg’qf;'

Let J € N and ¢p,y € C?(R) be real-valued compactly supported Daubechies
wavelets with

Fir(0) = (27?)*%, /Rxl@Z)M(x)dx =0, [€{0,...J—1}

and
9l = 1], = 1
We have that _
{Yr(z —m), 224 (2 — m)}jervg mezn
is an orthonormal basis in L?(R). This orthonormal basis can be generalized to the R”
by the usual multiresolution procedure. Let

G={G,...G,} € G ={F, M}"
which means that G, is either F' or M. Let
G={G,...G,} eI ={F, M}, jeN,
where indicates that at least one of the components of G must be an M. Let
\I/ij(x) =273 HwGr(ij,n -m,), GeG' meZ" reR" jeN,.
Then ' ‘
U={V,: je€N,GeG meZ"}

is an orthonormal basis in L*(R").
Let a,s € R,0 < p,g<ooand 0 < 8 < oco. We set

Ky f5 = {) = (N5} jeno ceimezn € C: H)\Hkﬁqu < oo},

where

s = (23 3 2 Gn)”

7=0 GeGi meZ™

< (o3
Kq

Theorem 4.4. Let o, s € R,0 < p,q < 00,0 < f < o0 and a > -2 Let {\I’j ) be the
wavelet system with J > max(o,s — s,5). Let f € S'(R"). Then f € Ky Fj zf and only

if
f= ZZ Yo A2V, AE Ky fs (4.5)

j=0 GeGI mezLn

with unconditional convergence in S'(R™) and in any space Kz‘fing with o < s. The
representation ([LI) is unique. We have

A = A (f) = 273 (£,9,,,)
and
I f— {0500}

s an isomorphic map from Kg‘, F3 into KO‘ fg In particular, it holds

17N i, g 2 Mg, 7
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For the proof, see again, [21] and [67]. To estimate the heat kernel e'® in Herz-type
Triebel-Lizorkin spaces, we need the following lemma.

Lemma 4.6. Let s > 0,0 >20,0<t<T,0<p,q<00,0< <00 anda > —%. We set
bjam(:c, t) = 2’j%etA\Ile7m(x).
Then there exists C' > 0 such that the functions
b (2, 8)g = C2°130),  (w,1), j €Ny, G e G me L (4.7)

(K, L, M]|-molecules for any fixed t with 2it> > 1, provided that L < J,K < J,L+n—1 <
M<J+n—0and 0 < J— L+ 1. Assume that

J >0+ max(s,0,3).

Then, the numbers K, L, M can be chosen such that for some C > 0 and any t with
2tz > 1, such that [@0) are molecules for Kg F3t0.

Proof. We use the arguments of [I, Proposition 3.1] and we need only to prove the second
part of the Lemma. Let L = |0, 3] + 1, which yields that L > 0, 3 —s—#0. Since J > 0,5
it follows that J > L. Hence

/ b, (2, t)edz = 0, 0<|v|<L,j€EN.

Let M large enough be such that 0,3 +n < M < J+n—60. Then M > L +n —1 and

0 <.J—o0,5<J— L+ 1. Regarding the derivatives of bjG,m(:c, t)p we claim s+ 60 < K <
J. O

We present one of the main tools used in this section.

Lemma 4.8. Let s > 0,0 >20,0<t<T,1<p,g<oo,l1<pf<o0 and—%<a<n—%.
Then there ezists a positive constant C(T') > 0 independent of t such that

HetAfHK;f,ngw <CO(T)t s HfHkg,ng
for any f € K;ing'

Proof. Let k € N be such that 272 < £ < 272~ From Theorem E4 we have f =
Jik + S, with

k—1
fie=)_ > > A2,

Jj=0 GeGJI meZ™

and

8

f2,k = Z Z Z )\jcfm27J%\II]G,m7

j=k GeGI meZ™

where \ € K;‘,qu.
Estimate of fi . We claim that

€2 (5 % fri) (@) S M(pj * fre) (@), = €R",j €Ny, (4.9)
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where the implicit constant is independent of x, k, j and ¢. Using the estimate ({.9) and
Lemma [3.3] we obtain

< (o3
K5

. 1/8
Z 21(s+03 . 4 etAfl’k|ﬁ> ’
j=0

tA
He flk” +0
) Kg,qF;

= 1/8
SV gy fip)l) |
j=0

< Kgq
 oi(s6)5 s\ /P
s (v mie < iol?)
j=0 p,q
> (546)3 1/8
S || (215 i) | (4.10)
- Ky

=0

<

In view of the definition of the spaces Kgquﬂaj (@1Q) is just HkaHK;qF;*‘" Thanks to
Theorem E.4] we get

k—1 . 1/p
iillig e < [(Z X 2 Gun)
5 P

j=0 GeGI mezr g

(S5 T )

71=0 GeGI meZ"

= Ct_%H)‘HKg’qu
S f%HfHkg’qF;' (4-11)

Substituting (£I1)) into (LI0), this gives the desired estimate. Now we prove our claim.
Since g € S (R™), we have

A

< o
K.

e (g5 * L) @) S,y * Ly * fial(z), m>n,
which can be estimated by
b X gk * 195 F Furl (@) F0,24 X i ahy * 105 % frel(@). (4.12)

Obviously, the first term of (4.12)) is bounded by eM (p; * f11)(z). We have

N} X ploarh) * 195 % fLil ()

= Znt—%,mXB(m,zth%)\B(m,zit%) * [ * fril ()
i—1

< Z 2_im77t—%7mXB(m,2i+1t%) * [ * fril(2)
$ Mo 370
S Mg fir)(z )-
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)z > 2% > 1, which yields that

B = Y Y oy rhtetey

7j=k GeGI meZ"

= D00 D Ml t)s,

j=k GeGi meZ™

Estimate of fo. If j >k, then 27(

S

where
C'qu =27 ]€<T) 2)\G and bjG,m('T’t) =27 ]22]9<T)2\I,]Gm7
and C as in ([@7). Let
t

W= {2_j9(T)_5)\ij,] eNy,GeG ,meZ"}.
Again, from Theorem .4 we obtain
tA ) < x| ~
He vakHKgingw ~ ‘ H Kg’qu,”

S35 3B SELIVALN N

j=k GeGi meZ
= 5Pl
t_ngHKg’ng

and this completes the proof. (l

< «
Kgq

A

The following lemmas was proved in [27].

Lemma 4.13. Let ay, a0 € R0 <t < ocoand 1 < p,k,q,r < oo. We suppose that
l<g<p<ooand —% <o <ag<n— %. Then there exists a positive constant C' > 0
independent of t such that

l/n_n

e  llgy < G237 £ e

for any f € K;fw where

5:{ r, if as=aq,

K, if g > ag.

4.2. The results and their proofs. We look for mild solutions of (L) i.e. for solutions
of integral equation

u(t, z) = e®ug(x) + /t ARG (u) (7, x)dr. (4.14)
We set .
F(u)(t,x) :/0 ARG () (1, x)dr

We study Cauchy problem for semilinear parabolic equations (IL1]) with initially data in
Herz-type Triebel-Lizorkin spaces and will assume that G belongs to G € Lipu. We set

2
§:E+a—— and U=
p p—1 2
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We now state the existence of mild solutions of (£.14]).

Theorem 4.15. Letl<p,q<oo,1<6<oo,,u>1,0<a<n—%,s>

n
O0<s< —+4a.
p

Let G € Lipp and
0 <s, <p.
(1) For all initial data ugy in Kz‘fing with s > 5, there exists a maximal solution u to (4.14)
. 1
in C([0,Ty), K3, F5) with Ty = C|luol| .. Py
p.q
(i) Let 0 < 20(u—1) or @ =29(u—1),s > 1 and G € Lipsy with
Sp = —b——.
, ta—s+ 1

We have
u—ePugy € C([0,Tp), K;,qFEM)'

Proof. We will do the proof into two steps. Our arguments are based on [45].
Step 1. We prove part (i) of the theorem.
Substep 1.1. In this step we prove the existence of a solution to (£I4). Recall that
1 a-—s

F(u)(t, ) :/0 eIAG(u) (7, z)dr  and 11 +

p P n
For simplicity, we consider the spaces
Y =C(0,7),K5,F;) and X =C([0,T),KJ,).

Further, we consider the sequence of functions

u’ = e®uy and W = + F(u)), jEN. (4.16)
From Lemma [£.13] and Sobolev embedding Kg’ A5 = Kgq, see Theorem 2.10, we deduce
that

0
[l iy. S lolly < ol oy (417)

Let u,v € X. Since, % > 1, again, by Lemma [£.13] we obtain

[P}t ) = )t )] g0

< [ I W) - G D g

w

< [l G ) = GO D, dr

N

0/0(t—T)—’“‘é—ﬁ”HG(u)(T,-)—G(v)(f,-)HK% dr, (4.18)

where the second estimate follows by the embedding ng — K

I

™o Rk

, and the positive
constant C' is independent of ¢t. Observe that

|G(u)(7,) = G()(7, )] < Ju—ovf(jul"" + [v]")
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and

- == — =—-+
p D P q q q
Therefore, by Holder’s inequality

HG(u)(T, )= G)(r HK% . (4.19)
o) = o (g + ot )
Substituting (£I9) into (AI8) and then using
n(p—1) (p—1)n o (p=1(s=3)
this gives
[P ) = Pl < OT* 5 u— o[ (Jully” + ol15). (4:20)
In view of (AI6]), (A20) and (ZI7), we obtain
I e S [l + 1 F D]
(u=1)(s=5) |
< ol gy iy + €T [l
and s
= < TP ! (o ).
Let
[= (é)W(W T _W“l)i
As in [27] and [37], the fixed point argument shows that if
T < [2G06—9 1)<—>(1—l W 1Hu0H (4.21)

Kg Fg
I

then the sequence {u/}; converges strongly in X to a limit u which is a solution of the

integral equation (4.14)).
Substep 1.2. In this step we prove that the solution of the integral equation (4.14))
belongs to Y. We employ the notation of Substep 1.1. We claim that

e 17|68 (4.22)

1y < [lwoll g, s +CT

From (E21) and ([#22)), the sequence {u’ }j is bounded. Then we can extract a subse-
quence {u’i}; converges weakly to @ € Y. From Step 1, {u’}; converges weakly to u, so
u=1u €Y. Now we prove the claim. Let v € Y. By Lemma and Theorem [3.25] we
obtain

R A N ,->>\\Kﬁqudr
< /o(t_T HG HKgqFﬁ“dT
t
< [ (t=n
0 p,q ,6'

< CT' = fuly
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This leads to (£22)), with the help of the fact that
0
16| g, s < Cllo]l g

by, Lemma and
s—sn_ (=159
2 2

1— > 0.

From (4.21]), we easily obtain Ty > Py

Substep 1.3. We will prove the unlqueness of the solution of ([AI4]). Let u,v € Y be
two solutions for the same initial data wy. Using the fact that u and u solve (L14]), we
obtain

’ (r=1)(s—5) 1)(S 5)

le =l = [F(w) = Fo)[| < 207772 A" lu — o],

where

A= sup (Ju@)||S" o)), T < max(Ty(u), To(v)).

KO o K9
t€[0,T] bq pq
Taking T" small enough such that

— s—38 1
20T T A1 < 2

we obtain u = v on [0,7]. We iterate this to prove that To(u) = Tp(v) and u = v on
[0, T6(u)), which ensures the uniqueness of the solution of (Z.14]).

Step 2. We prove part (ii) of the theorem. We split our considerations into the cases
0 <29(pu—1)and 0 =29(u —1).
o Case 1. 0 < 29(u—1). Let u € Y be a solution of (AI4]) with initial data ug. Observe
that 20(p — 1) = (p—1)(s — 5) = 2 — s + 5,. Thanks to Lemma .8 and Theorem [3.27]
it follows

T P I e
¢ —s
< c/ (t—T)*%* G ), g el
<
since 1 — 4 — = = +w>0

2
o Case 2. § = 219( ) Observe that s, < pu, this gives

2+ sg— 1
p>—r————=5>1 and s=1+ < +a>
;+a—3+1 So P

In addition

Assume that s +60 = 2+ 5, < 5. Let 2+ s, < 51 < sp and 0 < v < 1 be such that
s+ 6 =~s,+ (1 —~)s;. From interpolation inequality (2.9), Lemma .8 Theorems [3.25]
and [3.38 we get

tA
[ = € uo| gy poro
Kg,qF;
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can be estimated by

t
/0 He(t_Tm(G(u)(T,.))HKKQFE%dT

t
C/ He(th)AG< H’Y ;u ’e(t TAG Hl v sldT
0 P

¢ [ e i

< OTylfulluly

. \G<u><f,->\\}<;1 peodT

Now assume that 0 + s =2+ s, > so. Let K > 0 be such that 2 4+ s, — 59 <k < 2. Let
0 < 0 < 1 be such that s+6 = ps, + (1 —0)(so+ «). Again, from interpolation inequality
we obtain

tA
[ = € uo| o poro
Kg,qF;

is bounded by

t
/He(t_T)A(G( HKa FS+@dT
0
t
< C/O He(m)AG HKgq ;5 ]et TAG H Soﬂdr

Applying Holder’s inequality, Lemma (4.8, Theorems [3.25 and B.38, we estimate the last

expression by
t
(t—m)A ¢
[ 136w )
' t—7)A 1=e
/0 He( -7) G(u)(T,-)HKﬁquyndT)

t 0
PR CRICRT Py
1—
X /(t—T 51| (w) ,.)HKa )
0 p,q

< O |y

The proof is completed. O

Using a combination of the arguments used in the proof of Theorem [.15 with the help
of Theorem [3.38 we get the following result:

Theorem 4.23. Let 0 < p,g < 00,0 < aa<n— —,,u =z n+zj_1 and

n
l<pu<—+a.
p

Let G € Lipu and
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(i) For all initial data ug in Kgng wz’thls > 5, there exists a mazimal solution u to (£.14)
in C([0, ), K3, F5) with Ty > C|lug|| .2 ...
p,q- B
(i) Let 0 < 20(u—1). We have
u—eug € C((0,Ty), K F5t).
Let s > 2 + «. Using Theorem B.37, the embedding Kgng — L*°, we immediately

arrive at the following result. We omit the proof since is essentially similar to the proof
of Theorem [£.15]

Theorem 4.24. Let 1 < p,g <oo,1 < <oo,u>1and0 <« <n—%. Let G € Lipu
and

n

—ta<s<pu.

p
(i) For all initial data ug in K3 F§ with s > 5, there exists a maximal solution u to (L14)

. 1

in C([0,Tp), K2 F5) with Ty > CHuOHK;
(i) Let 6 < 2. We have

oF5’

u—ePugy € C([0,Tp), KgqFEM)'

Remark 4.25. Corresponding statements to Theorem .18 were proved by Ribaud [45],
with 0 < 29(u — 1), = 0,p = ¢ and = 2, under the assumption

14+ 2)(e—1
DN (LR my, (1.26)
b pp H p
Here we are requiring
—1
maX(O,ﬁ—ﬁ><S<min<1+’u—ﬁ,ﬁ)
p H Ko pp

which improve (£.20).
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