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COMPOSITION OPERATORS ON HERZ-TYPE TRIEBEL-LIZORKIN SPACES

WITH APPLICATION TO SEMILINEAR PARABOLIC EQUATIONS

DOUADI DRIHEM

Abstract. Let G : R → R be a continuous function. In the first part of this paper, we
investigate sufficient conditions on G such that

{G(f) : f ∈ K̇α
p,qF

s
β} ⊂ K̇α

p,qF
s
β

holds. Here K̇α
p,qF

s
β are Herz-type Triebel-Lizorkin spaces. These spaces unify and

generalize many classical function spaces such as Lebesgue spaces of power weights,
Sobolev and Triebel-Lizorkin spaces of power weights. In the second part of this paper
we will study local and global Cauchy problems for the semilinear parabolic equations

∂tu−∆u = G(u)

with initial data in Herz-type Triebel-Lizorkin spaces. Our results cover the results
obtained with initial data in some know function spaces such us fractional Sobolev
spaces. Some limit cases are given.
MSC classification (2010): 46E35, 47H30, 35K45, 35K55.
Key words and phrases: Besov spaces, Triebel-Lizorkin spaces, Herz spaces, Nemytzkij
operators, Semilinear parabolic equations.

1. Introduction

Let G : R → R be a function. In this paper we consider the Cauchy problem for
semilinear parabolic equations on Rn of the following form:

∂u

∂t
(t, x) = ∆u(t, x) +G(u(t, x)), (t, x) ∈ (0,∞)× R

n (1.1)

subject to the initial value condition

u(0, x) = u0(x) on R
n.

The most classical examples of such equations are the semilinear heat equations

∂u

∂t
(t, x) = ∆u(t, x) + u|u|µ−1, (t, x) ∈ (0,∞)× R

n, µ > 1, (1.2)

the Burgers viscous equations

∂u

∂t
(t, x) = ∆u(t, x) + ∂x(|u|

µ), (t, x) ∈ (0,∞)× R
n, µ > 1

and the Navier-Stokes equation

∂u

∂t
(t, x) = ∆u(t, x) + P∇(u⊗ u), (t, x) ∈ (0,∞)× R

n, µ > 1,

where P denotes the projector on the divergence free vector field. Let us recall briefly
some results on most known function spaces. For Lebesgue space, Weissler in [62] and [63]
studied (1.2) with singular data in certain Lebesgue spaces Lp. In [62] he proved the local

existence of (1.2) with initially data in Lpc with pc =
n(µ−1)

2
> 1 and the solution belongs
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2 D. DRIHEM

to C([0, T ), Lp), and that T can be taken as infinity for sufficiently small data in Lpc .
Giga [30] proved that the solution belongs to Lq([0, T ), Lp) with 1

q
= n

2
( 1
pc

− 1
p
), p, q > pc

and q > µ.
Weissler [62] proved the local existence of (1.2) for initial values in Lp with p > pc and

p > µ. See [30] for further results.
In case of 1 < p < pc there exist some non-negative initial data in Lp for which there

is no non-negative solution for any positive time T > 0, see e.g. [3] and [63].
Further results, for the well-posedness of the Cauchy problem of (1.2) can be found in

[17], [55], [56] and [61].
In the framework of fractional Sobolev spaces, [45] established local well-posedness of

problem (1.1) with some suitable assumptions on G and obtained existence of global small

solutions in H
n
p
− 2

µ
p . Miao and Zhang, [42] establish the local well-posedness and small

global well-posedness in Besov spaces Bs
p,2. Also, they establish the local well-posedness

and small global well-posedness of problem (1.1) in the critical space B
n
p

p,2.
In [27] the author study the equation (1.1) with

|G(x)−G(y)| 6 |x− y|(|x|µ−1 + |y|µ−1), x, y ∈ R, µ > 1, G(0) = 0 (1.3)

and initial data in Herz spaces K̇α
p,q. Herz spaces play an important role in Harmonic

Analysis. After they have been introduced in [29], the theory of these spaces had a
remarkable development in part due to its usefulness in applications. For instance, they
appear in the characterization of multipliers on Hardy spaces [4], in the summability of
Fourier transforms [28] and in regularity theory for elliptic equations in divergence form
[43]. They unify and generalize the classical Lebesgue spaces of power weights. More

precisely, if α = 0 and p = q, then K̇0
p,p coincides with the Lebesgue spaces Lp and

K̇α
p,p = Lp(Rn, | · |αp), (Lebesgue space equipped with power weight).

The aims of the present paper is to study the equation (1.1) in Herz-type Triebel-

Lizorkin spaces K̇α
p,qF

s
β . These spaces unify and generalize the classical Lebesgue spaces

of power weights, fractional Sobolev spaces of power weights and Triebel-Lizorkin spaces
of power weights. We will assume that G belongs to G ∈ Lipµ, see Section 3 for the
definition of the spaces Lipµ.

We recall that the solution in the function space K̇α
p,qF

s
β of the integral equation

u(t, x) = et∆u0 +

∫ t

0

e(t−τ)∆G(u)(τ, x)dτ (1.4)

is usually defined as the mild solution of the Cauchy problem (1.1). Under some as-
sumption on p, q β, α and s we prove that for all initial data u0 in K̇α

p,qF
s
β with s >

s̄ = n
p
+ α − 2

µ−1
, there exists a maximal solution u to (1.4) in C([0, T0), K̇

α
p,qF

s
β ) with

T0 > C
∥

∥u0
∥

∥

− 1
ϑ

K̇α
p,qF

s
β

. If θ < (s− s̄)(µ− 1), then we prove that

u− et∆u0 ∈ C([0, T0), K̇
α
p,qF

s+θ
β ). (1.5)

Now if θ = (s− s̄)(µ− 1), s > 1 with G ∈ Lips0 and

s0 =

n
p
+ α

n
p
+ α− s+ 1

,
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then we have (1.5), which was not treated in [45]. Our results cover the corresponding
results of [45]. Moreover, we present the limit case

s = 1 +
µ− 1

µ

(n

p
+ α

)

and the case when s > n
p
+ α. To study (1.1) we investigate sufficient conditions on G

such that

{G(f) : f ∈ K̇α
p,qF

s
β} ⊂ K̇α

p,qF
s
β .

In Sobolev space, [41] have presented the necessary and sufficient conditions on G such
that

G(W 1
p (R

n)) ⊂ W 1
p (R

n),

except the case p = n > 2. A complete characterization of this problem in Sobolev spaces
has been given by Bourdaud in [6] and [11]. The surprise result in Sobolev spaces is that
under some assumptions there is no non-trivial function G which acts via left composition
on such spaces. More precisely, in 1978 Dahlberg [18] proved that

G(f) ∈ Wm
p (Rn), f ∈ Wm

p (Rn), 1 < p <∞, 2 6 m <
n

p

implies G(t) = ct for some c ∈ R. In the framework of Sobolev spaces with fractional
order, Hs(R), 0 < s < 1, s 6= 2, Igari in [33] gave the necessary and sufficient conditions on
G such that G(Hs(R)) ⊂ Hs(R). He observed the necessity of local Lipschitz continuity
for the first time. See [35] for the Hardy-Sobolev space F 1,2

2 (Rn).
The extension of the above results to Besov and Triebel-Lizorkin spaces is given by

Bourduad in [7] and [8], Runst in [46], and Sickel in [51], [52] and [53]. Further results
concerning the composition operators in Besov and Triebel-Lizorkin spaces are given [5],
[9], [10], [12], [14] and [47]. Recently, Bourdaud and Moussai [13] proved the continuity
of the composition operator in Wm

p (Rn)∩ Ẇ 1
mp(R

n) to itself, for every integer m > 2 and
any 1 6 p <∞ and in Sobolev spaces Wm

p (Rn), with m > 2 and 1 6 p <∞. The author
in [24] and [25] gave the necessary and sufficient conditions on G such that

G(Wm
p (Rn, | · |α)) ⊂Wm

p (Rn, | · |α), (Sobolev space of power weight),

with some suitable assumptions on m, p and α. The extension of Dahlberg result to
Triebel-Lizorkin spaces of power weights F s

p,q(R
n, | · |α) is given in [26].

1.1. Notation and conventions. Throughout this paper, we denote by Rn the n-dimensional
real Euclidean space, N the collection of all natural numbers and N0 = N∪{0}. The letter
Z stands for the set of all integer numbers. The expression f . g means that f 6 c g
for some independent constant c (and non-negative functions f and g), and f ≈ g means
f . g . f . As usual for any x ∈ R, ⌊x⌋ stands for the largest integer smaller than or
equal to x.

For x ∈ Rn and r > 0 we denote by B(x, r) the open ball in Rn with center x and radius
r. By suppf we denote the support of the function f , i.e., the closure of its non-zero set.
If E ⊂ Rn is a measurable set, then |E| stands for the (Lebesgue) measure of E and χE
denotes its characteristic function. For any u > 0, we set C(u) = {x ∈ Rn : u

2
< |x| 6 u}.

By c we denote generic positive constants, which may have different values at different
occurrences.
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Given a measurable set E ⊂ Rn and 0 < p 6 ∞, we denote by Lp(E) the space of all
functions f : E → C equipped with the quasi-norm

∥

∥f
∥

∥

Lp(E)
=

(

∫

E

|f(x)|p dx
)1/p

<∞

with 0 < p <∞ and
∥

∥f
∥

∥

L∞(E)
= ess-sup

x∈E
|f(x)| <∞.

If E = Rn, then we put Lp(Rn) = Lp and
∥

∥f
∥

∥

Lp(Rn)
=

∥

∥f
∥

∥

p
.

Let w denote a positive, locally integrable function and 0 < p <∞. Then the weighted
Lebesgue space Lp(Rn, w) contains all measurable functions f such that

∥

∥f
∥

∥

Lp(Rn,w)
=

(

∫

Rn

|f(x)|pw(x)dx
)1/p

<∞.

If 1 6 p 6 ∞ and 1
p
+ 1

p′
= 1, then p′ is called the conjugate exponent of p.

By S(Rn) we denote the Schwartz space of all complex-valued, infinitely differentiable
and rapidly decreasing functions on Rn and by S ′(Rn) the dual space of all tempered
distributions on Rn. We define the Fourier transform of a function f ∈ S(Rn) by

F(f)(ξ) = (2π)−n/2
∫

Rn

e−ix·ξf(x)dx.

Its inverse is denoted by F−1f . Both F and F−1 are extended to the dual Schwartz space
S ′(Rn) in the usual way.

For v ∈ Z and m = (m1, ..., mn) ∈ Zn, let Qv,m be the dyadic cube in Rn, Qv,m =
{(x1, ..., xn) : mi 6 2vxi < mi + 1, i = 1, 2, ..., n}. Also, we set χj,m = χQj,m

, j ∈ Z, m ∈
Zn.

Recall that ηR,m(x) = Rn(1 + R |x|)−m, for any x ∈ Rn and m,R > 0. Note that
ηR,m ∈ L1(Rn) when m > n and that ‖ηR,m‖1 = cm is independent of R, where this type
of function was introduced in [19] and [31].

2. Function spaces

In this section we present the Fourier analytical definition of Herz-type Triebel-Lizorkin
spaces and we present their basic properties such us Sobolev embeddings. We start by
recalling the definition and some properties of Herz spaces. For convenience, we set

Bk = B(0, 2k), B̄k = {x ∈ R
n : |x| 62k}, k ∈ Z

and

Rk = Bk \Bk−1, χk = χRk
, k ∈ Z.

Definition 2.1. Let 0 < p, q 6 ∞ and α ∈ R. The homogeneous Herz space K̇α
p,q is defined

as the set of all f ∈ Lploc (R
n \ {0}) such that

∥

∥f
∥

∥

K̇α
p,q

=
(

∑

k∈Z

2kαq
∥

∥f χk
∥

∥

q

p

)1/q

<∞

(with the usual modifications when q = ∞).
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Remark 2.2. Let 0 < p, q 6 ∞ and α ∈ R.
(i) The space K̇α

p,p coincides with the Lebesgue space Lp(Rn, | · |αp). In addition

K̇0
p,p = Lp.

(ii) Let 0 < q1 6 q2 6 ∞. Then

K̇α
p,q1 →֒ K̇α

p,q2.

(iii) The spaces K̇α
p,q are quasi-Banach spaces and if min(p, q) > 1 then K̇α

p,q are Banach
spaces.

Remark 2.3. A detailed discussion of the properties of Herz spaces my be found in [32]
and [40], and references therein.

To present the definition of Herz-type Triebel-Lizorkin spaces, we first need the concept
of a smooth dyadic resolution of unity. Let ψ be a function in S(Rn) satisfying

0 6 ψ 6 1 and ψ(x) =

{

1, if |x| 6 1,
0, if |x| > 3

2
.

We put Fϕ0 = ψ, Fϕ1 = ψ( ·
2
)−ψ and Fϕj = Fϕ1(2

1−j·) for j = 2, 3,.... Then {Fϕj}j∈N0

is a smooth dyadic resolution of unity,
∑∞

j=0Fϕj(x) = 1 for all x ∈ Rn. Thus we obtain
the Littlewood-Paley decomposition

f =
∞
∑

j=0

ϕj ∗ f

of all f ∈ S ′(Rn) (convergence in S ′(Rn)).
We are now in a position to state the definition of Herz-type Triebel-Lizorkin spaces.

Definition 2.4. Let α, s ∈ R, 0 < p, q < ∞ and 0 < β 6 ∞. The Herz-type Triebel-
Lizorkin space K̇α

p,qF
s
β is the collection of all f ∈ S

′
(Rn) such that

∥

∥f
∥

∥

K̇α
p,qF

s
β

=
∥

∥

∥

(

∞
∑

j=0

2jsβ |ϕj ∗ f |
β
)1/β∥

∥

∥

K̇α
p,q

<∞,

with the obvious modification if β = ∞.

Remark 2.5. Let s ∈ R, 0 < p, q < ∞, 0 < β 6 ∞ and α > −n
p
. The spaces K̇α

p,qF
s
β are

independent of the particular choice of the smooth dyadic resolution of unity {Fϕj}j∈N0(in

the sense of equivalent quasi-norms). In particular K̇α
p,qF

s
β are quasi-Banach spaces and

if p, q, β > 1, then they are Banach spaces. Further results, concerning, for instance ,
lifting properties, Fourier multiplier and local means characterizations can be found in
[20]-[21]-[22], [65] and [66].

Now we give the definition of the spaces F s
p,β.

Definition 2.6. Let s ∈ R, 0 < p <∞ and 0 < β 6 ∞. The Triebel-Lizorkin space F s
p,β is

the collection of all f ∈ S ′(Rn) such that

∥

∥f
∥

∥

F s
p,β

=
∥

∥

∥

(

∞
∑

j=0

2jsβ |ϕj ∗ f |
β
)1/β∥

∥

∥

p
<∞.
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The theory of the spaces F s
p,β has been developed in detail in [48], [58] and [59] but

has a longer history already including many contributors; we do not want to discuss this
here. Clearly, for s ∈ R, 0 < p <∞ and 0 < β 6 ∞,

K̇0
p,pF

s
β = F s

p,β.

Let w ∈ A∞, Muckenhoupt classes, s ∈ R, 0 < β 6 ∞ and 0 < p < ∞. We define
weighted Triebel-Lizorkin space F s

p,β(R
n, w) to be the set of all distributions f ∈ S ′(Rn)

such that
∥

∥f
∥

∥

F s
p,β

(Rn,w)
=

∥

∥

∥

(

∞
∑

j=0

2jsβ |ϕj ∗ f |
β
)1/β∥

∥

∥

Lp(Rn,w)

is finite. In the limiting case β = ∞ the usual modification is required.
The spaces F s

p,β(R
n, w) = F s

p,β(w) are independent of the particular choice of the smooth
dyadic resolution of unity {Fϕj}j∈N0 appearing in their definitions. They are quasi-
Banach spaces (Banach spaces for p, q > 1). Moreover, for w ≡ 1 we obtain the usual
(unweighted) Triebel-Lizorkin spaces. We refer, in particular, to the papers [15] and [34]
for a comprehensive treatment of weighted function spaces. Let wγ be a power weight,
i.e., wγ(x) = |x|γ with γ > −n. Then we have

F s
p,β(wγ) = K̇

γ
p
p,pF

s
β ,

in the sense of equivalent quasi-norms.

Definition 2.7. (i) Let 1 < p < ∞, 0 < q < ∞,−n
p
< α < n(1 − 1

p
) and s ∈ R. Then the

Herz-type Bessel potential space k̇α,qp,s is the collection of all f ∈ S ′(Rn) such that
∥

∥f
∥

∥

k̇α,q
p,s

=
∥

∥(1 + |ξ|2)
s
2 ∗ f

∥

∥

K̇α
p,q
<∞.

(ii) Let 1 < p < ∞, 0 < q < ∞,−n
p
< α < n(1 − 1

p
) and m ∈ N. The homogeneous

Herz-type Sobolev space Ẇ α,q
p,m is the collection of all f ∈ S ′(Rn) such that

∥

∥f
∥

∥

Ẇα,q
p,m

=
∑

|β|6m

∥

∥

∥

∂βf

∂xβ

∥

∥

∥

K̇α
p,q

<∞,

where the derivatives must be understood in the sense of distribution.

In the following, we will present the connection between the Herz-type Triebel-Lizorkin
spaces and the Herz-type Bessel potential spaces; see [39] and [64]. Let 1 < p, q <∞ and
−n
p
< α < n(1− 1

p
). If s ∈ R, then

K̇α
p,qF

s
2 = k̇α,qp,s

with equivalent norms. If s = m ∈ N, then

K̇α
p,qF

m
2 = Ẇ α,q

p,m

with equivalent norms. In particular

K̇α
p,pF

m
2 = W p

m(R
n, | · |αp) (Sobolev spaces of power weights)

and

K̇0
p,pF

m
2 =W p

m (Sobolev spaces), K̇α
p,qF

0
2 = K̇α

p,q. (2.8)
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Let 0 < θ < 1, 0 < p0, p1, q0, q1 <∞, 0 < β0, β1 6 ∞ and α0, α1, s0, s1 ∈ R. We set

1

p
=

1− θ

p0
+

θ

p1
,

1

q
=

1− θ

q0
+
θ

q1
,

1

β
=

1− θ

β0
+

θ

β1

and

α = (1− θ)α0 + θα1, s = (1− θ)s0 + θs1.

As an immediate consequence of Hölder’s inequality we have the so-called interpolation
inequalities:

∥

∥f
∥

∥

K̇α
p,qF

s
β

6
∥

∥f
∥

∥

1−θ

K̇
α0
p0,q0,

F
s0
β0

∥

∥f
∥

∥

θ

K̇
α1
p1,q1

F
s1
β1

(2.9)

holds for all f ∈ K̇α0
p0,q0

F s0
β0

∩ K̇α1
p1,q1

F s1
β1
.

We collect some embeddings on these functions spaces as obtained in [21].

Theorem 2.10. Let α1, α2, s1, s2 ∈ R, 0 < s, p, q, r < ∞, 0 < β 6 ∞, α1 > −n
s
and

α2 > −n
q
. We suppose that

s1 −
n

s
− α1 = s2 −

n

q
− α2.

Let 0 < q 6 s <∞ and α2 > α1. The embedding

K̇α2
q,rF

s2
∞ →֒ K̇α1

s,pF
s1
β

holds if 0 < r 6 p <∞.

Let 0 < p, q <∞. For later use, we introduce the following abbreviations:

σp = nmax
(1

p
− 1, 0

)

and σp,q = nmax
(1

p
− 1,

1

q
− 1, 0

)

.

In the next we shall interpret L1
loc as the set of regular distributions, see [23].

Theorem 2.11. Let 0 < p, q <∞, 0 < β 6 ∞, α > −n
p
and s > max(σp,

n
p
+α−n). Then

K̇α
p,qF

s
β →֒ L1

loc.

For any a > 0, f ∈ S ′(Rn) and x ∈ Rn, we denote, Peetre maximal function,

ϕ∗,a
j f(x) = sup

y∈Rn

|ϕj ∗ f(y)|

(1 + 2j |x− y|)a
, j ∈ N0.

We now present a fundamental characterization of the above spaces, which plays an
essential role in this paper, see [66, Theorem 1].

Theorem 2.12. Let s ∈ R, 0 < p, q <∞, 0 < β 6 ∞ and α > −n
p
. Let a > n

min(p,β)
. Then

∥

∥f
∥

∥

⋆

K̇α
p,qF

s
β

=
∥

∥

∥

(

∞
∑

j=0

2jsβ(ϕ∗,a
j f)β

)1/β∥
∥

∥

K̇α
p,q

,

is an equivalent quasi-norm in K̇α
p,qF

s
β .
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3. Composition operators

Let G : R → R be a continuous function. To solve (1.4), we study the action of the
nonlinear function G on Herz-type Triebel-Lizorkin spaces. Let us recall some results
obtained in [26], where they proved for Triebel-Lizorkin spaces of power weights, but
the results can be easily expanded to Herz-type Triebel-Lizorkin spaces. Let 1 < p, q <
∞, 0 < β 6 ∞, 0 6 α < n− n

p
. Let TG be a composition operator, or Nemytzkij operators,

such that

TG(K̇
α
p,qF

s
β) ⊂ K̇

α
p,qF

s
β, (3.1)

where K̇α
p,qF

s
β is the real-valued part of K̇α

p,qF
s
β . If s > n

p
+ α, then G′ ∈ L∞

loc(R) is

necessary. In the the case 0 < s 6 n
p
+ α, we have G′ ∈ L∞(R) is necessary.

Now, let 1 < p, q < ∞, 0 < β 6 ∞, 0 6 α < n − n
p
and G ∈ C2(R). Let TG be a

composition operator with (3.1) and

1 +
1

p
< s <

n

p
+ α.

Then G(t) = ct for some constant c.
In this section we investigate sufficient conditions on G such that (3.1) holds. First we

need the following lemma, which is basically a consequence of Hardy’s inequality in the
sequence Lebesgue space ℓq.

Lemma 3.2. Let 0 < a < 1 and 0 < q 6 ∞. Let {εk}k∈N0
be a sequences of positive real

numbers and denote δk =
∑k

j=0 a
k−jεj and ηk =

∑∞
j=k a

j−kεj, k ∈ N0. Then there exists
a constant c > 0 depending only on a and q such that

(

∞
∑

k=0

δqk

)1/q

+
(

∞
∑

k=0

ηqk

)1/q

6 c
(

∞
∑

k=0

εqk

)1/q

.

As usual, we put

M(f)(x) = sup
Q

1

|Q|

∫

Q

|f(y)| dy, f ∈ L1
loc,

where the supremum is taken over all cubes with sides parallel to the axis and x ∈ Q.

Also, we set Mσ(f) = (M( |f |σ))
1
σ , 0 < σ <∞.

Various important results have been proved in the space K̇α
p,q under some assumptions

on α, p and q. The conditions −n
p
< α < n(1 − 1

p
), 1 < p < ∞ and 0 < q 6 ∞ is crucial

in the study of the boundedness of classical operators in K̇α
p,q spaces. This fact was first

realized by Li and Yang [38] with the proof of the boundedness of the maximal function.
Some of our results of this paper are based on the following result, see Tang and Yang
[54].

Lemma 3.3. Let 1 < β < ∞, 1 < p < ∞ and 0 < q 6 ∞. If {fj}j∈N0 is a sequence of
locally integrable functions on Rn and −n

p
< α < n(1− 1

p
), then

∥

∥

∥

(

∞
∑

j=0

(M(fj))
β
)1/β∥

∥

∥

K̇α
p,q

6 c
∥

∥

∥

(

∞
∑

j=0

|fj|
β
)1/β∥

∥

∥

K̇α
p,q

.
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Let µ > 0 and f ∈ L
max(1,µ)
loc . Define

Iµk (f)(x) =

∫

B̄−k

|f(x+ z)− f(x)|µdz, x ∈ R
n, k ∈ Z.

Lemma 3.4. Let 0 < p, q <∞, 0 < β 6 ∞, α > −n
p
and

max
(

σp,β,
n

p
+ α− n

)

< s < µ.

Then there exists a constant c > 0 such that
∥

∥

∥

(

∞
∑

k=−∞

2(n+s)kβ|Iµk (f)|
β
)1/β∥

∥

∥

K̇α
p,q

6 c
∥

∥f
∥

∥

µ

K̇
α
µ
pµ,qµF

s
µ
βµ

(3.5)

holds for all f ∈ L
max(1,µ)
loc with

f =

∞
∑

j=0

ϕj ∗ f,

in Lµloc, with the obvious modification if β = ∞.

Proof. We will do the proof in two steps.
Step 1. We set ∆yf(x) = f(x+ y)− f(x), x, y ∈ Rn. A change of variable yields

2(n+s)kIµk (f)(x) = 2sk
∫

B̄0

|∆z2−kf(x)|µdz . J1,k(f)(x) + J2,k(f)(x)

for all x ∈ Rn, where the implicit constant is independent of x and k,

J1,k(f)(x) = 2sk
∫

B̄0

∣

∣

k
∑

j=0

∆z2−k(ϕj ∗ f)(x)
∣

∣

µ
dz

and

J2,k(f)(x) = 2sk
∫

B̄0

∣

∣

∞
∑

j=k+1

∆z2−k(ϕj ∗ f)(x)
∣

∣

µ
dz.

Estimate of J1,k. Let Ψ,Ψ0 ∈ S (Rn) be two functions such that FΨ = 1 and FΨ0 = 1
on suppϕ1 and suppψ, respectively. Using the mean value theorem we obtain for any
x ∈ Rn, j ∈ N0 and |z| 6 1

|∆z2−k(ϕj ∗ f)(x)| = |∆z2−k(Ψj ∗ ϕj ∗ f)(x)|

6 2−k sup
|x−y|6c 2−k

∑

|β|=1

∣

∣Dβ(Ψj ∗ ϕj ∗ f)(y)
∣

∣ ,

with some positive constant c independent of x, j and k, and

Ψj(·) = 2(j−1)nΨ(2j−1·) for j = 1, 2, ....

We see that if |β| = 1 and a > 0
∣

∣Dβ(Ψj ∗ ϕj ∗ f)(y)
∣

∣

= 2(j−1)n

∣

∣

∣

∣

∫

Rn

Dβ
(

Ψ
(

2j−1 (y − z)
))

ϕj ∗ f(z)dz

∣

∣

∣

∣

6 2(j−1)(n+1)

∫

Rn

∣

∣

(

DβΨ
) (

2j−1 (y − z)
)
∣

∣ |ϕj ∗ f(z)| dz. (3.6)
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The right-hand side in (3.6) may be estimated as follows:

c 2j(n+1)ϕ∗,a
j f(y)

∫

Rn

∣

∣

(

DβΨ
) (

2j−1 (y − z)
)
∣

∣

(

1 + 2j |y − z|
)a
dz

6 c 2jϕ∗,a
j f(y).

Then we obtain for any x ∈ Rn, |z| 6 1 and any j, k ∈ N0

|∆z2−k(ϕj ∗ f)(x)| 6 c 2j−k sup
|x−y|6c 2−k

ϕ∗,a
j f(y)

6 c 2j−k
(

1 + 2j−k
)a

sup
|x−y|6c 2−k

ϕ∗,a
j f(y)

(1 + 2j |x− y|)a

6 c 2j−kϕ∗,a
j f(x),

if 0 6 j 6 k, k ∈ N0 and x ∈ Rn. Therefore

J1,k(f)(x) . 2sk
(

k
∑

j=0

2j−kϕ∗,a
j f (x)

)µ
,

where the implicit constant is independent of x and k, and this yields that

∥

∥

∥

(

∞
∑

k=0

|J1,k(f)|
β
)1/β∥

∥

∥

K̇α
p,q

can be estimated by

c
∥

∥

∥

(

∞
∑

k=0

(

k
∑

j=0

2(j−k)(1−
s
µ
)2j

s
µϕ∗,a

j f
)µβ

)1/µβ∥
∥

∥

µ

K̇
α
µ
pµ,qµ

.

Using Lemma 3.2 the last expression is bounded by

c
∥

∥

∥

(

∞
∑

k=0

(

2k
s
µϕ∗,a

k f
)µβ

)1/µβ∥
∥

∥

µ

K̇
α
µ
pµ,qµ

.
∥

∥f
∥

∥

µ

K̇
α
µ
pµ,qµF

s
µ
βµ

,

where we have used Theorem 2.12.
Estimate of J2,k. We can distinguish two cases as follows:

• Case 1. min(p, β) > 1. Therefore s > max
(

0, n
p
+ α− n

)

. Assume that α > n(1 − 1
p
).

Let 1 − smin(p,β)
n

< λ < min( np
n+αp

, β) be a strict positive real number, which is possible
because of

s >
n

p
+ α− n >

np(n
p
+ α− n)

min(p, β)(n+ αp)
=

n

min(p, β)

(

1−
np

n+ αp

)

.

Let n
µmin(p,β)

< a < s
µ(1−λ)

. Then

s

µ
> a(1− λ). (3.7)
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If −n
p
< α < n(1 − 1

p
), then we take λ = 1. From this we deduce that for all x ∈ Rn,

2−skJ2,k(f)(x) can be estimated by

c

∞
∑

j=k+1

2(j−k)ε
∫

B̄0

∣

∣∆z2−k(ϕj ∗ f)(x)
∣

∣

µ
dz

.

∞
∑

j=k+1

2(j−k)ε sup
x∈B̄0

∣

∣∆z2−k(ϕj ∗ f)(x)
∣

∣

µ(1−λ)
∫

B̄0

∣

∣∆z2−k(ϕj ∗ f)(x)
∣

∣

µλ
dz

where 0 < 2ε
µ

6 s
µ
− a(1 − λ) and the positive constant c is independent of k and x.

Observe that
∫

B̄0

∣

∣∆z2−k(ϕj ∗ f)(x)
∣

∣

µλ
dz

.
∣

∣ϕj ∗ f(x)
∣

∣

µλ
+ 2kn

∫

|y−x|62−k

∣

∣ϕj ∗ f(y)
∣

∣

µλ
dy

.
∣

∣ϕj ∗ f(x)
∣

∣

µλ
+M

(
∣

∣ϕj ∗ f
∣

∣

µλ)
(x).

This estimate combined with

|∆z2−k(ϕj ∗ f) (x)| 6 c 2(j−k)aϕ∗,a
j f (x) (3.8)

for any x ∈ Rn, |z| 6 1 and any j > k + 1, yield

J2,k(f) . J2,k,1(f) + J2,k,2(f),

where

J2,k,1(f) =
∞
∑

j=k+1

2(j−k)(ε+aµ(1−λ)−s)
(

2j
s
µϕ∗,a

j f
)µ(1−λ)∣

∣2j
s
µϕj ∗ f

∣

∣

µλ

and

J2,k,2(f) =

∞
∑

j=k+1

2(j−k)(ε+aµ(1−λ)−s)
(

2j
s
µϕ∗,a

j f
)µ(1−λ)

M
(

2j
s
µ |ϕj ∗ f |

)µλ
.

By similarity we estimate only J2,k,2(f). Using Lemma 3.2 and Hölder’s inequality we get

(

∞
∑

k=0

(J2,k,2(f))
β
)1/β

.
(

∞
∑

k=0

(

2k
s
µϕ∗,a

k f
)µ(1−λ)β(

M
(

2k
s
µ |ϕk ∗ f |

)µλ)β
)1/β

.
(

∞
∑

k=0

(

2k
s
µϕ∗,a

k f
)µβ

)(1−λ)/β(
∞
∑

k=0

(

M
(

2k
s
µ |ϕk ∗ f |

)µλ)β/λ
)λ/β

.

Again by Hölder’s inequality

∥

∥

∥

(

∞
∑

k=0

(J2,k,2(f))
β
)1/β∥

∥

∥

K̇α
p,q

,
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can be estimated by

c
∥

∥

∥

(

∞
∑

k=0

(

2k
s
µϕ∗,a

k f
)µβ

)1/β∥
∥

∥

1−λ

K̇α
p,q

×
∥

∥

∥

(

∞
∑

k=0

(

M
(

2k
s
µ |ϕk ∗ f |

)µλ)β/λ
)λ/β∥

∥

∥

K̇αλ
p
λ
,
q
λ

.
∥

∥f
∥

∥

(1−λ)µ

K̇
α
µ
pµ,qµF

s
µ
βµ

∥

∥

∥

(

∞
∑

k=0

(

2k
s
µ |ϕk ∗ f |

)µβ
)1/µβ∥

∥

∥

λµ

K̇
α
µ
pµ,qµ

where we have used Theorem 2.12 and Lemma 3.3. Obviously we can estimate the last
term by

c
∥

∥f
∥

∥

µ

K̇
α
µ
pµ,qµF

s
µ
βµ

.

• Case 2. min(p, β) 6 1. If −n
p
< α < n(1 − 1

p
), then s > n

min(p,β)
− n. Taking

max(0, 1 − smin(p,β)
n

) < λ < min(1, p, β). The same arguments as in Case 1 yield the

desired estimate. Now assume that α > n(1− 1
p
). Therefore

s > max
( n

min(p, β)
− n,

n

p
+ α− n

)

.

Taking max(0, 1− smin(p,β)
n

) < λ < min(p, np
n+αp

, β). The desired estimate can be done in
the same manner as in Case 1.

Step 2. We will estimate

∥

∥

∥

(

−1
∑

k=−∞

2(n+s)kβ|Iµk (f)|
β
)1/β∥

∥

∥

K̇α
p,q

.

We employ the same notations as in Step 1. Recall that

f =

∞
∑

j=0

ϕj ∗ f.

Define

Mk,2(f)(x) =

∫

B̄0

∣

∣

∞
∑

j=0

∆z2−k(ϕj ∗ f)(x)
∣

∣

µ
dz.

As in the estimation of J2,k, we obtain

M2,k(f) .M2,k,1(f) +M2,k,2(f),

where

M2,k,1(f) = 2−kaµ(1−λ)
∞
∑

j=0

2j(ε+aµ(1−λ)−s)
(

2j
s
µϕ∗,a

j f
)µ(1−λ)∣

∣2j
s
µϕj ∗ f

∣

∣

µλ

and

M2,k,2(f) = 2−kaµ(1−λ)
∞
∑

j=0

2j(ε+aµ(1−λ)−s)
(

2j
s
µϕ∗,a

j f
)µ(1−λ)

M
(

2j
s
µ |ϕj ∗ f |

)µλ
,

with the help of (3.8). By similarity we estimate only M2,k,2. Obviously

M2,k,2(f) . 2−kaµ(1−λ) sup
j∈N0

(

(

2j
s
µϕ∗,a

j f
)µ(1−λ)

M
(

2j
s
µ |ϕj ∗ f |

)µλ
)
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and this yields that

(

−1
∑

k=−∞

2skβ|M2,k,2|
β
)1/β

. sup
j∈N0

(

(

2j
s
µϕ∗,a

j f
)µ(1−λ)

M
(

2j
s
µ |ϕj ∗ f |

)µλ
)

.

By the same arguments as used in Step 1 we obtain the desired estimate. The proof is
complete. �

Now we present the case of s = µ, where the proof is very similar to Lemma 3.4.

Lemma 3.9. Let 0 < p, q <∞, α > −n
p
and

max
(

σp,
n

p
+ α− n

)

< µ.

Then there exists a positive constant c such that
∥

∥

∥
sup
k∈Z

2(n+µ)k|Iµk (f)|
∥

∥

∥

K̇α
p,q

6 c
∥

∥f
∥

∥

µ

K̇
α
µ
pµ,qµF

1
1

holds for all f ∈ L
max(1,µ)
loc with

f =

∞
∑

j=0

ϕj ∗ f,

in Lµloc.

Using the fact that
∥

∥f
∥

∥

µ

K̇
α
µ
pµ,qµF

s
µ
βµ

6
∥

∥f
∥

∥

K̇α
p,qF

s
β

∥

∥f
∥

∥

µ−1

∞
, we we immediately arrive at the

following results.

Lemma 3.10. Let 0 < p, q <∞, 0 < β 6 ∞, α > −n
p
and

max
(

1, σp,β,
n

p
+ α− n

)

< s < µ.

Then there exists a positive constant c such that

∥

∥

∥

(

∞
∑

k=−∞

2(n+s)kβ|Iµk (f)|
β
)1/β∥

∥

∥

K̇α
p,q

6 c
∥

∥f
∥

∥

K̇α
p,qF

s
β

∥

∥f
∥

∥

µ−1

∞

holds for all f ∈ K̇α
p,qF

s
β ∩ L

∞.

Remark 3.11. Corresponding statements to Lemmas 3.4, 3.9 and 3.10 were proved by
Runst [46, Lemma 1], with α = 0, p = q and the case of bounded functions, while with
α = 0, p = q has been given by Sickel in [50, Lemmas 1,2] . In our proof we have used
the ideas of [50, Lemmas 1, 2].

The next two lemmas are used in the proof of our results, see e.g. [2].

Lemma 3.12. Let s ∈ R, A, B > 0, 0 < p, q < ∞, 0 < β 6 ∞ and α > −n
p
. Let {fl}l∈N0

be a sequence of functions such that

suppFf0 ⊆ {ξ ∈ R
n : |ξ| 6 A}

and

suppFfl ⊆
{

ξ ∈ R
n : B2l+1 6 |ξ| 6 A2l+1

}

.
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There exists a constant c > 0 such that the following inequality

∥

∥

∥

∞
∑

l=0

fl

∥

∥

∥

K̇α
p,qF

s
β

6 c
∥

∥

∥

(

∞
∑

l=0

2lsβ |fl|
β
)1/β∥

∥

∥

K̇α
p,q

holds.

Lemma 3.13. Let A,B > 0, 0 < p, q <∞, 0 < β 6 ∞ and α > −n
p
. Let s > max(σp,

n
p
+

α− n). Let {fl}l∈N0
be a sequence of functions such that

suppFfl ⊆
{

ξ ∈ R
n : |ξ| 6 A2l+1

}

.

Then it holds that
∥

∥

∥

∞
∑

l=0

fl

∥

∥

∥

K̇α
p,qF

s
β

6 c
∥

∥

∥

(

∞
∑

l=0

2lsβ |fl|
β
)1/β∥

∥

∥

K̇α
p,q

.

Let G : R → R be a continuous function. We shall deal with sufficient conditions on
G to guarantee an embedding

TG(K̇
α
p,qF

s
β ) = G(K̇α

p,qF
s
β) ⊂ K̇α

p,qF
s
β .

First we begin with the case where G is polynomial.

Theorem 3.14. Let 0 < p, q <∞, 0 < β 6 ∞, s > n
p
− n

q
, α > 0 and

max
(

0,
n

p
+ α−

n

m

)

< s <
n

p
+ α, m = 2, 3, .... (3.15)

We put

sm = s− (m− 1)
(n

p
+ α− s

)

.

Then
∥

∥fm
∥

∥

K̇α
p,qF

sm
β

.
∥

∥f
∥

∥

m

K̇α
p,qF

s
β

(3.16)

holds for all f ∈ K̇α
p,qF

s
β .

Proof. We will do the proof into three steps.
Step 1. Preparation. Let {Fϕj}j∈N0 be a partition of unity and f ∈ S ′(Rn). We define

the convolution operators ∆j by the following:

∆jf = ϕj ∗ f, j ∈ N and ∆0f = ϕ0 ∗ f = F−1ψ ∗ f.

We define the convolution operators Qj , j ∈ N0 by the following:

Qjf = F−1ψj ∗ f, j ∈ N0,

where F−1ψj = 2jnF−1ψ(2j ·) and we see that

Qjf =

j
∑

k=0

∆kf, j ∈ N0.

For all fi ∈ S ′(Rn), i = 1, 2, ..., m the product
∏m

i=1 fi is defined by

m
∏

i=1

fi = lim
j→∞

m
∏

i=1

Qjfi,
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if the limit on the right-hand side exists in S ′(Rn). The following decomposition of this
product is given in [47, Chapter 4]. We have the following formal decomposition:

m
∏

i=1

fi =
∞
∑

k1,...,km=0

m
∏

i=1

(∆kifi) .

The fundamental idea is to split
∏m

i=1 fi into two parts, both of them being always defined.
Let N be a natural number greater than 1 + log2 3 (m− 1). Then we have the following
decomposition:

m
∏

i=1

fi =

∞
∑

j=0

[Qj−Nf1 · ... ·Qj−Nfm−1 ·∆jfm + ...

+ (Πl 6=kQj−Nfl)∆kfj + ... +∆jf1 ·Qj−Nf2 · .... ·Qj−Nfm]

+

∞
∑

j=0

j
∑

(∆k1f1) · .... · (∆kmfm) ,

where the
∑j is taken over all k ∈ Zn+ such that

max
ℓ=1,...,m

k1 = kkm0
= j and max

ℓ 6=m0

|ℓ− kℓ| < N.

Of course, if k < 0 we put ∆kf = 0. Probably
∑j becomes more transparent by

restricting to a typical part, which can be taken to be
(

∏

i∈I1

∆jfi

)

∏

i∈I2

Q
j
fi,

where

I1, I2 ⊂ {1, ..., m} , I1 ∩ I2 = ∅, I1 ∪ I2 = {1, ..., m} = I, |I1| > 2.

We introduce the following notations

Π1,k(f1, f2, ..., fm) =
∞
∑

j=N

(

∏

i 6=k

Q
j−N

fi

)

∆jfk

and

Π2(f1, f2, ..., fm) =
∞
∑

j=0

j
∑

(

m
∏

i=1

∆kifi

)

.

The advantage of the above decomposition is based on

supp F
((

∏

i 6=k

Q
j−N

fi

)

∆jfk

)

⊂
{

ξ ∈ R
n : 2j−1 6 |ξ| 6 2j+1

}

, j > N

and

supp F
(

j
∑

(

m
∏

i=1

∆kifi

))

⊂
{

ξ ∈ R
n : |ξ| 6 2j+N−2

}

, j ∈ N0.

Step 2. We will prove (3.16). Observe that we need only to estimate

Π1(f, f, ..., f) =
∞
∑

j=N

(Q
j−N

f)m−1∆jf
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and

Π2(f, f, ..., f) =

∞
∑

j=0

(∆jf)
|I1|(Q

j
f)|I2|.

Define
1

v
=

1

p
+ (m− 1)

(1

p
−
s

n

)

.

Therefore we have the following Sobolev embeddings

K̇αm
v,q F

s
β →֒ K̇α

p,qF
sm
β .

Lemma 3.12 gives
∥

∥Π1(f, f, ..., f)
∥

∥

K̇αm
v,q F

s
β

can be estimated by

c
∥

∥

∥

(

∞
∑

j=N

|2js(Q
j−N

f)m−1∆jf |
β
)

1
β
∥

∥

∥

K̇αm
v,q

.
∥

∥

∥
(sup
j>N

|Q
j−N

f |)m−1
(

∞
∑

j=N

|2js∆jf |
β
)

1
β
∥

∥

∥

K̇αm
v,q

.

By Hölder’s inequality we estimate the last term by

c
∥

∥ sup
j>N

|Q
j−N

f |
∥

∥

m−1

K̇α
b,∞

∥

∥f
∥

∥

K̇α
p,qF

s
β

,

with 1
b
= 1

p
− s

n
. Recall that

∥

∥ sup
j>N

|Q
j−N

f |
∥

∥

K̇α
b,∞

.
∥

∥ sup
j>N

|Q
j−N

f |
∥

∥

K̇α
b,b

.
∥

∥f
∥

∥

F 0
b,2(R

n,|·|αb)

.
∥

∥f
∥

∥

K̇α
b,b
F 0
2
, (3.17)

see [15, Theorem 1.4], because of −n
b
< α < n(1 − 1

b
). Since, s > n

p
− n

q
, thanks to the

embedding

K̇α
p,qF

s
β →֒ K̇α

b,bF
0
2 , (3.18)

see Theorem 2.10, we obtain
∥

∥Π1(f, f, ..., f)
∥

∥

K̇αm
v,q F

s
β

.
∥

∥f
∥

∥

m

K̇α
p,qF

s
β

.

Now we estimate Π2(f, f, ..., f). Define

1

u
=

|I1|

p
+

|I2|

b
, σ −

n

u
− αm = sm −

n

p
− α.

Observe that σ = |I1|s. Hence

K̇αm
u, q

|I1|
F

|I1|s
β

|I1|

→֒ K̇α
p,qF

sm
β .
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From (3.15) it follows that σ > max
(

0, n
u
+ αm− n

)

. Lemma 3.13 gives
∥

∥Π2(f, f, ..., f)
∥

∥

K̇αm

u,
q

|I1|

F
|I1|s
β

|I1|

.
∥

∥

∥

(

∞
∑

j=0

|2j|I1|s(Qjf)
|I2|(∆jf)

|I1||
β

|I1|

)

|I1|
β
∥

∥

∥

K̇αm

u,
q

|I1|

.
∥

∥

∥
(sup
j>0

|Qjf |)
|I2|

(

∞
∑

j=0

|2js∆jf |
β
)

|I1|
β
∥

∥

∥

K̇αm

u,
q

|I1|

.

Again, by Hölder’s inequality we estimate the last term by

c
∥

∥ sup
j>N

|Q
j
f |
∥

∥

|I2|

K̇α
b,∞

∥

∥

∥

(

∞
∑

j=0

|2js∆jf |
β
)

1
β
∥

∥

∥

|I1|

K̇α
p,q

.
∥

∥f
∥

∥

m

K̇α
p,qF

s
β

,

where we have used (3.17) and (3.18). �

Theorem 3.19. Let 0 < p, q <∞, 0 < β 6 ∞, α > 0 and

s > max
(

0,
n

p
+ α− n

)

, m = 2, 3, ....

Then
∥

∥fm
∥

∥

K̇α
p,qF

s
β

.
∥

∥f
∥

∥

K̇α
p,qF

s
β

∥

∥f
∥

∥

m−1

∞

holds for all f ∈ K̇α
p,qF

s
β ∩ L

∞.

Proof. First, we estimate Π1(f, f, ..., f). Recall that

sup
j∈N0

|Q
j
f | .

∥

∥f
∥

∥

∞
and sup

j∈N0

|∆jf | .
∥

∥f
∥

∥

∞
. (3.20)

Lemma 3.12 gives
∥

∥Π1(f, f, ..., f)
∥

∥

K̇α
p,qF

s
β

can be estimated by

c
∥

∥

∥

(

∞
∑

j=N

|2js(Q
j−N

f)m−1∆jf |
β
)

1
β
∥

∥

∥

K̇α
p,q

.
∥

∥

∥
(sup
j>N

|Q
j−N

f |)m−1
(

∞
∑

j=N

|2js∆jf |
β
)

1
β
∥

∥

∥

K̇α
p,q

.
∥

∥f
∥

∥

m−1

∞

∥

∥f
∥

∥

K̇α
p,qF

s
β

,

where we used (3.20). Lemma 3.13 gives

∥

∥Π2(f, f, ..., f)
∥

∥

K̇α
p,qF

s
β

.
∥

∥

∥

(

∞
∑

j=0

|2js(Qjf)
|I2|(∆jf)

|I1||β
)

1
β
∥

∥

∥

K̇α
p,q

.
∥

∥f
∥

∥

m−1

∞

∥

∥

∥

(

∞
∑

j=0

|2js∆jf |
β
)

1
β
∥

∥

∥

K̇α
p,q

.
∥

∥f
∥

∥

m−1

∞

∥

∥f
∥

∥

K̇α
p,qF

s
β

,

with the help of (3.20). �
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Remark 3.21. Theorem 3.14 in the case m = 2, p = q and α = 0 is contained in [68] and
also in [49]. For m > 2, p = q and α = 0 see [50, Remark 17] and [47, p. 291]. We refer
the reader to the monograph [47] and the paper [36] for further details, historical remarks
and more references on multiplication in Besov and Triebel-Lizorkin spaces.

Definition 3.22. Let µ > 0. Let L ∈ N0, and let 0 < ν 6 1 such that µ = L + ν. The
spaces Lipµ is the collection of all f ∈ CL,loc(R) such that

f (l)(0) = 0, l = 0, 1, 2, ..., L

and

sup
t0,t1∈R

|f (L)(t0)− f (L)(t1)|

|t0 − t1|ν
<∞.

Then we put

∥

∥f
∥

∥

Lipµ
=

L−1
∑

j=0

sup
t∈R

|f (j)(t)|

|t|µ−j
+ sup

t0,t1∈R

|f (L)(t0)− f (L)(t1)|

|t0 − t1|ν
.

Remark 3.23.
∥

∥ ·
∥

∥

Lipµ
defines not a norm, but for simplicity we will use this notation,

see [47, p. 295]. A typical example of a function belongs to Lipµ is f(t) = |t|µ, µ > 1.
Recall that Lipµ is not monotone with respect to µ.

We follow the same notations as in [47, Chapter 5].

Definition 3.24. (i) For f ∈ S ′(Rn) we define a distribution f̄ by

f̄(ϕ) = f(ϕ̄), ϕ ∈ S(Rn).

(ii) The space of real-valued distributions S′(Rn) is defined to be

S
′(Rn) = {f ∈ S ′(Rn) : f̄ = f}.

(iii) Let A be a complex-valued, quasi-normed distribution space such that A →֒ S ′(Rn).
Then we define the real-valued part A of A to be the restriction of A to S′(Rn) equipped
with the same quasi-norm as A.

Now we are in position to state the first result of this section.

Theorem 3.25. Let 0 < p, q <∞, 0 < β 6 ∞, µ > 1, α > 0, s > n
p
− n

q
and

0 < s <
n

p
+ α.

We put

sµ = s− (µ− 1)
(n

p
+ α− s

)

.

Let G ∈ Lipµ and

max
(

0,
n

p
+ α− n

)

< sµ < µ. (3.26)

Then
∥

∥G(f)
∥

∥

K̇α
p,qF

sµ
β

.
∥

∥G
∥

∥

Lipµ

∥

∥f
∥

∥

µ

K̇α
p,qF

s
∞

holds for any f ∈ K̇α
p,qF

s
∞.
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Proof. We will do the proof in three steps.
Step 1. Preparation. Consider the partition of the unity {Fϕj}j∈N0. Let f ∈ K̇α

p,qF
s
∞.

We set

1

b
=

n
p
+ α− s

n+ αp
and α1 =

αp

b
.

Then

max(1, p) < b <∞ and −
n

b
< α1 < min

(

α, n−
n

b

)

. (3.27)

Hence

K̇α
p,qF

s
∞ →֒ K̇α1

b,r , max(1, q, µ) < r. (3.28)

Since G ∈ Lipµ, b
µ
> 1 and α1µ < n− nµ

b
, we have

G(f) ∈ K̇α1µ
b
µ
, r
µ

→֒ S ′(Rn)

and so we can interpret G as a mapping of a subspace of S ′(Rn) into S ′(Rn). In addition

f =

∞
∑

j=0

ϕj ∗ f, in K̇
α1−

n
µ
+n

b
µ,r . (3.29)

Indeed, let

̺k =
k

∑

j=0

ϕj ∗ f, k ∈ N0.

Obviously {̺k} converges to f in S ′(Rn) and by the embedding (3.28) we derive that
{̺k} ⊂ K̇α1

b,r . Furthermore, {̺k} is a Cauchy sequences in K̇α1
b,r and hence it converges to

g ∈ K̇α1
b,r . Let us prove that f = g a.e. Let ϕ ∈ D(Rn). We write

〈f − g, ϕ〉 = 〈f − ̺N , ϕ〉+ 〈g − ̺N , ϕ〉, N ∈ N0.

Here 〈·, ·〉 denotes the duality bracket between D′(Rn) and D(Rn). Clearly, the first term
tends to zero as N → ∞, while by Hölder’s inequality there exists a constant C > 0
independent of N such that

|〈g − ̺N , ϕ〉| 6 C
∥

∥g − ̺N
∥

∥

K̇
α1
b,r

,

which tends to zero as N → ∞. Therefore f = g almost everywhere. Consequently,

f =
∑∞

j=0 ϕj ∗ f in K̇α1
b,r . Finally, (3.29), follows by the embedding K̇α1

b,r →֒ K̇
α1−

n
µ
+n

b
µ,r . We

have also

f =

∞
∑

j=0

ϕj ∗ f, in Lµloc,



20 D. DRIHEM

because of K̇
α1−

n
µ
+n

b
µ,r →֒ Lµloc. Indeed, let B(0, 2M) ⊂ Rn,M ∈ Z. Hölder’s inequality and

the fact that α1 −
n
µ
+ n

b
= n

p
+ α− n

µ
− s < 0, see (3.26), give

∥

∥f
∥

∥

µ

Lµ(B(0,2M ))
=

M
∑

i=−∞

∥

∥fχRi

∥

∥

µ

µ

=
M
∑

i=−∞

2−i(α1−
n
µ
+n

b
)µ2i(α1−

n
µ
+n

b
)µ
∥

∥fχRi

∥

∥

µ

µ

6 C(M)
(

M
∑

i=−∞

2i(α1−
n
µ
+n

b
)r
∥

∥fχi
∥

∥

r

µ

)
µ
r

.
∥

∥f
∥

∥

µ

K̇
α1−

n
µ+n

b
µ,r

.

We put µ = L+ ν, where 0 < ν 6 1. The function G has the Taylor expansion

G(t) =

L−1
∑

l=0

G(l)(z)

l!
(t− z)l +R(t, z), t, z ∈ R,

where

R(t, z) =
1

L!

∫ t

z

(t− y)L−1G(L)(y)dy.

Since f ∈ K̇α
p,qF

s
∞ and s > max(0, n

p
+ α − n) there exists a set A of Lebesgue-measure

zero such that |f(x)| < ∞ for all x ∈ Rn\A. We can we suppose that |f(x)| < ∞ for all
x ∈ Rn. Therefore

G(f(y)) =

L−1
∑

l=0

1

l!

l
∑

j=0

(−1)l−jC l
jf

j(y)(ψk ∗ f(x))
l−jG(l)(ψk ∗ f(x))

+Rk(f(y), ψk ∗ f(x)),

where, x, y ∈ Rn,

ψk ∗ f =
k

∑

i=0

ϕi ∗ f, k ∈ N0

and

Rk(f(y), ψk ∗ f(x)) =
1

L!

∫ f(y)

ψk∗f(x)

(f(y)− h)L−1G(L)(h)dh.

We put Kj,l = (−1)l−jC l
j
1
l!
, with 0 6 l 6 L− 1, 0 6 j 6 l. Consequently

ϕk ∗G(f)(x) =

∫

Rn

ϕk(x− y)G(f(y))dy =
L−1
∑

l=0

l
∑

j=0

Hk,1,j,l(x) +Hk,2(x),

where

Hk,1,j,l(x) = Kj,l(ψk ∗ f(x))
l−jG(l)(ψk ∗ f(x))

∫

Rn

ϕk(x− y)f j(y)dy

= Kj,l(ψk ∗ f(x))
l−jG(l)(ψk ∗ f(x))ϕk ∗ f

j(x)
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with 0 6 l 6 L− 1, 0 6 j 6 l and

Hk,2(x) =
1

L!

∫

Rn

ϕk(x− y)

∫ f(y)

ψk∗f(x)

(f(y)− h)L−1G(L)(h)dhdy.

We will estimate each term separately.
Step 2. Estimate of Hk,1,j,l. First assume that 0 < j 6 L− 1. Recall that

si = s− (i− 1)
(n

p
+ α− s

)

, i > 1

and si 6 sv, i > v > 1. Define

p1 =
n+ αp

(µ− j)(n
p
+ α− s)

and

p2 =
n+ αp

s̄− sj +
n
p
+ α

, (3.30)

where
sµ < s̄ < min(µ, sL),

with 0 < j 6 l, 0 6 l 6 L − 1. Since sj −
n
p
− α = −j(n

p
+ α − s) < 0, (3.30) is well

defined. We put 1
p̄
= 1

p1
+ 1

p2
. Hence

s̄−
n+ αp

p̄
= sµ −

n

p
− α, p̄ < p < min

(

(µ− j)p1, p2
)

.

In addition

s−
n

p
− α =

−n

(µ− j)p1
−

αp

(µ− j)p1
and sj −

n

p
− α = s̄−

n

p2
−
αp

p2
.

These choices guarantee the Sobolev embeddings

K̇α
p,qF

s
p,β →֒ K̇

αp
(µ−j)p1

(µ−j)p1,∞
F 0
1 , K̇

αp
p̄

p̄,qF
s̄
∞ →֒ K̇α

p,qF
sµ
β (3.31)

and

K̇α
p,qF

s
p,β →֒ K̇α

p,qF
sj
r →֒ K̇

αp
p2
p2,qF

s̄
r , 0 < r 6 ∞, (3.32)

see Theorem 2.10. We will prove that
∥

∥

∥
sup
k∈N0

2ks̄
∣

∣Hk,1,j,l +Hk,2

∣

∣

∥

∥

∥

K̇
αp
p̄

p̄,q

.
∥

∥f
∥

∥

µ

K̇α
p,qF

s
p,β

.

By Hölder’s inequality and the fact that

|G(l)(t)| 6
∥

∥G
∥

∥

Lipµ
|t|µ−l, t ∈ R, l = 0, ..., L− 1 (3.33)

we obtain that

2ks̄
∥

∥Hk,1,j,l

∥

∥

K̇
αp
p̄

p̄,q

.
∥

∥|ψk ∗ f |
l−jG(l)(ψk ∗ f)

∥

∥

K̇

αp
p1
p1,∞

2ks̄
∥

∥ϕk ∗ f
j
∥

∥

K̇

αp
p2
p2,q

.
∥

∥G
∥

∥

Lipµ

∥

∥ψk ∗ f
∥

∥

µ−j

K̇

αp
(µ−j)p1
(µ−j)p1,∞

2ks̄
∥

∥ϕk ∗ f
j
∥

∥

K̇

αp
p2
p2,q

.
∥

∥G
∥

∥

Lipµ

∥

∥f
∥

∥

µ−j

K̇

αp
(µ−j)p1
(µ−j)p1,∞

F 0
1

∥

∥f j
∥

∥

K̇

αp
p2
p2,q

F s̄
∞

.
∥

∥G
∥

∥

Lipµ

∥

∥f
∥

∥

µ−j

K̇α
p,qF

s
p,β

∥

∥f j
∥

∥

K̇α
p,qF

sj
r

.
∥

∥G
∥

∥

Lipµ

∥

∥f
∥

∥

µ

K̇α
p,qF

s
p,β
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for any k ∈ N0, where we have used the embeddings (3.31) and (3.32), and Theorem 3.14
with the fact that

s > max
(

0,
n

p
+ α−

n

µ

)

,

see (3.26). Now we estimate Hk,1,0,l. Let us recall some properties of our system
{Fϕk}k∈N0. It holds

∫

Rn

ϕk(y)dy = 0 and

∫

Rn

ϕ0(y)dy = c 6= 0 k ∈ N.

Therefore we need only to estimate H0,1,0,l, 0 6 l 6 L− 1. We have, again by (3.33),
∥

∥H0,1,0,l

∥

∥

K̇
αp
p̄

p̄,q

.
∥

∥G
∥

∥

Lipµ

∥

∥|ϕ0 ∗ f |
µ
∥

∥

K̇
αp
p̄

p̄,q

.
∥

∥G
∥

∥

Lipµ

∥

∥f
∥

∥

µ

K̇
αp
p̄µ
p̄µ,qF

0
∞

.

Thanks to the embeddings

K̇α
p,qF

s
β →֒ K̇

αp
p̄µ

p̄µ,qF
s̄
µ
∞ →֒ K̇

αp
p̄µ

p̄µ,qF
0
∞, (3.34)

because of

s̄−
n+ αp

p̄
= µ(s−

n

p
− α) and p̄µ > p,

we obtain
∥

∥H0,1,0,l

∥

∥

K̇
αp
p̄

p̄,q

.
∥

∥G
∥

∥

Lipµ

∥

∥f
∥

∥

µ

K̇α
p,qF

s
β

.

Step 3. Estimate of Hk,2. We have
∫ f(y)

ψk∗f(x)

(f(y)− h)L−1G(L)(h)dh

= G(L)(ψk ∗ f(x))
(f(y)− ψk ∗ f(x))

L

L

+

∫ f(y)

ψk∗f(x)

(f(y)− h)L−1(G(L)(h)−G(L)(ψk ∗ f(x)))dh

= Hk,2,1(x, y) +Hk,2,2(x, y).

The estimation of Hk,2,1 can be obtained by the same arguments given in Step 2. We
estimate Hk,2,2. Using the fact that

|G(L)(t0)−G(L)(t1)| 6
∥

∥G
∥

∥

Lipµ
|t0 − t1|

ν , t0, t1 ∈ R,

we obtain
|Hk,2,2(x, y)| .

∥

∥G
∥

∥

Lipµ
|ψk ∗ f(x)− f(y)|µ, x, y ∈ R

n.

Obviously
|ψk ∗ f(x)− f(y)| 6 |ψk ∗ f(x)− f(x)|+ |f(x)− f(y)|,

which yields that
∫

Rn

|ϕk(x− y)||Hk,2,2(x, y)|dy 6 Sk,1(f)(x) + Sk,2(f)(x),

where

Sk,1(f)(x) =
∥

∥G
∥

∥

Lipµ

∫

Rn

|ϕk(x− y)||ψk ∗ f(x)− f(x)|µdy

.
∥

∥G
∥

∥

Lipµ
|ψk ∗ f(x)− f(x)|µ
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and

Sk,2(f)(x) =
∥

∥G
∥

∥

Lipµ

∫

Rn

|ϕk(x− y)||f(x)− f(y)|µdy.

First we estimate Sk,1(f). Observe that

f − ψk ∗ f =

∞
∑

i=k+1

ϕi ∗ f, k ∈ N0.

Therefore
∥

∥

∥
sup
k∈N0

(

2ks̄Sk,1(f)
)

∥

∥

∥

K̇
αp
p̄

p̄,q

.
∥

∥G
∥

∥

Lipµ

∥

∥

∥
sup
k∈N0

2k
s̄
µ

(

∞
∑

i=k+1

|ϕi ∗ f |
)
∥

∥

∥

µ

K̇
αp
p̄µ
p̄µ,q

.
∥

∥G
∥

∥

Lipµ

∥

∥

∥
sup
k∈N0

2k
s̄
µ |ϕk ∗ f |

∥

∥

∥

µ

K̇
αp
p̄µ
p̄µ,q

.
∥

∥G
∥

∥

Lipµ

∥

∥f
∥

∥

µ

K̇
αp
p̄µ
p̄µ,qF

s̄
µ
∞

,

where we used Lemma 3.2. We conclude our desired estimate by the embeddings (3.34).
Now we estimate Sk,2(f). Since ψ, ϕ ∈ S(Rn), this yields

|ϕk(z)| . η2k ,M(z), z ∈ R
n,

where M is an arbitrary positive real number and the implicit constant is independent of
z and k ∈ N0. By means of this inequality we find

∫

Rn

|ϕk(−z)||f(x)− f(x+ z)|µdz

.

∫

B̄k

|ϕk(−z)||f(x)− f(x+ z)|µdz

+

∞
∑

l=0

∫

B̄k−l−1\Bk−l

|ϕk(−z)||f(x)− f(x+ z)|µdz

. 2kn
∞
∑

l=0

2−lM
∫

B̄k−l−1

|f(x)− f(x+ z)|µdz

. 2kn
∞
∑

l=0

2−lMIµk−l(f)(x),

where the implicit constant is independent of x and k. Let d = min(1, p̄). Taking M
large enough such that M − n− s̄− 1 > 0 and using Lemma 3.4, we obtain

∥

∥

∥
sup
k∈N0

2ks̄
∣

∣Sk,2(f)
∣

∣

∥

∥

∥

d

K̇
αp
p̄

p̄,q

.
∥

∥G
∥

∥

d

Lipµ

∞
∑

l=0

2−lMd
∥

∥

∥
sup
k∈N0

(

2k(n+s̄)Iµk−l(f)
)

∥

∥

∥

d

K̇
αp
p̄

p̄,q

.
∥

∥G
∥

∥

d

Lipµ

∞
∑

l=0

2−l(M−n−s̄)d
∥

∥

∥
sup
i>−l

(

2i(n+s̄)Iµi (f)
)

∥

∥

∥

d

K̇
αp
p̄

p̄,q

.
∥

∥G
∥

∥

d

Lipµ

∥

∥f
∥

∥

d

K̇
αp
p̄µ
p̄µ,qF

s̄
µ
∞

.

Our desired estimate follows by the embedding (3.34). The proof is complete. �
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From Theorem 3.25 and the fact that G(t) = |f |µ ∈ Lipµ, µ > 1, we immediately arrive
at the following result.

Corollary 3.35. Under the hypotheses of Theorem 3.25, we have
∥

∥|f |µ
∥

∥

K̇α
p,qF

sµ
β

6 c
∥

∥G
∥

∥

Lipµ

∥

∥f
∥

∥

µ

K̇α
p,qF

s
∞

holds for any f ∈ K̇α
p,qF

s
∞.

Remark 3.36. The valued sµ in Theorem 3.25 is optimal. Indeed, we put

fκ(x) = θ(x)|x|κ,

where κ > 0 and θ is a smooth cut-off function with suppθ ⊂ {x : |x| 6 ϑ}, ϑ > 0

sufficiently small. As in [24] we can prove that fκ ∈ K̇α
p,qF

s
β if and only if s < n

p
+ α + κ.

Let G(x) = |x|µ, µ > 1, x ∈ R. Then

G(fκ) /∈ K̇α
p,qF

d
β ,

if d > n
p
+ α + κµ > sµ.

Theorem 3.37. Let 0 < p, q <∞, 0 < β 6 ∞, µ > 1, α > 0 and

max
(

0,
n

p
+ α− n

)

< s < µ.

Let G ∈ Lipµ. Then
∥

∥G(f)
∥

∥

K̇α
p,qF

s
β

6 c
∥

∥G
∥

∥

Lipµ

∥

∥f
∥

∥

K̇α
p,qF

s
β

∥

∥f
∥

∥

µ−1

∞

holds for any f ∈ K̇α
p,qF

s
β ∩ L∞.

Proof. We employ the notation of Theorem 3.25. We will prove that
∥

∥

∥
sup
k∈N0

2ks
∣

∣Hk,1,j,l +Hk,2

∣

∣

∥

∥

∥

K̇α
p,q

.
∥

∥G
∥

∥

Lipµ

∥

∥f
∥

∥

K̇α
p,qF

s
β

∥

∥f
∥

∥

µ−1

∞
.

Thanks to (3.33) and Theorem 3.19 it follows

2ks
∥

∥Hk,1,j,l

∥

∥

K̇α
p,q

.
∥

∥|ψk ∗ f |
l−jG(l)(|ψk ∗ f |)

∥

∥

∞
2ks

∥

∥ϕk ∗ f
j
∥

∥

K̇α
p,q

.
∥

∥G
∥

∥

Lipµ

∥

∥ψk ∗ f
∥

∥

µ−j

∞
2ks

∥

∥ϕk ∗ f
j
∥

∥

K̇α
p,q

.
∥

∥G
∥

∥

Lipµ

∥

∥f
∥

∥

µ−j

∞

∥

∥f j
∥

∥

K̇α
p,qF

s
∞

.
∥

∥G
∥

∥

Lipµ

∥

∥f
∥

∥

µ−1

∞

∥

∥f
∥

∥

K̇α
p,qF

s
∞
,

where we used
∥

∥ψk ∗ f
∥

∥

∞
.

∥

∥f
∥

∥

∞
, by Young’s inequality. Now

∥

∥H0,1,0,l

∥

∥

K̇α
p,q

.
∥

∥G
∥

∥

Lipµ

∥

∥|ϕ0 ∗ f |
µ
∥

∥

K̇α
p,q

.
∥

∥G
∥

∥

Lipµ

∥

∥f
∥

∥

µ−1

∞

∥

∥ϕ0 ∗ f
∥

∥

K̇α
p,q

.
∥

∥G
∥

∥

Lipµ

∥

∥f
∥

∥

µ−1

∞

∥

∥f
∥

∥

K̇α
p,qF

s
∞
.

Observe that

Sk,1(f)(x) .
∥

∥G
∥

∥

Lipµ
|ψk ∗ f(x)− f(x)|µ .

∥

∥G
∥

∥

Lipµ

∥

∥f
∥

∥

µ−1

∞
|ψk ∗ f(x)− f(x)|.
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Then

∥

∥

∥
sup
k∈N0

(

2ksSk,1(f)
)

∥

∥

∥

K̇α
p,q

.
∥

∥G
∥

∥

Lipµ

∥

∥f
∥

∥

µ−1

∞

∥

∥

∥
sup
k∈N0

2ks
(

∞
∑

i=k+1

|ϕi ∗ f |
)
∥

∥

∥

K̇α
p,q

.
∥

∥G
∥

∥

Lipµ

∥

∥f
∥

∥

µ−1

∞

∥

∥

∥
sup
k∈N0

2ks|ϕk ∗ f |
∥

∥

∥

K̇α
p,q

.
∥

∥G
∥

∥

Lipµ

∥

∥f
∥

∥

µ−1

∞

∥

∥f
∥

∥

K̇α
p,qF

s
∞
,

by Lemma 3.2. Using Lemma 3.4, we obtain
∥

∥

∥
sup
k∈N0

2ks
∣

∣Sk,2(f)
∣

∣

∥

∥

∥

d

K̇α
p,q

.
∥

∥G
∥

∥

d

Lipµ

∞
∑

l=0

2−lMd
∥

∥

∥
sup
k∈N0

(

2k(n+s)Iµk−l(f)
)

∥

∥

∥

d

K̇α
p,q

.
∥

∥G
∥

∥

d

Lipµ

∞
∑

l=0

2−l(M−n−s̄)d
∥

∥

∥
sup
i>−l

(

2i(n+s)Iµi (f)
)

∥

∥

∥

d

K̇α
p,q

.
∥

∥G
∥

∥

d

Lipµ

∥

∥f
∥

∥

dµ

K̇
α
µ
pµ,qµF

s
µ
∞

.

The desired estimate follows by the fact that
∥

∥f
∥

∥

µ

K̇
α
µ
pµ,qµF

s
µ
∞

.
∥

∥f
∥

∥

µ−1

∞

∥

∥f
∥

∥

K̇α
p,qF

s
β

.

The proof is completed. �

Now we present some limit case.

Theorem 3.38. Let 0 < p, q <∞, α > 0, µ >
n
p
+α

n
q
+α+1

and

max
(

1,
n

p
+ α− n

)

< µ <
n

p
+ α. (3.39)

Let G ∈ Lipµ and

s = 1 +
µ− 1

µ

(n

p
+ α

)

. (3.40)

Then
∥

∥G(f)
∥

∥

K̇α
p,qF

µ
∞
6 c

∥

∥G
∥

∥

Lipµ

∥

∥f
∥

∥

µ

K̇α
p,qF

s
∞

holds for any f ∈ K̇α
p,qF

s
∞.

Proof. We employ the notation of the proof of Theorem 3.25. From (3.39) and (3.40), we
obtain µ < s < n

p
+ α. With the help of (3.39) we get (3.27), b

µ
> 1 and α1µ < n− nµ

b
.

Consequently the embedding (3.28) holds. We have sµ = µ and we will take s̄ = sµ and
p̄ = p. The proof is very similar as in Theorem 3.25, but here we use Lemma 3.9 instead
of Lemma 3.4. �

From Theorem 3.38 and the fact that G(t) = |f |µ ∈ Lipµ, µ > 1, we get the following
result:
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Corollary 3.41. Under the hypotheses of Theorem 3.38, we have
∥

∥|f |µ
∥

∥

K̇α
p,qF

µ
∞
6 c

∥

∥G
∥

∥

Lipµ

∥

∥f
∥

∥

µ

K̇α
p,qF

s
∞

holds for any f ∈ K̇α
p,qF

s
∞.

Remark 3.42. Corresponding statements to Theorems 3.25, 3.37 and 3.38 were proved in
[47] and [49, Theorem 6] with α = 0, see also [46].

4. Semilinear parabolic equations in Herz-Triebel-Lizorkin spaces

4.1. Heat kernel estimates. Let t > 0, x ∈ Rn and f ∈ S ′(Rn). We put

et∆f(x) = F−1(exp(−t|ξ|2)Ff)(x).

Recall that

g(x) = F−1(exp(−t|ξ|2))(x) = (4πt)−
n
2 exp(−4t−1|x|2), x ∈ R

n.

We will give some key estimates of heat kernel et∆ needed in the proofs of the main
statements. First, we estimate the heat kernel et∆ in Herz-type Triebel-Lizorkin spaces.
We follows the arguments of [1] and [60]. We need the so called molecular and wavelet
characterizations of Herz-type Triebel-Lizorkin spaces.

Definition 4.1. Let K,L ∈ N0 and M > 0. A K-times continuous differentiable function
µ is called a [K,L,M ]-molecule concentrated in Qj,m if for some j ∈ N0 and m ∈ Zn

|Dγµ(x)| 6 2|γ|j(1 + 2j|x− 2−jm|)−M , 0 6 |γ| 6 K

and
∫

Rn

xγµ(x)dx = 0 if 0 6 |γ| < L, j ∈ N.

Notice that for L = 0 or j = 0 there are no moment conditions on µ. If µ is a molecule
concentrated in Qj,m, then it is denoted µj,m.

We introduce the sequence spaces associated with the function spaces K̇α
p,qF

s
β . Let

α, s ∈ R, 0 < p, q <∞ and 0 < β 6 ∞. We set

K̇α
p,qf

s
β = {λ = {λj,m}j∈N0,m∈Zn ⊂ C :

∥

∥λ
∥

∥

K̇α
p,qf

s
β

<∞},

where
∥

∥λ
∥

∥

K̇α
p,qf

s
β

=
∥

∥

∥

(

∞
∑

j=0

∑

m∈Zn

2jsβ|λj,m|
βχj,m

)1/β∥
∥

∥

K̇α
p,q

.

Now we come to the molecule decomposition theorem for K̇α
p,qF

s
β spaces. For the proof,

see [21] and [67].

Theorem 4.2. Let s ∈ R, 0 < p, q < ∞, 0 < β 6 ∞ and α > −n
p
. Furthermore, let

K,L ∈ N0 and let M > 0 with

L > σp,β − s, K > s and M large enough.

If aj,m are [K,L,M ]-molecules concentrated in Qj,m and

λ = {λj,m}j∈N0,m∈Zn ∈ K̇α
p,qf

s
β,

then the sum

f =

∞
∑

j=0

∑

m∈Zn

λj,maj,m (4.3)
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converges in S ′(Rn) and
∥

∥f
∥

∥

K̇α
p,qF

s
β

.
∥

∥λ
∥

∥

K̇α
p,qf

s
β

.

Let J ∈ N and ψF , ψM ∈ CJ(R) be real-valued compactly supported Daubechies
wavelets with

FψF (0) = (2π)−
1
2 ,

∫

R

xlψM (x)dx = 0, l ∈ {0, ..., J − 1}

and
∥

∥ψF
∥

∥

2
=

∥

∥ψM
∥

∥

2
= 1.

We have that
{ψF (x−m), 2

j
2ψM(2jx−m)}j∈N0,m∈Zn

is an orthonormal basis in L2(R). This orthonormal basis can be generalized to the Rn

by the usual multiresolution procedure. Let

G = {G1, ..., Gn} ∈ G0 = {F,M}n

which means that Gr is either F or M . Let

G = {G1, ..., Gn} ∈ Gj = {F,M}n
∗

, j ∈ N,

where indicates that at least one of the components of G must be an M . Let

Ψj
G,m(x) = 2j

n
2

n
∏

r=1

ψGr(2
jxr −mr), G ∈ Gj, m ∈ Z

n, x ∈ R
n, j ∈ N0.

Then
Ψ = {Ψj

G,m : j ∈ N0, G ∈ Gj , m ∈ Z
n}

is an orthonormal basis in L2(Rn).
Let α, s ∈ R, 0 < p, q <∞ and 0 < β 6 ∞. We set

K̇α
p,qf̃

s
β = {λ = {λGj,m}j∈N0,G∈Gj ,m∈Zn ⊂ C :

∥

∥λ
∥

∥

K̇α
p,q f̃

s
β

<∞},

where
∥

∥λ
∥

∥

K̇α
p,q f̃

s
β

=
∥

∥

∥

(

∞
∑

j=0

∑

G∈Gj

∑

m∈Zn

2jsβ|λGj,m|
βχj,m

)1/β∥
∥

∥

K̇α
p,q

.

Theorem 4.4. Let α, s ∈ R, 0 < p, q < ∞, 0 < β 6 ∞ and α > −n
p
. Let {Ψj

G,m} be the

wavelet system with J > max(σp,β − s, s). Let f ∈ S ′(Rn). Then f ∈ K̇α
p,qF

s
β if and only

if

f =
∞
∑

j=0

∑

G∈Gj

∑

m∈Zn

λGj,m2
−j n

2Ψj
G,m, λ ∈ K̇α

p,qf̃
s
β (4.5)

with unconditional convergence in S ′(Rn) and in any space K̇α
p,qF

σ
β with σ < s. The

representation (4.5) is unique. We have

λGj,m = λGj,m(f) = 2j
n
2 〈f,Ψj

G,m〉

and
I : f 7−→ {λGj,m(f)}

is an isomorphic map from K̇α
p,qF

s
β into K̇α

p,qf̃
s
β. In particular, it holds

∥

∥f
∥

∥

K̇α
p,qF

s
β

≈
∥

∥λ
∥

∥

K̇α
p,q f̃

s
β

.
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For the proof, see again, [21] and [67]. To estimate the heat kernel et∆ in Herz-type
Triebel-Lizorkin spaces, we need the following lemma.

Lemma 4.6. Let s > 0, θ > 0, 0 < t < T, 0 < p, q <∞, 0 < β 6 ∞ and α > −n
p
. We set

bjG,m(x, t) = 2−j
n
2 et∆Ψj

G,m(x).

Then there exists C > 0 such that the functions

bjG,m(x, t)θ = C2jθt
θ
2 bjG,m(x, t), j ∈ N0, G ∈ G∗, m ∈ Z

n (4.7)

[K,L,M ]-molecules for any fixed t with 2jt
1
2 > 1, provided that L 6 J,K 6 J, L+n−1 <

M < J + n− θ and θ 6 J − L+ 1. Assume that

J > θ +max(s, σp,β).

Then, the numbers K,L,M can be chosen such that for some C > 0 and any t with
2jt

1
2 > 1, such that (4.7) are molecules for K̇α

p,qF
s+θ
β .

Proof. We use the arguments of [1, Proposition 3.1] and we need only to prove the second
part of the Lemma. Let L = ⌊σp,β⌋+1, which yields that L > σp,β−s−θ. Since J > σp,β
it follows that J > L. Hence

∫

Rn

xνbjG,m(x, t)θdx = 0, 0 6 |ν| < L, j ∈ N.

Let M large enough be such that σp,β + n < M < J + n − θ. Then M > L+ n− 1 and

θ < J − σp,β < J − L+ 1. Regarding the derivatives of bjG,m(x, t)θ we claim s+ θ < K 6
J . �

We present one of the main tools used in this section.

Lemma 4.8. Let s > 0, θ > 0, 0 < t < T, 1 < p, q <∞, 1 < β 6 ∞ and −n
p
< α < n− n

p
.

Then there exists a positive constant C(T ) > 0 independent of t such that
∥

∥et∆f
∥

∥

K̇α
p,qF

s+θ
β

6 C(T )t−
θ
2

∥

∥f
∥

∥

K̇α
p,qF

s
β

for any f ∈ K̇α
p,qF

s
β .

Proof. Let k ∈ N be such that 2−2k < t
T

6 2−2(k−1). From Theorem 4.4 we have f =
f1,k + f2,k, with

f1,k =

k−1
∑

j=0

∑

G∈Gj

∑

m∈Zn

λGj,m2
−j n

2Ψj
G,m

and

f2,k =

∞
∑

j=k

∑

G∈Gj

∑

m∈Zn

λGj,m2
−j n

2Ψj
G,m,

where λ ∈ K̇α
p,qf̃

s
β .

Estimate of f1,k. We claim that

|et∆(ϕj ∗ f1,k)(x)| . M(ϕj ∗ f1,k)(x), x ∈ R
n, j ∈ N0, (4.9)
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where the implicit constant is independent of x, k, j and t. Using the estimate (4.9) and
Lemma 3.3 we obtain

∥

∥et∆f1,k
∥

∥

K̇α
p,qF

s+θ
β

=
∥

∥

∥

(

∞
∑

j=0

2j(s+θ)β|ϕj ∗ e
t∆f1,k|

β
)1/β∥

∥

∥

K̇α
p,q

=
∥

∥

∥

(

∞
∑

j=0

2j(s+θ)β|et∆(ϕj ∗ f1,k)|
β
)1/β∥

∥

∥

K̇α
p,q

.
∥

∥

∥

(

∞
∑

j=0

2j(s+θ)β|M(ϕj ∗ f1,k)|
β
)1/β∥

∥

∥

K̇α
p,q

.
∥

∥

∥

(

∞
∑

j=0

2j(s+θ)β|ϕj ∗ f1,k|
β
)1/β∥

∥

∥

K̇α
p,q

. (4.10)

In view of the definition of the spaces K̇α
p,qF

s+θ
β , (4.10) is just

∥

∥f1,k
∥

∥

K̇α
p,qF

s+θ
β

. Thanks to

Theorem 4.4 we get

∥

∥f1,k
∥

∥

K̇α
p,qF

s+θ
β

.
∥

∥

∥

(

k−1
∑

j=0

∑

G∈Gj

∑

m∈Zn

2j(s+θ)β|λGj,m|
βχj,m

)1/β∥
∥

∥

K̇α
p,q

. 2kθ
∥

∥

∥

(

k−1
∑

j=0

∑

G∈Gj

∑

m∈Zn

2jsβ|λGj,m|
βχj,m

)1/β∥
∥

∥

K̇α
p,q

= ct−
θ
2

∥

∥λ
∥

∥

K̇α
p,q f̃

s
β

. t−
θ
2

∥

∥f
∥

∥

K̇α
p,qF

s
β

. (4.11)

Substituting (4.11) into (4.10), this gives the desired estimate. Now we prove our claim.
Since g ∈ S (Rn), we have

|et∆(ϕj ∗ f1,k)(x)| . η
t−

1
2 ,m

∗ |ϕj ∗ f1,k|(x), m > n,

which can be estimated by

cη
t−

1
2 ,m

χ
B(x,2t

1
2 )
∗ |ϕj ∗ f1,k|(x) + η

t−
1
2 ,m

χ
Rn\B(x,2t

1
2 )
∗ |ϕj ∗ f1,k|(x). (4.12)

Obviously, the first term of (4.12) is bounded by cM(ϕj ∗ f1,k)(x). We have

η
t−

1
2 ,m

χ
Rn\B(x,2t

1
2 )
∗ |ϕj ∗ f1,k|(x)

=
∞
∑

i=1

η
t−

1
2 ,m

χ
B(x,2i+1t

1
2 )\B(x,2it

1
2 )
∗ |ϕj ∗ f1,k|(x)

6

∞
∑

i=1

2−imη
t−

1
2 ,m

χ
B(x,2i+1t

1
2 )
∗ |ϕj ∗ f1,k|(x)

. M(ϕj ∗ f1,k)(x)
∞
∑

i=1

2i(n−m)

. M(ϕj ∗ f1,k)(x).
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Estimate of f2,k. If j > k, then 2j( t
T
)
1
2 > 2j−k > 1, which yields that

et∆f2,k =

∞
∑

j=k

∑

G∈Gj

∑

m∈Zn

2−jθ(
t

T
)−

θ
2λGj,m2

−j n
2 2jθ(

t

T
)
θ
2 et∆Ψj

G,m

=

∞
∑

j=k

∑

G∈Gj

∑

m∈Zn

µGj,mb
j
G,m(x, t)θ,

where

CµGj,m = 2−jθ(
t

T
)−

θ
2λGj,m and bjG,m(x, t)θ = 2−j

n
2 2jθ(

t

T
)
θ
2Ψj

G,m,

and C as in (4.7). Let

µ∗ = {2−jθ(
t

T
)−

θ
2λGj,m, j ∈ N0, G ∈ G∗, m ∈ Z

n}.

Again, from Theorem 4.4 we obtain
∥

∥et∆f2,k
∥

∥

K̇α
p,qF

s+θ
β

.
∥

∥µ∗
∥

∥

K̇α
p,q f̃

s+θ
β

= ct−
θ
2

∥

∥

∥

(

∞
∑

j=k

∑

G∈Gj

∑

m∈Zn

2jsβ|λGj,m|
βχj,m

)1/β∥
∥

∥

K̇α
p,q

= ct−
θ
2

∥

∥λ
∥

∥

K̇α
p,q f̃

s
β

. t−
θ
2

∥

∥f
∥

∥

K̇α
p,qF

s
β

and this completes the proof. �

The following lemmas was proved in [27].

Lemma 4.13. Let α1, α2 ∈ R, 0 < t < ∞ and 1 < p, κ, q, r < ∞. We suppose that
1 < q 6 p <∞ and −n

p
< α1 6 α2 < n− n

q
. Then there exists a positive constant C > 0

independent of t such that
∥

∥et∆f
∥

∥

K̇
α1
p,r

6 Ct−
1
2
(n
q
−n

p
+α2−α1)

∥

∥f
∥

∥

K̇
α2
q,δ

for any f ∈ K̇α2
q,δ, where

δ =

{

r, if α2 = α1,
κ, if α2 > α1.

4.2. The results and their proofs. We look for mild solutions of (1.1) i.e. for solutions
of integral equation

u(t, x) = et∆u0(x) +

∫ t

0

e(t−τ)∆G(u)(τ, x)dτ. (4.14)

We set

F (u)(t, x) =

∫ t

0

e(t−τ)∆G(u)(τ, x)dτ.

We study Cauchy problem for semilinear parabolic equations (1.1) with initially data in
Herz-type Triebel-Lizorkin spaces and will assume that G belongs to G ∈ Lipµ. We set

s̄ =
n

p
+ α−

2

µ− 1
and ϑ =

s− s̄

2
.
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We now state the existence of mild solutions of (4.14).

Theorem 4.15. Let 1 < p, q <∞, 1 < β 6 ∞, µ > 1, 0 6 α < n− n
p
, s > n

p
− n

q
and

0 < s <
n

p
+ α.

Let G ∈ Lipµ and

0 < sµ < µ.

(i) For all initial data u0 in K̇
α
p,qF

s
β with s > s̄, there exists a maximal solution u to (4.14)

in C([0, T0), K̇
α
p,qF

s
β ) with T0 > C

∥

∥u0
∥

∥

− 1
ϑ

K̇α
p,qF

s
β

.

(ii) Let θ < 2ϑ(µ − 1) or θ = 2ϑ(µ− 1), s > 1 and G ∈ Lips0 with

s0 =

n
p
+ α

n
p
+ α− s+ 1

.

We have

u− et∆u0 ∈ C([0, T0), K̇
α
p,qF

s+θ
β ).

Proof. We will do the proof into two steps. Our arguments are based on [45].
Step 1. We prove part (i) of the theorem.
Substep 1.1. In this step we prove the existence of a solution to (4.14). Recall that

F (u)(t, x) =

∫ t

0

e(t−τ)∆G(u)(τ, x)dτ and
1

p̃
=

1

p
+
α− s

n
.

For simplicity, we consider the spaces

Y = C([0, T ), K̇α
p,qF

s
β) and X = C([0, T ), K̇0

p̃,q).

Further, we consider the sequence of functions

u0 = et∆u0 and uj+1 = u0 + F (uj), j ∈ N. (4.16)

From Lemma 4.13 and Sobolev embedding K̇α
p,qF

s
β →֒ K̇0

p̃,q, see Theorem 2.10, we deduce
that

∥

∥u0
∥

∥

K̇0
p̃,q

.
∥

∥u0
∥

∥

K̇0
p̃,q

.
∥

∥u0
∥

∥

K̇α
p,qF

s
β

. (4.17)

Let u, v ∈ X . Since, p̃
µ
> 1, again, by Lemma 4.13 we obtain

∥

∥F (u)(t, ·)− F (v)(t, ·)
∥

∥

K̇0
p̃,q

6

∫ t

0

∥

∥e(t−τ)∆(G(u)(τ, ·)−G(v)(τ, ·))
∥

∥

K̇0
p̃,q

dτ

6

∫ t

0

∥

∥e(t−τ)∆(G(u)(τ, ·)−G(v)(τ, ·))
∥

∥

K̇0
p̃,

q
µ

dτ

6 C

∫ t

0

(t− τ)−
n(µ−1)

2p̃

∥

∥G(u)(τ, ·)−G(v)(τ, ·)
∥

∥

K̇0
p̃
µ ,

q
µ

dτ, (4.18)

where the second estimate follows by the embedding K̇0
p̃, q

µ

→֒ K̇0
p̃,q and the positive

constant C is independent of t. Observe that

|G(u)(τ, ·)−G(v)(τ, ·)| 6 |u− v|(|u|µ−1 + |v|µ−1)
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and
µ

p̃
=

1

p̃
+
µ− 1

p̃
,

µ

q
=

1

q
+
µ− 1

q
.

Therefore, by Hölder’s inequality
∥

∥G(u)(τ, ·)−G(v)(τ, ·)
∥

∥

K̇0
p̃
µ ,

q
µ

(4.19)

6
∥

∥u(τ, ·)− v(τ, ·)
∥

∥

K̇0
p̃,q

(

∥

∥u(τ, ·)
∥

∥

µ−1

K̇0
p̃,q

+
∥

∥v(τ, ·)
∥

∥

µ−1

K̇0
p̃,q

)

.

Substituting (4.19) into (4.18) and then using

n(µ− 1)

2p̃
=

(µ− 1)

2
(
n

p
+ α− s) = 1−

(µ− 1)(s− s̄)

2
,

this gives
∥

∥F (u)− F (v)
∥

∥

X
6 CT

(µ−1)(s−s̄)
2

∥

∥u− v
∥

∥

X

(

∥

∥u
∥

∥

µ−1

X
+
∥

∥v
∥

∥

µ−1

X

)

. (4.20)

In view of (4.16), (4.20) and (4.17), we obtain
∥

∥uj+1
∥

∥

X
.

∥

∥u0
∥

∥

X
+
∥

∥F (uj)
∥

∥

X

6
∥

∥u0
∥

∥

K̇α
p,qF

s
β

+ CT
(µ−1)(s−s̄)

2

∥

∥uj
∥

∥

µ

X

and
∥

∥uj+1 − uj
∥

∥

X
6 CT

(µ−1)(s−s̄)
2

∥

∥uj − uj−1
∥

∥

X

(

∥

∥uj
∥

∥

µ−1

X
+
∥

∥uj−1
∥

∥

µ−1

X

)

.

Let

̥ = (
1

C
)

2
(µ−1)(s−s̄)

(

µ
−1
µ−1 − µ

−µ
µ−1

)
2

s−s̄ .

As in [27] and [37], the fixed point argument shows that if

T < ̥2
−2

(µ−1)(s−s̄) (1−
1

µ
)µ−1

∥

∥u0
∥

∥

−2
s−s̄

K̇α
p,qF

s
β

, (4.21)

then the sequence {uj}j converges strongly in X to a limit u which is a solution of the
integral equation (4.14).

Substep 1.2. In this step we prove that the solution of the integral equation (4.14)
belongs to Y . We employ the notation of Substep 1.1. We claim that

∥

∥uj+1
∥

∥

Y
6

∥

∥u0
∥

∥

K̇α
p,qF

s
β

+ CT
(µ−1)(s−s̄)

2

∥

∥uj
∥

∥

µ

Y
. (4.22)

From (4.21) and (4.22), the sequence {uj}j is bounded. Then we can extract a subse-
quence {uji}i converges weakly to ũ ∈ Y . From Step 1, {uji}i converges weakly to u, so
u = ũ ∈ Y . Now we prove the claim. Let u ∈ Y . By Lemma 4.8 and Theorem 3.25 we
obtain

∥

∥F (u)(t, ·)
∥

∥

K̇α
p,qF

s
β

6

∫ t

0

∥

∥e(t−τ)∆(G(u)(τ, ·))
∥

∥

K̇α
p,qF

s
β

dτ

6 C

∫ t

0

(t− τ)−
s−sµ

2

∥

∥G(u)(τ, ·)
∥

∥

K̇α
p,qF

sµ
β

dτ

6 C

∫ t

0

(t− τ)−
s−sµ

2

∥

∥u
∥

∥

µ

K̇α
p,qF

s
β

dτ

6 CT 1− s−sµ
2

∥

∥u
∥

∥

µ

Y
.
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This leads to (4.22), with the help of the fact that
∥

∥u0
∥

∥

K̇α
p,qF

s
β

6 C
∥

∥u0
∥

∥

K̇α
p,qF

s
β

by, Lemma 4.8 and

1−
s− sµ

2
=

(µ− 1)(s− s̄)

2
> 0.

From (4.21), we easily obtain T0 > C
∥

∥u0
∥

∥

−2
s−s̄

K̇α
p,qF

s
β

.

Substep 1.3. We will prove the uniqueness of the solution of (4.14). Let u, v ∈ Y be
two solutions for the same initial data u0. Using the fact that u and u solve (4.14), we
obtain

∥

∥u− v
∥

∥

X
=

∥

∥F (u)− F (v)
∥

∥

X
6 2CT

(µ−1)(s−s̄)
2 Aµ−1

∥

∥u− v
∥

∥

X

where

A = sup
t∈[0,T ]

(
∥

∥u(t·)
∥

∥

µ−1

K̇0
p̃,q

,
∥

∥v(t·)
∥

∥

µ−1

K̇0
p̃,q

), T < max(T0(u), T0(v)).

Taking T small enough such that

2CT
(µ−1)(s−s̄)

2 Aµ−1 <
1

2

we obtain u = v on [0, T ]. We iterate this to prove that T0(u) = T0(v) and u = v on
[0, T0(u)), which ensures the uniqueness of the solution of (4.14).

Step 2. We prove part (ii) of the theorem. We split our considerations into the cases
θ < 2ϑ(µ− 1) and θ = 2ϑ(µ− 1).
• Case 1. θ < 2ϑ(µ− 1). Let u ∈ Y be a solution of (4.14) with initial data u0. Observe
that 2ϑ(µ − 1) = (µ − 1)(s− s̄) = 2 − s + sµ. Thanks to Lemma 4.8 and Theorem 3.25
it follows

∥

∥u− et∆u0
∥

∥

K̇α
p,qF

s+θ
β

6

∫ t

0

∥

∥e(t−τ)∆(G(u)(τ, ·))
∥

∥

K̇α
p,qF

s+θ
β

dτ

6 C

∫ t

0

(t− τ)−
θ
2
−

s−sµ
2

∥

∥G(u)(τ, ·)
∥

∥

K̇α
p,qF

sµ
β

dτ

6 CT
1− θ

2
− s−sµ

2
0

∥

∥u
∥

∥

µ

Y
,

since 1− θ
2
− s−sµ

2
= −θ

2
+ (µ−1)(s−s̄)

2
> 0.

• Case 2. θ = 2ϑ(µ− 1). Observe that sµ < µ, this gives

µ >

n
p
+ α

n
p
+ α− s+ 1

= s0 > 1 and s = 1 +
s0 − 1

s0

(n

p
+ α

)

.

In addition

0 < sµ < s0 <
n

p
+ α and s0 >

n
p
+ α

n
q
+ α + 1

.

Assume that s + θ = 2 + sµ < s0. Let 2 + sµ < s1 < s0 and 0 < γ < 1 be such that
s+ θ = γsµ + (1− γ)s1. From interpolation inequality (2.9), Lemma 4.8, Theorems 3.25
and 3.38 we get

∥

∥u− et∆u0
∥

∥

K̇α
p,qF

s+θ
β
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can be estimated by
∫ t

0

∥

∥e(t−τ)∆(G(u)(τ, ·))
∥

∥

K̇α
p,qF

s+θ
β

dτ

6 C

∫ t

0

∥

∥e(t−τ)∆G(u)(τ, ·)
∥

∥

γ

K̇α
p,qF

sµ
β

∥

∥e(t−τ)∆G(u)(τ, ·)
∥

∥

1−γ

K̇α
p,qF

s1
β

dτ

6 C

∫ t

0

∥

∥G(u)(τ, ·)
∥

∥

γ

K̇α
p,qF

sµ
γβ

∥

∥G(u)(τ, ·)
∥

∥

1−γ

K̇α
p,qF

s0
∞
dτ

6 CT0
∥

∥u
∥

∥

γµ

Y

∥

∥u
∥

∥

(1−γ)s0

Y
.

Now assume that θ + s = 2 + sµ > s0. Let κ > 0 be such that 2 + sµ − s0 < κ < 2. Let
0 < ̺ < 1 be such that s+ θ = ̺sµ+(1−̺)(s0+κ). Again, from interpolation inequality
we obtain

∥

∥u− et∆u0
∥

∥

K̇α
p,qF

s+θ
β

is bounded by

∫ t

0

∥

∥e(t−τ)∆(G(u)(τ, ·))
∥

∥

K̇α
p,qF

s+θ
β

dτ

6 C

∫ t

0

∥

∥e(t−τ)∆G(u)(τ, ·)
∥

∥

̺

K̇α
p,qF

sµ
β̺

∥

∥e(t−τ)∆G(u)(τ, ·)
∥

∥

1−̺

K̇α
p,qF

s0+κ
∞

dτ.

Applying Hölder’s inequality, Lemma 4.8, Theorems 3.25 and 3.38, we estimate the last
expression by

C
(

∫ t

0

∥

∥e(t−τ)∆G(u)(τ, ·)
∥

∥

K̇α
p,qF

sµ
β̺

dτ
)̺

×
(

∫ t

0

∥

∥e(t−τ)∆G(u)(τ, ·)
∥

∥

K̇α
p,qF

s0+κ
∞

dτ
)1−̺

6 C
(

∫ t

0

∥

∥G(u)(τ, ·)
∥

∥

K̇α
p,qF

sµ
β̺

dτ
)̺

×
(

∫ t

0

(t− τ)−
κ
2

∥

∥G(u)(τ, ·)
∥

∥

K̇α
p,qF

s0
∞
dτ

)1−̺

6 CT
1+(̺−1)κ

2
0

∥

∥u
∥

∥

̺µ

Y

∥

∥u
∥

∥

(1−̺)s0

Y
.

The proof is completed. �

Using a combination of the arguments used in the proof of Theorem 4.15 with the help
of Theorem 3.38 we get the following result:

Theorem 4.23. Let 0 < p, q <∞, 0 6 α < n− n
p
, µ >

n
p
+α

n
q
+α+1

and

1 < µ <
n

p
+ α.

Let G ∈ Lipµ and

s = 1 +
µ− 1

µ

(n

p
+ α

)

.
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(i) For all initial data u0 in K̇
α
p,qF

s
β with s > s̄, there exists a maximal solution u to (4.14)

in C([0, T0), K̇
α
p,qF

s
β ) with T0 > C

∥

∥u0
∥

∥

− 1
ϑ

K̇α
p,qF

s
β

.

(ii) Let θ 6 2ϑ(µ− 1). We have

u− et∆u0 ∈ C([0, T0), K̇
α
p,qF

s+θ
β ).

Let s > n
p
+ α. Using Theorem 3.37, the embedding K̇α

p,qF
s
β →֒ L∞, we immediately

arrive at the following result. We omit the proof since is essentially similar to the proof
of Theorem 4.15.

Theorem 4.24. Let 1 < p, q < ∞, 1 < β < ∞, µ > 1 and 0 6 α < n − n
p
. Let G ∈ Lipµ

and
n

p
+ α < s < µ.

(i) For all initial data u0 in K̇
α
p,qF

s
β with s > s̄, there exists a maximal solution u to (4.14)

in C([0, T0), K̇
α
p,qF

s
β ) with T0 > C

∥

∥u0
∥

∥

− 1
ϑ

K̇α
p,qF

s
β

.

(ii) Let θ < 2. We have

u− et∆u0 ∈ C([0, T0), K̇
α
p,qF

s+θ
β ).

Remark 4.25. Corresponding statements to Theorem 4.15 were proved by Ribaud [45],
with θ < 2ϑ(µ− 1), α = 0, p = q and β = 2, under the assumption

n

p
−

n

µp
< s < min

((1 + n
p
)(µ− 1)

µ
,
n

p

)

. (4.26)

Here we are requiring

max
(

0,
n

p
−
n

µ

)

< s < min
(

1 +
µ− 1

µ

n

p
,
n

p

)

,

which improve (4.26).
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525–536.

[34] M. Izuki and Y. Sawano, Atomic decomposition for weighted Besov and Triebel-Lizorkin spaces.

Math. Nachr 285 (2012), 103–126.
[35] S. Janson, Harmonic analysis and partial differential equations. Proceedings, El Escorial 1987. (Lect.

Notes Math., vol. 1384, pp. 193 301) Berlin Heidelberg New York: Springer 1989
[36] J. Johnsen, Pointwise multiplication of Besov and Triebel-Lizorkin spaces. Math. Nachr 175 (1995),

85–133.

http://arxiv.org/abs/1808.08227
http://arxiv.org/abs/2108.00718


NEMYTZKIJ OPERATORS AND SEMI LINEAR PARABOLIC EQUATIONS 37

[37] H. Kozono and M. Yamazaki, Semilinear heat equations and the Navier-Stokes equation with distri-

butions in new function spaces as initial data. Comm. in Partial Differential Equations 19 (1994),
959–1014.

[38] X. Li and D. Yang, Boundedness of some sublinear operators on Herz spaces. Illinois J. Math 40

(1996), 484–501.
[39] S. Lu and D. Yang, Herz-type Sobolev and Bessel potential spaces and their applications. Sci. in

China (Ser. A) 40 (1997), 113–129.
[40] S. Lu, D. Yang and G. Hu, Herz type spaces and their applications. Beijing: Science Press, 2008
[41] M. Marcus and V. J. Mizel, Complete characterization of functions which act, via superposition, on

Sobolev spaces. Trans. Am. Math. Soc 251 (1979), 187–218.
[42] C. Miao and B. Zhang, The Cauchy problem for semilinear parabolic equations in Besov spaces.

Houston J. Math 30 (2004), 829–878.
[43] M. A. Ragusa, Homogeneous Herz spaces and regularity results. Nonlinear Anal 71 (2009), e1909–

e1914.
[44] F. Ribaud, Semilinear parabolic equation with distributions as initial data. Discrete Cont. Dynam.

Sys 3 (1997), 305–316.
[45] F. Ribaud, Cauchy problem for semilinear parabolic equation with data in Hs

p(R
n) spaces. Rev. Mat.

Iberoramericana 14 (1998), 1–45.
[46] T. Runst, Mapping properties of non-linear operators in spaces of Triebel-Lizorkin and Besov type.

Anal. Math 12 (1986), 313–346.
[47] T. Runst and W. Sickel, Sobolev spaces of fractional order, Nemytskij operators and nonlinear partial

differential equations. de Gruyter, Berlin 1996.
[48] Y. Sawano, Theory of Besov spaces. Developments in Math. 56, Springer, Singapore, 2018.
[49] W. Sickel, On pointwise multipliers in Besov-Triebel-Lizorkin spaces. Seminar Analysis 1986 (ed. by

B.-W. Schulze and H. Triebel), Teubner-Texte Math., 96, Teubner, Leipzig 1987.
[50] W. Sickel, On boundedness of superposition operators in spaces of Triebel-Lizorkin type. Czechoslo-

vak. Math. J 39 (114) (1989), 323–347.
[51] W. Sickel, Necessary conditions on composition operators acting on Sobolev spaces of fractional

order. The critical case 1 < s < n/p. Forum Math 9 (1997), 267–302.
[52] W. Sickel, Necessary conditions on composition operators acting between Sobolev spaces of fractional

order. The critical case 1 < s < n/p. II. Forum Math 10 (1998), 199–231.
[53] W. Sickel, Necessary conditions on composition operators acting between Besov spaces. The case

1 < s < n/p. III. Forum Math 10 (1998), 303–327.
[54] L. Tang and D. Yang, Boundedness of vector-valued operators on weighted Herz spaces. Approx. Th.

& its Appl 16 (2000), 58–70.
[55] S. Tayachi and F. B. Weissler, The nonlinear heat equation involving highly singular initial values

and new blowup and life span results, Journal of Elliptic and Parabolic Equations 4 (2018), 141–176.
[56] E. Terraneo, Non-uniqueness for a critical non-linear heat equation. Comm. Partial Differential

Equations 27 (2002), 185–218.
[57] Y. Tsutsui, The Navier-Stokes equations and weak Herz spaces. Adv. Differential Equations 16

(2011), 1049–1085.
[58] H. Triebel, Theory of function spaces. Birkhäuser Verlag, Basel, 1983.
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