
ar
X

iv
:2

20
1.

06
07

6v
1 

 [
m

at
h.

L
O

] 
 1

6 
Ja

n 
20

22

ADMISSIBILITY OF Π2-INFERENCE RULES: INTERPOLATION, MODEL

COMPLETION, AND CONTACT ALGEBRAS

NICK BEZHANISHVILI, LUCA CARAI, SILVIO GHILARDI, AND LUCIA LANDI

Abstract. We devise three strategies for recognizing admissibility of non-standard inference rules via inter-
polation, uniform interpolation, and model completions. We apply our machinery to the case of symmetric
implication calculus S2IC, where we also supply a finite axiomatization of the model completion of its alge-
braic counterpart, via the equivalent theory of contact algebras. Using this result we obtain a finite basis
for admissible Π2-rules.

1. Introduction

The use of non-standard rules has a long tradition in modal logic starting from the pioneering work of
Gabbay [20], who introduced a non-standard rule for irreflexivity. Non-standard rules have been employed
in temporal logic in the context of branching time logic [8] and for axiomatization problems [21] concerning
the logic of the real line in the language with the Since and Until modalities. General completeness results
for modal languages that are sufficiently expressive to define the so-called difference modality have been
obtained in [37]. For the use of the non-standard density rule in many-valued logics we refer to [32] and [35].

Recently, there has been a renewed interest in non-standard rules in the context of the region-based
theories of space [36]. One of the key algebraic structures in these theories is that of contact algebras. These
algebras form a discriminator variety, see, e.g., [5]. Compingent algebras are contact algebras satisfying two
∀∃-sentences (aka Π2-sentences) [5, 17]. De Vries [17] established a duality between complete compingent
algebras and compact Hausdorff spaces. This duality led to new logical calculi for compact Hausdorff spaces
in [3] for a two-sorted modal language and in [5] for a uni-modal language with a strict implication. Key to
these approaches is a development of logical calculi corresponding to contact algebras. In [5] such a calculus is
called the strict symmetric implication calculus and is denoted by S2IC. The extra Π2-axioms of compingent
algebras then correspond to non-standard Π2-rules, which turn out to be admissible in S2IC. This generates
a natural question of investigating admissibility of Π2-rules in S2IC studied in [5] and in general in logical
calculi corresponding to varieties of modal algebras. In fact, rather little is known about the problem of
recognizing admissibility for such non-standard rules, although this problem has already been raised in [37].
This is the question that we address in this paper.

We undertake a systematic study of admissibility of Π2-rules. As far as we are aware, this is a first
attempt to study admissibility in the context of non-standard inference rules. In fact, we show that there
are tools already available in the literature on modal logic that can be fruitfully employed for this aim: these
tools include algorithms for deciding conservativity, as well as algorithms for computing local and global
interpolants. We devise three different strategies for recognizing admissibility of Π2-rules over some system
S. The definition of Π2-rules that we consider is taken from [5] and is close to that of Balbiani et al. [3].

The first strategy applies to a logic S with the interpolation property. We show that Π2-rules are ef-
fectively recognizable in S in case S has the interpolation property and conservativity is decidable in S.
The second strategy applies to logics admitting local and global uniform interpolants, respectively. Global
interpolants are strictly related to model completions and to axiomatizations of existentially closed struc-
tures [25], thus establishing a direct connection between Π2-rules and model-theoretic machinery. Directly
exploiting this connection leads to our third strategy. We apply the third strategy to our main case study to
show admissibility of various Π2-rules in S2IC, thus recovering admissibility results from [5] as special cases
(we also show that the admissibility problem for S2IC is co-NExpTime-complete). The model completion
we use to this aim is that of the theory of contact algebras.
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Finally, we prove the technically most challenging result of the paper: that the model completion of contact
algebras is finitely axiomatizable. As a consequence of this result we obtain a finite basis for admissible Π2-
rules in S2IC.

2. Preliminaries

A modal signature Σ is a finite signature comprising Boolean operators ∧,∨,→,↔,¬ as well as additional
operators of any arity called the modal operators. Out of Σ-symbols and out of a countable set of variables
x, y, z, . . . , p, q, r, . . . one can build the set of propositional Σ-formulas. Σ-formulas might be indicated both
with the greek letters ϕ, ψ, . . . and the latin capital letters F,G, . . . . Notations such as F (x) mean that the
Σ-formula F contains at most the variables from the tuple x; the notation F (ϕ/x) means the simultaneous
componentwise substitution of the tuple of formulas ϕ for the tuple of variables x.

A modal system S (over the modal signature Σ) is a set of Σ-formulas comprising tautologies, the distri-
bution axioms 1

�[ϕ, . . . , ψ → ψ′, . . . , ϕ] → (�[ϕ, . . . , ψ, . . . , ϕ] → �[ϕ, . . . , ψ′, . . . , ϕ])

and closed under the rules of modus ponens (MP) (from ϕ and ϕ → ψ infer ψ), uniform substitution (US)
(from F (x) infer F (ψ/x)), and necessitation (N) (from ψ infer �[ϕ, . . . , ψ, . . . , ϕ]).

We write ⊢S ϕ or S ⊢ ϕ to mean that ϕ ∈ S. If ⊢S ϕ→ ψ holds, we say that ψ is a local consequence of ϕ
(modulo S). We shall also need the global consequence relation ϕ ⊢S ψ: this relation holds when ψ belongs
to the smallest set of formulas containing S and ϕ that is closed under modus ponens and necessitation
(notice that closure under uniform substitution is not required).

We say that S is decidable iff the relation ⊢S ϕ is decidable. We also say that S is locally tabular iff for
every finite tuple of propositional variables x there are finitely many formulas ψ1(x), . . . , ψn(x) such that for
every further formula ϕ(x) there is some i = 1, . . . , n such that ⊢S ϕ↔ ψi.

We say that S has the (local) interpolation property iff for every pair of Σ-formulas ϕ(x, y), ψ(y, z) such

that ⊢S ϕ → ψ there is a formula θ(y) such that ⊢S ϕ → θ and ⊢S θ → ψ. Similarly, we say that S
has the global interpolation property iff for every pair of Σ-formulas ϕ(x, y), ψ(y, z) such that ϕ ⊢S ψ there
is a formula θ(y) such that ϕ ⊢S θ and θ ⊢S ψ. Using Lemma 2.1 below it is easily seen that the local

interpolation property implies the global interpolation property (the converse however does not hold, even
over S4, see [30, 31]).

Let us call a definable modality or simply a modality any formulaM(x) (where only the variable x occurs)
such that x ⊢S M(x) and ⊢S M(x1 ∧ x2/x) ↔ M(x1/x) ∧M(x2/x) (notice that ⊢S M(⊤/x) follows as a
consequence).

Lemma 2.1 (Deduction). If ϕ ⊢S ψ holds, there is a modality M(x) such that ⊢S M(ϕ/x) → ψ.

Proof. The required modality depends on the derivation and is built up inductively as follows. For length 1
derivations consisting of axioms or of ϕ, we take M(x) to be x. If ψ is obtained from ψ′ → ψ and ψ′ via
modus ponens, then by induction we have modalities M1(x),M2(x) such that ⊢S M1(ϕ/x) → (ψ′ → ψ) and
⊢S M2(ϕ/x) → ψ′. Then we get ⊢S M1(ϕ/x) ∧M2(ϕ/x) → ψ and M1(x) ∧M2(x) is our desired modality.
If ψ is obtained by the necessitation rule, it is of the kind �[θ, . . . , ψ′, . . . , θ] and we have by induction a
modality M(x) such that ⊢S M(ϕ/x) → ψ′; we then get by necessitation and normality

⊢S �[θ, . . . ,M(ϕ/x), . . . , θ] → �[θ, . . . , ψ′, . . . , θ].

Since ⊢S ⊥ → θ, by iterated applications of necessitation and normality, we obtain

⊢S �[⊥, . . . ,M(ϕ/x), . . . ,⊥] → �[θ, . . . ,M(ϕ/x), . . . , θ]

and also

⊢S �[⊥, . . . ,M(ϕ/x), . . . ,⊥] → �[θ, . . . , ψ′, . . . , θ]

by transitivity of implication. Thus, ⊢S �[⊥, . . . ,M(ϕ/x), . . . ,⊥] → ψ. It is straightforward to see that
�[⊥, . . . ,M(x), . . . ,⊥] is a modality. �

1Extension to non normal operators needs to be investigated.
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Lemma 2.2 (Replacement). For every n-tuple of variables x := x1, . . . , xn, for every formula ϕ(x, y), and

for every pair of n-tuples of formulas ψ := ψ1, . . . , ψn, ψ
′ := ψ′

1, . . . ψ
′
n we have that

n
∧

i=1

ψi ↔ ψ′
i ⊢S ϕ(ψ/x, y) ↔ ϕ(ψ′/x, y).

As a consequence, by Lemma 2.1, there is a modality M(x) (depending on ϕ, ψ, ψ′) such that

⊢S

n
∧

i=1

M(ψi ↔ ψ′
i/x) ∧ ϕ(ψ/x, y) → ϕ(ψ′/x, y).

Proof. We prove the statement by induction on ϕ. If ϕ is a propositional variable or its main connective is
a Boolean connective, the statement is trivial. If the main connective of ϕ is a Box operator, it is sufficient
to see that the following replacement rule

from ψ ↔ ψ′ infer �[θ, . . . , ψ, . . . , θ] ↔ �[θ, . . . , ψ′, . . . , θ]

is derivable. In fact, if ⊢S ψ ↔ ψ′, then ⊢S ψ → ψ′ and ⊢S �[θ, . . . , ψ, . . . , θ] → �[θ, . . . , ψ′, . . . , θ] follow.
Analogously, �[θ, . . . , ψ′, . . . , θ] → �[θ, . . . , ψ, . . . , θ] and finally �[θ, . . . , ψ, . . . , θ] ↔ �[θ, . . . , ψ′, . . . , θ]. �

We say that S has universal modality iff Σ contains a unary operator [∀] and S includes the following
formulas:

[∀]ϕ→ ϕ, [∀]ϕ→ [∀][∀]ϕ,

ϕ→ [∀]¬[∀]¬ϕ, [∀](ϕ→ ψ) → ([∀]ϕ→ [∀]ψ),
∧

i[∀](ϕi ↔ ψi) → (�[ϕ1, . . . , ϕn] ↔ �[ψ1, . . . , ψn]) (for all � ∈ Σ).

For systems with universal modalities, Lemmas 2.1 and 2.2 can be simplified as follows:

Lemma 2.3 (Deduction-Replacement). Let S have a universal modality; then

(i): ϕ ⊢S ψ holds iff ⊢S [∀]ϕ→ ψ;
(ii): the following sentences are provable

n
∧

i=1

[∀](ψi ↔ ψ′
i) ∧ ϕ(ψ/x, y) → ϕ(ψ′/x, y)

for every pair of n-tuples of formulas ψ := ψ1, . . . , ψn, ψ
′ := ψ′

1, . . . , ψ
′
n.

We finally introduce Π2-rules, which are the main objects of study of this paper.

Definition 2.4. A Π2-rule is a rule of the form

(ρ)
F (ϕ/x, p) → χ

G(ϕ/x) → χ

where F (x, p), G(x) are formulas. We say that θ is obtained from ψ by an application of the rule ρ if

ψ = F (ϕ/x, p) → χ and θ = G(ϕ/x) → χ, where ϕ is a tuple of formulas, χ is a formula, and p is a tuple of
propositional letters not occurring in ϕ, χ.

The definition of Π2-rules follows the one of [5] and is close to that of Balbiani et al. [3]. We now consider
the effect of the addition of Π2-rules to a system S.

Definition 2.5 (Proofs with Π2-rules). Let Θ be a set of Π2-rules. For a formula ϕ, we say that ϕ is
derivable in S using the Π2-rules in Θ, and write ⊢S+Θ ϕ, provided there is a proof ψ1, . . . , ψn such that
ψn = ϕ and each ψi is an instance of an axiom of S, or is obtained either by (MP), (N) or by an application
of a rule ρ ∈ Θ from some previous ψj ’s.

We are interested in characterizing those Π2-rules that can be freely used in a system without affecting
its deductive power.

Definition 2.6. A rule ρ is admissible in the system S if for each formula ϕ, from ⊢S+ρ ϕ it follows that
⊢S ϕ. The admissibility problem for Π2-rules is the following: given a Π2-rule ρ and a system S, decide
whether it is admissible or not in S.
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In the rest of the paper we will study admissibility of Π2-rules.

3. Conservative Extensions

In this section we describe how to determine whether a Π2-rule is admissible via conservative extensions.
Conservative extensions in modal logics were investigated in [24] and in description logics in [23, 29, 7]; we
recall here the related definition:

Definition 3.1. Let ϕ1(x), ϕ2(x, y) be Σ-formulas; we say that ϕ1(x) ∧ ϕ2(x, y) is a conservative extension
of ϕ1(x) in S iff for every further Σ-formula ψ(x), we have that

⊢S ϕ1 ∧ ϕ2 → ψ ⇒ ⊢S ϕ1 → ψ.

The conservativity problem for S is the following: given ϕ1(x) and ϕ2(x, y) decide whether that ϕ1(x) ∧
ϕ2(x, y) is a conservative extension of ϕ1(x) in S.

Theorem 3.2. Assume that S has the interpolation property. Then a Π2-rule ρ of the form

F (ϕ/x, p) → χ

G(ϕ/x) → χ

is admissible in S iff G(x) ∧ F (x, p) is a conservative extension of G(x) in S.

Proof. For the left-to-right side, assume that ρ is admissible and that ⊢S F (x, p) ∧G(x) → H(x). Then we
have ⊢S F (x, p) → (G(x) → H(x)), and by admissibility ⊢S G(x) → (G(x) → H(x)) which is the same as
⊢S G(x) → H(x). This shows that G(x) ∧ F (x, p) is a conservative extension of G(x) in S.

For the converse, assume that G(x) ∧ F (x, p) is a conservative extension of G(x) in S and that

⊢S F (ϕ(y)/x, p) → χ(y) .

Let x = x1, . . . , xn; since we have
n
∧

i=1

(xi ↔ ϕi(y)) ⊢S F (x, p) ↔ F (ϕ(y)/x, p),

by applying the Replacement Lemma 2.2, we obtain a modality M(x) such that

⊢S

n
∧

i=1

M(xi ↔ ϕi(y)) ∧ F (x, p) → F (ϕ(y)/x, p).

Thus, by transitivity of implication, we have

⊢S

n
∧

i=1

M(xi ↔ ϕi(y)) ∧ F (x, p) → χ(y);

that is equivalent to

⊢S F (x, p) →

(

n
∧

i=1

M(xi ↔ ϕi(y)) → χ(y)

)

.

By the interpolation property, there is θ(x) such that

(1) ⊢S F (x, p) → θ(x) and ⊢S θ(x) →

(

n
∧

i=1

M(xi ↔ ϕi(y)) → χ(y)

)

.

The former entailment implies ⊢S G(x) ∧ F (x, p) → θ(x) and so, by conservativity, we get ⊢S G(x) → θ(x).

From the second entailment of (1), by transitivity, we then obtain

⊢S G(x) →

(

n
∧

i=1

M(xi ↔ ϕi(y)) → χ(y)

)

.

Applying the replacements ϕi(y)/xi, we finally get

⊢S G(ϕ(y)/x) → χ(y),

showing that ρ is admissible. �
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Remark 3.3. We underline that, without interpolation, the right-to-left implication of Theorem 3.2 may
fail. In fact, let S be a locally tabular logic without interpolation (see [30, 31] for examples) and suppose that
interpolation fails for the entailment ⊢S F (x, p) → H(x,w). Let G(x) be the conjunction of the x-formulas

implied by F (up to logical equivalence, there are only finitely many of them). Then G ∧ F is obviously
conservative over G. However, the relative Π2-rule

F (ϕ/x, p) → χ

G(ϕ/x) → χ

is not admissible. Indeed, if it were, from ⊢S F (x, p) → H(x,w) we would obtain ⊢S G(x) → H(x,w)

implying that G(x) is an interpolant.

Thus, we have obtained the following:

Corollary 3.4. If S has the interpolation property and conservativity is decidable in S, then Π2-rules are
effectively recognizable in S.

Remark 3.5. It is proved in [24] that the conservativity problem is NexpTime-complete in the modal
systems K, S5 and that it is in ExpSpace and NexpTime-hard in S4. All these logics have the interpolation
property [31], so according to the results of this section, the same lower and upper bounds apply to the
admissibility problem for Π2-rules.

4. Uniform Interpolants

We now present another strategy to determine the admissibility of Π2-rules via (local and global) uniform
interpolation: this is a strengthening of ordinary interpolation.

Definition 4.1. A uniform local pre-interpolant of a formula ϕ(x, y) wrt the variables x is a formula ∃lxϕ

such that: (i) in ∃lxϕ at most the variables y occur; (ii) for every formula ψ(y, z), we have

(2) ⊢S ∃lxϕ→ ψ iff ⊢S ϕ→ ψ .

Since ⊢S ϕ→ ∃lxϕ holds as a special case by taking ψ equal to ϕ, if a uniform local pre-interpolant exists
for every ϕ, then S has the interpolation property. The converse implication holds in case the logic is locally
tabular, because in that case one can take as ∃lxϕ the conjunction of all formulas ψ(y) which are implied by

ϕ.2 Uniform interpolants rarely exist, they are well-studied in the literature [25].
In case uniform local pre-interpolants exist, we have a trivial criterion for conservativity (and consequently

for admissibility of Π2-rules). This was already pointed out in [24], we repeat the same observation in our
context.

Proposition 4.2. If the local uniform pre-interpolant ∃lpF exists, then a Π2-rule ρ of the form

F (ϕ/x, p) → χ

G(ϕ/x) → χ

is admissible in S iff

(3) ⊢S G→ ∃lpF.

Proof. Combining Theorem 3.2 and (2) above, it is sufficient to observe that ⊢S G → ∃lpF holds precisely

iff G(x) ∧ F (x, p) is a conservative extension of G(x) in S. �

In the remaining part of this section, we will be interested in global uniform interpolants: these are
obtained by replacing in (2), local consequence relation by global consequence relation. In more detail:

2It should be clear however that local tabularity alone is not sufficient for existence of local uniform pre-interpolants, because
the set of formulas of the kind ψ(y, z) implied by ϕ is not finite, modulo equivalence in S: ordinary interpolation is needed for

the conjunction over the finite set {ψ(y) | ϕ→ ψ} to be a local uniform pre-interpolant.
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Definition 4.3. A uniform global pre-interpolant of a formula ϕ(x, y) wrt the variables x is a formula ∃gxϕ
such that: (i) in ∃gxϕ at most the variables y occur; (ii) for every formula ψ(y, z), we have

(4) ∃gxϕ ⊢S ψ iff ϕ ⊢S ψ.

Since we will exclusively be interested in global uniform interpolants, we will write ∃xϕ for ∃gxϕ and when
we speak of uniform interpolants, we will always mean global uniform interpolants. We write ∀xϕ for ¬∃x¬ϕ;
notice that, for every formula ψ(y, z), we have

(5) ψ ⊢S ∀xϕ iff ψ ⊢S ϕ.

Existence of local and global interpolants are independent: for instance, in the basic modal logic K local
uniform interpolants exist and global uniform interpolants do not exist [27]. For the converse phenomena, it
is sufficient to recall once more the counterexamples from [30, 31] (notice that, in the locally tabular case,
uniform local/global interpolants collapse to the corresponding ordinary local/global interpolants).

There is no evident reason why global uniform interpolants could lead to recognizability of Π2-rules, as it
happens for the local uniform interpolants case (see Proposition 4.2 above). We will nevertheless show that
this is the case when global uniform interpolants are accompanied by universal modalities.

In the remaining part of this section and in the next section, we assume that our modal system S has a
universal modality. We may view our modal signature Σ as a first-order signature and Σ-formulas as terms
of this signature. For a modal system S, an S-algebra is a Boolean algebra with operators (one operator
of suitable arity for each � ∈ Σ) satisfying ϕ = ⊤ for every S-axioms ϕ. We call an S-algebra simple iff
the universal first-order sentence ∀x ([∀]x = ⊤ ∨ [∀]x = ⊥) holds. This agrees with the standard definition
from universal algebra, because it can be shown that congruences in an S-algebra bijectively correspond
to [∀]-filters, i.e., filters F satisfying the additional condition that a ∈ F implies [∀]a ∈ F . A standard
Lindenbaum construction proves the algebraic completeness theorem, namely that for every ϕ we have S ⊢ ϕ
iff the identity ϕ = ⊤ holds in all S-algebras (and hence iff ϕ = ⊤ holds in all simple S-algebras, because
S-algebras are a discriminator variety [26]).

We need also some definitions from unification theory. A formula [∀]ϕ(x) is said to be unifiable in S iff
there is a substitution σ mapping the x := x1, . . . , xn to some formulas σ(x) := σ(x1), . . . , σ(xn) such that
⊢S [∀]ϕ(σ(x)/x). Such a substitution is said to be a unifier of ϕ in S. The unifier is said to be projective iff
we have in addition

[∀]ϕ(x) ⊢S

∧

i

(xi ↔ σ(xi)).

Notice that, by Lemma 2.2, this implies

(6) [∀]ϕ(x) ⊢S ψ ↔ ψ(σ(x)/x).

for every formula ψ(x).

Theorem 4.4. Let S have a universal modality. Then every formula [∀]ϕ which is unifiable in S has a
projective unifier.3

Proof. This result follows from the proof of the unitarity of unification in discriminator varieties, see [9] or
also [34]. We give here a direct simple proof, obtained by a slight generalization of an argument from [1].

Let [∀]ϕ be unifiable; then there is a substitution σ such that ⊢S [∀]ϕ(σ(x)/x). Consider the substitution
π mapping a variable x to

([∀]ϕ ∧ x) ∨ (¬[∀]ϕ ∧ σ(x)).

This substitution clearly enjoys the property (6), so we only need to check that it is a unifier for [∀]ϕ.
Consider now a simple S-algebra A and a valuation V of the propositional formulas into the support of A.
By induction, it is easy to see that for every formula ψ we have the following:

- if V ([∀]ϕ) = ⊤, then V (π(ψ)) = V (ψ);
- if V ([∀]ϕ) = ⊥, then V (π(ψ)) = V (σ(ψ)).

3Despite this strong result, unifiability itself turns out to be undecidable for common modal systems with a universal
modality, see [39].
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In particular, for ψ = [∀]ϕ, we have that if V ([∀]ϕ) = ⊤, then V (π([∀]ϕ)) = V ([∀]ϕ) = ⊤ and if V ([∀]ϕ) = ⊥,
then V (π([∀]ϕ)) = V (σ([∀]ϕ)) = ⊤. Thus, for every simple algebra A and for every valuation V on the
support of A, we have that V (π([∀]ϕ)) = ⊤ (notice that in a simple S-algebra, the only elements of the kind
[∀]a are just ⊤ and ⊥). Since S is a discriminator variety, it is generated by its simple algebras, hence we
have that π unifies [∀]ϕ. �

We need a technical lemma, showing a ‘Beck-Chevalley’ condition, namely that uniform interpolants are
stable under substitution, in the following sense: suppose that the (global) uniform interpolant ∃xϕ of ϕ(x, y)
exists. This is a formula in the variables y := y1, . . . , ym, so that for a tuple of formulas ψ := ψ1, . . . , ψm, it
makes sense to consider the formula (∃xϕ)(ψ/y). But then one can consider the formula ϕ(x, ψ/y) and the

uniform interpolant ∃xϕ(x, ψ/y): if the ψ do not contain the x, the following lemma ensures that the two
formulas are the same (modulo provable equivalence in S).

Lemma 4.5. Let the formulas ψ do not contain the variables x and suppose that the uniform interpolant
∃xϕ of ϕ(x, y) exists. Then (∃xϕ)(ψ/y) is the uniform interpolant ∃xϕ(x, ψ/y).

Proof. We need to show that for every formula θ not involving the x, we have

(∃xϕ)(ψ/y) ⊢S θ iff ϕ(x, ψ/y) ⊢S θ.

Notice that since the y are used just as placeholders for substitutions, after a suitable renaming, we can
freely suppose that the y do not occur in θ and in the ψ.

The left-to-right side comes from ϕ(x, y) ⊢S ∃xϕ, by applying the substitution mapping the y to the ψ.
For the other side, assume that ϕ(x, ψ/y) ⊢S θ; by Lemma 2.2, we have (supposing that ψ := ψ1, . . . , ψm)

∧

i

(ψi ↔ yi) ⊢S ϕ(x, y) ↔ ϕ(x, ψ/y)

hence also

ϕ ∧
∧

i

(ψi ↔ yi) ⊢S θ

and

ϕ ⊢S M

(

∧

i

(ψi ↔ yi)

)

→ θ

(for a suitable modality M). By the definition of a global uniform interpolant, we get

∃xϕ ⊢S M

(

∧

i

(ψi ↔ yi)

)

→ θ

and finally
(∃xϕ)(ψ/y) ⊢S θ

applying the substitution mapping the y to the ψ. �

Putting together Theorem 4.4 and Lemma 4.5, we can prove our characterization of Π2-rules in presence
of a universal modality and of uniform global interpolants.

Theorem 4.6. Suppose that S has uniform global interpolants and a universal modality. Then the rule ρ is
admissible in S iff

(7) ⊢S [∀]∀p(F (x, p) → z) → (G(x) → z).

Proof. Suppose first that (7) holds and assume that the antecedent F (ϕ/x, p) → χ of the rule is provable in
S. Then, after applying (5) and necessitation, we have

⊢S [∀]∀p(F (ϕ/x, p) → χ),

if we apply the substitution mapping the x to the ϕ and z to χ to (7) (recall also Lemma 4.5), we obtain

⊢S [∀]∀p(F (ϕ/x, p) → χ) → (G(ϕ/x) → χ)

yieldying ⊢S G(ϕ/x) → χ by modus ponens. This shows that ρ is admissible.
7



Conversely, suppose that ρ is admissible. Consider the formula

(8) [∀]∀p(F (x, p) → z).

This is unifiable (a unifier is the substitution mapping z to ⊤ and mapping the remaining variables to
themselves),4 hence it has a projective unifier according to Theorem 4.4. Let us now make this projective
unifier explicit. The variables occurring in (8) are the x and z. So, suppose that the unifier maps the
x componentwise into certain formulas ϕ and z to a certain formula χ. Thus we have, according to the
definition of a unifier

⊢S [∀]∀p(F (ϕ/x, p) → χ).

Applying the reflexivity axiom for [∀] and (5), we get ⊢S F (ϕ/x, p) → χ, i.e.,

⊢S G(ϕ/x) → χ

by the admissibility of ρ. Applying (6), we obtain

[∀]∀p(F (x, p) → z) ⊢S (G(x) → z) ↔ (G(ϕ/x) → χ)

and also

[∀]∀p(F (x, p) → z) ⊢S (G(x) → z)

by modus ponens. This implies (7) by Lemma (2.3)(i) and the transitivity axiom for [∀]. �

We summarize the results of this section into the following:

Theorem 4.7. Suppose that S is decidable. Π2 rules are effectively recognizable in S in case that either

(i): S has computable local uniform interpolants or
(ii): S has a universal modality and computable global uniform interpolants.

The two conditions above are independent: in fact (i) applies also to modal systems (like K) without
the universal modality. On the one hand, in presence of a universal modality, the existence of uniform
global interpolants is weaker than the existence of local uniform intepolants (if we have both local uniform
interpolants and a universal modality, we can define ∃gxϕ as ∃lx[∀]ϕ). On the other hand, it is easy to check
that in case we have both local uniform interpolants and a universal modality, the conditions for admissibility
supplied by Theorem 4.6 and Proposition 4.2 are equivalent. For verifying this notice that if (7) is provable,
then (3) is also provable, taking ∃lxF as z (because ⊢S F → ∃lxF ). The converse implication can be proved

in ‘natural deduction style’ as follows: assume [∀]∀gp(F (x, p) → z) and G(x): then, it is possible to deduce

F (x, p) → z by ∀gp(F (x, p) → z) ⊢S F (x, p) → z and Lemma 2.3(i); by existential quantifier introduction,

you can get ∃lxF (x, p) → z and finally z by (3) and implication elimination (modus ponens).

5. Model Completions

Uniform global interpolants are closely connected to model completions [25, 33]. This connection paves
an alternative way for recognizing admissibility of Π2-rules via algebraic and semantic methods.

5.1. An admissibility criterion. Before continuing, we need to recall a few results (restated as Theo-
rems 5.1 ad 5.4 below) from [5]. Since, in order to adapt them to our context, we need a slight generalization
of these results, we provide the proofs in full detail.

With each Π2-rule ρ (see Definition 2.4), we associate the following ∀∃-statement in the first-order language
of S-algebras:

Π(ρ) := ∀x, z
(

G(x) � z ⇒ ∃y : F (x, y) � z
)

.

We call TS the equational first-order theory of simple non degenerate S-algebras (an S-algebra is non
degenerate iff ⊥ 6= ⊤).

Theorem 5.1. For each set Θ of Π2-rules and each formula ψ, we have

TS ∪ {Π(ρ) | ρ ∈ Θ} |= ψ = ⊤ ⇐⇒ ⊢S+Θ ψ.

4Notice that this argument requires Lemma 4.5 too, applied to the formula F (x, p) → z.
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Proof. The right-to-left direction is a trivial induction on the length of a proof witnessing ⊢S+Θ ψ. For the
other direction, we need a modified version of Lindenbaum’s construction. Suppose that 6⊢S+Θ ψ. For each
rule ρi ∈ Θ, we add a countably infinite set of fresh propositional letters to the set of existing propositional
letters. Then we build the Lindenbaum algebra B over the expanded set of propositional letters, where the
elements are the equivalence classes [ϕ] under provable equivalence in S +Θ. Next we construct a maximal
[∀]-filter M of B such that [¬[∀]ψ] ∈M and for every rule ρi ∈ Θ

(ρi)
Fi(ϕ/x, p) → χ

Gi(ϕ/x) → χ

and formulas ϕ, χ:

(†) if [Gi(ϕ) → χ] 6∈M , then there is a tuple p such that [Fi(ϕ, p) → χ] 6∈M .

To construct M , let ∆0 := {[¬[∀]ϕ]}, a consistent set. We enumerate all formulas ϕ as (ϕk : k ∈ N) and
all tuples (i, ϕ, χ) where i ∈ N and ϕ, χ are as in the particular rule ρi, and we build the sets ∆0 ⊆ ∆1 ⊆
· · · ⊆ ∆n ⊆ · · · as follows (notice that, according to the construction below, for all n and θ ∈ ∆n, we have
⊢S+Θ θ ↔ [∀]θ).

• For n = 2k, if 6⊢S+Θ

∧

∆n → [∀]ϕk, let ∆n+1 = ∆n ∪ {¬[∀]ϕk}; otherwise let ∆n+1 = ∆n.
• For n = 2k + 1, let (l, ϕ, χ) be the k-th tuple. If 6⊢S+Θ

∧

∆n → (Gl(ϕ) → χ), let ∆n+1 =
∆n ∪ {¬[∀](Fl(ϕ, p) → χ)}, where p is a tuple of propositional letters for ρl not occurring in ϕ, χ,
and any of θ with θ ∈ ∆n (we can take p from the countably infinite additional propositional letters

which we have reserved for the rule ρl). Otherwise, let ∆n+1 = ∆n.

Let M be
{ [θ] | there are θ1, . . . , θn ∈

⋃

n∈N

∆i such that ⊢S+Θ θ1 ∧ · · · ∧ θn → θ}.

That M is a proper [∀]-filter not containing [ψ] follows from the fact that 6⊢S+Θ

∧

∆n → ⊥. This is clear for
n = 0 and for any positive even n. For odd n = 2k+1, suppose that ⊢S+Θ

∧

∆k → [∀](Fl(ϕ, p) → χ) and that

6⊢S+Θ

∧

∆k → (Gl(ϕ) → χ). Then, by the reflexivity axiom [∀]ϕ→ ϕ, we have ⊢S+Θ Fl(ϕ, p) → (
∧

∆k → χ)
and also (applying the rule ρl of the k-th tuple) ⊢S+Θ Gl(ϕ) → (

∧

∆k → χ), yielding a contradiction.
Also, by the even steps of the construction of the sets ∆n, it contains either [[∀]θ] or [¬[∀]θ] for every

θ, thus M is a maximal [∀]-filter. Finally, the odd steps of the construction of the sets ∆n ensure that M
satisfies (†): in fact, if [Gi(ϕ) → χ] 6∈ M , then by step n = 2k + 1, we have [¬[∀](Fl(ϕ, p) → χ)] ∈ M and
if also [Fi(ϕ, p) → χ] ∈ M , then [[∀](Fi(ϕ, p) → χ)] ∈ M (because M is a [∀]-filter) and so M would not be
proper, a contradiction. Therefore, we can conclude that M satisfies all the desired properties.

By (†), the quotient of B by M satisfies each Π(ρi). This quotient is a simple algebra, because M is
maximal as a [∀]-filter. Moreover, since [¬[∀]ψ] ∈ M , we have that [¬[∀]ψ] maps to ⊤, so [[∀]ψ] maps to ⊥
in the quotient. Thus, [ϕ] does not map to ⊤ in the quotient, and hence TS ∪ {Π(ρ) | ρ ∈ Θ} 6|= ψ = ⊤. �

We will use &, or, ∼, and ⇒ to denote first-order connectives in order to distinguish them from Boolean
algebra operations.

∧

and
∨

will denote finite first-order conjunctions and disjunctions.

Definition 5.2. Given a quantifier-free first-order formula Φ(x) in the language of S-algebras, we associate
with it the term (aka the propositional modal formula) Φ∗(x) as follows:

(t(x) = u(x))∗ = [∀](t(x) ↔ u(x))

(∼Ψ)∗(x) = ¬Ψ∗(x)

(Ψ1(x) & Ψ2(x))
∗ = Ψ∗

1(x) ∧Ψ∗
2(x).

The following lemma is immediate:

Lemma 5.3. Let B be a simple S-algebra and let Φ(x) be a quantifier-free formula. Then we have

B |= Φ(a/x) iff B |= (Φ(a/x))∗ = ⊤,

for every tuple a from B.

Theorem 5.4 (Admissibility Criterion). A Π2-rule ρ is admissible in S iff for each simple S-algebra B there
is a simple S-algebra C such that B is a substructure of C and C |= Π(ρ).
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Proof. (⇒) Suppose that the rule ρ

(ρ)
F (ϕ/x, p) → χ

G(ϕ/x) → χ

is admissible in S. It is sufficient to show that there exists a model C of the theory

T = TS ∪ {Π(ρ)} ∪∆(B)

where ∆(B) is the diagram of B [14, p. 68]. Suppose for a contradiction that T has no models, hence is
inconsistent. Then, by compactness, there exists a quantifier-free first-order formula Ψ(x) and a tuple x of
variables corresponding to some a ∈ B such that

TS ∪ {Π(ρ)} |= ∼Ψ(a/x) and B |= Ψ(a/x).

By Theorem 5.1, S + ρ is complete with respect to the simple S-algebras satisfying Π(ρ). Therefore, by
Lemma 5.3, we have TS ∪ {Π(ρ)} |= (∼Ψ(x))∗ = ⊤ and also ⊢S+ρ (∼Ψ(x))∗, where (−)∗ is the translation
given in Definition 5.2. By admissibility, ⊢S (∼Ψ(x))∗. Thus, for the valuation v into B that maps x to a,
we have v((∼Ψ(x))∗) = 1, so v((Ψ(x))∗) = 0. This contradicts the fact that B |= Ψ(a/x). Consequently, T
must be consistent, and hence it has a model.

(⇐) Suppose ⊢S F (ϕ, p) → χ with p not occurring in ϕ, χ. Let B be a simple S-algebra and let v be
a valuation on B. By assumption, there is a simple S-algebra C such that B is a substructure of C and
C |= Π(ρ). Let i : B →֒ C be the inclusion. Then v′ := i ◦ v is a valuation on C. For any c ∈ C, let v′′ be the
valuation that agrees with v′ except for the fact that it maps the p into the c. Since ⊢S F (ϕ/x, p) → χ, by

the algebraic completeness theorem5 we have v′′(F (ϕ/x, p) → χ) = ⊤. This means that for all c ∈ C, we have

F (v′(ϕ), c) ≤ v′(χ). Therefore, C |= ∀y
(

F (v′(ϕ), y) ≤ v′(χ)
)

. Since C |= Π(ρ), we have C |= G(v′(ϕ)) ≤

v′(χ). Thus, as G(v′(ϕ)) ≤ v′(χ) holds in C, we have that G(v(ϕ)) ≤ v(χ) holds in B. Consequently,
v(G(ϕ) → χ) = ⊤. Applying the algebraic completeness theorem again yields that ⊢S G(ϕ) → χ because B
is arbitrary, and hence ρ is admissible in S. �

5.2. Admissibility and Model Completeness. We now investigate the connections between admissibility
and model completions.

Theorem 5.5. Suppose that the universal theory TS has a model completion T ⋆
S . Then a Π2-rule ρ is

admissible in S iff T ⋆
S
|= Π(ρ).

Proof. Applying Theorem 5.4, we show that T ⋆
S
|= Π(ρ) holds iff every simple S-algebra B can be embedded

into some simple S-algebra C which satisfies Π(ρ). This is shown below using the fact that Π(ρ) is a Π2-
sentence. Recall that models of T ⋆

S are just the existentially closed simple S-algebras (see [14, Proposition
3.5.15]).

Suppose for the left to right direction that T ⋆
S
|= Π(ρ) holds and let B be any simple S-algebra. Then B

embeds into an existentially closed simple S-algebra C (this is a general model-theoretic fact [14]). Thus, C
is a model of T ⋆

S
and hence C |= Π(ρ).

Conversely, suppose that every simple S-algebra B can be embedded into some simple S-algebra C which
satisfies Π(ρ). Pick B such that B |= T ⋆

S
and let Π(ρ) be ∀x∃yH(x, y), where H is quantifier free. Let b be

a tuple from the support of B. Let C be an extension of B such that C |= Π(ρ). Then C |= ∃yH(b, y). As B
is existentially closed, this immediately entails that B |= ∃yH(b, y). Since the b was arbitrary, we conclude
that B |= Π(ρ), as required. �

Remark 5.6. Theorems 4.6 and 5.5 are in fact equivalent statements: indeed the existence of global uniform
interpolants and the existence of a model completion for TS are equivalent statements (as it can be deduced
from slight modifications of the results in [25, 33]) and if one considers how quantifiers are eliminated in
T ⋆
S
via global uniform interpolants [25], one can translate the statements of Theorems 4.6 and 5.5 into each

other. We nevertheless point out that the two theorems are proved via completely different tools (namely
unification theory and model theoretic techniques): this is quite a notable fact.

5This is Theorem 5.1 for Θ = ∅.
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According to Theorem 5.5, checking whether a Π2-rule is admissible now amounts to checking whether
T ⋆
S
|= Π(ρ) holds. The latter can be done via quantifier elimination in T ⋆

S
. We give sufficient conditions for

this to be effective.

Corollary 5.7. Let S be decidable and locally tabular. Assume also that simple S-algebras enjoy the amal-
gamation property. Then admissibility of Π2-rules in S is effective.

Proof. Local tabularity of S implies local finiteness6 of TS . For universal locally finite theories in a finite
language, amalgamability is a necessary and sufficient condition for existence of a model completion [28, 38].
Quantifier elimination in T ⋆

S
is effective because there are only finitely many non-equivalent formulas in a

fixed finite number of variables, because of Lemma 5.3 and because of the following folklore lemma. �

Lemma 5.8. The quantifier-free formula R(x) provably equivalent in T ⋆
S
to an existential formula ∃yH(x, y)

is the strongest quantifier free formula G(x) implied (modulo TS) by H(x, y).

Proof. Recall that TS and T ⋆
S
are co-theories [14], i.e. they prove the same universal formulas. Thus we have

the following chain of equivalences:

TS ⊢ H(x, y) → G(x)

T ⋆
S
⊢ H(x, y) → G(x)

T ⋆
S
⊢ ∃yH(x, y) → G(x)

T ⋆
S
⊢ R(x) → G(x)

TS ⊢ R(x) → G(x)

yielding the claim. �

The usefulness of Corollary 5.7 lies in the fact that its only real requirement is the amalgamation property,
besides local tabularity. Whenever local tabularity holds, finitely presented algebras are finite, thus it is
sufficient to establish amalgamability for finite algebras: in fact, two algebras B1,B2 amalgamate over a
common subalgebra A iff TS ∪∆(B1)∪∆(B2) is consistent iff (by compactness and local finiteness) there are
amalgamating finite subalgebras B0

1,B
0
2 of B1,B2, respectively. Whenever a “useful” duality is established,

amalgamation of finite algebras turns out to be equivalent to co-amalgamation for finite frames, which is
usually much easier to check. We will now give a few simple examples and counterexamples.

Example 5.9. If the modal signature contains only the universal modality [∀], we have the locally tabular
logic S5. Finite simple non degenerate S5-algebras are dual to finite nonempty sets and onto maps, for which
co-amalgamation trivially holds (by standard pullback construction), see, e.g., [13, Thm. 14.23].

Example 5.10. The logic of the difference modality [16, 37] has in addition to the global modality a unary
operator D subject to the axioms

[∀]ϕ↔ (ϕ ∧ ¬D¬ϕ), ϕ→ ¬D¬Dϕ, DDϕ→ ϕ ∨Dϕ.

This logic axiomatizes Kripke frames where the accessibility relation is inequality. Local finiteness can be
established for instance by the method of irreducible models [22]. Amalgamation however fails. To see this,
notice that the simple frames for this logic are sets endowed with a relation E such that w1 6= w2 → w1Ew2.
Now let X = {x1, . . . , x5}, Y = {y1, . . . , y5} and Z = {z1, z2}. Let xiEXxj iff i 6= j for 1 ≤ i, j ≤ 5, yiEY yj
iff i 6= j for 1 ≤ i, j ≤ 5 and ziEZzj for i, j = 1, 2. Let also f : X → Z and g : Y → Z be such that
f(x1) = f(x2) = f(x3) = g(y1) = g(y2) = z1 and f(x4) = f(x5) = g(y3) = g(y4) = g(y5) = z2. Then it is
easy to see that f and g are p-morphisms. If a co-amalgam exists, then there must exist a frame (U,EU ) and
onto p-morphims h : U → X and j : U → Y such that f ◦ h = g ◦ j. However, an easy argument shows that
U should contain more than 5 points. Moreover, for u, v ∈ U with u 6= v we should have uEUv. But then
there will be distinct points in U mapped by h to some xi, which would entail that xi is reflexive, which is
a contradiction.

6Recall that a class of algebras is locally finite if every finitely generated algebra in this class if finite, see [13, Section 14.2]
for the connection between local finiteness and local tabularity.
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6. Symmetric Strict Implication and Contact Algebras

In this section we apply the results of Section 5 (in particular, Corollary 5.7) to the case of contact
algebras. We first review some material from [5]. Let us consider the modal signature comprising, besides
the universal modality [∀], a binary operator  , which we call strict implication, subject to the following
axioms (we keep the same enumeration as in [5] and add axiom (A0) which is seen as a definition of [∀]
in [5]).

(A0) [∀]ϕ↔ (⊤ ϕ),
(A1) (⊥ ϕ) ∧ (ϕ ⊤),
(A2) [(ϕ ∨ ψ) χ] ↔ [(ϕ χ) ∧ (ψ  χ)],
(A3) [ϕ (ψ ∧ χ)] ↔ [(ϕ ψ) ∧ (ϕ χ)],
(A4) (ϕ ψ) → (ϕ→ ψ),
(A5) (ϕ ψ) ↔ (¬ψ  ¬ϕ),
(A8) [∀]ϕ→ [∀][∀]ϕ,
(A9) ¬[∀]ϕ→ [∀]¬[∀]ϕ,

(A10) (ϕ ψ) ↔ [∀](ϕ ψ),
(A11) [∀]ϕ→ (¬[∀]ϕ ⊥).

Inference rules are modus ponens (for →) and necessitation (for [∀]). It can be shown (see [5]) that this
system (called symmetric strict implication calculus S2IC) matches our requirements from Section 2.7

We recall that a symmetric strict implication algebra (S2I-algebra for short) is a pair B = (B, ), where
B is a Boolean algebra and  : B ×B → B a binary operation validating the axioms (A0)-(A11) [5, Section
3]. Then axioms (A0), (A8)-(A11) yield that [∀] : B → B is an S5-operator on B such that for each a ∈ B
we have [∀]a = 1 a. Then the variety of S2I-algebras is semi-simple (every subdirectly irreducible algebra
is simple) and simple S2I-algebras are those S2I-algebras B = (B, ) where we have that a b is either 0 or
1. This entails that S2IC is locally tabular (in algebraic terms, the variety of S2I-algebras is locally finite).
For the proofs of all these facts we refer to [5, Section 3]. Thus, in a simple non-degenerate S2I-algebra, the
operation is in fact the characteristic function of a binary relation. Given a simple S2I-algebra B we define
≺ by setting

a ≺ b iff a b = 1.

Then ≺ satisfies the following axioms:

(S1) 0 ≺ 0 and 1 ≺ 1;
(S2) a ≺ b, c implies a ≺ b ∧ c;
(S3) a, b ≺ c implies a ∨ b ≺ c;
(S4) a ≤ b ≺ c ≤ d implies a ≺ d;
(S5) a ≺ b implies a ≤ b;
(S6) a ≺ b implies ¬b ≺ ¬a.

Conversely, if ≺ is a binary relation on B satisfying (S1)–(S6), we define  : B ×B → B by

a b =

{

1 if a ≺ b

0 otherwise.

Then (B, ) is a simple S2I-algebra (i.e., satisfies (A0)–(A11) and  has values in {0, 1}). Moreover,

[∀]a =

{

1 if a = 1

0 if a 6= 1.

Finally, we note that this correspondence is one-to-one [5, Section 3].
Non-degenerate Boolean algebras endowed with a relation ≺ satisfying the above conditions (S1)-(S6) are

called contact algebras.8 The class of all contact algebras and the corresponding first-order theory are both
denoted by Con. The above considerations suggest translations from the theory of simple S2I-algebras into

7Strictly speaking, since turns disjunctions into conjunctions in the first argument, to match those requirements we should
replace the connective  with an equivalent binary modality � related to  via the definition x y := �[¬x, y].

8It is more common to use in contact algebras the contact relation δ [36], which is given by aδb iff a 6≺ ¬b. However, we
stick with our notation to stay close to our main reference [5].
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the theory of contact algebras, and vice versa. We are interested in detailing the translations at the level of
quantifier-free formulas.

• Translation τ1 from contact algebras to simple S2I-algebras. We let τ1(t ≺ u) to be t  u = 1 and
τ1(t = u) to be t = u; the translation τ1 operates identically on Boolean connectives.

• Translation τ2 from simple S2I-algebras to contact algebras. We translate a quantifier-free formula ϕ
in three steps. In the first step we eliminate all ∀ symbols using axiom (A0) and then we flatten ϕ
by repeatedly applying the following transformation:

ϕ 7−→ ∃x (x = t u & ϕ(x/t u)).

After this step and after moving the existential quantifiers to the front, the formula to be translated
has the form

∃x1, . . . , xn

(

n
∧

i=1

(xi = ti  ui) & ψ

)

where ψ is a quantifier-free formula in the language of Boolean algebras. In the second step, we
translate this formula into the following formula in the language of contact algebras

(9) ∃x1, . . . , xn

(

n
∧

i=1

[(xi = 1 & ui ≺ ti) or (xi = 0 & ui 6≺ ti)] & ψ

)

.

In the last step, we apply distributivity law to (9), thus obtaining an exponentially large disjunction;
from each disjunct, the existential quantifiers can be removed by replacing xi with 1 or 0. The final
result will be our τ2(ϕ).

The following proposition follows from the above considerations:

Proposition 6.1. Let TS2I be the theory of simple S2I-algebras. For every quantifier-free formulas ϕ1, ϕ2

in the languages of contact and of simple S2I-algebras, respectively, we have that:

(i): Con |= ϕ1 implies TS2I |= τ1(ϕ1);
(ii): TS2I |= ϕ2 implies Con |= τ2(ϕ2);
(iii): TS2I |= ϕ1 ⇔ τ2(τ1(ϕ1)) and Con |= ϕ2 ⇔ τ1(τ2(ϕ2)).

Since, as outlined above, the theory of non degenerate simple S2I-algebras is essentially the same (in fact,
it is a syntactic variant) as the universal theory Con of contact algebras, we shall investigate the latter in
order to apply Corollary 5.7.9 What we have to show in order to check the hypotheses of such a corollary is
just that Con is amalgamable.

To prove amalgamability, we need a duality theorem. In [6, 12, 18] a duality theorem is established for
the category of contact algebras and ≺-maps (a map µ : (B,≺) → (C,≺) among contact algebras is said
to be a ≺-map iff it is a Boolean homomorphism such that a ≺ b implies µ(a) ≺ µ(b)). We will make use
of that theorem but will modify it, because for amalgamation we need a duality for contact algebras and
embeddings in the model theoretic sense (this means that an embedding is an injective map that not only
preserves but also reflects the relation ≺). We first recall the duality theorem of [6], giving just minimal
information that is indispensable for our purposes.

We say that a binary relation R on a topological space X is closed if R is a closed subset of X ×X in the
product topology. Let StR be the category having (i) as objects the pairs (X,R), where X is a (non empty)
Stone space and R is a closed, reflexive and symmetric relation on X , and (ii) as arrows the continuous
maps f : (X,R) → (X ′, R′) which are stable (i.e. such that xRy implies f(x)R′f(y) for all points x, y in the
domain of f). We define a contravariant functor

(−)⋆ : StRop → Cons

into the category Cons of contact algebras and ≺-maps as follows:

9Notice also that computing quantifier elimination in the model completions (once we proved that such model completions
exist by Corollary 5.7) commutes with the translations, by Proposition 6.1 and Lemma 5.8. This observation will be used in
Subsection 6.1.
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• for an object (X,R), the contact algebra (X,R)⋆ has Clop(X) the clopens of X as carrier set (with
union, intersection and complement as Boolean operations) and its relation ≺ is given by C ≺ D iff
R[C] ⊆ D (here we used the abbreviation R[C] = {x ∈ X | sRx for some s ∈ C});

• for a stable continuous map f : (X,R) → (X ′, R′), the map f⋆ is the inverse image along f .

Theorem 6.2 ([6, 18]). The functor (−)⋆ establishes an equivalence of categories.

We now intend to restrict this equivalence to the category Cone of contact algebras and embeddings. To
this aim we need to identify a suitable subcategory StRe of StR. Now StRe has the same objects as StR,
however a stable continuous map f : (X1, R1) → (X2, R2) is in StRe iff it satisfies the following additional
condition:

(10) ∀x, y ∈ X2 [xR2y ⇔ ∃x̃, ỹ ∈ X1 s.t. f(x̃) = x, f(ỹ) = y & x̃R1ỹ].

Notice that, since R2 is reflexive, it turns out that a map satisfying (10) must be surjective. We call the
stable maps satisfying (10) regular stable maps, because it can be shown that these maps are just the regular
epimorphisms in the category StR.

Theorem 6.3. The functor (−)⋆, suitably restricted in its domain and codomain, establishes an equivalence
of categories between StRe and Cone.

Proof. We need to show that f satisfies condition (10) above iff f⋆ is an embedding between contact algebras,
i.e. iff it satisfies the condition

(11) (R1[f
−1(U)] ⊆ f−1(V ) ⇔ R2[U ] ⊆ V ) ∀ U, V ∈ Clop(X2)

where Clop(X2) is the set of clopens of the Stone space X2. We tranform condition (11) up to equivalence.
First notice that, by the adjunction between direct and inverse image, (11) is equivalent to

(12) (f(R1[f
−1(U)]) ⊆ V ⇔ R2[U ] ⊆ V ) ∀ U, V ∈ Clop(X2).

Now, in compact Hausdorff spaces closed relations and continuous functions map closed sets to closed sets,
hence f(R1[f

−1(U)]) is closed and so, since clopens are a base for closed sets, (12) turns out to be equivalent
to

(13) (f(R1[f
−1(U)]) = R2[U ]) ∀ U ∈ Clop(X2).

We now claim that (13) is equivalent to

(14) f(R1[f
−1({x})]) = R2[{x}] ∀x ∈ X2.

In fact, (14) implies (13) because all operations f(−), R[−], f−1(−) preserve set-theoretic unions. The
converse implication holds because of Esakia’s lemma below applied to the down-directed system {U ∈
Clop(X2) | x ∈ U}. Notice that Esakia’s lemma applies because f ◦R1 ◦ fop and R2 are symmetric relations,
since R1 and R2 are symmetric (here we view f and f−1 = fop as relations via their graphs).

Now it is sufficient to observe that (14) is equivalent to the conjunction of (10) and stability. �

We will now prove a version of Esakia’s lemma for our spaces. Esakia’s lemma normally speaks about
the inverse of a relation R, but here we need a version which holds for R-images because our relation is
symmetric.

Lemma 6.4. (Esakia’s lemma, [19, Lemma 3.3.12]) Let X be a compact Hausdorff space and R a point-
closed10 symmetric binary relation on X. Then for each downward directed family C ={Ci}i∈I of nonempty
closed subsets of X, we have R[

⋂

i∈I

Ci] =
⋂

i∈I

R[Ci].

Proof. The inclusion R[
⋂

i∈I

Ci] ⊆
⋂

i∈I

R[Ci] is trivial. Now suppose x ∈
⋂

i∈I

R[Ci]. Then x ∈ R[Ci] for each Ci

and, by symmetry, R[x] ∩ Ci is nonempty for each i ∈ I. But as Ci’s are downward directed, all the finite
intersections R[x]∩Ci1 ∩ ...∩Cin (with ij ∈ I for j ∈ {1, ..., n}) are nonempty. By compactness, the infinite
intersection (which equals R[x] ∩

⋂

i∈I

Ci) is nonempty and so, by symmetry, x ∈ R[
⋂

i∈I

Ci]. �

10A binary relation R on a topological space X is said to be point-closed if ∀x ∈ X R[x] is closed in X. A closed relation
in a compact Hausdorff space maps closed sets to closed sets via R[−], hence it is point-closed.
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Whenever there is a regular stable map f : (Y,R′) −→ (X,R), we say that (Y,R′) covers (X,R). The
following lemma gives an interesting example of a cover and will be useful in Subsection 6.1 below. Let us
call contact frames the objects of StR. A singleton in a contact frame (Y,R) is a point y ∈ Y such that
R[y] = {y}. A contact frame (Y,R) is said to be a 1-step contact frame iff it does not contain singletons and
it satisfies the following condition for all x, y, z ∈ Y :

(15) xRy & yRz ⇒ (x = y or y = z or x = z).

Thus the points in a 1-step contact frame can be partitioned into 2-element subsets {y1, y2} such that y1 6= y2
and the only elements accessible from yi (i = 1, 2) are {y1, y2}.

Lemma 6.5. Every finite contact frame (X,R) is covered by a 1-step contact frame of at most quadratic
size.

Proof. We first get rid of singletons by ‘duplicating’ them: this means that we move to a cover where a
singleton x is duplicated into a pair 〈x1, x2〉 and R(xi, xj) holds for i, j ∈ {1, 2} (let us still call (X,R) such
duplicating cover). We let Y to be the set of ordered distinct pairs 〈x1, x2〉 from X such that R(x1, x2) holds
in (X,R). We let R′(〈x1, x2〉, 〈y1, y2〉) hold iff {x1, x2} = {y1, y2}. This turns (Y,R′) into a 1-step contact
frame. The cover map f : (Y,R′) −→ (X,R) takes 〈x1, x2〉 to x1. �

Now we are ready to show that Corollary 5.7 applies.

Theorem 6.6. The universal theory Con of contact algebras has the amalgamation property. Therefore, as
it is also locally finite, Con has a model completion.

Proof. As we observed in Section 5, it is sufficient to prove amalgamation for finite algebras (by local finiteness
and by the compactness argument based on Robinson diagrams mentioned in Section 5). Finite algebras are
dual to discrete Stone spaces, hence it is sufficient to show the following.
(+) Given finite nonempty sets XA, XB, XC endowed with reflexive and symmetric relations RA, RB, RC

and given regular stable maps f : (XB, RB) → (XA, RA), g : (XB, RB) → (XA, RA), there exist (XD, RD)
(with reflexive and symmetric RD) and regular stable maps π1 : (XD, RD) → (XB , RB), π2 : (XD, RD) →
(XC , RC), such that f ◦ π1 = g ◦ π2.

Statement (+) is easily proved by taking as (XD, RD), π1, π2 the obvious pullback with the two projections.
�

Theorem 6.6 gives the possibility of applying Corollary 5.7 to recognize admissible rules. We give here
another algorithm, slightly different from that of Corollary 5.7. We recall that Con⋆ is the theory of ex-
istentially closed contact algebras [14]. The following result (given that Con is locally finite) is folklore (a
detailed proof of the analogous statement for Brouwerian semilattices is in the ArXiv version of [11] as [10,
Proposition 2.16]).

Theorem 6.7. Let (B,≺) be a contact algebra. We have that (B,≺) is existentially closed iff for any
finite subalgebra (B0,≺) ⊆ (B,≺) and for any finite extension (C,≺) ⊇ (B0,≺) there exists an embedding
(C,≺) →֒ (B,≺) such that the following diagram commutes

(B0,≺) (B,≺)

(C,≺)

Example 6.8. Consider the Π2-rule:

(ρ9)
(p p) ∧ (ϕ p) ∧ (p ψ) → χ

(ϕ ψ) → χ

This rule is admissible in S2IC [5, Theorem 6.15]. We will now give an alternative and more automated proof
of this result. Translating Π(ρ9) into the equivalent language of contact algebras, we obtain (see statement
(S9) from Section 6.3 of [5])

(16) x ≺ y ⇒ ∃z (z ≺ z & x ≺ z ≺ y).
15



According to Theorem 5.5, we have to show that (16) is provable in Con⋆. Note that (16) expresses interesting
(order-)topological properties. It is valid on (X,R) iff R is a Priestley quasi-order [6, Lemma 5.2]. Also it is
valid on a compact Hausdorff space X iff X is a Stone space [4, Lemma 4.11].

If we follow the procedure of Corollary 5.7 (which is based on Lemma 5.8), we first compute the quantifier-
free formula equivalent in Con

⋆ to ∃z (z ≺ z & x ≺ z ≺ y) by taking the conjunction of the (finitely many)
quantifier-free first-order formulas ϕ(x, y) which are implied (modulo Con) by z ≺ z & x ≺ z ≺ y: this is,
up to equivalence, x ≺ y. Now, in order to show the admissibility of (ρ9) it is sufficient to observe that
Con |= x ≺ y ⇒ x ≺ y.

As an alternative, we can rely on Theorem 6.7 and show that (16) is true in every existentially closed
contact algebra. To this aim, it is sufficient to enumerate all contact algebras B0 generated by two elements
a, b such that B0 |= a ≺ b and to show that all such algebras embed in a contact algebra C generated by three
elements a, b, c such that C |= c ≺ c & a ≺ c ≺ b (this can be done automatically for instance using a model
finder tool). Both of the above procedures are heavy and not elegant, but they are nevertheless mechanical
and do not require ingenious ad hoc constructions (such as e.g., the construction of [5, Lemma 5.4]).

6.1. Complexity Issues. In this subsection, we will adopt the algorithm suggested by Corollary 5.7 and
Lemma 5.8 to get a co-NExpTime upper bound for deciding admissibility of Π2-rules in S2IC.

In order to do that, we first need to study closer the satisfiability problem for quantifier-free formulas in
the language of contact algebras. First notice that atomic formulas in such a language are all equivalent
to formulas of the kind t ≺ u, where t, u are Boolean terms: this is because atoms of the kind t = 0 are
equivalent to t ≺ ¬t, by the axioms of contact algebras. Second, we introduce a more manageable Kripke
style equivalent semantics for satisfiability in finite contact algebras (since finitely generated contact algebras
are finite and contact algebras axioms are all universal, to test satisfiability of a quantifier-free formula it is
sufficient to inspect finite contact algebras).

A Kripke model over a contact frame (X,R) is a valuation V : Prop −→ ℘(X) from the set of propositional
variables into the power set of X ; we use the notation M = (X,R, V ) for such a Kripke model. For x ∈ X
and a Boolean formula (term) F , the notion M |=x F is defined inductively as follows:

- M |=x p iff x ∈ V (p), for atomic p;
- M |=x F1 ∧ F2 iff (M |=x F1 and M |=x F2);
- M |=x ¬F iff M 6|=x F .

For an atom F ≺ G, we put M |= F ≺ G iff for all x, y ∈ X , we have that M |=x F and R(x, y) imply
M |=y G. Finally, for a quantifier-free formula ϕ, the definition of M |= ϕ goes by induction as expected.
The following lemma is clear.

Lemma 6.9. Let A be a finite contact algebra with dual contact frame (X,R). For a quantifier-free formula
ϕ, we have that ϕ is true in A under some free variables assignment iff we have M |= ϕ for some Kripke
model M = (X,R, V ).

In our context, covers play the same role as p-morphisms in modal logic. A cover of a Kripke model M =
(X,R, V ) is a Kripke model M′ = (X ′, R′, V ′) together with a regular stable map f : (X ′, R′) −→ (X,R) of
the underlying contact frames such that for every propositional variable p, we have that V ′(p) = f−1(V (p)).

Lemma 6.10. Let M′ = (X ′, R′, V ′) be a cover of M = (X,R, V ) (via a suitable f). Then for every
quantifier-free formula ϕ, we have that M |= ϕ iff M′ |= ϕ.

Proof. This follows from the fact that f−1 induces, as we know, an embedding of the contact algebras dual
to (X,R) and (X ′, R′). �

Lemma 6.11. A quantifier-free formula ϕ in the language of contact algebras is satisfiable iff it is satisfiable
in a finite quadratic size 1-step contact frame. Thus the satisfiability problem for ϕ is in NP.

Proof. First observe that ϕ is satisfiable iff there is a consistent Boolean assignment to the atoms of ϕ
satisfying ϕ from the point of view of propositional logic. To show that a candidate Boolean assignment is
satisfiable one translates positive atoms (as well as the reflexivity and symmetry conditions for the relation
of a contact frame) into universally quantified Horn clauses in first-order logic using at most two universally
quantified variables. Negative atoms F 6≺ G translate into ∃x∃y (F (x) & R(x, y) & ∼G(y)); skolemization
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of these literals introduces two Skolem constants for each of them. Thus, the overall universal Horn formula
to be checked for satisfiability has a finite Herbrand universe of linear size.

Since the Herbrand universe is of linear size, ϕ is satisfiable iff it is satisfiable in a linear size finite contact
frame (alternative ways to prove this arise from translations into S5U , see [5]). Then the fact that 1-step
quadratic contact frames suffice follows from Lemma 6.5. �

According to Theorem 5.5, the rule ρ is not admissible iff T ⋆
S2I

6|= Π(ρ), where T ⋆
S2I

is the model completion
of the theory of simple symmetric strict implication algebras. Since we want to go through the equivalent
theory given by the model completion Con

⋆ of the theory of contact algebras, in view of the Lemma 6.11,
to get our co-NExpTime upper bound, it is sufficient to prove that the computation of the quantifier-free
formula ϕ⋆(x) equivalent in Con⋆ to ∃yϕ(x, y) (for any quantifier-free formula ϕ(x, y)) is exponentially large
and can be computed in exponential time (because then Lemma 6.11 would apply). However, since there
are double exponentially many non-equivalent quantifier-free formulas built up from a finite set of variables
in the language of contact algebras, this is not obvious. The situation is similar to the problem of showing
an exponential bound for the computation of uniform interpolants in S5 [24] and in fact we will solve it by
adapting the technique of [24] to our context.

Let N be the number of distinct atoms (i.e., atomic formulas) occurring in ϕ(x, y) and let us consider the

Kripke models built up on finite 1-step contact frames having at most 2N elements (they are exponentially
many). Partition them into classes K1, . . . ,Km in such a way that two models are in the same class Ki iff
they satisfy the same atoms from ϕ. To every M ∈ Ki associate the formula

(17) χ(M) :=
∧

{t(x) 6≺ u(x) | t(x), u(x) are Boolean terms s.t. M 6|= t(x) ≺ u(x)}.

Let also

(18) θi :=
∧

{t(x) ≺ u(x) | t(x), u(x) are Boolean terms s.t. M′ |= t(x) ≺ u(x) for all M′ ∈ Ki}.

We claim that the formula we need is

(19) ϕ⋆(x) :=

m
∨

i=1

(θi &
∨

M∈Ki

χ(M)).

Notice that this is (simply) exponential.
According to Lemma 5.8, we must show that ϕ⇒ ϕ⋆ holds in TS and that if ψ(x) is such that TS |= ϕ⇒ ψ,

then TS |= ϕ⋆ ⇒ ψ; by Lemma 6.11, all validity tests can be performed in Kripke models over finite contact
1-step frames.

First consider a Kripke model N = (X,R, V ) based on a 1-step contact frame such that N |= ϕ. Restrict
the model to a submodel by picking one witness pair x, y for every atom u1(x, y) ≺ u2(x, y) such that
N |=x u1, N 6|=y u2 and R(x, y). The Kripke model M obtained by this restriction is such that M |= ϕ,
it has the size at most 2N and it thus belongs (up to isomorphism) to a certain partition Ki. Clearly we
have N |= χ(M). We also have N |= θi because for every x′, y′ ∈ X such that R(x′, y′), we can always
pick witness points so as to build a submodel M′ of N belonging (up to isomorphism) to Ki and including
(x′, y′). Thus we obtain N |= ϕ⋆, as desired.

Suppose now that TS 6|= ϕ⋆ ⇒ ψ, i.e., there is a Kripke model based on a 1-step contact frame such that
N |= ϕ⋆ & ∼ψ. In order to show that TS 6|= ϕ ⇒ ψ we proceed as follows. Let N be (X,R, V ). We build
N ′ = (X ′, R′, V ′) and a regular stable map f : (X ′, R′) −→ (X,R) in such a way that N ′ |= ϕ(x, y) and

V ′(p) = f−1(V (p)) for all p ∈ x (this guarantees that N ′ 6|= ψ(x), by Lemma 6.10).
Since N |= ϕ⋆(x), there are i and M ∈ Ki such that N |= θi & χ(M). Recall that M is based on a

1-step finite contact frame and suppose that M = (X0, R0, V0). For every x ∈ X0 we can build the atoms

t+x =
∧

{p ∈ x | x ∈ V0(p)} & ∼
∨

{p ∈ x | x 6∈ V0(p)}

and

t−x = ∼ t+x .

Now notice that for every distinct pair 〈x1, x2〉 such that R0(x1, x2) holds in M, the atom t+x1
≺ t−x2

is false
in M precisely because of the pair (x1, x2). Since N |= χ(M) there must be a pair (not necessarily formed
by distinct elements) 〈w1, w2〉 in N such that R(w1, w2) and N |=w1

t+x1
, N 6|=w2

t−x2
, which means that for
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evey p ∈ x, we have x1 ∈ V0(p) ⇔ w1 ∈ V (p) and x2 ∈ V0(p) ⇔ w2 ∈ V (p). Since M is a 1-step contact
frame, this defines a stable map f0 : (X0, R0) −→ (X,R) which preserves the satisfiability of the variables
x. However, this map may not be regular (not even surjective), to make it regular we need a further simple
adjustement: we take as (X ′, R′) the disjoint union of (X,R) with (X0, R0) and as f the identity map
coupled with f0. This obviously gives a regular stable map. It remains to define the forcing V ′ on (X ′, R′)
for the variables y. This must be done in such a way that ϕ(x, y) becomes true.

For q ∈ y and x in the X0-part of X
′ we just use the satisfiability in M, that is we let x ∈ V ′(q) hold iff

x ∈ V0(q). Let now consider a distinct pair 〈x, y〉 in the X-part of X ′ such that R(x, y) holds. We have that
N 6|= t+x ≺ t−y and, since N |= θi, there must be some Mxy ∈ Ki with Mxy 6|= t+x ≺ t−y . This means that for

some x′, y′ in the support of Mxy we have Mxy |=x′ t+x and Mxy |=y′ t−y (which is the same as Mxy |=y′ t+y ).
For q ∈ y, we let V ′(q) contain x (resp. y) iff we have Mxy |=x′ q (resp. Mxy |=y′ q). Notice that the same

relations holds for q ∈ x because Mxy |=x′ t+x and Mxy |=y′ t−y . Now ϕ(x, y) holds in N ′ = (X ′, R′, V ′)
because exactly the same atoms from ϕ satisfied in all members of the class Ki are true in N ′.

We have therefore proved the following result.

Theorem 6.12. The problem of recognizing the admissibility of a Π2-rule in the symmetric strict implication
calculus S2IC is co-NExpTime-complete.

Proof. According to Theorem 5.5, the Π2-rule ρ given in Definition 2.4 is not admissible in S2IC iff in the
model completion T ⋆

S2I
of the theory of simple symmetric strict implication algebras, the formula

Π(ρ) := ∀x∀z ∃y
(

G(x) � z ⇒ F (x, y) � z
)

is not provable. To check this, we should eliminate the existential quantifiers from ∃y(G(x) � z ⇒ F (x, y) �
z) in T ⋆

S2I , then get a universal formula ∀x∀z ψ(x, z), and finally check ¬ψ(x, z) for satisfiability in T ⋆
S2I (or,

which is the same, in TS2I). In view of Proposition 6.1 and Lemma 5.8, we can equivalently apply these
operations in Con⋆/Con to the translation τ2 of G(x) � z ⇒ F (x, y) � z.

In principle, τ2 may cause an exponential blow-up in the third step of its computation, but since our first
task is to eliminate the existential quantifiers from ∃y τ2(G(x) � z ⇒ F (x, y) � z), we can just eliminate

the existential quantifiers from the equivalent formula (9) obtained in the second step of the computation
of τ2: such a formula is only linearly long, and consequently, as explained above, our quantifier elimination
procedure takes exponential time and produces an exponentially long formula. Thus, in the end, Lemma 6.11
gives our desired NExpTime upper bound.

For the lower bound, we notice that in [24] it is shown that checking conservativity in S5 is co-NExpTime-
complete. Conservativity is trivially translated into admissibility of Π2-rules for logics like S5 enjoying
interpolation (see Theorem 3.2) and on the other hand S5 is a subsystem of S2IC. Thus, it is sufficient to
show that a Π2-rule in the restricted language of S5 which is admissible in S5 is also admissible in S2IC (the
vice versa is obvious). To this aim, we apply the admissibility criterion given by Theorem 5.4. Consider a
Π2-rule ρ as given in Definition 2.4, which is in the language of S5 and is admissible in S5. Let B be a simple
S2I-algebra; according to Theorem 5.4, its S5-reduct (which is nothing but a Boolean algebra, being the
algebra simple) embeds into an algebra B′ satisfying Π(ρ). Thus, it is sufficient to apply the Lemma below
(we exploit once again the equivalence between contact algebras and simple symmetric strict implication
algebras). �

Lemma 6.13. Given a contact algebra B and a Boolean algebra B′ extending it, it is possible to give B′ a
structure of a contact algebra in such a way that the embedding preserves also the contact algebra structure.

Proof. We prove the dual statement using Theorem 6.3. Let Y be a Stone space, (X,R) be an object of StR

and let f : Y −→ X be a continuous surjective map. We endow Y with the relation R̃ given by y1R̃y2 iff
f(x1)Rf(y2). Since R̃ is closed, it turns out that f : (Y, R̃) −→ (X,R) is a morphism in StRe. �

7. Finite axiomatization of Con⋆

Theorem 6.7 implicitly supplies an infinite set of axioms for Con⋆, the model completion of the theory
of contact algebras. This axiomatization is not however very informative, as it follows from generic model-
theoretic facts. In this section, we supply a better axiomatization following a strategy similar to the one
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used in [15] for the case of amalgamable locally finite varieties of Heyting algebras and in [11] for the case
of Brouwerian semilattices. This axiomatization is finite and is described by the following theorem, which is
the main result of this section.

Theorem 7.1. An axiomatization of Con⋆ is given by the axioms of contact algebra together with the
following sentences:

∀a, b1, b2 (a 6= 0 & (b1 ∨ b2) ∧ a = 0 & a ≺ a ∨ b1 ∨ b2 ⇒ ∃a1, a2 (a1 ∨ a2 = a & a1 ∧ a2 = 0(s1)

& a1 6= 0 & a2 6= 0 & a1 ≺ a1 ∨ b1 & a2 ≺ a2 ∨ b2)),

∀a, b (a ∧ b = 0 & a 6≺ ¬b⇒ ∃a1, a2 (a1 ∨ a2 = a & a1 ∧ a2 = 0 & a1 6≺ ¬b & a2 6≺ ¬b & a1 ≺ ¬a2)),(s2)

∀a (a 6= 0 ⇒ ∃a1, a2 (a1 ∨ a2 = a & a1 ∧ a2 = 0 & a1 ≺ a & a1 6≺ a1)).(s3)

Notice that the axioms (s1), (s2), (s3) are similar to the splitting axioms of the axiomatizations appearing
in [15] and [11]. We will prove Theorem 7.1 by employing Theorem 6.7 and the duality between Cone and
StRe to characterize the duals of existentially closed algebras. We first show that it is enough to work with
finite minimal extensions.

Definition 7.2. If (C,≺) is a contact algebra extending the contact algebra (B0,≺), we say that such an
extension is minimal if it is proper and it does not contain any other proper extension of (B0,≺).

Using the Duality Theorem 6.3 restricted to the finite discrete case, we can characterize the dual spaces
(XC , RC) and (XB0

, RB0
) and the dual stable map f : (XC , RC) → (XB0

, RB0
) corresponding to finite minimal

extensions.

Proposition 7.3. Let (B0,≺) →֒ (C,≺) be an embedding between finite contact algebras, with dual regular
stable map f : (XC , RC) → (XB0

, RB0
). The embedding is minimal iff (up to isomorphism) there are a finite

set Y , finite subsets S1, S2 ⊆ Y and elements x ∈ XB0
, x1 ∈ XC , x2 ∈ XC such that:

(i): XB0
is the disjoint union Y ⊕ {x};

(ii): XC is the disjoint union Y ⊕ {x1, x2};
(iii): f restricted to Y is the identity map and f(x1) = f(x2) = x;
(iv): the restrictions of RC and of RB0

to Y coincide;
(v): RC [x1] \ {x1} = S1 and RC [x2] \ {x2} = S2;
(vi): RB0

[x] \ {x} = S1 ∪ S2.

Proof. First notice that, as a consequence of (10), if the cardinality of XB0
and of XC is the same, then f is

an isomorphism. This is seen as follows: we already observed that condition (10) implies surjectivity and in
case of the same finite cardinality surjectivity implies injectivity. Preservation and reflection of the relation
follow by stability and (10) again.

In addition, if the cardinality of XC is equal to the cardinality of XB0
plus one (this is precisely the case

mentioned in the statement of the proposition), then f cannot be properly factored, hence it is minimal. We
show that all minimal maps arise in this way.

In general, if the cardinality of XC is bigger than the cardinality of XB0
, we can define the following

factorization of f . Pick some x ∈ XB0
having more than one preimage and split f−1({x}) as T1 ∪ T2, where

T1, T2 are disjoint and non-empty. We have that XC is the disjoint union X ⊕ T1 ⊕ T2 for some set X and
XB0

is the disjoint union Y ⊕ {x} for some set Y . Define a discrete dual space (Z,RZ) as follows. Z is the
disjoint union Y ⊕{x1, x2} for new x1, x2 and RZ is the reflexive and symmetric closure of the following sets
of pairs: (i) the pairs (z1, z2) for z1RB0

z2 and z1, z2 ∈ Y ; (ii) the pairs (xi, u) for u ∈ f(RC [Ti]) (i = 1, 2);

(iii) the pair (x1, x2), but only in case T1 ∩ RC [T2] 6= ∅. Then it is easily seen that f factorizes as h ◦ f̃ in

StRe, where: (I) f̃ maps T1 to x1, T2 to x2 and acts as f on X ; (II) h is the identity on Y and maps both
x1, x2 to x.

Now h produces the data required by the proposition and f̃ must be an isomorphism if f is minimal. �

Remark 7.4.

(1) The conditions (i)–(vi) in Proposition 7.3 determine uniquely the finite minimal extension over the
contact algebras dual to (XB0

, RB0
) except for a detail: they do not specify whether we have x1RCx2
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or not. So the data x, S1, S2 and Y = XB0
\ {x} (lying inside XB0

) determine in fact two minimal
extensions of the contact algebra dual to (XB0

, RB0
).

(2) It is an immediate consequence of the proof of Proposition 7.3 that every finite extension of contact
algebras can be decomposed into a finite chain of finite minimal extensions. Thus, Theorem 6.7 still
holds if we limit its statement to finite minimal extensions.

Thus, by dualizing Theorem 6.7, we obtain the following characterization of the contact frames that are
dual to existentially closed contact algebras.

Proposition 7.5. The contact frame (X,R) is dual to an existentially closed contact algebra iff for every
finite contact frame (Y0, R0), every regular stable map f : (Y1, R1) → (Y0, R0) dual to a finite minimal
extension of contact algebras, and every regular continuous stable map g : (X,R) → (Y0, R0) there exists a
continuous regular stable map h : (X,R) → (Y1, R1) such that f ◦ h = g.

(Y0, R0) (X,R)

(Y1, R1)

g

h
f

We reformulate this characterization of duals of existentially closed contact algebras in terms of partitions.

Lemma 7.6. Let (X,R) ∈ StR. The contact algebra (X,R)∗ is existentially closed iff for each finite partition
P of X into clopens, A ∈ P, and S1,S2 ⊆ P with S1 ∪ S2 = {C ∈ P \ {A} | A ∩ R[C] 6= ∅}, there exist two
nonempty clopens A1, A2 such that A1 ∪A2 = A, A1 ∩ A2 = ∅ and for each C ∈ P \ {A}

A1 ∩R[C] 6= ∅ iff C ∈ S1, A2 ∩R[C] 6= ∅ iff C ∈ S2 and A1 ∩R[A2] = ∅.

and there exist two nonempty clopens A′
1, A

′
2 such that A′

1 ∪A
′
2 = A, A′

1 ∩A
′
2 = ∅ and for each C ∈ P \ {A}

A′
1 ∩R[C] 6= ∅ iff C ∈ S1, A′

2 ∩R[C] 6= ∅ iff C ∈ S2 and A′
1 ∩R[A

′
2] 6= ∅.

Proof. This is a consequence of Propositions 7.3 and 7.5, and the fact that continuous regular stable maps
from (X,R) ∈ StR into finite objects of StR correspond to finite partitions of X into clopens. Indeed,
a continuous regular stable map f : (X,R) → (Y,R′) onto a finite contact frame induces the partition
P = {f−1(y) | y ∈ Y }. On the other hand, if P is a finite partition of X into clopens, the quotient
map f : (X,R) → (P , RP) is a continuous regular stable map, where A RP B iff A ∩ R[B] 6= ∅ for any
A,B ∈ P . �

We are ready to show that the following conditions, which dually correspond to the axioms (s1), (s2), (s3)
of Theorem 7.1, characterize the contact frames (X,R) dual to existentially closed contact algebras.

(S1) If A,B1, B2 are clopens of X with

A 6= ∅, (B1 ∪B2) ∩A = ∅ and R[A] ⊆ A ∪B1 ∪B2,

then there exist A1, A2 clopens of X such that

A1 ∪A2 = A, A1 ∩ A2 = ∅, A1 6= ∅, A2 6= ∅, R[A1] ⊆ A1 ∪B1, and R[A2] ⊆ A2 ∪B2.

(S2) If A,B are clopens of X with

A ∩B = ∅, A ∩R[B] 6= ∅,

then there exist A1, A2 clopens of X such that

A1 ∪ A2 = A, A1 ∩ A2 = ∅, A1 ∩R[B] 6= ∅, A2 ∩R[B] 6= ∅, and A1 ∩R[A2] = ∅.

(S3) If A is a nonempty clopen of X , then there exist A1, A2 clopens of X such that

A1 ∪ A2 = A, A1 ∩A2 = ∅, R[A1] ⊆ A, and R[A1] * A1.

Lemma 7.7. Let (X,R) ∈ StR. If the contact algebra (X,R)∗ is existentially closed, then (S1), (S2), and
(S3) hold in (X,R).
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Proof. (S1) Let A,B1, B2 be clopens of X such that A 6= ∅, (B1 ∪ B2) ∩ A = ∅, and R[A] ⊆ A ∪ B1 ∪ B2.
Let P be the partition obtained from

{A,B1 \B2, B2 \B1, B1 ∩B2, X \ (A ∪B1 ∪B2)}

after possibly removing the empty set from its elements. Let Si = {C ∈ P \ {A} | A ∩ R[C] 6= ∅, C ⊆ Bi}
for i = 1, 2. Since R[A] ⊆ A ∪ B1 ∪ B2, we have S1 ∪ S2 = {C ∈ P \ {A} | A ∩ R[C] 6= ∅}. Therefore,
by Lemma 7.6 there exist A1, A2 nonempty clopens such that A1 ∪ A2 = A, A1 ∩ A2 = ∅ and for each
C ∈ P \ {A}:

A1 ∩R[C] 6= ∅ iff C ∈ S1, A2 ∩R[C] 6= ∅ iff C ∈ S2 and A1 ∩R[A2] = ∅.

It follows that R[A1] ⊆ A1 ∪B1 and R[A2] ⊆ A2 ∪B2.
(S2) Let A,B be clopens of X such that A ∩B = ∅ and A ∩R[B] 6= ∅. Since A ∩R[B] 6= ∅, both A and

B are not empty. Let P be the partition obtained from

{A,B,X \ (A ∪B)}

after possibly removingX\(A∪B) if it is empty. Let S1 = S2 = {C ∈ P\{A} | A∩R[C] 6= ∅}. By Lemma 7.6
there exist A1, A2 nonempty clopens such that A1 ∪ A2 = A, A1 ∩ A2 = ∅ and for each C ∈ P \ {A}:

A1 ∩R[C] 6= ∅ iff A ∩R[C] 6= ∅, A2 ∩R[C] 6= ∅ iff A ∩R[C] 6= ∅ and A1 ∩R[A2] = ∅.

It follows that A1 ∩R[B] 6= ∅ and A2 ∩R[B] 6= ∅.
(S3) Let A be a nonempty clopen of X . Let P be the partition obtained from

{A,X \A}

after possibly removing X \A if it is empty. Let S1 = ∅ and S2 = {C ∈ P \ {A} | A∩R[C] 6= ∅}. Therefore,
by Lemma 7.6 there exist A1, A2 nonempty clopens such that A1 ∪ A2 = A, A1 ∩ A2 = ∅ and for each
C ∈ P \ {A}:

A1 ∩R[C] = ∅, A2 ∩R[C] 6= ∅ iff A ∩R[C] 6= ∅ and A1 ∩R[A2] 6= ∅.

Therefore, R[A1] ⊆ A and R[A1] * A1. �

Lemma 7.8. Let (X,R) ∈ StR. If (S1), (S2), and (S3) hold in (X,R), then the contact algebra (X,R)∗ is
existentially closed.

Proof. We will show using Lemma 7.6 that if (S1), (S2), and (S3) hold in (X,R), then (X,R)∗ is existentially
closed. Let P be a finite partition of X into nonempty clopens, A ∈ P , S1,S2 ⊆ P such that S1 ∪S2 = {C ∈
P \ {A} | A ∩R[C] 6= ∅}. Let S1 ∪ S2 = {B1, . . . , Bn}.

First we consider the case when S1 or S2 is empty. We can assume without loss of generality that S1 = ∅
and hence that S2 = {C ∈ P \ {A} | A ∩R[C] 6= ∅}. Apply (S1) to A, ∅, B1 ∪ · · · ∪Bn to get A1, A2 clopens
such that

A1 ∪ A2 = A, A1 ∩ A2 = ∅, A1 6= ∅, A2 6= ∅,

R[A1] ⊆ A1, R[A2] ⊆ A2 ∪B1 ∪ · · · ∪Bn.

Therefore, for each C ∈ P \ {A}

A1 ∩R[C] = ∅, A2 ∩R[C] 6= ∅ iff C ∈ S2 and A1 ∩R[A2] = ∅.

Now assume that both S1 and S2 are not empty. We want to split A into n disjoint nonempty clopens
E1, . . . , En. If n = 1, let E1 = A. If n > 1, apply (S1) to A,B1, B2 ∪ · · · ∪Bn to get D1,1, D1,2 clopens such
that

D1,1 ∪D1,2 = A, D1,1 ∩D1,2 = ∅, D1,1 6= ∅, D1,2 6= ∅,

R[D1,1] ⊆ D1,1, R[D1,2] ⊆ D1,2 ∪B2 ∪ · · · ∪Bn.

Then we define recursively Di,1, Di,2 for each i = 2, . . . , n− 1 by applying (S1) to Di−1,2, Bi, Bi+1 ∪· · ·∪Bn.
Thus, we have that

Di,1 ∪Di,2 = Di−1,2, Di,1 ∩Di,2 = ∅, Di,1 6= ∅, Di,2 6= ∅,

R[Di,1] ⊆ Di,1 ∪Bi, R[Di,2] ⊆ Di,2 ∪Bi+1 ∪ · · · ∪Bn.

21



Let Ei = Di,1 for i = 1, . . . , n − 1 and En = Dn−1,2. This yields a family of nonempty clopens E1, . . . , En

such that

E1 ∪ · · · ∪ En = A and Ei ∩R[Ej ] = ∅ if i 6= j

and for each C ∈ P \ {A}:

Ei ∩R[C] 6= ∅ iff C = Bi.

The next step consists of splitting Ei into two disjoint clopens for each i such that Bi ∈ S1 ∩S2. Apply (S2)
to Ei, Bi for each i = 1, . . . , n such that Bi ∈ S1 ∩ S2. Thus, there exist Ei,1, Ei,2 clopens of X such that

Ei,1 ∪ Ei,2 = Ei, Ei,1 ∩ Ei,2 = ∅, Ei,1 ∩R[Bi] 6= ∅, Ei,2 ∩R[Bi] 6= ∅, Ei,1 ∩R[Ei,2] = ∅.

We are finally ready to define A1 and A2. Let

A1 =
⋃

{Ei | Bi ∈ S1 \ S2} ∪
⋃

{Ei,1 | Bi ∈ S1 ∩ S2},

A2 =
⋃

{Ei | Bi ∈ S2 \ S1} ∪
⋃

{Ei,2 | Bi ∈ S1 ∩ S2}.

It follows that A1, A2 are nonempty clopens such that A1 ∪A2 = A, A1 ∩A2 = ∅, and for each C ∈ P \ {A}:

A1 ∩R[C] 6= ∅ iff C ∈ S1, A2 ∩R[C] 6= ∅ iff C ∈ S2 and A1 ∩R[A2] = ∅.

It remains to construct A′
1, A

′
2. Apply (S3) to A2 to obtain F1, F2 clopens of X such that

F1 ∪ F2 = A2, F1 ∩ F2 = ∅, R[F1] ⊆ A2, R[F1] * F1.

It follows that F1 ∩ R[F2] 6= ∅. Define A′
1 = A1 ∪ F1 and A′

2 = F2. Consequently, A′
1, A

′
2 are nonempty

clopens such that for each C ∈ P \ {A}

A′
1 ∩R[C] 6= ∅ iff C ∈ S1, A′

2 ∩R[C] 6= ∅ iff C ∈ S2 and A′
1 ∩R[A

′
2] 6= ∅.

�

Since the conditions (S1), (S2), (S3) correspond dually to the axioms (s1), (s2), (s3). Theorem 7.1 is an
immediate consequence of Lemmas 7.7 and 7.8.

We can use Theorem 7.1 to give another proof of the fact that the formula (16) corresponding to the
Π2-rule (ρ9) is provable in Con⋆, hence (ρ9) is admissible in S2IC.

Corollary 7.9. The formula

x ≺ y ⇒ ∃z (z ≺ z & x ≺ z ≺ y)

is provable in Con
⋆.

Proof. Let A be an existentially closed contact algebra and a, b ∈ A such that a ≺ b. We can assume that
a 6= b, otherwise the claim is trivial. We have

(a ∨ ¬b) ∧ (b ∧ ¬a) = 0 and b ∧ ¬a ≺ 1 = (b ∧ ¬a) ∨ a ∨ ¬b.

Thus, by the axiom (s1) applied to b ∧ ¬a, a, ¬b, there are c1, c2 ∈ A such that

c1 ∨ c2 = b ∧ ¬a, c1 ∧ c2 = 0, c1 6= 0, c2 6= 0, c1 ≺ c1 ∨ a, c2 ≺ c2 ∨ ¬b.

Since a ≺ b and c1 ≺ c1 ∨ a ≤ b, it follows that a ∨ c1 ≺ b. Moreover,

a ∨ c1 = a ∨ ((b ∧ ¬a) ∧ ¬c2) = b ∧ ¬c2 = ¬(c2 ∨ ¬b) ≺ ¬c2

where the second equality is a consequence of a ≤ b and c2 ≤ ¬a. Therefore, a ∨ c1 ≺ b ∧ ¬c2 = a ∨ c1. Let
d = a ∨ c1. Then d ≺ d and a ≤ d ≤ b, which imply a ≺ d ≺ b. �

Definition 7.10. Let S be a modal system. We say that a set of Π2-rules Θ derives a Π2-rule ρ if

TS ∪ {Π(θ) | θ ∈ Θ} � Π(ρ).

We say that a set of admissible rules Θ is a basis of admissible rules for S if it is a minimal set of rules that
derives every admissible rule.

22



Theorem 7.11. A basis of admissible rules for S2IC is given by the following three rules.

(ρs1)
[∀]((p1 ∨ p2 ↔ ϕ1) ∧ ¬(p1 ∧ p2) ∧ 〈∃〉p1 ∧ 〈∃〉p2 ∧ (p1  p1 ∨ ϕ2) ∧ (p2  p2 ∨ ϕ3)) → χ

[∀](〈∃〉ϕ1 ∧ ¬(ϕ1 ∧ (ϕ2 ∨ ϕ3)) ∧ (ϕ1  ϕ1 ∨ ϕ2 ∨ ϕ3)) → χ

(ρs2)
[∀]((p1 ∨ p2 ↔ ϕ1) ∧ ¬(p1 ∧ p2) ∧ ¬(p1  ¬ϕ2) ∧ ¬(p2  ¬ϕ2) ∧ (p1  ¬p2)) → χ

[∀](¬(ϕ1 ∧ ϕ2) ∧ ¬(ϕ ¬ϕ2)) → χ

(ρs3)
[∀](((p1 ∨ p2) → ϕ) ∧ ¬(p1 ∧ p2) ∧ (p1  ϕ) ∧ ¬(p1  p2)) → χ

〈∃〉ϕ→ χ

where 〈∃〉 := ¬[∀]¬.

Proof. If S is a modal system with universal modality [∀], then in TS the formula x 6= 0 is equivalent to
〈∃〉x = 1. Moreover, if t1, t2 are terms, then in TS the first order formula

∀x(t1(x) = 1 ⇒ ∃y(t2(x, y) = 1))

is equivalent to
∀x, z([∀]t1(x) � z ⇒ ∃y([∀]t2(x, y) � z)).

It is then straightforward to see that the axioms (s1), (s2), and (s3) of Theorem 7.1 are equivalent to
Π(ρs1), Π(ρs2), and Π(ρs3) in the theory of contact algebras (thought of as simple S2I-algebras). Thus, by
Theorems 5.5 and 7.1, if ρ is an admissible rule, then it would be a consequence of Π(ρs1), Π(ρs2), and
Π(ρs3). This implies that (ρs1), (ρs2), and (ρs3) form a basis of admissible rules for S2IC. �

8. Conclusions

In this paper we studied admissibility of Π2-rules. We derived three strategies for recognizing admis-
sibility for such rules. These strategies used interpolation, uniform interpolation, and model completions,
respectively. We tested these methods on the symmetric strict implication calculus S2IC and showed that
admissibility of Π2-rules is decidable in S2IC. We also proved that the model completion of the theory of
contact algebras (simple algebraic models of S2IC) is finitely axiomatizable. This allowed us to show that
there is a finite basis for admissible Π2-rules in S2IC. Below we discuss some potential directions for future
work.

In the last part of the paper we showed that there is a finite basis of admissible Π2-rules for S2IC. For
this in Definition 7.10, for a set of Π2-rules Θ and rule ρ we defined when Θ derives ρ. Namely, Θ derives
ρ if the first-order translation of rules in Θ derive the first-order translation of ρ. The definition of a basis
of admissible Π2-rules is based on this definition. We leave it as an open problem to define when a set of
Π2-rule derives a Π2-rule purely in terms of these rules without appealing to their first-order correspondents.

Another direction is to study connections with the literature on admissibility of standard inference rules
in contact algebras [2]. Our non-standard Π2-rules have the particular shape outlined in Definition 2.4 and
these trivialize if they are standard (i.e., if p does not occur in the formula F from the premise). However,
it could be interesting to analyze more general formats for non-standard rules that also include standard
inference rules.

Finally, it will be interesting to study extensions of our results to systems over a distributive lattice reduct.
Among others it might be useful to develop a framework encompassing the important (non-standard) density
rule of fuzzy and many-valued logics [32, 35].
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