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INDEPENDENT SETS IN RANDOM SUBGRAPHS OF THE HYPERCUBE

GAL KRONENBERG AND YINON SPINKA

Abstract. Let Qd,p be the random subgraph of the d-dimensional hypercube {0, 1}d, where each
edge is retained independently with probability p. We study the asymptotic number of independent
sets in Qd,p as d → ∞ for a wide range of parameters p, including values of p tending to zero as fast

as C log d

d1/3
, constant values of p, and values of p tending to one. The results extend to the hardcore

model on Qd,p, and are obtained by studying the closely related antiferromagnetic Ising model on
the hypercube, which can be viewed as a positive-temperature hardcore model on the hypercube.
These results generalize previous results by Galvin, Jenssen and Perkins on the hard-core model
on the hypercube, corresponding to the case p = 1, which extended Korshunov and Sapozhenko’s
classical result on the asymptotic number of independent sets in the hypercube.

1. Introduction and main results

The problem of computing the total number of independent sets (a set of vertices containing
no edges) in a graph is known to be hard. This has been studied for various graphs, including
the d-dimensional hypercube Qd, where the problem of counting independent sets is particularly
interesting due to its relation to the hardcore model from statistical mechanics. Let i(G) denote
the number of independent sets in a graph G. For a survey on counting independent sets in graphs,
see [32].

In the early 1980s, Korshunov and Sapozhenko [24] computed the asymptotic number of inde-
pendent sets in the hypercube, showing that, as d→ ∞,

i(Qd) = (1 + o(1)) · 2
√
e · 22

d−1
. (1)

Sapozhenko [33] gave an additional proof of this shortly after (see [15] for an exposition). This
classical result was recently refined by Jenssen and Perkins [21] who gave a formula and an algorithm
for computing the asymptotics of i(Qd) to arbitrary order in 2−d, yielding for example that

i(Qd) = 2
√
e · 22

d−1

(

1 +
3d2 − 3d− 2

8 · 2d
+O

(

d42−2d
)

)

. (2)

See [21, Theorem 1.1] for a more refined form, giving the asymptotics up to O(d62−3d).

In this paper, we extend this to the number of independent sets in a random subgraph of the
hypercube. Let Qd,p be the random subgraph of the hypercube Qd obtained by keeping each edge
independently with probability p. The random graph Qd,p has been a subject of great interest; see
for example [8, 12, 1, 2, 3, 5, 25, 4, 35, 6, 27, 36, 19, 18, 28, 9, 11].

Our first main result is an extension of (2) to the random graph Qd,p.

Theorem 1.1. For p ≥ C log d
d1/3

,

Ei(Qd,p) = 2 · 22
d−1

exp
[

1
2(2 − p)d +

(

a(p)
(d
2

)

− 1
4

)

2d(1 − p
2)2d +O

(

d42d(1 − p
2)3d

)]

,

where

a(p) :=
(1 + (1 − p)2)2

(2 − p)4
− 1

4
.
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A simple form of Theorem 1.1 is obtained by keeping only the leading term in the exponent,
yielding that for p ≥ C log d

d1/3
,

Ei(Qd,p) = 2 · 22
d−1

exp
[

1
2(2 − p)d(1 + o(1))

]

. (3)

We mention that this formula fails for p = o(1d ) (see Section 6 for a discussion). The formula (3)
gives an asymptotic expression for the logarithm of the expected number of independent sets in
Qd,p for p ≥ C log d

d1/3
. For some values of p, we further obtain the asymptotics of Ei(Qd,p) itself. For

example, if p = 1 − c
d + o(1d) for a fixed c ≥ 0, then (3) already yields that

Ei(Qd,p) = (1 + o(1)) · 2e
1
2
ec · 22

d−1
. (4)

For constant p > 2−
√

2 ≈ 0.586, Theorem 1.1 implies that Ei(Qd,p) is asymptotic to 2·22d−1
e

1
2
(2−p)d .

Similarly, for constant p > 2−22/3 ≈ 0.413, the theorem implies that this expectation is asymptotic

to 2 · 22d−1
e

1
2
(2−p)d+(a(p)(d2)−

1
4
)2d(1− p

2
)2d . As with the proof of Jenssen and Perkins in [21], our proof

gives additional correction terms in the exponent to arbitrary accuracy, allowing to compute the
expansion up to O(d2n−22d(1− p

2)nd) for any fixed n > 0 (see Remark 5.5). In particular, this gives
a way to obtain the asymptotics of the expectation for any constant p.

One natural point to consider is p = 1
2 . On the hypercube, this is in fact the critical point for

various graph properties of Qd,p including the existence of isolated vertices, minimal degree at least
two, connectivity [8, 12, 2], the existence of a perfect matching [3], and as was very recently shown,
Hamiltonicity [9]. For the number of independent sets, Theorem 1.1 gives

Ei(Qd,1/2) = 2 exp
[

1
2 (32)d + 1

4(98 )d
(

91
9

(

d
2

)

− 1
)]

· 22
d−1
(

1 +O(d4)(2732 )d
)

. (5)

For the reader’s convenience, we mention already now a formula for the variance, which will follow
from one of our later results:

Var i(Qd,1/2) = 4 exp
[

(32)d + 1
2(54 )d + (98)d

(

91
18

(d
2

)

− 1
)]

· 22
d
(

1 +O(d2)(1516 )d
)

. (6)

We point out that Var i(Qd,1/2) ≫ (Ei(Qd,1/2))2.

For p ≥ 2
3 , we also have the following result on the typical number of independent sets. Recall

that a sequence of random variables (Xd) is tight if for every ε > 0 there exists M > 0 such that
P(|Xd| > M) ≤ ε for all d. Equivalently, if for any function w = ω(1), we have that |Xd| = O(w)
with high probability.

Theorem 1.2. For p ≥ 2
3 ,

i(Qd,p) = 2e
1
2
(2−p)d · 22

d−1
(

1 + (2 − 3p
2 )d/2 ·Xd

)

,

where Xd is tight as d→ ∞. Furthermore, if also p ≤ 1 − Ω(1d), then |Xd| = Ω(1) with probability
Ω(1), and in particular Xd does not converge to zero in probability.

The first part of the theorem gives an upper bound on the fluctuations of i(Qd,p) when p ≥ 2
3 .

In particular, for p > 2
3 + ω(1d), we get that with high probability

i(Qd,p) = 2e
1
2 (2−p)

d · 22
d−1

(1 + o(1)) .

Recalling that the expectation also behaves like the right-hand side, we see that i(Qd,p) is con-

centrated around its mean. Note that for p = 2
3 the first part of the theorem does not give a

concentration result. In fact, the second part of the theorem implies that i(Qd,p) is not concen-

trated for p = 2
3 . Thus the theorem implies that a change of behavior occurs around p = 2

3 . For
larger values of p, the second part of the theorem gives a lower bound on the fluctuations, thereby
pinpointing the order of magnitude of the fluctuations.
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The first part of Theorem 1.2 will be a consequence of an understanding of the variance of
Xd, and the second part will be a consequence of an understanding of its fourth moment. For
the latter part regarding the lower bound on the fluctuations, the assumption that p ≤ 1 − Ω(1d )
can be relaxed to allow p to approach 1 much faster, though the actual fluctuations are smaller
than (2 − 3p

2 )d/2 for such p. These are determined by the variance which will be discussed in

Theorem 1.4 below. We point out that for all constant p ∈ [23 , 1), the fluctuations of i(Qd,p) are
of larger order of magnitude than the second correction term in the expectation obtained from
Theorem 1.1, namely Θ(d22d(1− p

2 )2d), so that the the fluctuations overwhelm the latter correction

term. Thus, for constant p ∈ [23 , 1), while the leading order asymptotics is deterministic, the second
order correction is already random. It is natural to ask whether Xd in Theorem 1.2 converges in
distribution as d→ ∞, and if so, to what?

The next result answers this question for p tending to 1.

Theorem 1.3. For p = 1 − o(1) such that p ≤ 1 − 2−d/3+ω(log d),

i(Qd,p) − Ei(Qd,p)
√

Var i(Qd,p)
=⇒ N (0, 1),

where =⇒ denotes convergence in distribution.

The results above follow from an understanding of the moments of i(Qd,p). The next result gives
an asymptotic formula for the second moment. For increased neatness, we describe the result in
terms of the ratio between the second moment and the square of the expectation. Together with
Theorem 1.1 this translates to an asymptotic formula for the variance.

Theorem 1.4. For p ≥ C log d
d1/3

,

Ei(Qd,p)
2

(Ei(Qd,p))2
=

1

2
exp

[

1
2(2 − 3p

2 )d − 1
22d(1 − p

2)2d +O(d4)(1 − p
2 )d(2 − 3p

2 )d
]

+
1

2
exp

[

p(1−p)
2(2−p)2 d2d

(

1 − p
2

)2d
+O(d4)(1 − p

2)d(2 − 3p
2 )d
]

.

As we have seen in Theorem 1.2, there is a change in behavior around p = 2
3 , where for this

value of p there is no concentration, while for larger values there is. Theorem 1.4 shows that the
variance also undergoes a change of behavior around this point. Indeed, the variance of i(Qd,p)

is of the same order as the square of its expectation for p = 2
3 ± Θ(1d), but is of larger order for

p ≤ 2
3 − ω(1d), while for p ≥ 2

3 + ω(1d), it is of smaller order, implying that i(Qd,p) is concentrated
around its expectation. This leads to the first part of Theorem 1.2, while the second part requires
also the fourth moment, which is addressed below.

Our methods yield precise asymptotic formulas for any moment of i(Qd,p), as well as for its central
moments. To keep the exposition simple, we formulate the next result with lower precision than
was given in Theorem 1.4 for the second moment. As before, for increased neatness, we describe
the result in terms of the ratio between the k-th moment and the k-th power of the expectation.

Theorem 1.5. For any k ≥ 2 and p ≥ Ck2 log d
d1/3

,

Ei(Qd,p)
k

(Ei(Qd,p))k
= 2−k

k
∑

m=0

(

k
m

)

exp
[

1
2

((

m
2

)

+
(

k−m
2

))

(2 − 3p
2 )d +O(d)2d(1 − p

2 )2d
]

.

Furthermore, for any even k ≥ 4 and 2
3 + ω(1d) ≤ p ≤ 1 − ω(1d ),

E(i(Qd,p) − Ei(Qd,p))
k

(Ei(Qd,p))k
=
(

2−k(k − 1)!! · (2 − 3p
2 )kd/2 + 2−k2d(1 − p+ p2−k)d

)

(1 + o(1)).
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This remains true for p = 2
3 ±O(1d) if one replaces the term 1 + o(1) by Θ(1), and it remains true

for all p ≥ 2
3 if one replaces it by O(1). This also holds for odd k ≥ 3 and p ≥ 2

3 with the O(1).

In particular, this implies that, similarly to (3), for any k ≥ 2 and p ≥ Ck2 log d
d1/3

,

Ei(Qd,p)
k = 2k · 2k2

d−1
exp

[

k
2 (2 − p)d(1 + o(1))

]

.

Theorem 1.5 shows that all higher moments undergo a change in behavior around p = 2
3 similar to

that of the second moment. Specifically, for k ≥ 2 and p ≥ 2
3 +ω(1d), the k-th moment of i(Qd,p) is

asymptotic to the k-th power of its expectation, whereas for C log d
d1/3

≤ p ≤ 2
3 − ω(1d), it is of larger

order. When p = 2
3 ±O(1d), all moments of i(Qd,p)/Ei(Qd,p) are 1 + Θ(1).

Let us now discuss the central moments, which are of particular interest. When C log d
d1/3

≤ p ≤
2
3 − ω(1d), it is not hard to see using the first part of the theorem that the k-th central moment is

asymptotically the same as the k-th moment itself. On the other hand, when p ≥ 2
3 − O(1d ), the

second part of the theorem gives the order of magnitude of the normalized k-th central moment,
showing that it is the larger of one of two terms. As it turns out, for 2 ≤ k ≤ 7, the first term is
always the larger of the two, whereas for any k ≥ 8, there are two numbers 2

3 < p∗k < p∗∗k < 1 such
that the second term is larger for p ∈ (p∗k, p

∗∗
k ), and otherwise the first term is larger. As k → ∞,

these satisfy p∗k → 2
3 and p∗∗k → 1. Thus, for any constant p ∈ (23 , 1), the normalized k-th central

moment is of order 2d(1 − p + p2−k)d for all k large enough. On the other hand, when p tends

to 1, the normalized k-th central moment is asymptotic to 2−k(k − 1)!!(2 − 3p
2 )kd/2 for all even

k ≥ 2. This suggests normal behavior as in Theorem 1.3 and this will indeed follow from a slightly
stronger version of Theorem 1.5 (see Theorem 5.3).

1.1. The hard-core model. A natural and well-studied generalization of independent sets is the
hard-core model. In this model, one is given a parameter λ > 0 called the fugacity, and one
samples a random independent set I of a given finite graph G with probability proportional to λ|I|.
The partition function of the model is the normalization constant given by

Z(G,λ) :=
∑

I indep. set in G

λ|I|.

Note that λ = 1 corresponds to counting independent sets, i.e., Z(G, 1) = i(G).
The hard-core model, which originates from statistical mechanics, serves as a simple model of

gas or hard spheres. It has been extensively studied by mathematical physicists, probabilists,
combinatorialists and computer scientists (scheduling problems, communications).

Galvin [13] studied the hard-core model on the hypercube. Among his results which described the
typical structure of a configuration in the hard-core model, was an extension of the basic result (1) of

Korshunov and Sapozhenko to the hard-core model, which states that for λ ≥
√

2−1+ (
√
2+Ω(1)) log d

d ,

Z(Qd, λ) = (1 + o(1)) · 2(1 + λ)2
d−1

exp

[

λ
2

(

2
1+λ

)d
]

,

and that for λ ≥ C log d
d1/3

,

Z(Qd, λ) = 2(1 + λ)2
d−1

exp

[

λ
2

(

2
1+λ

)d
(1 + o(1))

]

.

Jenssen and Perkins [21] gave more refined results, including a formula and algorithm which allows

to find the asymptotics of Z(Qd, λ) for any constant λ. For example, for λ ≥ 21/3−1+ 27/3 log d+ω(1)
2d ,

Z(Qd, λ) = (1 + o(1)) · 2(1 + λ)2
d−1

exp

[

λ
2

(

2
1+λ

)d (

1 + (2λ2+λ3)d(d−1)−2λ
4(1+λ)d

)

]

.
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Our following result extends the above to random subgraphs of the hypercube.

Theorem 1.6. Suppose that λ ≤ λ0 and λp ≥ C log d
d1/3

. Then

EZ(Qd,p, λ) = 2(1 + λ)2
d−1

exp
[

λ
2 2dαd1 +

(

a
(d
2

)

− 1
4

)

λ22dα2d
1 +O

(

d4λ32dα3d
1

)]

,

where

α1 := 1 − λp

1 + λ
and a :=

(1 + λ)2(1 + λ(1 − p)2)2

4(1 + λ− λp)4
− 1

4
.

In the theorem, and throughout the paper, λ0 is an arbitrarily large constant, and C, c denote
constants which may depend on λ0 but are otherwise universal.

The requirement that λ is bounded can be relaxed, but can not be entirely dropped. For example,
the conclusion of the theorem fails when p ∈ (0, 1) is constant and λ ≥ eC(p)d, since EZ(Qd,p) is

trivially bounded above by (1 + λ)2
d
, whereas the expression in the theorem is much larger in this

case. While our proof would allow to obtain results for λ that does not grow too fast, the more
interesting regime is when λ is constant or tends to 0, and so we have opted to keep things simpler
by assuming that λ is bounded.

Theorem 1.6 generalizes Theorem 1.1. All the other results discussed in the introduction similarly
generalize to the hardcore model. We do not state these generalizations here and refer the reader
to Section 5 for details.

1.2. A family of positive-temperature extensions of the hard-core model. As it turns out,
the hard-core model on a random subgraph Gp of a graph G (keeping each edge of G independently
with probability p) is related to another statistical mechanics model on the base graph G. The
latter model can be thought of as a positive-temperature hard-core model (which is nothing other
than the antiferromagnetic Ising model with external magnetic field). In this model, in addition to
the fugacity parameter λ > 0, one is given a parameter β ∈ [0,∞] called the inverse temperature,

and one samples a subset I of vertices in G with probability proportional to λ|I|e−β|E(I)|, where
E(I) := {e ∈ E(G) : e ⊂ I} is the set of edges of G spanned by I. The partition function of the
model is

Z(G,λ, β) :=
∑

I⊂V (G)

λ|I|e−β|E(I)|. (7)

Note that when β = ∞ this reduces to the usual hard-core model on G and Z(G,λ,∞) = Z(G,λ).
We will see that when p and β satisfy the relation p = 1−e−β, we have the following useful relation

between the partition function of the hard-core model on Gp and that of the positive-temperature
hard-core model on G:

EZ(Gp, λ) = Z(G,λ, β). (8)

This relation is key for our understanding and analysis of the expected number of independent sets
in Qd,p.

In fact, there is also a certain representation for the moments of Z(Gp, λ) in terms of the positive-
temperature hard-core model on G. Taking the same relation between p and β, letting I1, . . . , Ik
be independent and identically distribution random variables chosen from the positive-temperature
hard-core model on G, we have

EZ(Gp, λ)k

(EZ(Gp, λ))k
= Eeβ(|E(I1)|+···+|E(Ik)|−|E(I1)∪···∪E(Ik)|). (9)

Actually, we will not use this relation, but found it interesting to mention as it also gives another
interpretation for our results on the moments.

We will instead use a different relation, closer in spirit to that in (8). In this relation, the k-th
moment of Z(Gp, λ) is related to a model of k interacting sets I1, . . . , Ik of vertices of G. Specifically,
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one samples I1, . . . , Ik ⊂ V (G) with probability proportional to λ|I1|+·+|Ik|e−β|E(I1)∪···∪E(Ik)|. The
partition function of the model is

Zk(G,λ, β) :=
∑

I1,...,Ik⊂V (G)

λ|I1|+·+|Ik|e−β|E(I1)∪···∪E(Ik)|.

Note that Z1(G,λ, β) = Z(G,λ, β) and that Zk(G,λ,∞) = Z(G,λ)k.
The following is an extension of the relation (8) to arbitrary k ≥ 1.

Proposition 1.7. Let G be a finite graph, let λ > 0 and β ∈ [0,∞] and set p = 1 − e−β . Then

Zk(G,λ, β) = EZ(Gp, λ)k.

Proof. Denote G = (V,E) and q = eβ − 1 = p/(1 − p). Then

Zk(G,λ, β) =
∑

I1,...,Ik⊆V
λ|I1|+···+|Ik|

∏

e∈E
e−β1e∈E(I1)∪···∪E(Ik)

=
∑

I1,...,Ik⊆V
λ|I1|+···+|Ik|e−β|E| ∏

e∈E
(1 + q1e/∈E(I1)∪···∪E(Ik))

=
∑

I1,...,Ik⊆V
λ|I1|+···+|Ik|e−β|E| ∑

ω⊆E
q|ω|

∏

e∈ω
1e/∈E(I1)∪···∪E(Ik)

=
∑

ω⊆E
e−β|E|q|ω|

∑

I1,...,Ik⊆V
λ|I1|+···+|Ik|1{I1,...,Ik are independent in ω}

=
∑

ω⊆E
e−β|E|q|ω|Z(ω, λ)k

=
∑

ω⊆E
Z(ω, λ)kp|ω|(1 − p)|E\ω|

= EZ(Gp, λ)k. �

In light of this relation between the hard-core model on Qd,p and the positive-temperature models
on Qd, the proofs of the main results boil down to analyzing the latter models. This analysis
establishes an understanding of the structure of a typical configuration. Let us first describe this
structure when k = 1. A typical configuration will mostly be contained in one of the sides, E or
O, of the hypercube. Configurations which are entirely contained in one side may be thought of
as “ground states”, and then a typical configuration can be seen as a small deviation from such
a ground state. For k ≥ 2, there are 2k classes of ground states, each characterized by a vector
D ∈ {E ,O}k, where the corresponding ground state configurations are those having I1 ∩ D1 =
· · · = Ik ∩ Dk = ∅. Thus, we think of D as describing the “defect/deviation sides”. We will
establish a convergent cluster expansion for this model, which makes rigorous the fact that typical
configurations are small deviations from such ground state configurations.

1.3. Proof outline. In this section we give an outline of the proofs of our main results. The proofs
combine a number of ideas and techniques, including the cluster expansion for polymer models,
approximations of contours, comparison with the model on the complete bipartite graph Kd,d, the
aforementioned relation between the hard-core model onQd,p and the family of positive-temperature
models on Qd, and the method of moments.

If we were content with weaker versions of the results, we would not require all of the above
ingredients. In Section 2, we warm up by proving that for p ≥ 2

3 +ω(1d), the number of independent

sets in Qd,p is (1 + o(1)) · 2e
1
2
(2−p)d · 22

d−1
, both in expectation and with high probability (see

Theorem 2.1). Let us first discuss the proof outline for this weaker result, which does not rely on
the cluster expansion, and involves many of the ideas that go into the main theorems.
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Outline for Theorem 2.1: To prove the theorem, it suffices to lower bound i(Qd,p) with high
probability, and to upper bound its expectation. For the lower bound, it is instructive to first see
how one obtains a tight lower bound on i(Qd). By considering independent sets which are entirely
contained in one bipartition class of the hypercube (we call these ground states), one easily sees
that

i(Qd) ≥ 2 · 22
d−1 − 1.

This bound already gives the correct order of magnitude. To get the correct leading constant, it
suffices to additionally take into account independent sets which are “almost” entirely contained in
one side of the hypercube (small deviations from a ground state), in the sense that only a bounded
number of vertices belong to the other side. Indeed, since any set of size k in the hypercube has
at most kd neighbors, the number of independent sets which are contained in (say) the even side,
except for precisely k vertices in the odd side, is at least 2n−kd

(n
k

)

, where n := 2d−1. For fixed k,

this is asymptotically the same as 2n 1
k!2

−k. Summing over 0 ≤ k ≤ K, with K slowly tending to
infinity, and reversing the roles of even and odd to obtain an additional factor of 2 (noting that the
double counting is negligible), yields that

i(Qd) ≥ (1 − o(1)) · 2
√
e · 22

d−1
.

The lower bound on i(Qd,p) is obtained by a similar “direct” counting argument, using the
second moment method in order to control fluctuations and produce a bound which holds with
high probability. While we only required bounded k for the bound on i(Qd), the bound on i(Qd,p)

will use k up to roughly (2−p)d (which is bounded precisely when p = 1−O(1d); compare with (4)).
The details of this lower bound are given in Section 2.1.

Let us give a heuristic for why (2 − p)d is a relevant order of magnitude. Consider independent
sets which are mostly contained in the even side of the hypercube. If we consider a randomly
chosen independent set, then we may approximate the state of even vertices as independent fair
coin flips. In order for it to be possible for a given odd vertex to belong to the independent set,
each of the d adjacent vertices must either be vacant or the edge connecting to it should not appear
in Qd,p. By the independence assumption, this has probability (1 − p + p/2)d. Thus, there are

roughly 2d−1(1 − p+ p/2)d = 1
2(2 − p)d odd vertices which have no occupied neighbors.

Let us now discuss the upper bound on the expectation of i(Qd,p). As we have seen in Section 1.2,
this expectation can be interpreted as the partition function of a positive-temperature model.
To upper bound the partition function of the latter model, we employ and extend techniques of
Galvin [13] and Peled–Spinka [31] with the goal of showing that most configurations do not deviate
much from a ground state. The basic objects we work with, called polymers, are 2-linked sets of
vertices contained in one side of the hypercube, and whose closures do not contain more than 3

4 of

the vertices on that side (the precise constant 3
4 is not important; any constant strictly between 1

2
and 1 would work). Here, 2-linked means that it is connected in the enhanced graph where edges
are added between distance-two vertices, and the closure of a set is the largest set with the same
neighborhood. Polymers represent local deviations from a ground state. Each polymer A has an
associated weight

ω(A) :=
∑

B⊂N(A)

2−|N(A)|e−β|E(A,B)|,

defined so that the weight of a configuration (under some minor restrictions) can be written as the
product of weights of the polymers it decomposes into. At zero temperature (β = ∞), this weight

is simply ω(A) = 2−|N(A)|, which comes from the fact that removing A from the independent set,
frees up the vertices in N(A) to be added (or not) to the independent set. At positive temperature,
however, the picture is more involved as it is possible for the vertices in N(A) to be occupied even
when the vertices in A are occupied, and thus the weight ω(A) is given by a sum of the contributions
from the possible states of vertices in N(A).
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Not all configurations can be seen as polymers configurations. Roughly speaking, configurations
which contain both a significant number of even and odd vertices cannot be identified with a
polymer configuration. We refer to these as non-polymer configurations. More precisely, non-
polymer configurations are those whose closures have both even and odd 2-linked components of
size larger than 3

4 · 2d−1. In particular, the closure of a non-polymer configurations contains more

than 3
4 · 2d−1 even and odd vertices. In fact, this will be the only property we use in order to

bound the total weight of non-polymer configurations. We note that at zero temperature, non-
polymer configurations are simply not possible (for this it is enough that the closure contains more
than 1

2 · 2d−1 even and odd vertices), so that there is nothing to show. At positive, but very low,
temperature, each non-polymer configuration has very small weight and a simple union bound
suffices. However, at lower temperature (even already for constant β), bounding the total weight of
non-polymer configurations is non-trivial. For this we use a technique from [31], based on entropy
methods [22, 17, 14], which relies on a certain comparison with the model on the complete bipartite
graph Kd,d. We state the required bound (Lemma 2.3) in the warm-up section and leave the proof
to the later Section 4.3.

In order to show that deviations are unlikely in polymer configurations, we will bound the total
weight of all polymers. Small polymers have small weight relative to their size (since N(A) is
much larger than A), and so it is not hard to rule out the existence of a small deviation at a given
vertex in a typical configuration. However, while the weight of a large polymer is small in absolute
terms (this by itself is already a challenge at positive temperature and requires the aforementioned
technique from [31]; note that the contribution to ω(A) is small for large B, but there are many
such B to sum over), it is not so small relative to the number of such polymers (since N(A) is not
much larger than A), so that it is not obvious how to rule out large deviations.

The main technical step toward obtaining an upper bound on the partition function is then
to bound the total weight of large polymers. For this we use an approximation scheme (container
method) for polymers. Such approximations were initially used by Korshunov and Sapozhenko [24],
and subsequently in numerous works including [13, 31]. The positive-temperature nature of the
model makes the use of these approximation more involved (e.g., in comparison to [24, 13]), and
again require the use of the aforementioned technique from [31]. As the bound on the weight of
large polymers is quite technical and long, we have only stated the required bound (Lemma 2.2) in
the warm-up section and left the proof to the later Section 4.2, where the bound is shown in the
generality needed for the other results of the paper as well. The other details of the upper bound
are given in Section 2.2.

Outline for Theorems 1.1 and 1.6: While one could in theory use the same approach as for
Theorem 2.1 to obtain precise lower and upper bounds on Ei(Qd,p), such a “hands-on” approach
would likely be cumbersome in practice. Instead, we employ the well-developed machinery of the
cluster expansion, which will allow for nice bookkeeping and provide formulas for various quantities
of interest in terms of polymers (in a similar spirit as inclusion-exclusion). Background on the cluster
expansion can be found in [7, 34]. A nice example of how the cluster expansion can be used to
obtain precise asymptotic and further probabilistic information is given by the work of Jenssen and
Perkins [21] who extend results of Galvin [13] on the hard-core model on Qd.

The new object here is a cluster, which is a sequence of polymers (repetition is allowed) with
certain connectivity properties among them. The weight of a cluster is the product of the weights of
its polymers, times another factor (which may be positive or negative), called the Ursell function,
which depends on the connectivity structure between the polymers. The cluster expansion is a
formal expression for the logarithm of the partition function, which expresses it as the sum of
weights of all clusters. Although the system is finite, there are infinitely many clusters, making this
a formal sum which could potentially be absolutely divergent. There are several conditions in the
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literature which guarantee the absolute convergence of the cluster expansion. A particularly useful
one, which we shall use, is due to Kotecký and Preiss [26].

Two steps remain in order to obtain the theorem. The first step is to verify the Kotecký–Preiss
condition for the absolute convergence of the cluster expansion. The two main inputs needed for
this are ones which were already needed and discussed for Theorem 2.1 – bounding the total weight
of non-polymer configurations and bounding the total weight of large polymers. The second step
is to compute the cluster expansion series (to the desired accuracy). For the results as stated in
Theorem 1.1 and Theorem 1.6, we compute precisely the contribution to the series from clusters of
size one and two, and bound the absolute contribution from larger clusters. Of course, one could
compute more terms precisely and thereby obtain more precise results.

Outline for Theorems 1.2 and 1.3: Both theorems will follow from a good understanding of the
(central) moments of i(Qd,p), which is given in Theorems 1.1, 1.4 and 1.5 and also in Theorems 5.2
and 5.3. For the first part of Theorem 1.2, we use an upper bound on the variance, while for
the second part, we use a lower bound on the variance and an upper bound on the fourth central
moment. For Theorem 1.3, we show that the standardized moments converge to those of a standard
normal random variable, and the convergence in distribution will follow.

Outline for Theorems 1.4 and 1.5: The starting point for understanding the moments of
i(Qd,p) is the fact that the k-th moment Ei(Qd,p)

k can be interpreted as the partition function
Zk of a positive-temperature k-component model (see Section 1.2). The same techniques used
for Theorem 1.1 can be applied to obtain a convergent cluster expansion for this k-component
model (with a suitable definition of a polymer). Computing this cluster expansion to some desired
accuracy leads to the formulas for the moments.

To study the central moments, we use a binomial expansion in order to write the k-th central
moment E(i(Qd,p) − Ei(Qd,p))

k in terms of the (non-central) moments. Plugging in the cluster
expansion series and suitably manipulating the series, we obtain an expression for the k-th central
moment as a sum over sequences of clusters, where the only allowed sequences are those which
“span” all k components of the system (in a certain precise sense). Computing this series leads to
the formula for the k-th central moment.

1.4. Notation. Given a graph G = (V,E), we write u ∼ v when u and v are adjacent vertices.
We write N(v) for the neighbors of v ∈ V , and we write N(U) :=

⋃

u∈U N(u) for the neighborhood
of U ⊂ V . For a subset U ⊂ V , we define the closure of U to be largest set [U ] with the same
neighborhood as U , i.e., [U ] := {v ∈ V : N(v) ⊂ N(U)}.

The d-dimensional hypercube Qd is the Hamming graph on {0, 1}d, i.e., the graph with vertex

set {0, 1}d and edge set {{u, v} :
∑d

i=1 |ui − vi| = 1}. We call a vertex of Qd even or odd according
to the sum of its coordinates. We denote by E and O the set of even and odd vertices of Qd,
respectively.

For real numbers a and b, we write a ∧ b := min{a, b} and a ∨ b := max{a, b}.
We write f ≪ g for f = o(g). All asymptotics are as d → ∞, unless otherwise stated, and d is

assumed to be large enough when needed.
We use λ0 to denote an arbitrarily large constant. We write C, c for positive constants, which

may depend on λ0 but are otherwise universal, and which may change from line to line (with large
constants only increasing, and small constants decreasing). We use the notation a ≈ b in the sense
that a

b is bounded away from zero and infinity by universal constants.

1.5. Preliminaries. We will make use of the following isoperimetric inequalities from [24, 13, 20].
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Lemma 1.8. Let d ≥ 1 and let E ∪ O be the partition of V (Qd) into the even and odd vertices.
Suppose S ⊆ E (or S ⊆ O). Then

|N(S)| ≥











d|S| − 2|S|2 if |S| ≤ d/10
1
10d|S| if |S| ≤ d4
(

1 + Ω
(

1/
√
d
))

|S| if |S| ≤ (1 − Ω(1))2d−1

.

We also use the following graph-theoretic lemma (see, e.g., [21, Lemma 13]).

Lemma 1.9. The number of 2-linked subsets S ⊆ V (Qd) of size at most t which contain given
vertex v is at most (ed2)t−1.

1.6. Organization. In Section 2, we prove a simplified version of Theorems 1.1 and 1.2. In
Section 3, we introduce the cluster expansion, define a polymer model, and establish results relating
the partition function of the polymer model to the partition function Z(Qd, λ, β) of the positive-
temperature hard-core model. In Section 4, we prove the convergence of the cluster expansion by
verifying the Kotecký–Preiss condition (Theorem 4.2), and further provide bounds on the tail of
the cluster expansion series. For this, we define and use approximations to bound the total weight
of large polymers. In Section 5, we establish stronger versions of our main results for the hard-core
model on Qd,p. In particular, all the results of Section 1 will follow from Theorems 5.1–5.3. We
conclude with a discussion and open questions in Section 6.

2. Warm-up

In this section, we give a “hands-on” proof of basic versions of some of our results for p ≥ 2
3 .

While the general proof does not follow the same route (in particular, we do not use the cluster
expansion here), we still hope this helps convey some basic ideas in a simple setting. While the
lower bound is not too difficult and we provide below all details of the proof, the upper bound
relies on a special case (Lemma 2.2) of a powerful technical lemma (about the total weight of larger
polymers via approximations) and on a special case (Lemma 2.3) of an additional technical lemma
(about the total weight of non-polymer configurations via entropy methods) whose proofs are only
given later in the general setting (see Section 4). We prove the following:

Theorem 2.1. Suppose that p ≥ 2
3 + ω(1d ). Then

i(Qd,p) = (1 + o(1)) · 2e
1
2
(2−p)d · 22

d−1

with high probability and in expectation.

Theorem 2.1 will follow from a lower bound on i(Qd,p) that holds with high probability, and a
matching upper bound on its expectation. Namely, for the lower bound, we need to show that,
with high probability,

i(Qd,p) ≥ (1 + o(1)) · 2e
1
2
(2−p)d · 22

d−1
. (10)

For the upper bound, we need to show that

Ei(Qd,p) ≤ (1 + o(1)) · 2e
1
2
(2−p)d · 22

d−1
. (11)

These two bounds together yield Theorem 2.1.
The proof of (10) is by a rather direct computation. The proof of (11) requires more work and

will use the relation with the positive-temperature hard-core model given by Proposition 1.7. We
mention that the upper bound will in fact work for p ≥ 2 −

√
2 + ω( log dd ), and a matching lower

bound on the expectation also follows for such p from the proof of (10) (and in fact also for much
smaller p, but the bound is far from the truth in that case).
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2.1. The lower bound. Let im,ℓ denote the number of independent sets in Qd,p which contain
exactly m vertices of E and ℓ vertices of O. Then

i(Qd,p) =
∑

m,ℓ

im,ℓ.

Define im,∗ :=
∑

ℓ im,ℓ and i∗,ℓ :=
∑

m im,ℓ. Also define i≤k :=
∑

m,ℓ≤k im,ℓ. Then

i(Qd,p) ≥
K
∑

k=0

(ik,∗ + i∗,k) − i≤K for any K ≥ 0. (12)

Our plan is to use (12) with K := (2 − p)d. For this we first aim to give a lower bound on ik,∗
which holds with high probability for any particular k ≤ K. Using that ik,∗ and i∗,k have the same

distribution, and that i≤K is trivially always at most 22Kd, this will already yield a lower bound
close to (10) (with the 1 + o(1) in the exponent). To obtain the desired bound (10), we will give a
lower bound on the sum of ik,∗ over k ≤ K in a similar manner.

We proceed to bound ik,∗ from below. Observe that

ik,∗ =
∑

A⊂E:|A|=k
22

d−1−|Ñ(A)| ≥ 22
d−1

∑

A⊂E:|A|=k
2−

∑

v∈A dv ,

where Ñ(A) is the neighborhood of A in Qd,p, and dv is the degree of v in Qd,p. Define

Sk :=
∑

A⊂E:|A|=k
XA where XA := 2−

∑

v∈A dv .

We proceed to lower bound Sk. Note that Sk is a sum of identically distributed random variables.
These random variables are not all independent, but most pairs are, and we can expect that Sk is
concentrated around its mean. To show this, we first compute the mean of Sk and then bound its
variance. Using that ExBin(m,p) = (1 − p+ px)m, we see that

ESk =

(

n

k

)

E2−Bin(dk,p) =

(

n

k

)

(1 − p
2)kd,

where n := 2d−1. For the variance of Sk, we have that

Var(Sk) =
∑

A,A′
Cov(XA,XA′) =

k
∑

i=1

(

n

k

)(

k

i

)(

n− k

k − i

)

Cov(XA0 ,XAi),

where the first sum is over sets A,A′ ⊂ E of size k, and where A0, . . . , Ak are any subsets of E of
size k such that |A0 ∩Ai| = i. We have that

Cov(XA0 ,XAi) ≤ EXA0XAi = E4−Bin(id,p)
E2−Bin(2(k−i)d,p) = (1 − 3p

4 )id(1 − p
2)2(k−i)d.

Thus, using that
(

k
i

)

≤ ki and
(

n−k
k−i
)

≤
(

n
k−i
)

≤
(

n
k

)(

k
n−k

)i
,

Var(Sk) ≤
(

n

k

)2

(1 − p
2)2kd

k
∑

i=1

(

k2

n− k

)i
(

1 − 3p
4

(1 − p
2 )2

)id

.

Note that since p ≥ 2
3 + ω(1d), we have for k ≤ K that

k2

n− k

(

1 − 3p
4

(1 − p
2)2

)d

= o(1).
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Thus, Var(Sk) ≪ (ESk)
2 so that, by Chebychev’s inequality, Sk ≥ (1 − o(1))ESk with high proba-

bility. In particular, for any k ≤ K, with high probability,

ik,∗ ≥ (1 − o(1)) · 22
d−1 ·

(

n

k

)

(1 − p
2)kd.

From here, simply using that i(Qd,p) ≥ iK,∗ + i∗,K − 22Kd, it would already be possible to deduce
that, with high probability,

i(Qd,p) ≥ 2 · 22
d−1 · e 1

2
(2−p)d(1−o(1)).

To get the desired lower bound (10), we aim to show that S :=
∑K

k=0 Sk is concentrated around
its mean. Observe first that

ES =

K
∑

k=0

(

n

k

)

(1 − p
2 )kd = (1 − o(1))(1 + (1 − p

2 )d)n = (1 − o(1))e
1
2
(2−p)d ,

where in the second equality we used that [0,K] contains a symmetric interval of size ω(
√

nq(1 − q))

around nq (which tends to infinity), where q := (1− p
2 )d/(1+(1− p

2)d), and where in the last equality

we used that ex−x
2 ≤ 1 + x ≤ ex and that n(1 − p

2)2d = o(1) since p ≥ 2 −
√

2 + ω(1d ). Let us now
bound the variance of S. In a similar manner as before, we obtain that

Var(S) =
∑

A,A′
Cov(XA,XA′) ≤

K
∑

k=0

K
∑

k′=0

k∧k′
∑

i=1

(

n

k

)(

k

i

)(

n− k′

k′ − i

)

(1 − 3p
4 )id(1 − p

2)(k+k
′−2i)d,

where the first sum runs over sets A,A′ ⊂ E of size at most K, so that

Var(S) ≤
K
∑

k=0

K
∑

k′=0

(

n

k

)(

n

k′

)

(1 − p
2 )(k+k

′)d
k∧k′
∑

i=1

(

kk′

n− k′

)i
(

1 − 3p
4

(1 − p
2)2

)id

≪ (ES)2.

Thus, (12) yields that, with high probability,

i(Qd,p) ≥ (1 − o(1))22
d−1 · 2ES − 22Kd = (1 − o(1)) · 2 · 22

d−1
e

1
2
(2−p)d .

This establishes (10).

2.2. The upper bound. Recall the positive-temperature hard-core model from Section 1.2 and
recall from (8) that Ei(Qd,p) = Z, where Z := Z(Qd, 1, β) was defined in (7) and β := − log(1− p).
Our goal is thus to upper bound Z.

A polymer is a 2-linked subset of E whose closure (defined in Section 1.4) has size at most 3
4 ·2d−1

(later in Section 3 we define more general polymers). For A ⊂ E , define

ω(A) :=
∑

B⊂N(A)

2−|N(A)|e−β|E(A,B)|.

We begin by showing that

Z ≤ 2 · 22
d−1 · exp





∑

γ polymer

ω(γ)



 +
∑

I∈I
ω(I), (13)

where I is the collection of all configurations I ⊂ V (Qd) such that |[I ∩ E ]|, |[I ∩ O]| > 3
42d−1. To

see this, recall from (7) that Z is a sum over all configurations I, and write Z = Z ′ + Z ′′, where
Z ′′ sums over configurations I ∈ I and Z ′ sums over the remaining configurations. By even-odd
symmetry,

Z ′ ≤ 2 · 22
d−1

∑

A⊂E,B⊂N(A),|[A]|≤ 3
4
2d−1

2−|N(A)|e−β|E(A,B)| = 2 · 22
d−1

∑

A⊂E,|[A]|≤ 3
4
2d−1

ω(A).
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By decomposing A into its 2-linked components A1, . . . , Am (which are polymers), noting that
ω(A) = ω(A1) · · ·ω(Am), and taking into account the m! possible ordering of A1, . . . , Am, we get

∑

A⊂E,|[A]|≤ 3
4
2d−1

ω(A) ≤
∞
∑

m=0

1

m!





∑

γ polymer

ω(γ)





m

= exp





∑

γ polymer

ω(γ)



 .

This proves (13).
It suffices to show that

∑

γ polymer

ω(γ) =
1

2
(2 − p)d + o(1) and

∑

I∈I
ω(I) = o(Z).

A simple computation shows that polymers of size 1 contribute 2d−12−d(1 + e−β)d = 1
2(2 − p)d.

The following two lemmas show that the contribution from larger polymers is negligible and that
the second sum above is negligible, thereby completing the proof of (11).

Lemma 2.2. For p ≥ 2 −
√

2 + ω( log dd ),
∑

γ polymer, |γ|≥2

ω(γ) = o(1).

Lemma 2.3. For p ≥ C log d
d1/3

,
∑

I∈I
ω(I) = o(Z).

The lemmas are proved in Section 4 (see Lemma 4.3 for a stronger version of the first lemma
and Lemma 4.16 for a stronger version of the second lemma).

3. Cluster expansion

Recall the model of k interacting sets I1, . . . , Ik described in Section 1.2. We will henceforth refer
to this as the k-system. The goal of this section is to write the partition function Zk = Zk(Qd, λ, β)
of the k-system using an expansion into so-called clusters. We will define a new model, called the

polymer model, based on the k-system, which inherits the parameters k, d, λ, β from the relevant
k-system, and is used in order to give a good estimate for the partition function Zk. We first give
the required definitions, with explanations following the theorem.

A polymer is a tuple γ = (A1, . . . , Ak) of sets such that

• Each Ai is contained in either E or O.
• Each [Ai] has size at most 3

4 · 2d−1 (recall the definition of [·] from Section 1.4).
• The graph Hγ is connected, where Hγ is the graph whose vertices are all pairs (i, u) with
i ∈ [k] and u ∈ Ai and with two vertices (i, u) and (j, v) adjacent whenever i = j and
dist(u, v) = 2, or i 6= j and dist(u, v) ∈ {0, 1}.

The weight of the polymer γ is

ω(γ) :=
∑

B1⊂N(A1),...,Bk⊂N(Ak)

λ|A1|+···+|Ak|+|B1|+···+|Bk|

(1 + λ)|N(A1)|+···+|N(Ak)|
e−β|E(A1,B1)∪···∪E(Ak,Bk)|. (14)

Fix D ∈ {E ,O}k. A D-polymer is a polymer γ = (A1, . . . , Ak) such that Ai ⊂ Di for all i. Two
D-polymers γ and γ′ are incompatible if their coordinate-wise union γ∪γ′ = (A1∪A′

1, . . . , Ak∪A′
k)

satisfies that Hγ∪γ′ is connected; otherwise they are compatible (in which case, the connected
components of Hγ∪γ′ are precisely Hγ and Hγ′). We write γ ∼ γ′ for compatible polymers and
γ 6∼ γ′ for incompatible polymers. A D-cluster is an ordered tuple Γ = (γ1, . . . , γn) of D-polymers
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such that the incompatibility graph HΓ is connected. Here HΓ is the graph with vertex set
{1, . . . , n} and with i and j adjacent when γi 6∼ γj. The weight of the cluster Γ is

ω(Γ) := φ(HΓ)ω(γ1) · · ·ω(γn),

where φ(H) is the Ursell function of a graph H, defined by

φ(H) :=
1

|V (H)|!
∑

S⊂E(H)
spanning, connected

(−1)|S|.

We denote the set of all D-clusters by CD. Note that CD is infinite since the same polymer can be
repeated any number of times in a cluster.

The following condition will recur in many of our results:

λ ≤ λ0 and λ(1 − e−β) ≥ Ck2 log d

d1/3
. (15)

We remind the reader that the particular constant λ0 is not important, that C is a universal
constant (except that it may depend on λ0) and that d is always assumed to be sufficiently large.

Theorem 3.1. Fix k ≥ 1 and suppose that (15) holds. Then

Zk = (1 + λ)k2
d−1

∑

D∈{E,O}k
exp





∑

Γ∈CD
ω(Γ)



 · (1 +O(exp(−2d/d4))),

where the cluster expansion series (the inner sum) is absolutely convergent.

In applications of the theorem, it is useful to have explicit bounds on the absolute tail of the
cluster expansion series; such bounds are provided in Section 4. In fact, such a bound is already
needed for the proof of Theorem 3.1. We state the required bound here, but defer its proof to
Section 4. The size of a polymer γ = (A1, . . . , Ak) is ‖γ‖ := |A1| + · · · + |Ak|, and the size of the
cluster Γ = (γ1, . . . , γn) is ‖Γ‖ := ‖γ1‖ + · · · + ‖γn‖.

Lemma 3.2. Fix k ≥ 1 and D ∈ {E ,O}k and suppose that (15) holds. Then

∑

Γ∈CD
|ω(Γ)|e‖Γ‖d−3/2

= O(1) · 2d
(

1 + λe−β

1 + λ

)d

.

We will also need the following lemma for the proof of Theorem 3.1.

Lemma 3.3. Fix k ≥ 1 and suppose that (15) holds. Then
∑

I1,...,Ik⊂V (Qd):

|[Ii∩E]|,|[Ii∩O]|> 3
4
·2d−1 for some i∈[k]

λ|I1|+·+|Ik|e−β|E(I1)∪···∪E(Ik)| ≤ Zk ·O(exp(−2d/d)).

Let us now motivate the definitions given above. Recall that in the k-system, configurations are
tuples I = (I1, . . . , Ik) of subsets of Qd and that one samples such a configuration with probability

proportional to λ|I1|+···+|Ik|e−β|E(I1)∪···∪E(Ik)|. The corresponding probability measure µk is given
by

µk(I) :=
λ|I1|+···+|Ik|e−β|E(I1)∪···∪E(Ik)|

Zk
.

Let D ∈ {E ,O}k and let g = (A1, . . . , Ak, B1, . . . , Bk) be a tuple of sets Ai ⊂ Di and Bi ⊂ N(Ai).
Define

ω(g) :=
λ|A1|+···+|Ak|+|B1|+···+|Bk|

(1 + λ)|N(A1)|+···+|N(Ak)|
e−β|E(A1,B1)∪···∪E(Ak,Bk)|. (16)
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Let ED(g) be the event that Ii ∩ Di = Ai and Ii ∩ N(Ai) = Bi for all i. A straightforward
computation reveals that

µk(ED(∅)) =
(1 + λ)k2

d−1

Zk
and

µk(ED(g))

µk(ED(∅))
= ω(g), (17)

where ∅ is identified here with (∅, . . . , ∅). It is precisely now that the definition of a polymer comes
into play. Suppose for a moment that each Ai has size at most 3

4 ·2d−1. Then there is a unique set of
D-polymers {γj} such that the connected components of H(A1,...,Ak) are precisely {Hγj}. Note that
the polymers {γj} are necessarily pairwise compatible. We extend each polymer γj to a “decorated”

polymer γ̂j in the following way: if γj = (Aj1, . . . , A
j
k) then γ̂j := (Aj1, . . . , A

j
k, B

j
1, . . . , B

j
k), where

Bj
i := Bi ∩ N(Aji ). Then {Aji}j and {Bj

i }j partition Ai and Bi, respectively, and ω(g) factorizes
over these decorated polymers:

ω(g) =
∏

j

ω(γ̂j).

Note that our earlier assumption that Ai has size at most 3
4 · 2d−1 was not strictly necessary; it was

only used to ensure that each of the components γj themselves satisfy the analogous requirement.
This leads us to the following definitions. A decorated polymer is a tuple γ̂ = (A1, . . . , Ak, B1, . . . , Bk)

such that γ = (A1, . . . , Ak) is a polymer and Bi ⊂ N(Ai) for all i. The size of such a decorated
polymer is ‖γ̂‖ := ‖γ‖ and its weight ω(γ̂) is defined by the same formula as in (16). Thus, the
weight ω(γ) of a polymer γ is the sum of the weights ω(γ̂) of decorated polymers γ̂ which extend it.
We say that two decorated polymers are compatible if their underlying polymers are compatible.
Let ΩD denote the family of all sets of pairwise compatible decorated D-polymers. We sometimes
refer to the elements of ΩD as polymer configurations. The size of a polymer configuration Θ
is ‖Θ‖ :=

∑

γ̂∈Θ ‖γ̂‖. The the polymer model (associated with D) is the probability measure νD
on ΩD define by

νD(Θ) :=

∏

γ̂∈Θ ω(γ̂)

ΞD
, Θ ∈ ΩD,

where the partition function ΞD is given by

ΞD :=
∑

Θ∈ΩD

∏

γ̂∈Θ
ω(γ̂).

The cluster expansion for the logarithm of the partition function of the polymer model associated
to D is the formal power series in the weights of the clusters:

log ΞD =
∑

Γ∈CD
ω(Γ). (18)

The cluster expansion is a powerful and classical tool which applies to general abstract polymer
models (for background see, e.g., [21] and references therein). For our particular polymer model,
Lemma 3.2 will ensure that the above cluster expansion series is absolutely convergent for the
corresponding parameter range.

It is instructive to note that if we were to drop the size requirement from the definition of a
polymer, then νD could be precisely identified with a certain marginal of µk, namely, the distribution
of (Ii ∩ Di, N(Ii ∩ Di))i where (I1, . . . , Ik) is sampled from µk. This size requirement is, however,
crucial and makes the two measures quite different (though µk is related to a mixture of the νD).

3.1. Remarks. Let us give some remarks regarding the above definitions and results. Regarding
the requirement that Hγ is connected in the definition of a polymer, we note that this implies that
A1∪· · ·∪Ak is a 2-linked set (for k = 1, it is exactly equivalent). Many of our arguments regarding
polymers (e.g., for their weighted counting) will only rely on this weaker property. In fact, both
Theorem 3.1 and Lemma 3.2 would remain true if we were to replace the requirement that Hγ is
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connected in the definition of a polymer with the requirement that A1 ∪ · · · ∪ Ak is 2-linked. On
the other hand, the stronger requirement will make precise computations easier to handle as it
gives rise to less polymers. We mention that it would have also been a natural choice to define
the decorated polymers to be polymers to begin with (which would change the notion of a cluster
accordingly), but we have found our choice more convenient to work with.

For the requirement that [Ai] has size at most 3
4 · 2d−1, the precise constant 3

4 is not important;

any constant greater than 1
2 and less than 1 would suffice for our purposes. Previous works on the

hard-core model used the constant 1
2 [13, 21], which naturally arises from the fact that a subset of

Qd which contains more than half of the even vertices and half of the odd vertices cannot be an
independent set. Since configurations in the positive temperature model are arbitrary subsets of
Qd and not just independent sets, it is simpler to work with a constant c ∈ (12 , 1), which guarantees
that any subset of Qd which contains a c-fraction of the even vertices and of the odd vertices is
far from being an independent set in the sense that it spans many edges. We note that similar
considerations are also relevant in the homomorphism models studied in [20], where a suitable
constant greater than 1/2 is also used.

Let us also discuss the role of D ∈ {E ,O}k. This vector indicates for each of the k sets I1, . . . , Ik,
which side of the hypercube is the “defect side”, with the other side being the dominant side
where most of the configuration resides. Configurations in which I1 ∩ D1 = · · · = Ik ∩ Dk = ∅ are
ground states which correspond to the polymer model associated with D, and the cluster expansion
describes configurations as (typically small) deviations from such ground states. Each choice of
D actually gives a different polymer model (having its own cluster expansion), with two different
choices D and D′ leading to isomorphic models if m(D) = m(D′) or m(D) = k − m(D′), where
m(D) := |{i ∈ [k] : Di = E}|. In particular, there are only ⌊k/2⌋+1 truly different polymer models.
For example, when k = 1, the two choices of D lead to the “even” and “odd” polymer model, which
are clearly symmetric. When k = 2, there are two symmetric polymer models having the defects
on the same side and two symmetric ones having them on different sides, but the former two are
not equivalent to the latter two.

3.2. Some computational examples. The reader may find it helpful to see some examples and
computations involving polymers and their weights. We give several such examples here. These
will not be needed in this section, but will be used later in Section 5.

Scenario I: Consider the case k = 1 and let γ = (A) be a polymer. The smallest polymer is
obtained when A = {v} for some vertex v. Let us compute the weight of this polymer. There are
2d decorated polymers γ̂ = (A,B) extending γ, one for each subset B ⊂ N(v). Any such decorated
polymer has |E(A,B)| = |B|. Thus,

ω(γ) =
∑

B⊂A

λ|A|+|B|

(1 + λ)|N(A)| e
−β|E(A,B)| =

∑

B⊂N(v)

λ1+|B|

(1 + λ)d
e−β|B| = λ

(

1 + λe−β

1 + λ

)d

.

Scenario II: The next simplest polymer (still with k = 1) is obtained when A = {u, v}, where u and
v are vertices at distance two from each other. Note that N(A) has size 2d− 2, with two vertices
there being common neighbors of u and v, and the remaining 2d − 4 vertices adjacent to only one
of u or v. Thus, if a vertex of the former type belongs to B, then it contributes 2 edges to E(A,B),
while vertices of the latter type in B contribute only one edge. Thus, |E(A,B)| = |B1| + 2|B2|
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where B1 = B \ (N(u) ∩N(v)) and B2 = B ∩N(u) ∩N(v). Thus,

ω(γ) =
∑

B⊂N({u,v})

λ2+|B|

(1 + λ)2d−2
e−β|E(A,B)|

=
λ2

(1 + λ)2d−2

∑

B1⊂N({u,v})\N(u)∩N(v)

λ|B1|e−β|B1|
∑

B2⊂N(u)∩N(v)

λ|B2|e−2β|B2|

=
λ2

(1 + λ)2d−2
(1 + λe−β)2d−4(1 + λe−2β)2 = λ2

(

1 + λe−β

1 + λ

)2d−2(
1 + λe−2β

1 + λe−β

)2

.

We note that for polymers of size 3, where A = {u, v, w}, there are two different types: one obtained
when any two of u, v, w are at distance two from each other; the other obtained when two of these
pairs are at distance two and the third pair is at distance four. We do not compute the weights of
these polymers here.

Scenario III: Let us now consider general k. We demonstrate a computation in the particular case
when the polymer γ = (A1, . . . , Ak) has the smallest possible support (defined as A1∪· · ·∪Ak), but
the largest possible size under this restriction. This occurs when D ∈ {E ,O}k consists of all E or all
O, and A1 = · · · = Ak = {v} for some vertex v. A decorated polymer extending γ is determined by
a choice of subsets B1, . . . , Bk ⊂ N(v). Given such a choice, we have |E(A1, B1)∪· · ·∪E(Ak, Bk)| =
|B1 ∪ · · · ∪Bk|. Thus,

∑

B1,...,Bk⊂N(v)

λ|B1|+···+|Bk|e−β|B1∪···∪Bk| =





∑

b1,...,bk∈{0,1}
λb1+···+bke−β1{b1+···+bk≥1}





d

.

The sum on the right-hand side equals 1 + ((1 + λ)k − 1)e−β , and hence,

ω(γ) = λk
(

1 + ((1 + λ)k − 1)e−β

(1 + λ)k

)d

.

Scenario IV: We consider one last example. Suppose that k = 2 and that D is either (E ,O) or
(O, E) (corresponding to a polymer model where the defects of I1 and I2 lie on different sides of
the hypercube). Consider a polymer γ = (A1, A2) of size 2 whose support also has size 2. That
is, A1 = {u} and A2 = {v}, where u and v are adjacent vertices (one is even and one is odd). A
decorated polymer extending γ is determined by two subsets B1 ⊂ N(u) and B2 ⊂ N(v). For such
a choice, E(A1, B1) and E(A2, B2) are disjoint except for the edge {u, v} in the case that v ∈ B1

and u ∈ B2. Thus,

ω(γ) = λ2
(1 + λe−β)2d−2

(1 + λ)2d

∑

bu,bv∈{0,1}
λbu+bve−β1{bu+bv≥1} = λ2

(

1 + λe−β

1 + λ

)2d−2

· 1 + 2λe−β + λ2e−β

(1 + λ)2
.

3.3. Proof of Theorem 3.1. The rest of this section is devoted to the proof of Theorem 3.1.
The proof relies on Lemma 3.2 and a sequence of additional lemmas which we proceed to state
and prove. Our approach here follows closely that of [21, Section 3.2]. We assume throughout the

section that λ is bounded and that λ(1 − e−β) ≫ log d
d1/3

.

Lemma 3.4. Let Θ be a random configuration sampled according to νD. Then with probability at
least 1 −O(exp(−2d/d4)), we have ‖Θ‖ ≤ 2d/d2.

Proof. Consider a new polymer model on ΩD whose weights are

ω̃(γ) := ω(γ) · e‖γ‖d−3/2
.
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Let Ξ̃k,m =
∑

Θ∈ΩD

∏

γ̂∈Θ ω̃(γ̂) be its partition function and observe that

E

[

e‖Θ‖d−3/2
]

=
Ξ̃k,m
Ξk,m

.

Applying Lemma 3.2, and then using that λ(1 − e−β) ≫ (log d)/d, we get that

log Ξ̃k,m ≤ O(1)2d
(

1 + λe−β

1 + λ

)d

≤ O(2dd−10).

Hence,

logE
[

e‖Θ‖d−3/2
]

= log Ξ̃k,m − log Ξk,m ≤ log Ξ̃k,m ≤ O(2dd−10).

Thus, by Markov’s inequality,

P(‖Θ‖ ≥ s) ≤ e−sd
−3/2

E

[

e‖Θ‖d−3/2
]

≤ exp
[

O(2dd−10) − sd−3/2
]

.

Plugging in s = 2dd−2, we obtain the lemma. �

We define a measure µ̂k on triplets (I,D,Θ) of configurations I = (I1, . . . , Ik), vectors D ∈
{E ,O}k, called the defect side vector, and polymer configurations Θ as follows:

(1) Choose the defect side vector D ∈ {E ,O}k with probability proportional to Ξk,D.
(2) Sample a decorated polymer configuration Θ ∈ Ωk,D from νk,D.
(3) For each i ∈ [k]:

(a) Assign all vertices of Di :=
⋃

(A1,...,Ak,B1,...,Bk)∈Θ(Ai ∪Bi) to be occupied in Ii.

(b) For each vertex v /∈ Di ∪N(Di), include v in Ii with probability λ
1+λ .

We note that Θ can be recovered from (I,D), so that we may regard µ̂k as a measure on pairs (I,D).
This measure can be explicitly written: for any feasible (I,D), i.e., which can be constructed via
the above procedure,

µ̂(I,D) =
λ|I1|+···+|Ik|e−β|E(I1)∪···∪E(Ik)|

(1 + λ)k2d−1∑k
m=0

(

k
m

)

Ξk,m
.

Denote

Ẑk := (1 + λ)k2
d−1

k
∑

m=0

(

k

m

)

Ξk,m. (19)

Following the remark after the definition of νD, we note that if we were to drop the size requirement

from the definition of a polymer, then any pair (I,D) ∈ ({0, 1}k)Q
d ×{E ,O}k would be feasible for

µ̂k, which means that µ̂k would simply be the product of µk and a uniform vector in {E ,O}k. As
mentioned before, this size requirement is essential, and I and D are not independent under µ̂k.
The relation between µ̂k and µk is made precise below (see Corollary 3.7).

The minority side vector of a configuration I = (I1, . . . , Ik) is M(I) := (M(I1), . . . ,M(Ik)) ∈
{E ,O}k, where the minority side M(A) of a subset A of Qd is E or O according to the smaller of
|A ∩ E| and |A ∩O| (breaking ties arbitrarily).

Lemma 3.5. Let (I,D,Θ) be sampled from µ̂k. Then the minority side vector coincides with the
defect side vector with high probability. More precisely,

P(M(I) 6= D) ≤ O(exp(−2d/d4)).

Proof. By Lemma 3.4,

P(M(I) 6= D) ≤ P

(

M(I) 6= D | ‖Θ‖ ≤ 2d/d2
)

+O(exp(−2d/d4)).
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By a union bound, it suffices to fix i ∈ [k] and bound the (conditional) probability that M(Ii) 6= Di.
Since |Ii ∩M(Ii)| ≤ |Ii ∩ Di| ≤ ‖Θ‖, it suffices to show that

P

(

|Ii \ Di| ≤ 2dd−2 | ‖Θ‖ ≤ 2dd−2
)

≤ O(exp(−2d/d4)).

We henceforth condition on Θ and work on the event that ‖Θ‖ ≤ 2d/d2. Note that |Ii \ Di|
is the sum of |Di \ Di| (with Di as above) and an independent Binomial random variable with
Li := 2d−1 − |N(Di) \ Di| trials of success probability λ

1+λ . In particular, |Ii \ Di| stochastically

dominates Bin(Li,
λ

1+λ). Since λ
1+λ ≥ 1

d , Li ≥ 2d−1 − d|Di ∩ Di| and |Di ∩ Di| ≤ ‖Θ‖, we have

P

(

|Ii \ Di| ≤ 2dd−2 | ‖Θ‖ ≤ 2dd−2
)

≤ P

(

Bin
(

2d−2, 1d
)

≤ 2dd−2
)

≤ exp(−c2d/d),

where the second inequality follows from a standard Chernoff bound. �

Lemma 3.6.
∣

∣

∣logZk − log Ẑk

∣

∣

∣ = O(exp(−2d/d4)).

Proof. Let I := (2V (Qd))k be the set of all configurations I = (I1, . . . , Ik). For I ′ ⊂ I, define

Z(I ′) :=
∑

I∈I′
λ|I1|+···+|Ik|e−β|E(I1)∪···∪E(Ik)|.

Observe that

Zk = Z(I) and Ẑk =
∑

D⊂{E,O}k
Z(ÎD),

where ÎD is the set of I ∈ I such that (I,D) is feasible under µ̂k. The set ÎD can be described
explicitly, but we only require the observation that

ÎD ⊃ ID :=
{

I ∈ I : |[D1 ∩ I1]|, . . . , |[Dk ∩ Ik]| ≤ 3
4 · 2d−1

}

.

Let I0 be the set of I ∈ I which belong to no ID. Then each I ∈ I contributes to Zk exactly
once, and it contributes to Ẑk at least once unless I ∈ I0. Some I contribute more than once
(anywhere up to 2k times) to Ẑk, but any I can only contribute once with D = M(I). Thus,
denoting

Î∗
D := {I ∈ ÎD : M(I) 6= D},

we see that

Ẑk −
∑

D
Z(Î∗

D) ≤ Zk ≤ Ẑk + Z(I0).

Thus,

log(1 − µ̂k(M(I) 6= D)) ≤ logZk − log Ẑk ≤ − log(1 − µk(I0)).

It therefore suffices to show that µ̂k(M(I) 6= D) and µk(I0) are each at most O(exp(−2d/d4)). The
former case is precisely Lemma 3.5 and the latter case follows from Lemma 3.3. �

We note the following simple consequence of Lemmas 3.5 and 3.6.

Corollary 3.7. Let µ̄k be the distribution of (I,M(I)) under µk. Then

‖µ̂k − µ̄k‖TV = O(exp(−2d/d4)).

Proof. By considering pairs (I,D) with µ̂k(I,D) > µ̄k(I,D), we see that

‖µ̂k − µ̄k‖TV ≤ µ̂k(M(I) 6= D) +
∣

∣

∣1 − Ẑk
Zk

∣

∣

∣ .

The corollary now follows from Lemmas 3.5 and 3.6. �
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Proof of Theorem 3.1. By Lemma 3.6 and (19), we have that

Zk = (1 + λ)k2
d−1
∑

D
ΞD · eO(exp(−2d/d4)).

Thus, it suffices to show that for each D, log ΞD =
∑

Γ∈CD ω(Γ), where the sum is absolutely

convergent. Indeed, this is the cluster expansion series (18) of the polymer model associated to D,
and its absolute convergence follows from Lemma 3.2. �

4. Convergence of the cluster expansion

Recall the polymer model defined in Section 3 and that it has various parameters: the dimension
d, the fugacity λ, the inverse temperature β, the number of sets k, and the defect side vector
D ∈ {E ,O}k. In this section, we give bounds on the absolute tail of the cluster expansion (18) of
this polymer model. In particular, we will prove Lemma 3.2.

Throughout this section, we fix k ≥ 1 and D ∈ {E ,O}k, and polymer refers to D-polymer.
For ℓ ≥ 1, denote

αℓ :=
1 + ((1 + λ)ℓ − 1)e−β

(1 + λ)ℓ
and α̃ℓ := (αℓ)

1/ℓ.

Define

g̃(n) :=











(dn− 3n2) log(1/α̃k) − 7n log d if 1 ≤ n ≤ d
10

1
20dn log(1/α̃k) if d

10 < n ≤ d4

n
d3/2

if n > d4
. (20)

Lemma 4.1. Assume (15). Then
∑

Γ∈CD :‖Γ‖≥n
|ω(Γ)|e‖Γ‖d−3/2 ≤ d−3/22de−g̃(n) for any n ≥ 1.

Lemma 4.1 establishes the absolute convergence of the cluster expansion (18) and provides
bounds on its tail. Let us also mention that it yields a slightly weaker version of Lemma 3.2, which
would already suffice for the applications in Section 3. The precise bound stated in Lemma 3.2, as
well as further estimates on the absolute tail of the cluster expansion, will be shown in Section 4.4.

The proof of Lemma 4.1 relies on checking the Kotecký–Preiss condition [26] for convergence
of the cluster expansion. This condition can be used for abstract polymer models (where a set of
abstract polymers are given, together with weights and a compatibility relation, and some functions
g and f on the set of polymers), but we formulate it here specialized to our situation. We refer the
reader to [21] for a short exposition in the abstract setting.

Fix two functions f, g : N → [0,∞). For a polymer γ, define f(γ) := f(‖γ‖) and g(γ) := g(‖γ‖),
and also define g(Γ) :=

∑

γ∈Γ g(γ) for a cluster Γ. Recall from Section 3 that γ 6∼ γ′ means that

γ and γ′ are incompatible polymers. For a polymer γ and a cluster Γ, we write γ 6∼ Γ whenever
γ 6∼ γ′ for some γ′ ∈ Γ.

Theorem 4.2 (Kotecký–Preiss [26]). Suppose that
∑

γ′ 6∼γ
ω(γ′)ef(γ

′)+g(γ′) ≤ f(γ) for any polymer γ. (21)

Then the cluster expansion (18) is absolutely convergent, and furthermore,
∑

Γ6∼γ
|ω(Γ)|eg(Γ) ≤ f(γ) for any polymer γ. (22)
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When applying Theorem 4.2, we must specify the functions f and g. In order to prove conver-
gence of the cluster expansion and obtain bounds on the absolute tail of the cluster expansion, it
would suffice to apply the theorem with f(n) = nd−3/2 and g = g̃. However, in order to obtain

the additional e‖Γ‖d
−3/2

factor in Lemma 4.1 (which was needed for the proof of Theorem 3.1 via
Lemma 4.17), we will actually apply the theorem with

f(n) := nd−3/2 and g(n) := f(n) + g̃(n).

The main input needed to verify that the Kotecký–Preiss condition (21) holds with this choice (and
for suitable choices of the model parameters) is given in the following lemma whose proof is given
in Sections 4.1 and 4.2.

For a polymer γ = (A1, . . . , Ak), we define its support to be

S(γ) := A1 ∪ · · · ∪Ak.

Lemma 4.3. Assume (15). Then for any vertex v,
∑

γ:v∈S(γ)
ω(γ)ef(γ)+g(γ) ≤ d−7/2. (23)

Proof of Lemma 4.1. Let us check that the Kotecký–Preiss condition (21) holds. Indeed, since
γ 6∼ γ′ implies that the supports of γ and γ′ are at distance at most 2, or equivalently, that
S(γ′) ∩ B2(v) 6= ∅ for some v ∈ S(γ) (where B2(v) is the ball of radius 2 around v), and since

|B2(v)| = 1 + d+
(

d
2

)

≤ d2, using Lemma 4.3 we have that

∑

γ′ 6∼γ
ω(γ′)ef(γ

′)+g(γ′) ≤ |S(γ)| · |B2(v)| · d−7/2 ≤ ‖γ‖d−3/2 = f(γ).

By Theorem 4.2, we have the inequality (22). Let us show how this yields the inequality of the
lemma. Define the support of a cluster Γ to be S(Γ) :=

⋃

γ∈Γ S(γ). For any vertex v, we can choose

a polymer γ such that ‖γ‖ = 1 and v ∈ S(γ) ∪N(S(γ)), to which we apply (22) to obtain that
∑

Γ∈CD :v∈S(Γ)
|ω(Γ)|eg(Γ) ≤

∑

Γ∈CD :Γ6∼γ
|ω(Γ)|eg(Γ) ≤ f(γ) = f(1) = d−3/2.

Summing over all v, and writing g̃(Γ) =
∑

γ∈Γ g̃(‖γ‖), we get that

∑

Γ∈CD
|ω(Γ)|e‖Γ‖d−3/2

eg̃(Γ) =
∑

Γ∈CD
|ω(Γ)|eg(Γ) ≤ 2dd−3/2.

Since g̃ is sub-additive as a function on N (this follows from the fact that g̃(n)/n is non-increasing
in n, which is straightforward to verify using Corollary A.2 and the assumption on λ and β), we
have g̃(‖Γ‖) ≤ g̃(Γ). Since g̃ is also non-decreasing, we obtain the lemma. �

Proof of Lemma 2.2. Since f and g are non-decreasing, Lemma 4.3 yields that
∑

‖γ‖≥2

ω(γ)ef(2)+g(2) ≤
∑

γ

ω(γ)ef(γ)+g(γ) ≤ 2dd−7/2.

Using that f(2) + g(2) ≥ g̃(2), plugging in the value of g̃(2) (with k = 1 and λ = 1) and using the

assumption that p ≥ 2 −
√

2 + ω( log dd ), we get that

∑

‖γ‖≥2

ω(γ) ≤ 2dd−7/2e−g̃(2) = 2dd−7/2

(

1 + e−β

2

)2d−12

d14 = o(1). �
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4.1. Verifying the Kotecký–Preiss condition. In this section, we prove Lemma 4.3, which as
we saw, easily yields the Kotecký–Preiss condition (21). A main technical step is to bound the
contribution from large polymers. We state this as a lemma and prove it separately in Section 4.2.

Lemma 4.4. Assume (15). Then
∑

γ:‖γ‖>d4
ω(γ)e3‖γ‖d

−3/2 ≤ O
(

e−d
2)

.

A second main step toward proving Lemma 4.3 is to bound the weight of small polymers. The
following provides a bound on the weight of an arbitrary polymer, but is effective primarily for
small polymers.

For a polymer γ = (A1, . . . , Ak), we define

N(γ) := (N(A1), . . . , N(Ak)) and ‖N(γ)‖ := |N(A1)| + · · · + |N(Ak)|.
Lemma 4.5. For any polymer γ, we have

ω(γ) ≤ λ‖γ‖α̃‖N(γ)‖
k .

Proof. Let γ = (A1, . . . , Ak) be a polymer. The inequality of the lemma is equivalent to

∑

B1⊂N(A1),...,Bk⊂N(Ak)

λ|B1|+···+|Bk|e−β|E(A1,B1)∪···∪E(Ak,Bk)| ≤ δ
1
k
‖N(γ)‖

k ,

where

δℓ := αℓ(1 + λ)ℓ = 1 + ((1 + λ)ℓ − 1)e−β .

Since every element in Bi contributes an incident edge to E(Ai, Bi), the sum is at most

ω̄(γ) :=
∑

B1⊂N(A1),...,Bk⊂N(Ak)

λ|B1|+···+|Bk|e−β|B1∪···∪Bk|.

At this point, we could simply use that |B1∪· · ·∪Bk| ≥ 1
k (|B1|+ · · ·+ |Bk|) and Newton’s binomial

to conclude that

ω̄(γ) ≤
∑

B1⊂N(A1),...,Bk⊂N(Ak)

(λe−β/k)|B1|+···+|Bk| = (1 + λe−β/k)‖N(γ)‖.

However, as 1 + λe−β/k > δ
1/k
k , this would yield a slightly worse bound than desired. Instead, we

proceed to bound ω̄(γ) as follows. We may rewrite ω̄(γ) as

ω̄(γ) =
∏

v

∑

b1,...,bk∈{0,1}
bi=0 unless v∈N(Ai)

λb1+···+bke−β1{b1+···+bk≥1} =
∏

v

δmv(γ),

where

mv(γ) := |{i : v ∈ N(Ai)}|.
A straightforward computation shows that the sequence (δm)∞m=0 is super-multiplicative, meaning
that δmδn ≤ δn+m for any n,m ≥ 0. In fact, it has the stronger property that δmδn ≤ δm−ℓδn+ℓ
for any n ≥ m ≥ ℓ ≥ 0 (see Claim A.1). In particular, δ

1/m
m ≤ δ

1/k
k for 0 ≤ m ≤ k. Since mv(γ) is

at most k and since
∑

vmv(γ) = ‖N(γ)‖, applying the former inequality repeatedly and then the
latter inequality once yields that

ω̄(γ) =
∏

v

δmv(γ) ≤ δ
⌊ 1
k
‖N(γ)‖⌋

k δ‖N(γ)‖−k⌊ 1
k
‖N(γ)‖⌋ ≤ δ

1
k
‖N(γ)‖

k . �
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Proof of Lemma 4.3. We now turn toward the sum in (23). We split the sum into three parts,
bounding each by 1

3d7/2
. We start with polymers γ such that ‖γ‖ ≤ d/10. By Lemma 1.8, we have

|N(Ai)| ≥ d|Ai| − 2|Ai|2 for each i. Thus,

‖N(γ)‖ ≥ d(|A1| + · · · + |Ak|) − 2(|A1|2 + · · · + |Ak|2) ≥ d‖γ‖ − 2‖γ‖2.
Suppose that γ has size ‖γ‖ = n. Since γ contains a given vertex v, the number of ways to choose
its support is at most (ed2)n−1 by Lemma 1.9. Thus, the number of ways to choose the polymer γ
itself is at most (ed2)n−12kn ≤ d3n, for d > ek. Thus, using Lemma 4.5,

∑

γ:v∈S(γ), ‖γ‖≤d/10
ω(γ)ef(γ)+g(γ) ≤

d/10
∑

n=1

d3nλn(α̃k)dn−2n2
end

−3/2+g(n) ≤
∞
∑

n=1

d−4nλne2nd
−3/2 ≤ 1

3d7/2
,

where the second inequality follows from the definition of g and the fact that α̃k ≤ 1, and the last
inequality uses that λ ≤ d.

Next, we consider polymers γ having d/10 < ‖γ‖ ≤ d4. In this case, Lemma 1.8 yields that
|N(Ai)| ≥ d|Ai|/10 for all i, so that ‖N(γ)‖ ≥ d‖γ‖/10. Thus, as before,

∑

γ:v∈S(γ), d/10<‖γ‖≤d4
ω(γ)ef(γ)+g(γ) ≤

d4
∑

n=d/10

d3nλn(α̃k)
dn/10end

−3/2+g(n)

≤
d4
∑

n=d/10

(

d3λ(α̃k)
d/20ed

−3/2
)n

≤ 1

3d7/2
,

where the second inequality uses the definition of g, and the last inequality is obtained by bounding
the sum by d4 times the maximum term. Note that the maximum term is obtained for n = d/10 and

is d−ω(1), since λ is bounded and (α̃k)
d = d−ω(1). Recalling that k is fixed, the latter follows from the

observations that α̃k = α
1/k
k , αk < α1, and αd1 = d−ω(1) since 1−α1 = λ(1−e−β)

1+λ , λ(1−e−β) ≫ log d/d
and λ is bounded.

Finally, we consider polymers γ having ‖γ‖ > d4. Lemma 4.4 gives that

∑

γ:v∈S(γ), ‖γ‖>d4
ω(γ)ef(γ)+g(γ) =

∑

γ:v∈S(γ), ‖γ‖>d4
ω(γ)e3‖γ‖d

−3/2 ≤ 1

3d7/2
.

Putting the three cases together yields the lemma. �

4.2. Bounding the weight of large polymers via approximations. In this section, we bound
the total weight of large polymers, and in particular prove Lemma 4.4. We also prove Lemma 3.3.

Recall the definition of the closure [A] of a set A ⊂ V (Qd) from Section 1.4. For a D-polymer
γ = (A1, . . . , Ak), we denote [γ] := ([A1], . . . , [Ak]). Define

GD(a, b) :=
{

γ is a D-polymer : ‖[γ]‖ = a, ‖N(γ)‖ = b
}

.

We will bound the total weight of polymers in GD(a, b) for any a, b > 0 with a ≥ d4. Note that
Lemma 1.8 implies that GD(a, b) is empty unless b ≥ (1 + c√

d
)a. Thus, throughout this section, we

fix a ≥ d4 and b ≥ (1 + c√
d
)a. We also denote α := λ(1 − e−β).

Lemma 4.6. Assume (15). Then

∑

γ∈GD(a,b)

ω(γ) ≤ 2d exp

(

−c(b− a)α2

k2 log d

)

.
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Recall that one requirement in the definition of a polymer γ = (A1, . . . , Ak) is that the graph
Hγ is connected. As we have mentioned, this implies that A1 ∪ · · · ∪ Ak is 2-linked. The proof of
Lemma 4.6 will not use the stronger assumption, but rather only its latter implication. In particular,
the statement of Lemma 4.6 remains true if one replaces GD(a, b) with the larger collection of all
γ = (A1, . . . , Ak) such that each Ai is contained in either E or O, A1∪· · ·∪Ak is 2-linked, ‖[γ]‖ = a
and ‖N(γ)‖ = b.

Let us see how Lemma 4.6 yields Lemma 4.4.

Proof of Lemma 4.4. We need to bound the sum of ω(γ)e3‖γ‖d
−3/2

over polymers γ of size ‖γ‖ > d4.
In fact, we will prove the stronger statement that this bound holds when summing over all polymers
γ having ‖[γ]‖ > d4. For any polymer γ = (A1, . . . , Ak), we have that |N(Ai)| ≥ (1+ c√

d
)|Ai| for all

i by Lemma 1.8 (this is the only place where we need the size restriction appearing in the definition
of a polymer). In particular, ‖N(γ)‖ ≥ (1 + c√

d
)‖γ‖. Since [γ] is also a polymer, we also have that

‖N(γ)‖ = ‖N([γ])‖ ≥ (1 + c√
d
)‖[γ]‖. Thus,

∑

γ:‖[γ]‖>d4
ω(γ)e3‖γ‖d

−3/2 ≤
∑

a>d4,b≥(1+ c√
d
)a

e3ad
−3/2

∑

γ∈GD(a,b)

ω(γ)

≤ 22d
∑

a>d4

e

(

3d−3/2− cα2

k2
√

d log d

)

a ≤ e−cd
17/6 log d,

where the second inequality follows from Lemma 4.6 and the last inequality uses (15). �

The proof of Lemma 4.6 is based on the following notion of an approximation of a polymer. We
write Ē := O and Ō := E . An approximation is a tuple (F1, . . . , Fk,H1, . . . ,Hk) of sets Fi ⊂ D̄i,
Hi ⊂ Di such that each Hi ∪ (D̄i \ Fi) induces a subgraph of maximum degree at most d2/3. We
write (Fi,Hi)i as shorthand for (F1, . . . , Fk,H1, . . . ,Hk). We say that (Fi,Hi)i approximates a

polymer γ = (A1, . . . , Ak), denoted γ ≈ (Fi,Hi)i, if for all i,

Fi ⊂ N(Ai) and Hi ⊃ [Ai]. (24)

We note that whether or not a given (Fi,Hi)i approximates γ depends on γ only through N(γ).

Lemma 4.7. There exists a family A of approximations with

|A| ≤ 2d exp

(

Ck(b− a) log d

d2/3

)

,

such that every polymer in GD(a, b) is approximated by an element in A.

Proof. The proof is basically that of Lemma 5.1 and Lemma 5.2 in [13]. Indeed, the case k = 1
follows directly from these two lemmas (see the paragraph following Lemma 5.3 there, and note
that the maximum degree condition is written in the proof of Lemma 5.2). The case k > 1 requires
only minor modifications, which we now explain. The constructions in the proof of Lemma 5.1 are
carried out separately for each coordinate i ∈ [k], yielding the sets (F ′, T0, T ′

0, T1, T, L,Ω) for each
coordinate. The algorithmic procedure at the end of Lemma 5.1 and in Lemma 5.2 is also done
separately for each coordinate. The only part of the argument which is not done separately for
each coordinate is related to the enumeration in Lemma 5.1: (1) The argument that F ′ is 4-linked
and hence that T is 8-linked works as written for the unions over all coordinates i of the respective
sets. (2) Given the union of the T s, we must choose the subsets (T0, T1,Ω) for each coordinate, and
hence the terms in (5.9) other than |Y | are raised to the power k. �

Recall the definition of α from Lemma 4.6.
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Lemma 4.8. Assume (15). Then for any approximation (Fi,Hi)i,

∑

γ∈GD(a,b):γ≈(Fi,Hi)i

ω(γ) ≤ exp

(

−c(b− a)α2

k2 log d

)

.

It is not hard to deduce Lemma 4.6 from Lemma 4.7 and Lemma 4.8.

Proof of Lemma 4.6. Lemma 4.7 and Lemma 4.8 yield that

∑

γ∈GD(a,b)

ω(γ) ≤ 2d exp

(

−c(b− a)α2

k2 log d
+
Ck(b− a) log d

d2/3

)

.

To obtain the lemma (with different constants), it suffices to check that (b−a)α2

k2 log d
is greater than

Ck(b−a) log d
d2/3

. This follows from (15). �

It remains to prove Lemma 4.8. The proof will boil down to the case of k = 1. Recall that in
this case, a polymer is just a 2-linked subset A of E or O whose closure has size at most 3

42d−1. An
approximation in this case is simply a pair (F,H) of subsets of Qd satisfying the required properties.
The proof is split into two lemmas, each effective for a different size of F . We write G1(a, b) as
shorthand for GE(a, b), which may also be identified with GO(a, b).

Lemma 4.9. Suppose that λ ≤ λ0 and λ(1 − e−β)2 ≥ C log d
d . For any approximation (F,H),

∑

γ∈G1(a,b):γ≈(F,H)

ω(γ) ≤
(

2db

b− |F |

)

exp

(

b

d4
− cα(b− a)

)

.

Lemma 4.10. Suppose that λ ≤ λ0 and λ(1 − e−β)2 ≥ C log d
d . For any approximation (F,H),

∑

γ∈G1(a,b):γ≈(F,H)

ω(γ) ≤ exp
(

−cα(b− |F | − 3(b− a)d−1/3) + b/d4 + Cbdαe−cαd
)

.

Before proving these two lemmas, let us show how they yield Lemma 4.8.

Proof of Lemma 4.8. Consider a polymer γ = (A1, . . . , Ak) and a decorated polymer γ̂ = (A1, . . . , Ak, B1, . . . , Bk)
extending it. Recall the definitions of their weights ω(γ) and ω(γ̂) from (14) and (16). In this
proof, we will need to keep track of the inverse temperature parameter β, and we write it explic-
itly in the notation of the weights ωβ(γ) and ωβ(γ̂). Using that |E(A1, B1) ∪ · · · ∪ E(Ak, Bk)| ≥
1
k (|E(A1, B1)| + · · · + |E(Ak, Bk)|), we see that

ωβ(γ̂) ≤
k
∏

i=1

λ|Ai|+|Bi|

(1 + λ)|N(Ai)| e
−β

k
|E(Ai,Bi)|.

After applying this bound, the weight of a D-polymer factorizes over the k components:

ωβ(γ) ≤
∑

B1⊂N(A1),...,Bk⊂N(Ak)

k
∏

i=1

λ|Ai|+|Bi|

(1 + λ)|N(Ai)|
e−

β
k
|E(Ai,Bi)| =

k
∏

i=1

ωβ/k((Ai)).

Note that the term on the right-hand side refers to weights of polymers in the 1-system (that is,
(E)-polymers or (O)-polymers). Hence,

∑

γ∈GD(a,b),γ≈(Fi,Hi)i

ωβ(γ) ≤
∑

a1+···+ak=a
b1+···+bk=b

k
∏

i=1

∑

γ∈GDi
(ai,bi):

γ≈(Fi,Hi)

ωβ/k(γ).
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We claim that each term in the product satisfies
∑

γ∈G1(ai,bi),γ≈(Fi,Hi)

ωβ/k(γ) ≤ e−c(bi−ai)α
2/k2 log d+bi/d

3
.

Indeed, if bi−|Fi| ≤ cα(bi−ai)
k log d +3(bi−ai)d−1/3 (for a small enough constant c), we apply Lemma 4.9

(note that α decreases by at most a factor 2k when β decreases by a factor k) to deduce that the
left-hand side is bounded by

(

2dbi
cα(bi−ai)
k log d + 3(bi−ai)

d1/3

)

exp

(

bi
d4

− cα

k
(bi − ai)

)

,

which is seen to at most the claimed value by using the bound
(n
m

)

≤ (en/m)m and that α ≥ Ck2 log d
d1/3

and bi/(bi − ai) ≤ C
√
d by Lemma 1.8 (otherwise GDi(ai, bi) is empty). Otherwise, we apply

Lemma 4.10 to deduce that the left-hand side is bounded by

exp

(

−cα
2(bi − ai)

k2 log d
+
bi
d4

+ Cbi
αd
k e

−cαd/k
)

,

which is at most the claimed value since 1/d4 + Cαd
k e−cαd/k ≤ 1/d3 using that αd

k ≥ C log d. Thus,

∑

γ∈Gk,m(a,b),γ≈(Fi,Hi)i

ωβ(γ) ≤
(

a− k + 1

k − 1

)(

b− k + 1

k − 1

)

e−c(b−a)α
2/k2 log d+b/d3 .

Each multinomial is at most bk. Thus,
∑

γ∈Gk,m(a,b),γ≈(Fi,Hi)i

ωβ(γ) ≤ e−c(b−a)α
2/k2 log d+b/d3+2k log b,

and the lemma follows after noting that b/d3+2k log b is negligible compared with (b−a)α2/k2 log d

since b/(b− a) ≤ C
√
d, b ≥ a > d4 and the assumption on α. �

The rest of this section is devoted to the proofs of Lemma 4.9 and Lemma 4.10. We first require
some preparation in the form of a preliminary tool from [31] and an additional computation.
The tool, which we now present, is a method for bounding the weight of certain collections of
configurations in the positive-temperature hard-core model on Qd.

For a family F of configurations I ⊂ V (Qd), define

ω̃(F) :=
∑

I∈F
λ|I|e−β|E(I)|.

For Ψ ⊂ {0, 1}d, define

Z(Ψ) :=
∑

ψ∈Ψ
λ|ψ|

(

1 + λe−β|ψ|
)d
,

where we identify an element ψ ∈ {0, 1}d with a subset of V (Qd) (so that |ψ| is the same as
|ψ−1(1)|). Given U ⊂ V ⊂ V (Qd) and f ∈ {0, 1}V , we write fU for the restriction of f to U , and
|fU | for |{u ∈ U : f(u) = 1}|. Note that Z({0, 1}d) is exactly the partition function Z1(Kd,d, λ, β)
of the positive-temperature hard-core model on the complete bipartite graph Kd,d.

Our analysis relies on a entropy tool from [31], given in [31, Lemma 7.3]. This is general
tool which applies to nearest-neighbor discrete spin systems on regular bipartite graphs (it was
formulated for Z

d, but the statement and proof holds more generality). Rather than stating the
general lemma (which would require additional definitions), we formulate three special cases for
the positive-temperature hard-core model, which we shall require in our proofs. We begin with the
simplest of these:
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Lemma 4.11 ([31, Lemma 7.3]). Let T ⊂ Qd be odd and let F ⊂ {0, 1}T . Then

ω̃(F) ≤
∏

v∈T odd

Z(Ψv)
1
d ,

where Ψv := {fN(v) : f ∈ F}.
The above special case is obtained from [31, Lemma 7.3] by taking S = T ∪ N(T ), Su = {0}

for all u, identifying F as a subset of {0, 1}T in the obvious way, and taking all Xv to be trivial
(constant) random variables. Two additional special cases are obtained by either taking all Xv to
be 1|fN(v)|=0} or to be (1{|fN(v)|=0},1{|fN(v)|≤s}).

Lemma 4.12 ([31, Lemma 7.3]). Let T ⊂ Qd be odd and let F ⊂ {0, 1}T be a collection of sets
containing no isolated odd vertices. Then

ω̃(F) ≤
∏

v∈T odd

Z(Ψv)
pv
d

(

1
pv

)
pv
d
(

1
1−pv

)
1−pv

d
,

where Ψv := {fN(v) : f ∈ F , |fN(v)| > 0} and pv := P(|fN(v)| > 0) when f is a random element of
F chosen according to weight ω̃.

Lemma 4.13 ([31, Lemma 7.3]). Let T ⊂ Qd be odd, let F ⊂ {0, 1}T and let s > 0. Then

ω̃(F) ≤
∏

v∈T odd

Z(Ψv)
pv
d Z(Ψ′

v)
p′v
d (1 + λ)1−pv−p

′
v

(

1
pv

)
pv
d
(

1
p′v

)

p′v
d
(

1
1−pv−p′v

)

1−pv−p′v
d

,

where Ψv := {fN(v) : f ∈ F , 1 ≤ |fN(v)| ≤ s}, Ψ′
v := {fN(v) : f ∈ F , |fN(v)| > s}, pv := P(1 ≤

|fN(v)| ≤ s) and p′v := P(|fN(v)| > s), when f is a random element of F chosen according to weight
ω̃.

To make practical use of the above lemmas, we need to combine them with suitable bounds on
Z(Ψ). The required bound is given in the following lemma. Define

ℓΨ := #{i ∈ [d] : ψi = 0 for all ψ ∈ Ψ}.
Lemma 4.14. Suppose that λ ≤ λ0 and λ(1 − e−β)2 ≥ C log d

d . Then for Ψ ⊂ {0, 1}d \ {0̄},
Z(Ψ) ≤ (1 + λ)de1/d

3− 1
2
αℓΨ .

We will prove a stronger version of Lemma 4.14 which does not require λ to be bounded. Define

ᾱ := − log

(

1 − α

1 + λ

)

= log

(

1 + λ

1 + λe−β

)

.

Note that when λ is bounded, cᾱ ≤ α ≤ Cᾱ. Thus, the following immediately implies Lemma 4.14.

Lemma 4.15. Suppose that

λ

1 + λ
≥ C log d

d
+
C log(λd4)

βd
and ᾱ ≥ C log d

d
+
C log(d(1 + λ)) log(2 + λ)

βd
.

Then for Ψ ⊂ {0, 1}d \ {0̄}, we have Z(Ψ) ≤ (1 + λ)de1/d
3− 1

2
ᾱℓΨ.

Proof. Denote ℓ := min{ℓΨ, d/2} and set s := d−ℓ
2

λ
1+λ and s′ := C log(2+λ)

β .

We begin with the case when |ψ| ≥ s. We have
∑

ψ∈Ψ:|ψ|≥s
λ|ψ|

(

1 + λe−β|ψ|
)d

≤ (1 + λe−βs)d
∑

ψ∈Ψ
λ|ψ|

≤ (1 + λe−βs)d(1 + λ)d−ℓΨ

≤ (1 + λ)de−ᾱℓ(1 + λe−βs)d,
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where we used in the last inequality that ℓΨ ≥ ℓ and ᾱ ≤ log(1 + λ).
Next we deal with the case when s′ < |ψ| < s. We have

∑

ψ∈Ψ:s′<|ψ|<s
λ|ψ|

(

1 + λe−β|ψ|
)d

≤ (1 + λe−βs
′
)d

∑

ψ∈Ψ:|ψ|<s
λ|ψ|

≤ (1 + λe−βs
′
)d(1 + λ)d−ℓ · P

(

Bin
(

d− ℓ, λ
1+λ

)

< s
)

≤ (1 + λe−βs
′
)d(1 + λ)d−ℓe−s/2

≤ (1 + λ)de−ᾱℓe−s/2(1 + λe−βs
′
)d,

(25)

where we used a Chernoff bound (and the definition of s) in the third inequality.
Finally, we deal with the case when |ψ| ≤ s′. Using that |ψ| ≥ 1 for all ψ ∈ Ψ, we have

∑

ψ∈Ψ:|ψ|≤s′
λ|ψ|

(

1 + λe−β|ψ|
)d

≤ (1 + λe−β)d
∑

ψ∈Ψ:|ψ|≤s′
λ|ψ|

≤ (1 + λe−β)d(d(1 + λ))s
′

= (1 + λ)d
(

1 − λ(1−e−β)
1+λ

)d
(d(1 + λ))s

′

≤ (1 + λ)de−ᾱℓe−
1
2
ᾱd(d(1 + λ))s

′
.

(26)

Together we get that

Z(Ψ) ≤ (1 + λ)de−ᾱℓ
(

(1 + λe−βs)d + e−s/2(1 + λe−βs
′
)d + e−

1
2
ᾱd(d(1 + λ))s

′
)

.

Plugging in the definitions of s and s′ and using the assumption of the lemma, one checks that the

parenthesis term is at most e1/d
3
, and the lemma follows. �

We are now ready to prove Lemma 4.9 and Lemma 4.10. We will use the rather simple fact (see,
e.g., the proof of [13, Lemma 5.2]) that if (F,H) approximates a polymer A ∈ G1(a, b), then

|H| ≤ |F | +
3(b− a)

d1/3
and |E(H,N(A) \ F )| ≤ 3(b− a)d2/3. (27)

Proof of Lemma 4.9. The main step of the proof is to bound the sum of weights of polymers with
a given closure. Specifically, we claim that for any A′ ⊂ E with |A′| = a and |N(A′)| = b, we have

∑

A⊂E:[A]=A′

∑

B⊂N(A)

λ|A|+|B|e−β|E(A,B)| ≤ (1 + λ)beb/d
4−cα(b−a). (28)

To see this, define T := A′ ∪N(A′) and note that

F := {(A,B) : [A] = A′, B ⊂ N(A)}
can be naturally identified with a subset of {0, 1}T . Using this identification, ω̃(F) is precisely the
sum on the left-hand side of (28), and Lemma 4.11 and Lemma 4.14 yield that

ω̃(F) ≤
∏

v∈N(A′)

Z(Ψv)
1/d ≤ ((1 + λ)e1/d

4
)|N(A′)| ∏

v∈N(A′)

e−cαℓΨv/d,

where Ψv is as in Lemma 4.11 and ℓΨv was defined before Lemma 4.14 (note that 0̄ /∈ Ψv since
[A] = A′ so that Lemma 4.11 is applicable). Observe that

∑

v∈N(A′)

ℓΨv =
∑

v∈N(A′)

|N(v) \A′| =
∑

v∈N(A′)

(d− |N(v) ∩A′|) = d(b− a).

This establishes (28).
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The lemma will immediately follow from (28) and a union bound, once we bound the number of
possible closures of polymers under consideration, showing that

#
{

[A] : A ∈ G1(a, b), A ≈ (F,H)
}

≤
(

2db

b− |F |

)

.

To see this, note that by (27) and (24) (assuming there exists γ ∈ G1(a, b) such that γ ≈ (F,H)),

|N(H)| ≤ d|H| ≤ d(|F | + 3(b− a)d−1/3) ≤ 2db. (29)

Since any A under consideration has F ⊂ N(A) ⊂ N(H) by (24), and since N(A) determines [A],
the closure of γ is determined by N(A) \ F , which is a subset of N(H) of size |N(A)| − |F |. �

Proof of Lemma 4.10. Define T := H ∪N(H) and identify

F := {(A,B) : A ∈ G1(a, b), B ⊂ N(A), A ≈ (F,H)}
with a subset of {0, 1}T in the natural way. Observe that with this identification, F is a collection
of subsets of T containing no isolated odd vertices (since B ⊂ N(A)) and

∑

γ∈G1(a,b),γ≈(F,H)

ω(γ) =
ω̃(F)

(1 + λ)b
,

Our goal now becomes to bound ω̃(F). By Lemma 4.12,

ω̃(F) ≤
∏

v∈N(H)

Z(Ψv)
pv
d

(

1
pv

)
pv
d
(

1
1−pv

)
1−pv

d
,

where Ψv and pv are as in Lemma 4.12. By Lemma 4.14 (and writing ℓv := ℓΨv),

Z(Ψv)
1/d ≤ (1 + λ)e1/d

4
e−cαℓv/d.

Splitting e−cαℓv/d into the product of two factors e−cαℓv/d (with a modified constant c), we get

ω̃(F) ≤





∏

v∈N(H)

(

(1 + λ)e1/d
4
e−cαℓv/d

)pv



 ·





∏

v∈N(H)

e−cαℓvpv/d
(

1
pv

)
pv
d
(

1
1−pv

)
1−pv

d



 . (30)

To obtain the lemma, it thus suffices to show that the first term on the right-hand side of (30) is

at most (1 + λ)beb/d
4
e−cα(b−|F |−3(b−a)/d1/3) and that the second term is at most ebdαe

−cαd
.

Consider the first term in (30). The desired bound will follow once we show that
∑

v∈N(H)

pv = b and
∑

v∈N(H)

pvℓv ≥ bd− |F |d− 3(b− a)d2/3.

Since pv = P(v ∈ N(A)), both sums can be seen as expectations, namely,
∑

v∈N(H)

pv = E|N(A)| and
∑

v∈N(H)

pvℓv = E

∑

v∈N(A)

ℓv.

Since every A under consideration (namely, (A) ∈ G1(a, b) such that (A) ≈ (F,H)) satisfies that
|N(A)| = b, we have that

∑

v∈N(H) pv = b. We claim that every such A also satisfies that
∑

v∈N(A) ℓv ≥ bd − |F |d − (b − a)d2/3. To see this, observe first that ℓv = ℓΨv ≥ |N(v) \ H|,
so that

∑

v∈N(A) ℓv ≥ |E(N(A), E \H)|. We have |E(N(A), E)| = db and, by (27),

|E(N(A),H)| = |E(F,H)| + |E(N(A) \ F,H)| ≤ |F |d + 3(b− a)d2/3.

We conclude that |E(N(A), E \H)| ≥ db− |F |d− 3(b− a)d2/3. This establishes the desired bound
on the first term in (30).
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Consider now the second term in (30). Since |N(H)| ≤ 2db by (29), it suffices to show that each

term in the product is at most eCαe
−cαd

, or after taking logarithms, that

H(pv)

d
− c1αℓvpv

d
≤ Cαe−c2αd.

This clearly holds when pv = 1. We may thus assume that pv < 1. In particular, v /∈ F since
|fN(v)| = 0 (v /∈ N(A)) for some f ∈ F . Thus, by the definition of an approximation, at most d2/3

neighbors of v belong to H. That is, ℓv ≥ |N(v) \H| ≥ d− d2/3 ≥ 2d/3. Thus, it suffices to show
that

H(pv)

d
− c3αpv ≤ Cαe−c2αd.

The left-hand side is negative when pv > e−c3αd/2 (when pv ≥ 1/e we use that H(pv) ≤ log 2
and α ≥ C/d, and otherwise we use that H(pv) ≤ 2pv log 1

pv
). We may thus assume that pv ≤

e−c3αd/2 ≤ 1/e, in which case, using that x log(1/x) is increasing on (0, 1/e), we have

H(pv)

d
− c3αpv ≤

H(pv)

d
≤

2pv log 1
pv

d
≤ c3αe

−c3αd/2. �

4.3. Bounding the weight of non-polymer configurations. In this section, we prove Lemma 3.3.
The k = 1 case is given in the following lemma.

Lemma 4.16. Suppose that λ ≤ λ0 and that λ(1 − e−β) ≥ C log d
d1/3

. Then
∑

I⊂V (Qd):|[I∩E]|,|[I∩O]|> 3
4
·2d−1

λ|I|e−β|E(I)| ≤ Z1 · O(exp(−2d/d)).

Proof. Define m := 2dd−2/3, s := d
2

λ
1+λ and

IO :=
{

I ⊂ V (Qd) : there are at least m vertices v ∈ O such that 1 ≤ |N(v) ∩ I| ≤ s
}

.

Define IE similarly. Let I ′ be the set of I /∈ IE ∪ IO such that |[I ∩ E ]|, |[I ∩ O]| ≥ 3
4 · 2d−1. It

suffices to show that each of ω̃(IE), ω̃(IO) and ω̃(I ′) is at most Z1 ·O(exp(−2d/d)).
Let us begin with IO (the argument for IE is the same). Let Ψv, Ψ′

v, pv and p′v be defined as in
Lemma 4.13. By Lemma 4.14,

Z(Ψ′
v) ≤ (1 + λ)de1/d

3
.

Denoting α := λ(1 − e−β) and s′ := C log(2+λ)
β , by (25) and (26) (taking ℓ = 0 there and recalling

that cᾱ ≤ α ≤ Cᾱ when λ is bounded),

Z(Ψv) ≤ (1 + λ)de−s/2(1 + λe−βs
′
)d + (1 + λ)de−

1
2
αd(d(1 + λ))s

′ ≤ (1 + λ)de−cαd,

where the second inequality follows from plugging in the definitions of s and s′ and using the
assumption on α. Thus, by Lemma 4.13,

ω̃(IO) ≤ (1 + λ)2
d−1

∏

v∈O
e−cαpvep

′
v/d

4
(

1
pv

)
pv
d
(

1
p′v

)

p′v
d
(

1
1−pv−p′v

)

1−pv−p′v
d

.

Since Z1 ≥ (1 + λ)2
d−1

,
∑

v∈O p
′
v ≤ 2d−1 and

∑

v∈O pv ≥ m (by the definition of IO), to deduce

that ω̃(IO) ≤ Z1 ·O(exp(−2d/d)), it suffices to show that

e−cαme2
d/d4

[

∏

v∈O

(

1
pv

)pv (
1
p′v

)p′v
(

1
1−pv−p′v

)1−pv−p′v
] 1

d

≤ O(exp(−2d/d)).

This indeed holds since α ≥ Cd−1/3 log d, m = 2dd−2/3 and each term in the product is at most 3
(since it is the exponential of the entropy of a random variable which takes at most 3 values).
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We now proceed to bound ω̃(I ′). We claim that each I ∈ I ′ satisfies that |E(I)| ≥ ms. This will
yield the lemma since

ω̃(I ′) ≤ (1 + λ)2
d
e−βms = eO(2d)e−Ω(2d log d) = O(exp(−2d)).

Let I ∈ I ′. Using that [I ∩ E ] and [I ∩ O] are each of size at least 3
4 · 2d−1, it follows that [I]

contains at least half of the edges of the hypercube, i.e., |E([I])| ≥ d
22d−1. Since the graph spanned

by E([I]) has maximum degree at most d, we see that

|[I] ∩N([I]) ∩ O]| ≥ 1
d |E([I])| ≥ 2d−2.

Using that N(I) = N([I]) and I /∈ IO,

|I ∩N(I) ∩ E| ≥ (|[I] ∩N(I) ∩O| −m) sd ≥ cλ2d ≥ 2m.

Using that I /∈ IE , we conclude that |E(I)| ≥ (|I ∩N(I) ∩ E| −m)s ≥ ms. �

We are now ready to prove Lemma 3.3.

Proof of Lemma 3.3. Since |E(I1)∪ · · · ∪E(Ik)| ≥ 1
k (|E(I1)|+ · · ·+ |E(Ik)|), the sum in the lemma

is easily bounded by

kZk−1
1 (βk )

∑

I⊂V (Qd):|[I∩E]|,|[I∩O]|> 3
4
·2d−1

λ|I|e−
β
k |E(I)|,

where Z1(β/k) is shorthand for Z1(Qd, λ, β/k). Using Lemma 4.16, the above is bounded by

kZk1 (βk )O(exp(−2d/d)).

Thus, it suffices to show that Zk1 (βk ) ≤ Zk(β)eO(2d/d2). By Lemmas 4.11 and 4.14, we obtain that

Z1(
β
k ) ≤ (1 + λ)2

d−1
e2

d−1/d4 ≤ Z1(β)e2
d−1/d4 .

Since Zk1 (β) ≤ Zk(β), the lemma follows. �

4.4. Improved bounds for small clusters. Lemma 4.1 gives a bound on the weight of clusters
of size at least n, for any value of n, which may depend on d. For fixed n, the bound obtained
in this manner is not optimal. In this section, we provide some improvements on this (namely,
Lemmas 4.17 and 4.18). In particular, Lemma 3.2 follows immediately from Lemma 4.18.

Lemma 4.17. Assume (15). Then for any fixed n ≥ 1,
∑

Γ∈CD :‖Γ‖≥n
|ω(Γ)|e‖Γ‖d−3/2

= O
(

2dd2n−2λnα̃ndk

)

.

The exponential term α̃ndk is not optimal when n is not a multiple of k. An improved exponential
term is provided in Lemma 4.18 below.

Proof. We first apply Lemma 4.1 to obtain that
∑

Γ∈CD :‖Γ‖≥n+1

|ω(Γ)|e‖Γ‖d−3/2 ≤ d7(n+1)−3/22d−1α̃
d(n+1)−3(n+1)2

k .

Since the right-hand side is O
(

2dd2n−2λnα̃dnk
)

, it remains only to bound the contribution from
clusters of size n. Define the support of Γ to be S(Γ) :=

⋃

γ∈Γ S(γ) and note that |S(Γ)| ≤ n. The

number of ways to choose the support of a cluster of size n is at most O(2dd2n−2) by Lemma 1.9.
For any S of size at most n, there are at most a constant (depending on k and n, which are fixed)
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number of clusters with support S. It follows that there are at most O(2dd2n−2) clusters of size n.
By Lemma 4.5, the absolute weight of any such cluster Γ satisfies

|ω(Γ)| = |φ(HΓ)|
∏

γ∈Γ
ω(γ) ≤ C(n)λ‖Γ‖α̃‖N(Γ)‖

k .

By Lemma 1.8, we have that ‖N(Γ)‖ ≥ dn− 2n2, so that
∑

Γ∈CD :‖Γ‖=n
|ω(Γ)| ≤ O

(

2dd2n−2λnα̃dn−2n2

k

)

,

which is O
(

2dd2n−2λnα̃dnk
)

, since λ bounded implies that α̃k is bounded away from zero. �

For a polymer γ = (A1, . . . , Ak), we define its span to be

span(γ) := {i ∈ [k] : Ai 6= ∅}. (31)

We define the span of a cluster Γ = (γ1, . . . , γn) to be span(Γ) := span(γ1) ∪ · · · ∪ span(γn).

Lemma 4.18. Assume (15). Then for any fixed n, writing n = ak + b for a ≥ 0 and 1 ≤ b ≤ k,
we have

∑

Γ∈CD :‖Γ‖≥n
|ω(Γ)|e‖Γ‖d−3/2

= O
(

2dd2n−2λnαadk α
d
b

)

.

Furthermore, for any 1 ≤ ℓ ≤ k,
∑

Γ∈CD :|span(Γ)|≥ℓ
|ω(Γ)|e‖Γ‖d−3/2

= O
(

2dλℓαdℓ

)

.

Proof. We prove the first statement by inverse induction on b (with a fixed). The base case b = k
of the induction is precisely Lemma 4.17. For the induction step, let b < k and assume that the
statement holds for b+ 1, so that, in particular,

∑

Γ∈CD :‖Γ‖>n
|ω(Γ)|e‖Γ‖d−3/2

= O
(

2dd2nλn+1αadk α
d
b+1

)

.

Using that λ(1−e−β) = ω( log dd ) and λ is bounded, we see that the right-hand side is o(2dλnαadk α
d
b ).

It remains to show that
∑

Γ∈CD :‖Γ‖=n
|ω(Γ)| = O

(

2dd2n−2λnαadk α
d
b

)

.

Since there are O(2dd2n−2) clusters of size n, it suffices to show that

max
‖Γ‖=n

|ω(Γ)| = O(αadk α
d
b ).

As we have seen in the proof of the previous lemma, Lemma 4.5 and Lemma 1.8 imply that |ω(Γ)| ≤
C(n)λnα̃dn−2n2

k for any cluster Γ such that ‖Γ‖ = n. We require a stronger bound here (recall that

α̃ℓ is increasing in ℓ, so that α̃nk ≥ α̃akk α̃
b
b = αakαb). To obtain the required bound, it suffices to

improve Lemma 4.5 to show that any polymer γ with ‖γ‖ = n satisfies

ω(γ) ≤ λnαadk α
d
b .

(Actually we need to use this for polymers of size at most n, but we prefer not to introduce new
notation and just continue using n = ak+b.) Following the proof of Lemma 4.5 (and in the notation

of that lemma), we have that ω(γ) ≤ λn(1 + λ)−‖N(γ)‖ω̄(γ) and

ω̄(γ) =
∏

v

δmv(γ).
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It suffices to show that ω̄(γ) ≤ O(δadk δ
d
b ). We only keep in the product those v which have a unique

neighbor in the support of γ (these are all but O(1) many vertices). For each u in the support of
γ, we consider the product

∏

v δmv (γ) over all v adjacent to u which are not adjacent to any other
vertex in the support. Then all mv(γ) in the product equal nu(γ) := |{i : u ∈ Ai}|. Thus,

ω̄(γ) ≤
(

∏

u

δnu(γ)

)d−O(1)

.

It thus suffices to show that
∏

u δnu(γ) ≤ δakδb. This will follow from the fact that δiδj ≤ δi−1δj+1

for any 0 < i ≤ j < k. Indeed, starting from the set of numbers {nu(γ)}, and repeatedly choosing
a pair of numbers {i, j} such that 0 < i ≤ j < k and replacing it with the pair {i − 1, j + 1}, we
eventually reach a set of numbers which are all 0 or k, except perhaps one number. Since their sum
is preserved throughout this process, there must be exactly a numbers which are k and a single one
which is b. Since this process only increased the product, we conclude that

∏

u δnu(γ) ≤ δakδb.
We now prove the second part. By the the first part, the contribution from clusters of size larger

than ℓ is negligible. We thus only need to show that
∑

Γ∈CD :|span(Γ)|=‖Γ‖=ℓ
|ω(Γ)| = O

(

2dλℓαdℓ

)

,

There are O(2d) clusters in the sum (note that any cluster in the sum has a support which is a
singleton), and by what we have just shown, each satisfies that |ω(Γ)| ≤ C(ℓ)λℓαdℓ . �

5. The moments

In this section, we state and prove extensions of the main theorems stated in Section 1. The
proofs rely on Theorem 3.1 and Lemmas 4.17 and 4.18.

Denote Z as shorthand for the partition function Z(Qd,p, λ) of the hard-core model at fugacity

λ on the random subgraph Qd,p. Recall that p = 1 − e−β and recall from Section 4 that we denote

αℓ :=
1 + ((1 + λ)ℓ − 1)e−β

(1 + λ)ℓ
.

The next theorem is an extension of Theorem 1.1 to the hard-core model.

Theorem 5.1. Suppose that λ ≤ λ0 and λp ≥ C log d
d1/3

. Then

EZ = 2(1 + λ)2
d−1

exp
[

λ
22dαd1 +

(

a
(

d
2

)

− 1
4

)

λ22dα2d
1 +O

(

d4λ32dα3d
1

)]

,

where

a :=
(1 + λ)2(1 + λ(1 − p)2)2

4(1 + λ(1 − p))4
− 1

4
.

The next theorem gives a formula for the moments of Z, and in particular yields Theorem 1.4
and the first part of Theorem 1.5.

Theorem 5.2. Let k ≥ 2. Suppose that λ ≤ λ0 and λp ≥ Ck2 log d
d1/3

. Then

EZk

(EZ)k
= 2−k

k
∑

m=0

( k
m

)

exp
[

λ2

2

((m
2

)

+
(k−m

2

))

2d(αd2 − α2d
1 )
]

· exp
[

dp(1−p)λ4
2(1+λ−pλ)2m(k −m)2dα2d

1 +O(λ3d42dǫdk)
]

,

where ǫ2 := α1α2 and ǫk := α3 for k ≥ 3.

Finally, the next theorem gives a formula for the central moments of Z, and in particular yields
the second part of Theorem 1.5.
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Theorem 5.3. Let k ≥ 3. Suppose that λ ≤ λ0. Then for (1+λ)2

2λ(2+λ) + ω(1d ) ≤ p ≤ 1 − 2−d/3+ω(log d),
we have

E(Z − EZ)k

(EZ)k
=

{

(λ2 )k2dαdk + σk(k − 1)!! + o(σk + 2dαdk) if k is even

(λ2 )k2dαdk + o(σk + 2dαdk) if k is odd
, (32)

where

σ2 :=
1

4
2dλ2

(

αd2 +

(

p(1 − p)λ2d

(1 + λ− pλ)2
− 1

)

α2d
1

)

.

Furthermore, for p = (1+λ)2

2λ(2+λ) ±O(1d ), the left-hand side of (32) is Θ(1), and for p ≥ (1+λ)2

2λ(2+λ) , it is

O((2α2)dk/2 + 2dαdk).

Observe that (1+λ)2

2λ(2+λ) is always greater than 1
2 and it is greater than 1 when λ <

√
2 − 1, so that

the assumptions of (say the first part of) Theorem 5.3 can only hold when p > 1
2 and λ >

√
2 − 1.

We remark that α2 = 1
2 when p = (1+λ)2

2λ(2+λ) , and that σ is of constant order when p = (1+λ)2

2λ(2+λ) ±O(1d)

and is o(1) for larger p.
The following is an extension of Theorem 1.3 and is a corollary of the previous theorems. Recall

that the k-th moment of a standard normal random variable is (k − 1)!! for k even and zero for k
odd.

Corollary 5.4. Suppose that λ ≤ λ0, p = 1 − o(1) and (1+λ)2

2λ(2+λ) + ω(1d) ≤ p ≤ 1 − 2−d/3+ω(log d).
Then for any fixed k ≥ 1,

E

(

Z − EZ
√

Var(Z)

)k

→ ENk as d→ ∞,

where N is a standard normal random variable. In particular, the standardization of Z converges
in distribution to N .

Before going into the proofs, the reader may find it helpful to recall the computations done in
Section 3.2. To ease notation throughout the section (recall the error term from Theorem 3.1), we
write a ≃ b as shorthand for a/b = 1 + O(exp(−2d/d4)). We also sometimes write Ck,m for CD
where D ∈ {E ,O}k is the vector given by Di = E for 1 ≤ i ≤ m and Di = O otherwise (recall that
this would be essentially the same for any D with m or k −m coordinates equal to E ; see the last
remark in Section 3.1).

Proof of Theorem 5.1. By Proposition 1.7 and Theorem 3.1,

EZ = Z1 ≃ 2(1 + λ)2
d−1

exp





∑

Γ∈C1,0
ω(Γ)



 . (33)

Thus, we are just left with computing the cluster expansion series. For our desired accuracy, we will
compute the exact contribution from clusters of size 1 and 2, and only upper bound the contribution
from larger clusters. The latter is done by using Lemma 4.17, which gives that

∑

Γ∈C1,0:‖Γ‖≥3

|ω(Γ)| = O(d4)2dλ3α3d
1 .

There is only one type of cluster of size 1, that consisting of a single polymer of size 1, and its
Ursell function is 1. There are 2d−1 such clusters and each has weight λαd1 (recall the computation
of scenario I in Section 3.2). Thus,

∑

Γ∈C1,0:‖Γ‖=1

ω(Γ) = 2d−1λαd1.
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There are two types of clusters of size 2: those consisting of a single polymer of size 2, whose
Ursell function is 1, and those consisting of two polymers of size 1, whose Ursell function is −1

2 .

There are 2d−2
(d
2

)

clusters of the former type and 2d−1(1 +
(d
2

)

) of the latter type. The former type

clusters have weight λ2α2d−4
1

(1+λe−2β)2

(1+λ)2 (recall scenario II in Section 3.2) and the latter have weight

−1
2λ

2α2d
1 . Thus,

∑

Γ∈C1,0:‖Γ‖=2

ω(Γ) = 2d−2λ2α2d
1

((

d

2

)(

(1 + λ)2(1 + λe−2β)2

(1 + λe−β)4
− 1

)

− 1

)

.

Putting these together yields the theorem. �

Remark 5.5. The proof of Theorem 5.1 can be modified to obtain better accuracy. Specifically,
for any fixed n ≥ 1, using Lemma 4.17 and (33), we see that

EZ = Z1 = 2(1 + λ)2
d−1

exp





∑

Γ∈C1,0:‖Γ‖<n
ω(Γ) +O(d2n−2)2dλnαnd1



 . (34)

Thus, by computing the contribution to the cluster expansion from clusters of size less than n (as
we have done for clusters of size 1 and 2 in the proof above), one may obtain an explicit formula for

EZ. This will show that
∑

Γ∈C1,0:‖Γ‖<n ω(Γ) has the form 2d
∑n−1

i=1 fi(d, λ, p)α
di
1 , where f1, . . . , fn−1

are polynomials in d (with fi having degree 2i − 2) with coefficients depending on λ and p. For
example, to obtain Theorem 5.1 we calculated the first two polynomials, showing that f1 = λ

2 and

f2 = λ2(a
(d
2

)

− 1
4) with a = a(p) as in Theorem 5.1.

We now move on to compute the higher moment of Z. For this, as well as for the central moments
later on, it is useful for us to be able to view k′-systems as embedded in the k-system when k′ < k.
We make this precise via the notion of the span of a polymer/cluster; recall the definition from (31).
Observe that the set of clusters Γ ∈ Ck,m whose span is contained in a given subset S ⊂ [k] can
be identified with C|S|,|S∩{1,...,m}|. For example, the set of clusters Γ ∈ Ck,m whose span is a given
singleton is identified with C1,0, which is itself identifiable by even-odd symmetry with C1,1. This
will allow us to easily compare the k-th moment of Z with the k-th power of its expectation.

Proof of Theorem 5.2. By Proposition 1.7 and Theorem 3.1,

EZk = Zk ≃ (1 + λ)k2
d−1

k
∑

m=0

(

k

m

)

exp





∑

Γ∈Ck,m
ω(Γ)



 .

Since for any m and i ∈ [k], we have that
∑

Γ∈Ck,m:span(Γ)={i} ω(Γ) =
∑

Γ∈C1,0 ω(Γ), and using (33),

we obtain that

EZk

(EZ)k
≃ 2−k

k
∑

m=0

(

k

m

)

exp





∑

Γ∈Ck,m, |span(Γ)|>1

ω(Γ)



 . (35)

Thus, similarly to before, we are left with computing the cluster expansion series to some desired
accuracy. We will compute the exact contribution from clusters of size 2, and upper bound the
contribution from larger clusters (note that all clusters in the sum have size at least 2 since their
span has size at least 2). Indeed, by Lemma 4.18,

∑

Γ∈Ck,m:‖Γ‖≥3

|ω(Γ)| = O(d42dλ3) ·
{

αd2α
d
1 if k = 2

αd3 if k ≥ 3
.

It remains to do the exact computation regarding clusters Γ ∈ Ck,m having ‖Γ‖ = |span(Γ)| = 2.

There are
(k
2

)

ways to choose the span of Γ. However, there is some lack of symmetry between
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the choices. There are m(k −m) choices in which the chosen coordinates of [k] are associated to

different sides of the hypercube, and there are
(m
2

)

+
(k−m

2

)

choices in which the chosen coordinates
are associated to the same side of the hypercube. Thus,

∑

Γ∈Ck,m, ‖Γ‖=2,
|span(Γ)|=2

ω(Γ) =
(

(m
2

)

+
(k−m

2

)

)

Asame +m(k −m)Adiff,

where

Asame :=
∑

Γ∈C2,0, ‖Γ‖=2,
span(Γ)={1,2}

ω(Γ) and Adiff :=
∑

Γ∈C2,1, ‖Γ‖=2,
span(Γ)={1,2}

ω(Γ). (36)

Let us first compute Asame. Consider a cluster Γ ∈ C2,0 such that ‖Γ‖ = 2 and span(Γ) = {1, 2}.
There are two different types of such clusters:

• Γ consists of a single polymer of size 2 which spans {1, 2} and whose support is a singleton.
• Γ consists of two polymers of size 1, one of which spans {1} and the other {2}.

There are 2d−1 clusters of the first type, each having weight λ2αd2 (recall the computation of
scenario III in Section 3.2 and that the Ursell function of a vertex is 1). There are 2 · 2d−1 clusters
of the second type, each having weight −1

2λ
2α2d

1 (recall that the Ursell function of an edge is −1
2).

Thus,

Asame = 2d−1λ2(αd2 − α2d
1 ). (37)

Let us now compute Adiff. Consider a cluster Γ ∈ C2,1 such that ‖Γ‖ = 2 and span(Γ) = {1, 2}.
There are two different types of clusters:

• Γ consists of a single polymer of size 2 which spans {1, 2} and whose support has size 2.
• Γ consists of two polymers of size 1, one of which spans {1} and the other {2}.

There are 2d−1d clusters of the first type, each having weight λ2α2d−2
1 · 1+2λe−β+λ2e−β

(1+λ)2 (recall the

computation of scenario IV in Section 3.2). There are 2dd clusters of the second type, each having
weight −1

2λ
2α2d

1 . Thus,

Adiff = 2d−1dλ4α2d
1 · e

−β(1 − e−β)

(1 + λe−β)2
. (38)

This completes the proof of the theorem. �

We now turn to computing the normalized central moments of Z. These are the moments of

X :=
Z

EZ
− 1.

The first step toward proving Theorem 5.3 is to establish an asymptotic formula for the k-th moment
of X in terms of the cluster expansion of the k-system. This can be formulated directly via certain
sequences of clusters, but we find it more convenient here to work instead with sequences of sets
which indicates the spans of these clusters.

Fix k ≥ 2. For D ⊂ [k], we write CD for CD where D ∈ {E ,O}k satisfies Di = E for i ∈ D and
Di = O for i ∈ [k] \D. For S ⊂ [k], define

ω(S;D) :=
∑

Γ∈CD :span(Γ)=S

ω(Γ).

For S1, . . . , Sn ⊂ [k], we also define ω(S1, . . . , Sn;D) := 1
n!

∏n
i=1 ω(Si;D).
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Lemma 5.6. For any fixed k ≥ 2,

EXk ≃ 2−k
∑

D⊂[k]

∑

(S1,...,Sn):
|S1|,...,|Sn|≥2
S1∪···∪Sn=[k]

ω(S1, . . . , Sn;D),

where the second sum is absolutely convergent.

The lemma roughly says that the k-th moment of X is effectively governed by sequences of
clusters (of span size at least 2) which together span all of [k], and in this sense do not appear
(jointly) in any proper subsystem of the k-system.

Proof. Recalling (35), we have

E(1 +X)k ≃ 2−k
∑

D⊂[k]

exp





∑

S⊂[k]:|S|>1

ω(S;D)



 .

Using the binomial expansion, we get

EXk =

k
∑

ℓ=0

(

k

ℓ

)

(−1)k−ℓE(1 +X)ℓ ≃
∑

T⊂[k]

(−1)k−|T |2−|T | ∑

D⊂T
exp





∑

S⊂T,|S|>1

ω(S;D)



 .

Expanding the exponential via its Taylor series, we may write it as a sum of 1
n!ω(S1;D) · · ·ω(Sn;D)

over all sequences (S1, . . . , Sn) with n ≥ 0 and each Si a subset of T of size greater than 1. Thus,

EXk ≃
∑

T⊂[k]

(−1)k−|T |2−|T | ∑

D⊂T

∑

S1,...,Sn⊂T :
|S1|,...,|Sn|≥2

ω(S1, . . . , Sn;D).

Since the sums are absolutely convergent, we may now change the order of summation. Fix a
sequence (S1, . . . , Sn) appearing in the last sum and denote T0 := S1 ∪ · · · ∪ Sn. Observe that
ω(S1, . . . , Sn;D) = ω(S1, . . . , Sn;D′) whenever D and D′ are such that D∩T0 = D′∩T0. We gather
these terms together in the sum and identify them with a canonical representative ω(S1, . . . , Sn;D0)
with D0 ⊂ T0. Then the effective coefficient of ω(S1, . . . , Sn;D0) is

∑

D⊂T⊂[k]
T0⊂T, D0⊂D⊂D0∪(T\T0)

(−1)k−|T |2−|T | =
∑

T0⊂T⊂[k]

(−1)k−|T |2−|T0| =

{

2−k if T0 = [k]

0 otherwise
.

Thus, only sequences with S1 ∪ · · · ∪ Sn = [k] remain, and their coefficient is 2−k. �

Before proving Theorem 5.3, we collect some facts we will require.

Lemma 5.7. Suppose that λ = Θ(1) and fix a ≥ 1.

(i) If p≫ log d
d , then αd1d

a ≪ 1.

(ii) If p = Ω(1), then α2d
1 d(1 − p) = O(αd2).

(iii) If p ≥ (1+λ)2

2λ(2+λ) + ω(1d), then (2αk)d ≪ 1 for any fixed k ≥ 2.

(iv) If p ≥ (1+λ)2

2λ(2+λ) + ω(1d), then σ ≪ 1.

(v) If log d
d ≪ p ≤ 1 − (1 + λ− Ω(1))−d, then (2α1α2)dda ≪ σ2.

(vi) If p→ 1 and p ≤ 1 − dω(1)2−d/3, then (2αk)dda ≪ σk for any fixed k ≥ 3.

(vii) If Ω(1) ≤ p ≤ 1 − dω(1)2−d/3, then (2αm)d/mda ≪ (2αk)d/k ∨ σ for any fixed k > m ≥ 3.

(viii) If Ω(1) ≤ p ≤ 1− dω(1)2−d/3, then (2αm1 · · ·αmt)
dda ≪ (2αk)

d ∨ σk for any fixed k ≥ 3, t ≥ 2
and m1, . . . ,mt ≥ 1 such that m1 + · · · +mt = k.



38 GAL KRONENBERG AND YINON SPINKA

Proof. (i). It suffices to show that α1 ≤ 1 − ω( log dd ). Since α1 = 1 − pλ
1+λ , this is immediate.

(ii). It suffices to show that 1 − α2
1
α2

= Ω(1 − p). Plugging in the definitions of α1 and α2, this is
easily verified.

(iii). Since αk is decreasing in k, it suffices to show that (2α2)d ≪ 1. Equivalently, 2α2 ≤ 1−ω(1d).

Plugging in the definition of α2, we see that this is the same as 2p ≥ (1+λ)2

λ(2+λ) (1 + ω(1d )).

(iv). Using only that λ = Θ(1), one checks that

σ2 = (2α2)d · Ω(1 ∧ p(1 − p)d) and σ2 = (2α2)d · O
(

1 +
α2d
1 d(1−p)
αd
2

)

. (39)

The claim now follows from (iii) and (ii).

(v). By (39), it suffices to show that αd1d
a ≪ 1∧ (1− p)d. For p bounded away from 1, this follows

from (i). When p→ 1, this follows using that α1 = 1+o(1)
1+λ and the upper bound on p.

(vi). Denote γ := (2αk)
1/k

(2α2)1/2
. By (39) and noting that 1 − p ≤ 1 ∧ p(1 − p)d, it suffices to show that

γ2dd2a/k ≪ 1−p. Observe that p→ 1 implies that γ → 21/k−1/2. For k > 3, this is strictly less than
2−1/6 and the claim follows easily using that 1−p = Ω(2−d/3). For k = 3, the claim similarly follows

when 1−p ≥ (2−Ω(1))−d/3. When 1−p is smaller than this, we argue that γ ≤ 2−1/6(1+O(1−p)),
so that γ2d = O(2−d/3) and the claim follows since 1 − p = ω(d2a/k2−d/3) by assumption. To show

that γ ≤ 2−1/6(1 +O(1− p)), first note that it is equivalent to (α3)1/3

(α2)1/2
≤ 1 +O(1− p). Now observe

that (1 + λ)(αℓ)
1/ℓ = 1 + h(ℓ)(1 − p)(1 + o(1)), where h(x) := (1+λ)x−1

x . Since h(2), h(3) and
h(3)−h(2) are all Θ(1) (note that h is strictly increasing and continuous in both x and λ), we have

that (α3)1/3

(α2)1/2
= 1 + (h(3) − h(2))(1 − p)(1 + o(1)) = 1 + Θ(1 − p).

(vii). The claim follows from (vi) when p → 1, and so we may assume that p is bounded away

from 1. Let g : (0, 1)× (0,∞) → [0,∞) be the function (p, λ) 7→ (2αm)1/m

(2α2)1/2∨(2αk)1/k
. By (39), it suffices

to show that g(p, λ)d ≪ 1. Note that g is continuous and that g < 1 by Claim A.3. Thus, g(p, λ)
is bounded away from 1 (since p is bounded away from 0 and 1), and the claim follows.

(viii). Using Claim A.1, we see that αm1 · · ·αmt < αk. The claim thus follows from (vi) when
p → 1, and so we may assume that p is bounded away from 1. Let g : (0, 1) × (0,∞) → [0,∞) be
the function (p, λ) 7→ αm1 · · ·αmt/αk. Note that g is continuous and that g < 1. Thus, g(p, λ) is
bounded away from 1, and the claim follows. �

We are now ready to prove Theorem 5.3. The idea behind the proof is that the main contribution
to the second sum in Lemma 5.6 is from one of two cases: either there is a single set S1 (which must
equal [k]), or there are k/2 sets S1, . . . , Sn all of size 2. The clusters contributing non-negligibly in
the former case are of size k and in the latter case of size 2. We will first upper bound the absolute
contribution from all other cases. We then compute the contribution from these two main cases.

Proof of Theorem 5.3. Fix k ≥ 3. We begin by proving the first part of the theorem, and thus

suppose that (1+λ)2

2λ(2+λ) + ω(1d) ≤ p ≤ 1 − 2−d/3+ω(log d).
Our starting point is Lemma 5.6 which says that

EXk ≃ 2−k
∑

D⊂[k]

∑

(S1,...,Sn)∈S
ω(S1, . . . , Sn;D),

where S is the collection of all sequences (S1, . . . , Sn) of subsets of [k] of size at least 2 satisfying
that S1 ∪ · · · ∪ Sn = [k]. Let S∗ ⊂ S be the collection of those sequences which partition [k] into
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sets of size 2. We will first compute the contribution from these sequences, showing that

2−k
∑

(S1,...,Sn)∈S∗

∑

D⊂[k]

ω(S1, . . . , Sn;D) =

{

(1 + o(1)) · σk(k − 1)!! if k is even

0 if k is odd
. (40)

We will next compute the contribution from the single sequence ([k]), showing that

2−k
∑

D⊂[k]

ω([k];D) = (λ2 )k2dαdk + o(σk ∨ 2dαdk). (41)

We will then show that the contribution from all other sequences is negligible:

2−k
∑

D⊂[k]

∑

(S1,...,Sn)∈S\S∗

n≥2

ω(S1, . . . , Sn;D) = o(σk ∨ 2dαdk). (42)

This will yield the first part of the theorem.
Let us begin with (40). When k is odd, S∗ is empty, and (40) is immediate. Suppose that k is

even and set n := k/2. There are |S∗| = n! · (k − 1)!! many ordered partitions of [k] into sets of
size 2. Since any such partition contributes the same, and since its contribution factorizes over the
n pairs, to obtain (40), it suffices to show that

∑

D⊂{1,2}
ω({1, 2};D) = (1 + o(1))4σ2.

Thus, we are left with a computation concerning clusters of the 2-system. Specifically, the sum of
weights of clusters which span {1, 2}. Since clusters of size larger than 2 are negligible in comparison
to σ2 by Lemma 4.18 and Lemma 5.7(v), it suffices to show that

∑

D⊂{1,2}

∑

Γ∈CD :‖Γ‖=2
span(Γ)={1,2}

ω(Γ) = 4σ2.

In fact, we have already done this computation. Indeed, the left-hand side is 2Asame +2Adiff, where
Asame and Adiff were defined in (36). These were subsequently computed in (37) and (38), from
which we see that 2Asame + 2Adiff = 4σ2. We note for later use that both Asame and Adiff are
non-negative, so that |Asame|, |Adiff| ≤ 2σ2. This establishes (40).

We now move on to showing (41). Recall that ω([k];D) =
∑

Γ∈CD :span(Γ)=[k] ω(Γ). The total

contribution to ω([k];D) from clusters of size larger than k is negligible in comparison to 2dαdk by
Lemma 4.18 and Lemma 5.7(i). Consider a cluster Γ with span(Γ) = [k] and ‖Γ‖ = k. Suppose
first that D = ∅ or D = [k] (all defects on the same side). Then the support of Γ must be a
singleton. Recall from scenario III in Section 3.2 that the weight of a polymer γ with singleton
support and |span(γ)| = ℓ is λℓαdℓ . There are numerous types of clusters with singleton support,

according to the number of polymers and their sizes. There are 2d−1 clusters of weight λkαdk (those

which consist of a single polymer), and all other clusters have combined weight o(σk ∨ 2dαdk) by
Lemma 5.7(viii). Thus,

ω([k];D) = 2d−1λkαdk + o(σk ∨ 2dαdk).

Suppose now that D 6= ∅, [k]. In this case, the support of Γ need not be a singleton, but it

is easy to see that there are at most 2ddO(1) ways to choose the support. It follows that there
are at most 2ddO(1) ways to choose the cluster Γ. Lemma 4.5 implies that any polymer γ with
|span(γ)| = ℓ has weight at most λ‖γ‖(α̃ℓ)

‖N(γ)‖, where α̃ℓ = (αℓ)
1/ℓ was defined at the beginning

of Section 4. Since ‖N(γ)‖ ≥ dℓ, the weight of γ is at most λ‖γ‖αdℓ . Finally, Lemma 5.7(viii) yields

that ω([k];D) = o(σk ∨ 2dαdk). This establishes (41).
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It remains to show (42). To this end, we may fix D and show that
∑

(S1,...,Sn)∈S\S∗
n≥2

ω(S1, . . . , Sn;D) = o(σk ∨ 2dαdk).

Fix (S1, . . . , Sn) ∈ S \ S∗ with n ≥ 2 and denote ℓi := |Si|. By Lemma 4.18,

|ω(S1, . . . , Sn;D)| ≤ O(1)n

n! 2dn (αℓ1 · · ·αℓn)d .

Define f(ℓ) := (2αℓ)
1/ℓ. Using Corollary A.4, we obtain that

|ω(S1, . . . , Sn;D)| ≤ O(1)n

n! (f(2) ∨ f(k))(ℓ1+···+ℓn)d.

This bound will not suffice for us, and we need to tweak it by separating those ℓi which are 2 or
k from the rest. Write n = t + r + m, where t and r are the number of ℓi which are 2 and k,
respectively, and let 3 ≤ ℓ′1, . . . , ℓ

′
m ≤ k−1 be the remaining elements and denote ℓ := ℓ′1 + · · ·+ ℓ′m.

Using that |ω(Si;D)| ≤ 2σ2 for those Si of size 2 (since ω(Si;D) equals either Asame or Adiff), using
Lemma 4.18 for larger Si, and applying Corollary A.4 to ℓ′1, . . . , ℓ

′
m, we obtain that

|ω(S1, . . . , Sn;D)| ≤ O(1)n

n! σ2t(2αk)rd(2mαℓ′1 · · ·αℓ′m)d

≤ O(1)n

n! σ2tf(k)krd(f(3) ∨ f(k − 1))ℓd.

Since for a given n, there are at most 2kn sequences (S1, . . . , Sn), in order to obtain the desired
bound, it suffices to show that, uniformly in (t, r, ℓ),

⋆ := σ2tf(k)krd(f(3) ∨ f(k − 1))ℓd = o(σk ∨ f(k)kd).

Since ⋆ only decreases when increasing t, r or ℓ, it suffices to show this for any fixed (t, r, ℓ). By
Lemma 5.7(iii)-(iv), each of σ, f(2)d, f(3)d, . . . , f(k)d is o(1), and we assume that d is large enough
so that they are all at most 1. If r ≥ 2, then ⋆ ≤ f(k)2kd ≪ f(k)kd. If r = 1, then either t ≥ 1
or ℓ ≥ 1 (since n ≥ 2), and again we have that ⋆ ≪ f(k)kd. Now suppose that r = 0. If ℓ = 0,
then t > k/2 (since (S1, . . . , Sn) /∈ S∗) so that ⋆ ≤ σk+1 ≪ σk. If ℓ ≥ 1 (note that 2t + ℓ ≥ k),
then ⋆ ≤ (σ∨ f(k)d)2t(f(3)∨ f(k− 1))ℓd ≪ (σ∨ f(k)d)2t+ℓ ≤ (σ∨ f(k)d)k by Lemma 5.7(vii). This
establishes (42), and thus completes the proof of the first part of the theorem.

To see the claim regarding p = (1+λ)2

2λ(2+λ) ± O(1d), we first note that in this regime, we have that

σ = Θ(1) and f(k)kd ≪ 1. In particular, Lemma 5.7(iii)-(iv) hold for this p if one replaces “≪ 1”
with “= O(1)”. Consequently, the bounds in (40) and (41) remain unchanged, while the bound in
(42) becomes O(σk) ± O(2dαdk) = O(1) for k even (and still 0 for k odd). To see the latter, note

that ⋆ is at most O(f(k)kd) + o(σk) = o(1) when r + ℓ ≥ 1; when r = ℓ = 0 and t > k/2, we use

that 0 ≤ ω(Si;D) ≤ 2σ2 to obtain that ω(S1, . . . , Sn;D) = O(1)n

n! . Putting these together yields

that EXk = Θ(σk) ± O(2dαdk) = Θ(1) for k even. For k odd, this gives that EXk = O(1), and to
see that it is Θ(1), it suffices to note that ω(S1, . . . , Sn;D) is Θ(1) for some sets S1, . . . , Sn of size
2 and some D. This yields the statement of the theorem in this case.

To see the claim regarding p ≥ (1+λ)2

2λ(2+λ) , we note that Lemma 5.7(v)-(vii) remain true without

the upper bound on p if one replaces σ with f(2)d = (2α2)d/2. The bounds in (40), (41) and (42)
then all become O((2α2)kd/2 ∨ 2dαdk). This yields the statement of the theorem in this case. �

Proof of Corollary 5.4. Lemma 5.7(vi) implies that σk ≫ (2αk)d for any k ≥ 3. Theorem 5.3 now
yields that

E

(

Z − EZ

σEZ

)k

→
{

(k − 1)!! if k is even

0 if k is odd
.
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Since the right-hand side equals ENk, and since Var(Z) = (1 + o(1))(σEZ)2 by Theorem 5.2 (note
that σ = o(1) by Lemma 5.7(iv)), we conclude the first part of the corollary. Since normal random

variables are determined by their moments, we also conclude that (Z − EZ)/
√

Var(Z) converges
in distribution to N . �

Let us now explain how the theorems stated at the beginning of this section imply the theorems
stated in the introduction.

Proof of Theorem 1.1. Immediate from Theorem 5.1 by plugging in λ = 1 and α1 = 1 − p
2 . �

Proof of Theorem 1.3. Immediate from Corollary 5.4 by plugging in λ = 1. �

Proof of Theorem 1.4. Immediate from Theorem 5.2 by plugging in λ = 1, α1 = 1 − p
2 and α2 =

1 − 3p
4 . �

Proof of Theorem 1.5. The first part follows from Theorem 5.2 by plugging in λ = 1, α1 = 1 − p
2

and α2 = 1 − 3p
4 , and using that d3ǫdk ≪ α2d

1 , which is simple to check using only that p≫ log d
d .

For the second part, suppose first that k ≥ 4 is even and 2
3 + ω(1d) ≤ p ≤ 1 − ω(1d). Using

the upper bound on p, it is not hard to check that α2d
1 ≪ αd2 and (1 − p)dα2d

1 ≪ αd2. Thus,
σ = 1

22d−1αd1(1 + o(1)) and the formula stated in the theorem follows from Theorem 5.3. Suppose

now that k ≥ 4 and p = 2
3 ±O(1). In this case, (2− 3p

2 )kd/2 = Θ(1) and 2d(1− p+ p2−k)d ≪ 1, and
the claimed result follows from Theorem 5.3. The remaining two cases also follow from Theorem 5.3
since (2 − 3p

2 )kd/2 ≤ 1 and 2d(1 − p+ p2−k)d ≪ 1 when k ≥ 3 and p ≥ 2
3 . �

6. Discussion and open questions

We have introduced several results on the partition function of the hard-core model (and, in
particular, on the number of independent sets) in a random subgraph of the hypercube. For a wide
range of p we have found precise asymptotics for the expected value and higher moments. For
values of p tending to 1, we further established a normal limiting distribution result, whereas for
p > 2

3 , we have a concentration result which yields estimates on the partition function which hold
with high probability.

Our work raises several natural questions. Our results can be interpreted as results about the par-
tition function of a family of positive-temperature models on the hypercube (recall Proposition 1.7).
Interestingly, our results allow to extract information about the structure of a random configura-
tion chosen from the positive-temperature model on the hypercube. Indeed, we have established
a convergent cluster expansion representation (see Theorem 3.1) from which it is rather standard
to deduce such structural information. For example (for appropriate parameters of the model),
one may deduce from our results that the probability that two given vertices, one even and one

odd, belong to such a configuration is at most Cλ
(

1+λe−β

1+λ

)d
. For p > 2

3 (say, constant), it should

also be possible to deduce such probabilistic information about the typical independent sets (i.e.,
the hard-core model with λ = 1) in the random graph Qd,p, using that the relevant quantities
are concentrated in this regime (as demonstrated by Theorem 1.2), but we have not pursued this

here. For other λ, the value 2
3 becomes (1+λ)2

2λ(2+λ) (see Section 5). It would be interesting to study

the structure of a typical configuration in the hardcore model on Qd,p for smaller values of p. For
non-random graphs, such results were established on the hypercube [22, 13, 21] and also on the
closely related Z

d lattice [16, 29] (and for positive temperature in [31]).
We have seen that for p > 2

3 + ω
(

1
d

)

, i(Qd,p) is concentrated around its mean, in the sense that

with high probability i(Qd,p) = (1+o(1))E(i(Qd,p)). On the other hand, we have seen that in p = 2
3

it is non-concentrated (around its mean or otherwise). This raises the question of whether or not
there is concentration for smaller values of p, for example for p = 1

2 (recall (5) and (6)). More
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generally, it is interesting to determine the typical order of magnitude of i(Qd,p), specifically if it
is close to its mean either in the sense of Θ(E(i(Qd,p))) or as in the sense of the right hand side
of (3).

Another possible approach to studying the hard-core model on Qd,p (different than the approach
taken in this paper) is to try to apply the machinery of [33, 13, 21] directly to the random graph.
As Galvin noted in [13], this machinery relies on only few properties of the hypercube, specifically
the fact that it is a regular bipartite graph with certain isoperimetric bounds. However, Qd,p is
typically very non-regular, and perhaps more crucially, while certain isoperimetric bounds for Qd,p
are known (see [11] and references therein), these do not seem to be suited for the problem at hand.

We have seen that for p tending to 1 (not too fast), there is a normal limiting behavior for i(Qd,p).
It is natural to ask what the limiting behavior is for other values of p, e.g., for constant p ∈ (0, 1).
Theorem 1.5 implies that (see the discussion after the theorem) the central moments of i(Qd,p) do
not behave asymptotically like those of a normal random variable. While this does not necessarily
preclude the possibility of a normal limit, it might suggest a different limiting distribution, perhaps
log-normal.

Some of our results are in the regime where p is at least C log d
d1/3

. It is natural to wonder how small
p can be for these results to hold. For example, when does the expected number of independent sets
behave as in (3)? It is not hard to see that this fails for p = o(1d ) (or even for p ≤ c

d for small c > 0).
Indeed, by considering subsets of one bipartition class of the hypercube and the isolated vertices in

the other bipartition class, one sees that for p = o(1d), with high probability, i(Qd,p) = 22
d−1(2−o(1)),

and thus also in expectation. Similarly, for p = O(1d ), with high probability, i(Qd,p) = 22
d−1(1+Ω(1)).

This further shows that
Ei(Qd,p) = 22

d−1(1+o(1)) (43)

does not hold for p = O(1d ), whereas (3) implies that it does hold for p ≥ C log d
d1/3

. In fact, it is

not too hard to show that this weaker form of (3) holds for p = ω( log dd ). This can be seen by us-

ing Lemma 4.11 (or alternatively [14, Theorem 1.3]) to obtain that Ei(Qd,p) ≤ Z(Kd,d, 1, β)
1
d
2d−1

,

and then following the proof of Lemma 4.15 (and noting that Z({0̄}) = 2d) to deduce that

Z(Kd,d, 1, β) ≤ 2d(1+o(1)) . In this context, we mention that 1
d is the threshold for the appear-

ance of a giant component in Qd,p (see, e.g., [36]), and that there is a positive proportional of

vertices of bounded degree when p = O(1d ) but not when p = ω(1d).
Lastly, we note that independent sets can be seen as a special case of graph homomorphisms.

In this direction, results about graph homomorphisms were established in [10, 20, 31] and for
the special case of q-colorings in [23, 30]. It is likely that the techniques in this paper, together
with those of previous works, can be extended to tackle the problem of counting more general
homomorphisms in Qd,p. In this context, we note that the relation given in Proposition 1.7 easily
extends to any (weighted) homomorphism model.
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Appendix A.

Fix p ∈ (0, 1) and c > 0. For x > 0, define

αx := 1 − p(1 − e−cx) and f(x) := (2αx)1/x.

Claim A.1. The function x 7→ logαx is strictly convex. In particular, αxαy > αx−tαy+t for
y ≥ x ≥ t > 0.
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Proof. Define h(x) := αx and g(x) := log h(x) for x > 0. Let us show that g′′ > 0. Indeed, h > 0
and g′′h2 = h′′h− (h′)2 = (1 − p)pc2e−cx ≥ 0. �

Corollary A.2. The function x 7→ α
1/x
x is increasing.

Proof. Since g(x) = log αx is convex and g(0) = 0, we have that g′(x) ≥ g(x)
x and hence ( 1xg(x))′ ≥ 0.

Thus, 1
xg(x) is increasing and, in particular, so is e

1
x
g(x) = α

1/x
x . �

Claim A.3. If p ≤ 1
2 , then f is strictly decreasing on (0,∞). If p > 1

2 , then there exists x∗ ∈ (0,∞)
such that f is strictly decreasing on (0, x∗] and strictly increasing on [x∗,∞).

Proof. We prove both parts simultaneously, taking x∗ = ∞ when p ≤ 1
2 . It suffices to show that

f ′ vanishes at a unique point x∗ and that it is negative on (0, x∗) and positive on (x∗,∞). The
derivative of f is

f ′(x) = f(x)

(

− log(2αx)

x2
+

α′
x

xαx

)

=
f(x)g(x)

x2αx
,

where g(x) := xα′
x − αx log(2αx). Since f(x) and αx are positive, it suffices to show that g

vanishes at a unique point x∗ and that it is negative on (0, x∗) and positive on (x∗,∞). In fact,
g(0) = − log 2 < 0 and g(∞) = −(1 − p) log(2 − 2p) is positive exactly when p > 1

2 , and we claim
that g is strictly increasing on (0,∞). Indeed, its derivative is

g′(x) = α′
x + xα′′

x − α′
x log(2αx) − α′

x = −α′
x(cx+ log(2αx)).

Since α′
x is negative, it suffices to show that cx+ log(2αx) is positive for all x > 0, or equivalently,

that αx >
1
2e

−cx. This is straightforward to verify. �

Corollary A.4. For any n ≥ 1 and x′ ≥ x1, . . . , xn ≥ x > 0, we have
n
∏

i=1

(2αxi) ≤ max{f(x), f(x′)}x1+···+xn .

Proof. This is equivalent to
∏n
i=1 f(xi)

xi/(x1+···+xn) ≤ max{f(x), f(x′)}. The left-hand side is at
most max{f(x1), . . . , f(xn)}, which is at most the right-hand side by Claim A.3. �
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