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CHARACTERISTIC FOLIATIONS – A SURVEY

FABRIZIO ANELLA & DANIEL HUYBRECHTS

Abstract. This is a survey article, with essentially complete proofs, of a series of recent

results concerning the geometry of the characteristic foliation on smooth divisors in compact

hyperkähler manifolds, starting with work by Hwang–Viehweg [HV10], but also covering arti-

cles by Amerik–Campana [AC14] and Abugaliev [Ab19, Ab21].

The restriction of the holomorphic symplectic form on a hyperkähler manifold X to a

smooth hypersurface D Ă X leads to a regular foliation F Ă TD of rank one, the characteristic

foliation. The picture is complete in dimension four and shows that the behavior of the leaves

of F on D is determined by the Beauville–Bogomolov square qpDq of D. In higher dimensions,

some of the results depend on the abundance conjecture for D.

1. Main theorem and motivation

Throughout, D Ă X denotes a smooth connected hypersurface in a compact hyperkähler

manifold X of complex dimension 2n, i.e. X is a simply connected, compact Kähler manifold

such that H0pX,Ω2
Xq is spanned by a holomorphic symplectic form σ. Usually X will be in

addition assumed to be projective, although one expects all results to hold in general.

The symplectic form σ induces a regular foliation of rank one on D, i.e. a line sub-bundle

F Ă TD. We shall denote a generic leaf of the foliation by L and its Zariski closure by L̄. The

space of leaves will be denoted D{F . These notions will all be recalled in Sections 2 and 3.

We will discuss the following table. The ultimate goal, only partially met at the moment,

would be to establish the equivalence of all assertions in each row. We will throughout assume

n ą 1, but see Remark 1.1.

(i) (ii) (iii) (iv)

(1) dim L̄ “ 1 L “ L̄ » P1 qpDq ă 0 D is uniruled

(2) dim L̄ “ n L̄ Lagr. torus qpDq “ 0 D “ f´1H Ă X
f // B Lagr. fibration

(3) dim L̄ “ 2n ´ 1 L̄ “ D qpDq ą 0 D is of general type

This review was prepared in the context of the seminar organised by the ERC Synergy Grant HyperK, Grant
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2 F. ANELLA, D. HUYBRECHTS

The table was originally proposed by Campana, cf. the work of Amerik–Guseva cf. [AG16].

Essentially, in each row the four conditions are known or at least expected to be equivalent

to each other. The assumption on D to be smooth is essential, see Section 8.2. The following

serves as a guide for what will be discussed in the subsequent sections, where precise references

will be provided.

Case (1): Closed leaves, cf. [AC14, Bo04, Hu03].

p1q : piq
§4.1

+3 pivq
§4.2

+3 piiiq
§4.3

+3 pivq
§4.4

+3 piq

Additionally, we observe the easy equivalence piq ks
§4.5

+3 piiq.

Case (2): Lagrangian fibrations, cf. [AG16, Ab19, HO09].

p2q : piq
§5.1

+3 piiiq
§5.2

+3
pivq

§5.3
ks

§5.4
+3 piq

The implication piiiq +3 pivq is currently only proved assuming the abundance conjecture

for D, so the proof is only complete for n “ 2, cf. [AG16].

We also address pivq +3 piiq +3 piq in Section 5.5 under the assumption that OpDq is

base point free, that is satisfied for instance if B is smooth.

Case (3): Dense leaves, cf. [Ab21, AC14, HV10].

p3q : piq
§6.1

+3 piiiq
§6.2

+3 pivq
§6.3

+3 piiiq
§6.4

+3 piq

The implication piq +3 piiiq is proved assuming that piiiq +3 pivq of Case (2) holds. Note

that the equivalence piq ks +3 piiq is clear in this case.

Additionally, we will also provide a direct argument for pivq
§6.5

+3 piq .

Remark 1.1. Let us consider the case n “ 1, i.e. X a K3 surface. Then, a smooth hypersurface

D Ă X is just a smooth curve. Clearly, in this case (i) holds in all three Cases (1), (2), and (3).

The equivalence of the other conditions (ii), (iii), and (iv) in (1) and (2) and of (iii) and (iv) in

(3) is well known.

Acknowledgements. We would like to thank R. Abugaliev and J.-B. Bost for discussions, for

answering our questions, and for their help with the literature. We are particularly grateful to

the referee for numerous corrections, instructive comments, and helpful suggestions.
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We do not claim any originality for the results presented in this survey, although we sometimes

give alternative arguments or provide more details. We hope that the survey contributes to the

dissemination of these results.

2. Preparations I: Linear algebra of the characteristic foliation

We collect some linear algebra results and discuss applications to the geometry of the leaves

of a foliation.

2.1. We begin with discussing some easy linear algebra results that will be used throughout

the later sections.

Let W be a vector space together with a symplectic structure σ, i.e. σ P
Ź

2
W ˚ such that the

induced map σ : W
„ //W ˚ is an isomorphism. In this situation, the dimension of W is even, so

dimW “ 2n.

Lemma 2.1. Assume V Ă W is a subspace of codimension one. Then the subspace

F :“ ker

ˆ

σ|V : V
� � // W

σ // W ˚ // // V ˚

˙

Ă V

is of dimension one.

Similarly, if U Ă W is of codimension two, then either dimkerpσ|U : U //U˚q “ 2 or

σ|U P
Ź

2
U˚ is non-degenerate, i.e. kerpσ|U q “ 0.

Proof. Since W
„ //W ˚ // // V has a one-dimensional kernel, we have dimF ď 1. Furthermore,

since dimV “ 2n ´ 1 is odd, the alternating form σ|V P
Ź

2
V ˚ cannot be non-degenerate, i.e.

kerpσ|V q ‰ 0. Hence, dimF “ 1. The proof of the second assertion is analogous. �

Lemma 2.2. Assume V Ă W is of codimension one and let F “ kerpσ|V q Ă V . Then σ

naturally induces a symplectic structure σ̄ on V {F .

Proof. By definition of F , the restriction σ|V : V // V ˚ factors through V // // V {F � � // V ˚.

Furthermore, since σ is alternating, σ|V takes values in pV {F q˚ Ă V ˚. Hence, for dimension

reasons, σ̄ : V {F
„ // pV {F q˚. �

Here are a few more concepts from linear algebra: A subspace U Ă W of codimension c of a

symplectic vector space pW,σq is called isotropic if σ|U P
Ź

2
U˚ is trivial or, equivalently, if

U Ă UK :“ kerpW
„ //W ˚ // //U˚q “ tw P W | σpU,wq “ 0u.

If UK Ă U , then the subspace U is called coisotropic. Since by definition UK is of dimension c,

a subspace U Ă W is coisotropic if and only if dimkerpσ|U : U //U˚q “ c. Finally, U Ă W is

Lagrangian if U is simultaneously isotropic and coisotropic, i.e. U “ UK.
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Lemma 2.3. Assume V Ă W is of codimension one and let F “ kerpσ|V q Ă V .

(i) Then for any Lagrangian subspace U Ă W that is contained in V one has F Ă U .

(ii) If a subspace of codimension two U Ă W is contained in V and F Ă U , then U is

coisotropic.

Proof. The first claim follows from the commutativity of the diagram

F� _

��

U

0
��

� � // V

σ|V
��

� � // W

≀σ
��

U˚ V ˚oooo W ˚oooo

and the assumption that U is Lagrangian, which implies that U “ kerpW
„ //W ˚ // //U˚q.

For the second assertion apply Lemma 2.1. Since F Ă U Ă V , the restriction σ|U is degen-

erate and, therefore, dimkerpσU q “ 2. �

2.2. A regular foliation of a smooth variety (or complex manifold) D is a locally free subsheaf

F Ă TD with a locally free quotient and such that F is integrable, i.e. rF ,Fs Ă F . Note that

the integrability condition is automatically satisfied if rkpFq “ 1, which is the case of interest

to us.

A leaf of a foliation is a maximal connected and immersed complex submanifold L Ă D (more

precisely, a complex manifold together with an injective immersion into D) with F |L “ TL

as subsheaves of TD|L. The integrability condition ensures that there exists a (unique) leaf

through any point of D. This is the Frobenius integrability theorem, cf. [Man97, §5, Thm. 2].

A submanifold Z Ă D is invariant under the foliation if F |Z Ă TZ as subsheaves of TD|Z . If Z

is a singular subvariety of D, then we call Z invariant if its smooth locus is invariant. It is not

hard to see that the Zariski closure of an invariant complex submanifold is invariant. Also note

that every leaf L intersecting an invariant submanifold Z Ă D is contained in its closure.

A leaf L Ă D is typically not closed. Its Zariski closure L̄ Ă D can be identified with the

smallest subvariety containing L that is invariant under the foliation.

Consider now the case of a smooth hypersurface D Ă X of a compact hyperkähler manifold.

By virtue of Lemma 2.1, the kernel

F :“ ker

ˆ

σ|D : TD
� � // TX |D

σ // Ω˚
X |D // // Ω˚

D

˙

Ă TD

is a sub-line bundle with locally free kernel. It is called the characteristic foliation of the

hypersurface D Ă X and was first studied by Hwang and Viehweg [HV10].
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Lemma 2.4. The normal bundle of the characteristic foliation NF :“ TD{F is naturally en-

dowed with a symplectic structure and

F » ω˚
D.

In particular, any local transverse section Σ of a leaf L Ă D has a natural symplectic structure.

Proof. The first assertion follows from Lemma 2.2. The existence of a symplectic structure on

NF implies detpNF q » OD and hence F » detpTDq » ω˚
D. �

Remark 2.5. For foliations in general detpFq˚ is often called the canonical bundle ωF of the

foliation. For the characteristic foliation we thus have ωF » ωD. Note that for n “ 1, this

becomes F » TD which is not interesting so that we usually assume n ą 1. Then, according to

[Dr17, Thm. 1.1], detpFq » ω˚
D cannot be big and nef.

The geometric versions of isotropic, coisotropic, and Lagrangian for subspaces of a symplectic

vector space are readily defined: For example, a subvariety Z Ă X is coisotropic if the rank

of σ|Z : TZ //ΩZ (say over the smooth locus of Z) is 2 dimpZq ´ dimpXq or, equivalently, if

rkpkerpσ|Zqq “ codimpZ Ă Xq.

The geometric analogue of Lemma 2.3 is the following.

Corollary 2.6. Assume D Ă X is a smooth hypersurface of a compact hyperkähler manifold.

(i) If T Ă X is a smooth Lagrangian submanifold that is contained in D, then T is covered

by leaves or, equivalently, every leaf L Ă D intersecting T is contained in T .

(ii) Furthermore, any invariant subvariety Z Ă X of codimension two that is contained in

D Ă X is coisotropic. �

3. Preparations II: Space of leaves

There is no standard text on foliations on complex manifolds or algebraic varieties, but see e.g.

[CN85]. The arguments typically rely very much on the differentiable theory. The holomorphic

version of Reeb’s classical stability theorem, cf. [HV10, KCT07], is one example. We recommend

[AC14, Sec. 2.1] for further comments.

3.1. Consider a foliation F (of rank one) on a compact complex manifold D. The space of

leaves is the quotient D{F by the equivalence relation that identifies two points if they are

contained in the same leaf. The quotient topology is often complicated and frequently non-

Hausdorff, but the projection π : D //D{F is open, i.e. for any open set U Ă D the union

of all leaves intersecting U (its saturation) is again an open subset. For more information see

[CN85, Ch. III]. A typical example is that of a P1-bundle π : D “ PpEq //Z with F “ Tπ.

In this situation, D{F “ Z. We will come back to the local structure of D{F and the map

π : D //D{F in the case that the foliation is algebraically integrable, i.e. when every leaf is

compact.1

1or, equivalently, when it admits one compact leaf with finite holonomy [Pe01, Thm. 1], cf. Definition 3.1.
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3.2. Let L “ L̄ Ă D be a compact leaf. For a fixed point x P L we pick a small transversal

section x P Σx Ă D (think of it as a germ of a transversal section). Consider a closed loop

γ : r0, 1s //L with γp0q “ γp1q “ x and pick a point y P Σx close to x. Then there exists

a differentiable map Φ: Σx ˆ r0, 1s //X such that Φpy, 0q “ Φpy, 1q, Φp0, tq “ γptq, and

Φpy, 0q “ y. The pull-back of the foliation F defines a real foliation of rank one on Σx ˆ S1.

Starting with a point py, 0q and integrating defines a path γy : r0, 1s //Σx ˆ S1 satisfying

γyptq “ pργ,yptq, tq and γyp0q “ py, 0q. Note, however, that this path is not necessarily closed,

so possibly γyp1q ‰ py, 0q.

It turns out that the map y
✤ // ργ,yp1q only depends on the homotopy class of γ, which gives

rise to the following.

Definition 3.1. The holonomy of a compact leaf L Ă D is the group homomorphism

ρ : π1pL, xq //DiffpΣxq, γ
✤ // pργ : y

✤ // ργ,yp1qq.

The leaf has finite holonomy if the image of ρ, the holonomy group

GL :“ Impρq Ă DiffpΣxq,

is finite.

Note that the image of ρ only depends on x up to conjugation. In particular, the property

of a leaf to have finite holonomy does not depend on the chosen base point.

Since we are interested in foliations of rank one, a compact leaf will be a compact complex

curve. If this curve is rational, i.e. L “ L̄ » P1, then it has automatically finite (and in fact

trivial) holonomy. Also note that due to a result of Holmann [Ho80, Prop. 4.2], one knows that

if all leaves of a foliation on a Kähler manifold are compact, then they all have finite holonomy.2

Theorem 3.2. Assume that a foliation F of rank one on a smooth projective variety D has one

leaf isomorphic to P1. Then F is algebraically integrable and all leaves are curves isomorphic

to P1.

Proof. According to a result of Pereira [Pe01, Thm. 1], for a foliation on a compact Kähler

manifold the existence of one compact leaf with finite holonomy implies that all leaves are

compact with finite holonomy. This proves that F is algebraically integrable. Reeb stability

[HV10, Prop. 2.5] then implies that all leaves are isomorphic to each other.3 �

2In fact, Holman [Ho80, Prop. 4.2] proved that for a holomorphic foliation with only compact leaves stability

is equivalent to finite holonomy. Earlier results in this direction are due to Epstein [Ep76].
3A word on the name ‘Reeb stability’: A leaf L is stable if every open neighbourhood L Ă U of it contains an

invariant open neighbourhood L Ă U 1 Ă U . The foliation is stable if all leaves are stable. Reeb stability in the

holomorphic context as in [HV10, KCT07] can be viewed as saying that compact leaves with finite holonomy

are stable.
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3.3. Let us come back to the space of leaves D{F and the map π : D //D{F for an alge-

braically integrable foliation (of rank one) on a smooth projective variety D. We collect the

facts that will be used at various places later:4

‚ The map π : x
✤ // |GLx

| ¨ rLxs defines a holomorphic map from D to the Chow variety (or

Barlet space), cf. [HV10, Prop. 2.5] of [MM03]. Here, Lx is the unique leaf through x and GLx

is its holonomy group.

‚ The quotient D{F can be identified with (the normalization of) the image of π. In par-

ticular, D{F is an algebraic variety and π : D //D{F is a proper morphism. The map is in

general not flat. Indeed, by ‘miracle flatness’, the flatness of the equidimensional morphism π

is equivalent to the smoothness of the leaf space D{F , which is discussed next.

‚ Assume x P Σx Ă D is a transversal section of a leaf x P L as in Section 3.2. Then locally

Σx{Gx is a chart of D{F at the point corresponding to the leaf Lx, cf. [HV10, Thm. 2.4]. In

particular, D{F has quotient singularities.

‚ Assume the fibres of D //D{F are rational curves. Then the description of local charts

shows that D{F is a smooth projective variety, for in this case π1pLxq “ t1u and hence GLx
“

t1u. In the differentiable setting this is [He60] and for a discussion in our setting see e.g.

[Sa09, Lem. 5]. If, furthermore, F is the characteristic foliation of a smooth hypersurface in a

projective hyperkähler manifold, then D{F comes with a natural symplectic structure.

‚ For a dense open subset of points x P D the leaf Lx through x has trivial holonomy

|GLx
| “ 1, cf. [EMT77].

‚ The scheme-theoretic fibre of π : D //D{F over a point rLs P D{F corresponding to a

leaf with trivial holonomy |GL| “ 1 is the leaf L. The fibre is non-reduced over points with

non-trivial holonomy; more precisely, it is a multiple fibre with multiplicity |GL| ‰ 1.

3.4. It is easy to prove that a smooth curve C Ă S in a K3 surface with pC.Cq ě 0 is nef. The

following is the hyperkähler analogue of this fact.5

Proposition 3.3. Let D Ă X be a smooth hypersurface in a projective hyperkähler manifold

X. If qpDq ě 0, then D is nef.

Proof. Assume D is not nef. Then there exists an irreducible curve C Ă X with D ¨ C ă 0.

The latter implies C Ă D and degpωD|Cq ă 0, which by Lemma 2.4 shows degpF |Cq ą 0, i.e.

F |C is ample.

However, the latter implies that the foliation F is algebraic, i.e. all leaves are compact or,

equivalently, algebraic curves. This is a consequence of a much more general result that was

4These results seem well known to the experts but we could not find a source with complete proofs. Thanks

to J.-B. Bost for an instructive email exchange.
5We wish to thank R. Abugaliev for communicating this result to us. It seems known to some experts, but

has not been written down anywhere.
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original proved by Bogomolov–McQuillan [BMcQ16] and Bost [Bo01] with details provided by

Kebekus, Solá Conde, and Toma [KCT07, Thm. 1 & 2]: If the restriction of a foliation to some

complete curve C is an ample vector bundle, then the leaf through any point of C is algebraic.

Moreover, the leaf through a general point of C is rationally connected and, in fact, all leaves

are rationally connected. In fact, according to Theorem 3.2, all we need is one compact rational

leaf.6

In our situation the result means that all leaves of F are smooth rational curves and, in

particular, D is uniruled. Then, the discussion in Section 4.2, which is independent of this

proposition, leads to the contradiction qpDq ă 0. �

4. Case (1): Closed leaves

We are proving the equivalence of the conditions (i)-(iv) in Case (1). All results are uncon-

ditional. The main reference for this section is [AC14] with priori work [Bo04, Hu03].

4.1. (i) ñ (iv): We assume that the leaves of the foliation have one-dimensional closures and

want to show that D is then uniruled.7

First of all, since the boundary L̄zL is invariant, it is a union of leaves. However, under our

assumption all leaves are one-dimensional and, therefore, all leaves are in fact closed L̄ “ L.

Thus, all leaves are algebraic curves, i.e. F is algebraically integrable, and the natural projection

π : D //D{F

is a proper morphism between algebraic varieties.

The proof proceeds in three steps.

Step 1: Prove that π has no multiple fibres in codimension one and that the canonical

divisor of D{F is trivial.

Step 2: Deduce the isotriviality of π, combining results of Miyaoka and Hwang–Viehweg,

and consider a finite quasi-étale cover of D that splits into a product.

Step 3: Reach a contradiction by considering the numerical dimension of ωD.

Step 1. Intuitively, the morphism π : D //D{F induced by the algebraically integrable foli-

ation F contracts all curves with tangent space contained in the kernel of σ|D. Therefore σ|D
should descend to a non-degenerate two-form on the a priori singular space D{F and so we

expect (the smooth part of) D{F to have trivial canonical bundle.

For the open set covered by leaves with trivial holonomy this can be made rigorous by taking

a locally transverse section Σ to each leaf of the foliation, which can be taken as a local model for

D{F near the point corresponding to the leaf. Then, by Lemma 2.4, σ|Σ is symplectic. These

6Note that in this sense Reeb stability shows that the ampleness along C determines the behavior of the

foliation globally.
7This part is the most technical one of all of this survey and we will have to be sketchy at points.
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symplectic forms glue to a global symplectic form on the open subset of D{F corresponding to

leaves with trivial holonomy, see [Sa09, Lem. 6] for some more details.

Looking at the local behavior of the symplectic form around the multiple fibres, Amerik and

Campana [AC14] proved the following:

Lemma 4.1 (Amerik–Campana). The map π has no multiple fibres in codimension one. More-

over some multiple of the canonical bundle of D{F is trivial.

Proof. Suppose by contradiction that there exists a divisor V Ă D{F such that the fibres over

V are multiple of order m ą 1. The statement is local around a generic point 0 P V . We can

take a local multisection W over 0 that meets transversally the non-reduced fibres. We choose

coordinates pz, tq around 0 P V such that z are coordinates for V and t parametrizes the normal

direction. Thus, we can choose coordinates pu, s, wq around W in such a way that W is given

by the equation w “ 0 and πpu, s, wq “ pu, smq.

By the discussion above, σn´1 “ π˚α for some form of top degree on the base at least over

the complement of V . Locally, α “ Gpz, tq ¨ dz ^ dt, where dz is an n ´ 2 form, and then

|Gpz, tq| “ egpz,tq ¨ |t|´c for some real-valued bounded function g. We claim that c “ 1 ´ 1{m.

Assuming for the moment that this is true, then the meromorphic function Gpz, tq has poles of

order strictly less than one around t “ 0, which is absurd.

To prove the claim we denote by π0 the restriction of π : D //D{F to W . In coordinates

π0pu, s, wq “ pu, smq. By the base change formula, we see that the restriction of σn´1 to W is

σn´1|W “ π˚
0α “ Gpu, smq ¨ m ¨ sm´1 ¨ du ^ ds “ hpu, sq ¨ du ^ ds

for some function hpu, sq that does not vanish when s “ 0. Thus, we can write

|Gpz, tq| “ |Gpu, smq| “
|hpu, sq|

m
|s|1´m “ egpu,sq|s|1´m “ egpz,tq|t|´1`1{m

which proves the claim. �

The singular fibres of π : D //D{F are simply multiples of smooth curves. By the above

lemma we can assume π is smooth over the complement Do{F Ă D{F of a closed set of

codimension two and we may assume that Do{F is smooth. Denote by πo : Do //Do{F the

restriction of π. If one leaf is rational, then by Reeb stability, see Theorem 3.2, all the leaves

are rational curves and we are done.8 So we can assume all the leaves have positive genus and

singular, i.e. multiple, fibres appear in codimension at least two.

Step 2. We want to prove that πo : Do //Do{F is isotrivial. There are two possibilities

depending on the genus g of the general leaf: If g “ 1, then the fibration has to be isotrivial,

8One can avoid using Reeb stability here: Instead of showing (i) ñ (iv) one shows (i) ñ (iii) and then uses

Section 4.3 to complete by (iii) ñ (iv). Indeed, qpDq ă 0 is equivalent to
ş

D
c1pFqH2n´2 ą 0 for some ample

divisor H on D. The latter follows if one can show
ş

D
c1pFqπ˚H2n´2

0
ą 0 for some ample divisor H0 on D{F ,

which in turn would follow from
ş

L
c1pFq|L ą 0, i.e. gpLq “ 0.
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for otherwise one of the fibres of π would be rational, in which case we are done already, cf.

Theorem 3.2.

The isotriviality is less trivial for g ą 1. It follows from the observation that the following

results of Miyaoka–Mori and Hwang–Viehweg contradict each other.

‚ For any coherent subsheaf H Ă ΩDo{F one has κpDo{F ,detpHqq ď 0. Indeed, according to

[Miy87, Cor. 8.6] or [MM86, Thm. 1], the restriction of ΩDo{F to a generic complete intersection

curve is semi-positive. At the same time, its determinant is trivial. Hence, all sub-sheaves of

ΩDo{F have non-positive degree, which leads to the assertion.

‚ Assuming g ą 1, there exists a coherent subsheaf H Ă ΩDo{F such that varpπoq “

κpDo{F ,Hq, cf. [HV10, Thm. 3.2 & Prop. 4.4]. Roughly, the relative cotangent sheaf of the nat-

ural map Do //Mg provides this sub-sheaf. (Strictly speaking, this is only true after passing

to a finite cover of Do which does not affect the argument.)

Once isotriviality for g “ 1 and g ą 1 has been established, one can use the fact that the

moduli space MgpNq of curves with a level N -structures, N ě 3, is fine to show that there exists

a finite étale cover ∆ //Do{F such that pull-back D̃ :“ Do ˆDo{F ∆ splits as D̃ » ∆ ˆ C,

where C is the generic fibre of π. Indeed, there exists a finite étale cover ∆ //Do{F such

that the finite cohomology groups H1pD̃t,Z{NZq, t P ∆, of the fibres of the pull-back family

π̃o : D̃ :“ Do ˆDo{F ∆ //∆ form a trivial local system. The induced morphism ∆ //MgpNq

has the property that the pull-back of the universal curve over MgpNq is isomorphic to π̃o.

However, the isotriviality implies that ∆ //MgpNq is constant and, therefore, D̃ splits as

claimed.

Step 3. Since Do{F has trivial canonical bundle, the same holds for ∆. Hence,

νpD̃, ωDq “ κpD̃q “

$

&

%

0 if g “ 1

1 if g ą 1.

As the numerical (and also the Kodaira) dimension is preserved under étale maps, one finds

νpD,ωDq “

$

&

%

0 if g “ 1

1 if g ą 1.

Since ωD “ OXpDq|D, we have νpD,ωDq “ νpX,Dq ´ 1. However, the numerical dimension

of a nef divisor in a hyperkähler manifold can be 0, n or 2n. Since n ą 1, the only possibility is

that n “ 2 and g ą 1, which is excluded as follows: A fibre S of the canonical map is equivalent

as a cycle, up to a multiple, to D ¨ D. This means that S is Lagrangian, for
ş

S
σσ̄ “ qpDq “ 0.

Hence, by Corollary 2.6, the leaves of the characteristic foliation must be contained in S and

induce a fibration on S of curves of genus at least two. This contradicts the fact that the

canonical bundle of S is trivial.
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4.2. (iv) ñ (iii): We assume that D is uniruled and will show qpDq ă 0 by excluding qpDq ą 0

and qpDq “ 0.

Suppose qpDq ą 0. Then D is contained in the interior of the positive cone and, there-

fore, also in the interior of the pseudo-effective cone. Hence, D is big [La04, Lem. 2.2.3], i.e.

h0pX,OpkDqq „ k2n, which implies h0pD,ωk
Dq „ k2n´1 contradicting the assumption that D is

uniruled.

Suppose qpDq “ 0. If D is nef, then ωD is nef too, which again would contradict the

assumption that D uniruled. If D is not contained in the closure of the movable cone, then, by

Boucksom’s duality of movable and pseudo-effective cone [Bo04], it is contained in the interior

of the pseudo-effective cone and one argues as above. If D is contained in the boundary of

the movable cone, D is the limit of movable divisors and hence its restriction to D is still a

limit of effective divisors. However, this implies that ωD » OpDq|D is pseudo-effective which

contradicts D uniruled.9

The discussion should be compared to the result [LPT18, Thm. 3.7] asserting in the general

setting that D is uniruled if and only if ωF is not pseudo-effective. The above discussion can

be interpreted as saying that any smooth divisor D Ă X with qpDq ě 0 has a pseudo-effective

ωD, thus D cannot be uniruled.

4.3. (iii) ñ (iv): We assume qpDq ă 0 and want to show that D is then uniruled. (The

smoothness of D is not essential.) We offer two proofs.

First, it is known that prime exceptional divisors are uniruled [Hu03, Prop. 5.4] or [Bo04,

Prop. 4.7 & Thm. 4.3]. Indeed, since the positive cone is self-dual, it contains a class α such

that qpα,Dq ă 0. Hence, there exists a bimeromorphic map between hyperkähler manifolds

f : X 99K X 1 such that f˚α “ ω1 `
ř

aiD
1
i for some uniruled divisors D1

i, positive real numbers

ai, and a Kähler class ω1, cf. [Hu03] or [Bo04, Thm. 4.3 (ii)]. Since the quadratic form is

preserved by f , we have 0 ą qpα,Dq “ qpω1 `
ř

aiD
1
i, f˚Dq ą

ř

aiqpD1
i, f˚Dq and hence for

some i we have qpD1
i, f˚Dq ă 0. This implies that f˚D and Di coincide and that in particular

D is uniruled since its push-forward in X 1 is.

Here is a more direct proof relying on the criterion for uniruledness by Miyaoka and Mori

[MM86, Miy87]: A smooth projective variety Z of dimension d is uniruled if
ş

Z
c1pωZq¨Hd´1

Z ă 0

for an ample divisor HZ on Z. Applied to Z “ D and observing that qpDq ă 0 implies
ş

D
c1pDq ¨ H|2n´2

D “
ş

X
rDs2 ¨ H2n´2 ă 0 for any ample divisor H on X, it implies the result.

4.4. (iv) ñ (i): We assume that D is uniruled and want to prove that the leaves are closed.

By assumption, there exists a dominant map ϕ : P1 ˆ V // D with dimpV q “ 2n´2. Since

P1 admits no non-trivial forms of degree one or two, the pull-back of σ to P1ˆV is the pull-back

of a holomorphic form on V . This readily shows that all ϕtpP
1q Ă D are invariant with respect

9We wish to thank R. Abugaliev for his help with this argument.
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to the foliation. Hence, the generic leaf is of this form, which proves the claim. See [Dr11, Prop.

4.5] for a generalization to singular uniruled divisors.

4.5. (i) ô (ii): Clearly, (ii) implies (i). The converse is part of the discussion in Section 4.1.

5. Case (2): Lagrangian fibrations

The equivalence of the conditions (i)-(iv) in Case (2) is shown in dimension four. In higher

dimensions, the proof assumes that abundance holds for D. The direction (iv) ñ (i) is due to

Abugaliev and is the main result of [Ab19].

5.1. (i) ñ (iii): We assume dim L̄ “ n and want to exclude qpDq ă 0 and qpDq ą 0.

According to Section 4, qpDq ă 0 implies dim L̄ “ 1. To exclude qpDq ą 0, use that according

to Section 6.410 it would imply that the leaves are dense.

5.2. (iii) ñ (iv): We assume qpDq “ 0. Then, by Proposition 3.3, D and hence ωD » OpDq|D
are nef. Assuming the abundance conjecture for D, we know that ωD is semi-ample. Hence, by

[DHP13, Cor. 1.8] also D is semi-ample,11 i.e. some power OpkDq defines a Lagrangian fibration

f : X //B and, therefore, kD is the pull-back of a divisor in B. Hence, D is vertical.

Remark 5.1. The implication (i) ñ (iv) in dimension four was first proved by Amerik and

Guseva [AG16].

5.3. (iv) ñ (iii): We assume now that there exists a Lagrangian fibration X //B such that

D is the pre-image (as a set) of a hypersurface H Ă B. Then rDs and f˚rHs are proportional.

Therefore, since rHsn`1 “ 0, also rDsn`1 “ 0 and hence qpDq “ 0.

5.4. (iv) ñ (i): We assume that X comes with a Lagrangian fibration f : X //B such that

D “ f´1pHq (as sets) for some hypersurface H Ă B and want to show that the closure of the

generic leaf is of dimension n (and in fact a torus).

Assume first that H is contained in the discriminant locus ∆ Ă B. Then D is algebraically

integrable by a result of Hwang and Oguiso [HO09, Thm. 1.2]. By the results of Section 4, the

latter implies that D is uniruled and hence qpDq ă 0, which contradicts (iii) that we proved

already in Section 5.3.12

Assume now that H is not contained in the discriminant divisor. Then, since D is smooth,

the generic fibre of f |D : D //H “ fpDq is a smooth Lagrangian torus. By Corollary 2.6, the

generic leaf is contained in a fibre of D // fpDq. We have to show that it is dense in there.

10We leave it to the reader to check that the argument is not circular.
11This is a highly non-trivial statement asserting that H0pX,OpkDqq //H0pD,OpkDq|Dq is surjective for

sufficiently divisible k. For an alternative, algebraic argument see [AC14, Cor. 5.2].
12The argument shows that for any component of the discriminant divisor H Ă B the reduction of f´1pHq

cannot be smooth. Either it consists of more than one component, with possibly each component individually

smooth, or it is irreducible but singular.
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Note that for n “ 2 the result is immediate. Indeed, if the generic leaf is not dense in the fibre,

then by Section 4 the foliation is algebraically integrable and the leaves are rational curves,

which however do not exist in a torus.

Let T :“ f´1ptq, t P fpDq, be a generic fibre. The foliation F Ă TD induces a foliation

F |T Ă TT of the abelian variety T . It is well known that the closure of a leaf of a foliation on an

abelian variety is a translate of an abelian subvariety. Indeed, observing OF » F |T Ă TT » O‘n
F

and writing T “ Cn{Γ, one finds that the leaves of the foliation F are given by the images

under the natural projection Cn // // T of the translates of the line C Ă Cn corresponding to

F |T Ă TT . The closure of the leaf through the origin then corresponds to the smallest linear

subspace Cm Ă Cn containing the given line and such that Γ X Cm Ă Cm is a lattice.

Thus, if the abelian variety T is known to be simple, which is frequently the case, then the

assertion is immediate.

If T is not simple, then Abugaliev proceeds in two steps. The first is a result of general

interest [Ab19, Thm. 0.5].13

Lemma 5.2 (Abugaliev). Let f : X //B be a Lagrangian fibration of a projective hyperkähler

manifold and let H Ă B be a very ample hypersurface not contained in the discriminant divisor

of f .

If D “ f´1pHq Ă X is smooth, then for the generic fibre T “ f´1ptq, t P H:

Im

ˆ

H˚pX,Qq
resX,T

// H˚pT,Qq

˙

“ Im

ˆ

H˚pD,Qq
resD,T

// H˚pT,Qq

˙

.

Note that the left hand side is known to be isomorphic to H˚pPn,Qq according to results by

Matsushita, Oguiso, Voisin, and Shen–Yin, see the survey [HM21, Thm. 2.1] for references. In

particular, it is of dimension one in each even degree.

Proof. The assertion is invariant under small deformations of H, which preserve the smoothness

of D. One may assume that the intersection H X ∆ with the discriminant locus is sufficiently

generic such that π1pHz∆q // // π1pBz∆q is surjective (and in fact an isomorphism for n ą 2) by

[De81, Lem. 1.4] applied to Bz∆. In particular, the monodromy invariant parts of H˚pT,Qq for

the two families X //B and D //H coincide. Thus, Deligne’s invariant cycle theorem implies

ImpresX,T q “ H˚pT,Qqπ1pBz∆q “ H˚pT,Qqπ1pHz∆q “ ImpresD,T q,

which concludes the proof. �

The idea of the second step is that the family of tori obtained as closures of leaves L Ă L̄ Ă T

contained in a fixed generic fibre T is distinguished and hence invariant under monodromy. This

gives a cohomology class in H2kpT,Qq that is invariant under monodromy of the family D //H.

13The reader will observe that the result actually holds without assuming that X is hyperkähler or that f is

a Lagrangian fibration.
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However, classes that are invariant under the monodromy of the family X //B are all powers

of the polarization and, therefore, cannot be realized by proper subtori.

5.5. (iv) ñ (ii) ñ (i): Assume first (iv) holds. By Corollary 2.6, the generic leaf L is contained

in a fibre of D // fpDq Ă B. If we allow ourselves to use (iv) ñ (i) in Section 5.4, then the

closure L̄ is the generic fibre which is a torus. The second implication (ii) ñ (i) is clear.

5.6. Let T “ f´1ptq Ă X be a smooth fibre of a Lagrangian fibration f : X //B. Then

T is isomorphic to an abelian variety and picking a point x P X allows one to write T as

a torus T “ TxT {Γ. For a hypersurface t P H Ă B, which we assume to be smooth at

t, we let D :“ f´1pHq be its pre-image. Since the symplectic structure of X provides an

isomorphism TxT » T ˚
t B, the tangent space TtH Ă TtB, viewed as a line in T ˚

t B, corresponds

to a line ℓH Ă TxT . The image of this line under TxT // T gives the leaf through x P D of

the characteristic foliation on D. If H is chosen very general, then the line ℓH Ă TxT is very

general and, therefore, its image in the quotient T “ TxT {Γ is dense. This proves the following.

Proposition 5.3. For a fixed smooth fibre T “ f´1ptq Ă X of a Lagrangian fibration f : X //B

and a very general smooth hypersurface t P H Ă B the leaf of the characteristic foliation of

D “ f´1pHq through a point x P T is dense in the fibre T . �

6. Case (3): Dense leaves

Again, the equivalence of the conditions (i)-(iv) holds in dimension four, but assumes that the

abundance conjecture holds for D. Hwang and Viehweg [HV10] showed that if D is of general

type, the foliation is not algebraically integrable. In the converse direction, in dimension four,

Amerik and Campana [AC14] proved that the foliation is algebraically integrable if and only if

D is uniruled. The assertion that D being nef and big implies density of the leaves is due to

Abugaliev and the main result of [Ab21].

6.1. (i) ñ (iii): We assume that dim L̄ “ 2n ´ 1 and want to exclude that qpDq ă 0 or

qpDq “ 0.

First, by the results of Section 4, we know that the three conditions qpDq ă 0, D uniruled,

and dim L̄ “ 1 are all equivalent. Hence, qpDq ă 0 is excluded for dim L̄ ą 1.

Next suppose qpDq “ 0. Then, by Proposition 3.3, D is nef and hence also ωD » OpDq|D is.

Assuming the abundance conjecture for D, we conclude that ωD and, therefore, OpDq are semi-

ample, cf. the argument in Section 5.2. Hence, X comes with a Lagrangian fibration X //B

such that some multiple of D is the pre-image of a divisor in B. However, then the generic leaf

is not dense, as a leaf passing through a smooth fibre stays in this fibre, cf. the discussion in

Section 5.4.
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6.2. (iii) ñ (iv): We assume qpDq ą 0. Clearly, if D is ample, then by adjunction ωD »

OpDq|D is ample as well and, therefore, D is of general type. If D is only nef, then a priori

also ωD is only nef. However, qpDq ą 0 implies
ş

D
c1pωDq2n´1 ą 0, i.e. ωD is big and nef. By

the Kawamata–Viehweg vanishing theorem H ipD,ωk
Dq “ 0 for k ą 1 and i ą 0 and by the

Hirzebruch–Riemann–Roch formula h0pD,ωk
Dq „ k2n´1. Hence, D is of general type. Since

by Proposition 3.3, any smooth hypersurface D Ă X with qpDq ě 0 is nef, this concludes the

proof.

Here is an alternative argument not relying on Proposition 3.3: Since D is contained in the

interior of the positive cone, it is also contained in the interior of the pseudo-effective cone and,

therefore, big by [La04, Prop. 2.2.6], i.e. h0pX,OpkDqq „ k2n. Using ωD » OpDq|D eventually

shows that ωD is big, i.e. that D is of general type.

6.3. (iv) ñ (iii): We assume that D is of general type and want to prove qpDq ą 0 by excluding

the other two possibilities qpDq ă 0 and qpDq “ 0.

Suppose qpDq ă 0. Then by virtue of Section 4.3, e.g. by applying the Miyaoka–Mori

numerical criterion for uniruledness [MM86, Miy87], we know that D is uniruled, so in particular

not of general type.

Next, suppose that qpDq “ 0, which implies
ş

D
c1pωDq2n´1 “ pDq2n “ 0. Now use again

Proposition 3.3 to conclude that OpDq and hence ωD » OpDq|D are nef. However, a nef

divisor E on a projective variety Z of dimension m is big, i.e. h0pZ,OpkEqq „ km, if and

only if pEqm ą 0, see [La04, Thm. 2.2.16]. Since D is assumed to be of general type and so

h0pD,OpkDq|Dq „ k2n´1, this is a contradiction.

6.4. (iii) ñ (i): We assume qpDq ą 0 and want to show that the leaves are dense. We have

seen already that qpDq ą 0 implies that D is big and nef. The first step is to prove a version of

the Lefschetz hyperplane theorem [Ab21, Prop. 3.1].

Lemma 6.1. Assume D Ă X is a smooth hypersurface of a hyperkähler manifold that is big

and nef. Then the restriction

H ipX,Qq
„ //H ipD,Qq

is an isomorphism for i ă dimpDq “ 2n ´ 1.

Proof. For an ample hypersurface this is the content of the Lefschetz hyperplane theorem [La04,

Thm. 3.1.17]. If D is just big and nef, Kawamata–Viehweg vanishing still shows that all higher

cohomology groups H ipX,OpkDqq, i ą 0, are trivial. Hence, D deforms sideways with X in

any family X //∆ for which the line bundle OpDq deforms. However, the very general fibre

Xt of the universal such deformation has Picard number one. Therefore, a generic deformation

Dt Ă Xt of D Ă X is ample [Hu99, Thm. 3.11]. Hence, H ipXt,Qq
„ //H ipDt,Qq for i ă dimpDtq
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by the classical Lefschetz hyperplane theorem. Since the assertion is topological, this suffices

to conclude.14 �

The key step is the following result [Ab21, Prop. 4.1].

Proposition 6.2 (Abugaliev). A smooth hypersurface D Ă X which is big and nef (or, equiva-

lently, a smooth hypersurface with qpDq ą 0, cf. Proposition 3.3) cannot be covered by coisotropic

varieties of codimension two in X.

Proof. Recall that a subvariety Z Ă X of codimension two is called coisotropic if the kernel of

σ|Z : TZ //ΩZ (over the smooth locus) is a sheaf of rank two, see Section 2.2.

First observe that by Lemma 6.1, that for any subvariety Z Ă D there exists a class α P

H2pX,Qq with α|D “ rZs P H2pD,Qq. Clearly, the class α is of type p1, 1q. On the other hand,

if Z Ă X is a coisotropic subvariety of codimension two, then 0 “ rZs ^ σn´1 P H2n`2pX,Cq.

So, if Z Ă D is coisotropic and we write rZs “ α|D P H2pD,Qq, then 0 “ rDs ^ α ^ σn´1 P

H2n`2pX,Cq, which implies
ş

X
rDs ^ α ^ σn´1 ^ σ̄n´1 “ 0 and, therefore, qpD,αq “ 0. Now

use the well known formula

(6.1) qpγ1, γ2q ¨

ż

X

γ2n1 “ 2qpγ1q ¨

ż

X

γ2n´1

1
^ γ2,

cf. [Hu02, Exer. 23.2] to deduce from qpDq ą 0 and qpD,αq “ 0, that 0 “
ş

X
rDs2n´1 ^ α “

ş

Z
rDs|2n´2

Z . If D is ample, this is absurd. So we proved the stronger statement that an ample,

smooth hypersurface D Ă X does not contain any coisotropic subvariety of codimension two.15

If D is only big and nef, then qpD,αq “ 0 still implies qpαq ă 0 by the Hodge index theorem,

which in turn, by a formula [Ab21, Lem. 4.2] similar to (6.1), gives
ş

X
rDs2n´2 ^ α ^ α ă 0.

However, if D can be covered by coisotropic varieties of codimension two, then there exist two

such Z1, Z2 Ă D realising the same class α|D “ rZ1s “ rZ2s and then Y :“ Z1XZ2 Ă D is empty

or of codimension two in D, which leads to the contradiction 0 ď
ş

Y
D|2n´3

Y “
ş

X
rDs2n´2 ^α^

α ă 0. �

Recall that a subvariety Z Ă D is called invariant under the characteristic foliation of the

smooth hypersurface D if the leaf through any x P Z is contained in Z or, equivalently, if

F |Z Ă TD|Z is contained in TZ Ă TD|Z (over the smooth locus of Z).

The following result [Ab21, Thm. 0.5] is now a consequence of the above discussion. It

concludes the proof of (iii) ñ (i) in Case (3).

Theorem 6.3 (Abugaliev). Assume D Ă X is a smooth hypersurface of a hyperkähler manifold

X satisfying qpDq ą 0. Then the generic leaf of the characteristic foliation on D is Zariski

dense.

14The original proof in [Ab21] uses the Kodaira–Akizuki–Nakano vanishing theorem. The above argument is

quicker, but uses deformation theory and the projectivity criterion for hyperkähler manifolds.
15In dimension four this says that a smooth ample hypersurface does not contain any smooth Lagrangian

surface, see Section 8.2.
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Proof. If the generic leaf L Ă D is not Zariski dense, then its Zariski closure L̄ Ă D defines a

proper closed subvariety Z Ă D. The family of all such leaves gives a covering family tZtu of D.

Assume first that Zt Ă D is of codimension two in X. Since Zt “ L̄ is clearly invariant under

the characteristic foliation and hence coisotropic by Corollary 2.6, (ii), this is a contradiction

to Proposition 6.2.

If the subvarieties Zt are of higher codimension, taking unions produces a covering family

tZ 1
su of D consisting of subvarieties of codimension two in X and such that each Z 1

s is a union of

Zt “ L̄. In particular, again by Corollary 2.6, (ii), each Z 1
s is coisotropic and one can conclude

as before. �

6.5. (iv) ñ (i): Of course, this direction is a consequence of the implications proved before, but

we wish to mention a weaker statement due to Hwang–Viehweg that motivated much of the later

work on characteristic foliations. They proved [HV10, Thm. 1.2] that the characteristic foliation

of a smooth hypersurface D Ă X cannot be algebraic or, in other words, that dim L̄ ą 1.

7. Alternative summary

We think it is instructive to present the discussion concerning the equivalence of the two

conditions (iii) and (iv) in a somewhat differently structured way, making it more evident

where and how foliations are used.

7.1. (iii) ñ (iv): For a smooth hypersurface D Ă X one wants to show that the sign of qpDq

largely determines the geometry of D.

This part only involves more or less classical results and Proposition 3.3, i.e. the nefness of

D if qpDq ě 0. Recall that the proof of Proposition 3.3 used foliations in an essential way.

‚ Assume qpDq ă 0. Then
ş

D
c1pωDq ¨ H2n´2 ă 0 and by [MM86, Miy87] D is uniruled.

‚ Assume qpDq “ 0. Then D and hence ωD are nef by Proposition 3.3. Using abundance

conjecture for D combined with [DHP13], see footnote on page 12, one finds that D is semi-

ample. Therefore, OpkDq defines a Lagrangian fibration f : X //B for some k ą 0 and hence

D “ f´1pfpDqq.

‚ Assume qpDq ą 0. In this case D is of general type for which we presented two proofs: The

one not using Proposition 3.3 just observed that under these assumptions D is in the interior

of the pseudo-effective cone and hence big.

7.2. (iv) ñ (iii): The geometry of D determines the sign of qpDq. Again, only Proposition 3.3

is used.

‚ Assume D is uniruled. Then qpDq ă 0 is proved by excluding qpDq ą 0 and qpDq “ 0. If

qpDq ą 0, then D is of general type as explained above. To exclude qpDq “ 0, one distinguishes

two cases: First, if D is in the boundary of the movable cone, then ωD “ OpDq|D is a limit

of effective divisors and, therefore, pseudo-effective which contradicts the assumption that D
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is uniruled. Second, if D is not contained in the boundary of the movable cone, then D is in

the interior of the pseudo-effective cone. Hence, D and ωD are big, contradicting again the

assumption on D. Alternatively, one could apply Proposition 3.3 to see that D and hence ωD

are nef, but the latter clearly contradicts D being uniruled.

‚ Assume D “ f´1pHq is the set theoretic pre-image of a hypersurface H Ă B in the base of

a Lagrangian fibration f : X //B. Then the classes rDs, f˚rHs P H2pX,Zq are proportional.

Since rHsn`1 “ 0, also rDsn`1 “ 0 in H2n`2pX,Zq and, therefore, qpDq “ 0

‚ Assume D is of general type. Then qpDq ą 0 is proved by excluding qpDq ă 0 and qpDq “ 0.

Indeed, the former would imply that D is uniruled as explained before. The latter is excluded

by observing that ωD is nef by Proposition 3.3 and big, for D is of general type. However, this

implies
ş

D
c1pωDq2n´1 ą 0 which excludes qpDq “ 0.

8. Examples

8.1. We provide examples of divisors for the first two situations in the case that X is the

Hilbert scheme X “ Sr2s of a K3 surface S.

(i) The natural example for Case (1) is the exceptional divisor D “ E of the Hilbert–Chow

morphism π : Sr2s //Sp2q. It is well known that qpEq “ ´2 and it is a P1 bundle over the

diagonal S Ă Sp2q. More explicitly:

‚ The divisor E is naturally isomorphic to PpΩSq.

‚ The restriction of the symplectic form of Sr2s to E is the pullback of the symplectic form

on S via the projection PpΩSq // S.

‚ The characteristic foliation F is the relative tangent bundle Tπ of the map π : PpΩSq // S.

‚ The leaves are the P1 contracted by π, which via the identification with PpΩSq is just the

projection to S. Hence, the diagonal S Ă Xp2q is the space of leaves D{F .

(ii) Assume that S admits a genus one fibration. Then Sr2s comes with a natural Lagrangian

fibration π : Sr2s // P2 » pP1qr2s over the Hilbert scheme of two points on P1. The pre-image

D of a generic line ℓ Ă P2 is a hypersurface which is smooth by Bertini and satisfies qpDq “ 0.

The leaves of the characteristic foliation on D are contained in the fibres of D // // ℓ but the

very general ones are not compact, i.e. they are dense in the fibres. This follows from the

implications (iii) ñ (iv) ñ (i) proved in Sections 5.2 and 5.4.

The situation changes if ℓ Ă P2 is special. For example, if S0 is a smooth fibre of S // P1,

then the pre-image of ℓ0 :“ tt0, tu | t P P1u Ă pP1qr2s is the hypersurface D0 :“ π´1pℓ0q “

ttp, qu | p P S0u. It still satisfies qpD0q “ 0, but it is not smooth. In fact, it is not even normal,

its normalisation is the natural map Bl∆pS0 ˆ Sq //D0 from the blow-up in the diagonal in

S0 ˆ S0 which restricts to the degree two map S2
0

// S
r2s
0

Ă D0 Ă Sr2s and is injective on the

complement. The fibre of π : D0
// ℓ0 over a point t0, tu, t ‰ 0, is the surface S0 ˆ St, which is

smooth for all but finitely many t. The singularities of D0 have an effect on the characteristic
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foliation (of the smooth part) of D0: The leaves in the generic fibre π´1pt0, tuq are the curves

S0 ˆ x, x P St, which in particular are not dense in the smooth(!) fibre S0 ˆ St.
16

8.2. As we have just seen, if the hypersurface D Ă X is not smooth, then typically the

conditions (i)-(iv) are not equivalent.

(i) Let us first discuss this in Case (2). Consider the pre-image f´1p∆q Ă X of the dis-

criminant divisor of a Lagrangian fibration f : X //B. Note that even for ∆ irreducible its

pre-image may be reducible. By [HO09, Thm. 1.2] the characteristic foliation of any irreducible

component of f´1p∆q is algebraically integrable. Assume that there is a component of D of

f´1p∆q such that D “ f´1pfpDqq. This happens for instance when X is general among the hy-

perkähler manifolds with a Lagrangian fibration. Then, qpDq “ 0 but its characteristic foliation

is algebraically integrable. This divisor satisfies (iii) and (iv) of Case (2) but not (i).

(ii) We turn to Case (3). Consider a smooth cubic fourfold Y Ă P5 and its Fano variety of

lines X :“ F pY q, which is a hyperkähler fourfold. The set of lines contained in a hyperplane

section Y X H is a Lagrangian surface F pY X Hq Ă X which for generic H is smooth and of

general type. For a one-dimensional family tY X Htu of hyperplane sections these Lagrangian

surfaces sweep out a hypersurface D Ă X. Then qpDq ą 0, since for a generic cubic fourfold

the Picard number of X “ F pY q is one.

According to Corollary 2.6, (i), any leaf that intersects a generic F pY X Htq is contained in

it. However, if D were smooth, then the results if Section 6.4 would imply that the generic leaf

is dense. Contradiction. Hence, for no one-dimensional family of hyperplane section tY X Htu

can the associated hypersurface D be smooth.

In particular this is an example of a singular divisor that satisfies (iii) and (iv) of Case (3)

but not (i).

More abstractly, a smooth ample hypersurface D Ă X in a hyperkähler fourfold does not

contain any Lagrangian surface, cf. the proof of Proposition 6.2. In particular, for a general

cubic fourfold Y , a smooth Lagrangian surface F pY X Htq cannot be contained in any smooth

divisor of X “ F pY q.

References

[Ab19] R. Abugaliev Characteristic foliation on vertical hypersurfaces on holomorphic symplectic manifolds

with Lagrangian fibration. arXiv:1909.07260. 1, 2, 12, 13

[Ab21] R. Abugaliev Characteristic foliation on hypersurfaces with positive Beauville–Bogomolov–Fujiki

square. arXiv:2102.02799. IMRN. to appear. https://doi.org/10.1093/imrn/rnad085. 1, 2, 14,

15, 16

[AC14] E. Amerik and F. Campana Characteristic foliation on non-uniruled smooth divisors on projective

hyperkähler manifolds. J. London Math. Soc. 95 (2014), 115–127. 1, 2, 5, 8, 9, 12, 14

16We wish to thank the referee for this observation.

https://doi.org/10.1093/imrn/rnad085


20 F. ANELLA, D. HUYBRECHTS

[AG16] E. Amerik and L. Guseva On the characteristic foliation on a smooth hypersurface in a holomorphic

symplectic fourfold. Moscow Math. J. 18 (2018), 193–204. 2, 12

[AD13] C. Araujo and S. Druel On Fano foliations. Adv. Math. 283 (2013), 70–118.

[BMcQ16] F. Bogomolov, M. McQuillan Rational curves on foliated varieties. Foliation theory in algebraic

geometry, 21–51, Simons Symp., Springer, Cham, 2016. 8

[Bo01] J.-B. Bost Algebraic leaves of algebraic foliations over number fields. Publ. Math. Inst. Hautes Études

Sci. 93 (2001), 161–221. 8

[Bo04] S. Boucksom Divisorial Zariski decompositions on compact complex manifolds. Ann. Sci. Éc. Norm.

Supér. 37 (2004), 45–76. 2, 8, 11

[CN85] C. Camacho, A. Nito Geometric Theory of Foliations. Springer (1985). 5

[De81] P. Deligne Le groupe fondamental du complément d’une courbe plane n’ayant que des point doubles

ordinaires est abélien (d’après W. Fulton). Bourbaki Seminar, Vol. 1979/80, Springer, Berlin (1981),

1–10. 13

[DHP13] J.-P. Demailly, C. Hacon, M. Păun Extension theorems, non-vanishing and the existence of good

minimal models. Acta Math. 210 (2013), 203–259. 12, 17

[Dr11] S. Druel Quelques remarques sur la décomposition de Zariski divisorielle sur les variétés dont la

première classe de Chern est nulle. Math. Z. 267 (2011), 413–423. 12

[Dr17] S. Druel On foliations with nef anti-canonical bundle. Trans. Amer. Math. Soc. 369 (2017), 7765–

7787. 5

[Ep76] D. Epstein Foliations with all leaves compact. Ann. Inst. Fourier, Grenoble 26 (1976), 265–282. 6

[EMT77] D. Epstein, K. Millet, D. Tischler, Leaves without holonomy. J. LMS 16 (1977), 548–552. 7

[He60] R. Hermann On the differential geometry of foliations. Annals Math. 72 (1960), 445–457. 7

[Ho80] H. Holmann On the stability of holomorphic foliations. Springer LNM 798 (1980), 192–202. 6

[Hu99] D. Huybrechts Compact hyperkähler manifolds: Basic results. Invent. Math. 135 (1999), 63–113. 15

[Hu03] D. Huybrechts The Kähler cone of a compact hyperkähler manifold. Math. Ann. 326 (2003), 499–513.

2, 8, 11

[Hu02] D. Huybrechts Compact hyperkähler manifolds. in Calabi–Yau manifolds and related geometries.

Springer (2002). 16

[HM21] D. Huybrechts, M. Mauri Lagrangian fibrations. Milan J. Math. 90 (2022), 459–483. 13

[HO09] J.M. Hwang, K. Oguiso Characteristic foliation on the discriminant hypersurface of a holomorphic

Lagrangian fibration. Amer. J. Math. 134 (2009), 981–1007. 2, 12, 19

[HV10] J.-M. Hwang and E. Viehweg Characteristic foliation on a hypersurface of general type in a projective

symplectic manifold. 146 (2010), 497–506. 1, 2, 4, 5, 6, 7, 10, 14, 17

[KCT07] S. Kebekus, L. Solá Conde, and T. Matei Rationally connected foliations after Bogomolov and Mc-

Quillan. J. Alg. Geom. 16 (2007), 65–81. 5, 6, 8

[La04] R. Lazarsfeld Positivity in Algebraic Geometry I. Springer 2004. 11, 15

[LPT18] F. Loray, J. Pereira, F. Touzet, Singular foliations with trivial canonical class. Invent. Math. 213

(2018), 1327–1380. 11

[Man97] Y. Manin Gauge Field Theory and Complex Geometry. Grundlehren der mathematischen Wis-

senschaften. vol. 289 ( 1997). 4

[Miy87] Y. Miyaoka, Deformation of a morphism along a foliation and applications. Proc. of Symp. Pure

Math. 46 (1987), 245–268. 10, 11, 15, 17

[MM86] Y. Miyaoka, S. Mori A numerical criterion for uniruledness. Ann. Math. 124 (1986), 65–69. 10, 11,

15, 17



21

[MM03] I. Moerdijk, J. Mrčun Introduction to Foliations and Lie Groupoids. Cambridge University Press

(2003). 7

[Pe01] J. Pereira Global stability for holomorphic foliations on Kähler manifolds. Qual. Theory Dyn. Syst.

2 (2001), no. 2, 381–384. 5, 6

[Sa09] J. Sawon Foliations on hypersurfaces in holomorphic symplectic manifolds. IMRN 23 (2009), 4496–

4545. 7, 9

Institut de Mathématiques de Jussieu-Paris rive gauche, 4 Place Jussieu, 75005 Paris, France,

& Mathematisches Institut, Universität Bonn, Endenicher Allee 60, 53115 Bonn, Germany

Email address: anella@imj-prg.fr, huybrech@math.uni-bonn.de


	1. Main theorem and motivation
	2. Preparations I: Linear algebra of the characteristic foliation
	2.1. 
	2.2. 

	3. Preparations II: Space of leaves
	3.1. 
	3.2. 
	3.3. 
	3.4. 

	4. Case (1): Closed leaves
	4.1. 
	4.2. 
	4.3. 
	4.4. 
	4.5. 

	5. Case (2): Lagrangian fibrations
	5.1. 
	5.2. 
	5.3. 
	5.4. 
	5.5. 
	5.6. 

	6. Case (3): Dense leaves
	6.1. 
	6.2. 
	6.3. 
	6.4. 
	6.5. 

	7. Alternative summary
	7.1. 
	7.2. 

	8. Examples
	8.1. 
	8.2. 

	References

