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ON THE RELATIVE OPERS IN DIMENSION ONE

ANOOP SINGH AND ABHITOSH UPADHYAY

Abstract. We investigate the relative opers over the complex analytic family of com-
pact complex manifolds of relative dimension one. We introduce the notion of relative
opers arising from the second fundamental form associated with a relative holomorphic
connection. We also investigate the relative differential operators over the complex ana-
lytic family of compact complex manifolds whose symbol is the identity automorphism.
We show that the set of equivalent relative opers arising from the second fundamental
form is in bijective correspondence with the set of equivalent relative differential opera-
tors whose symbol is the identity automorphism.

1. Introduction

The notion of opers were introduced by Beilinson, and Drinfeld in [1], [2]. In fact the germ
of this notion was already introduced in the work of Drinfeld and Sokolov in [3],[4]. Since
then there have been lot of study on this, especially in the realm of mathematical physics.
There are certain opers arising naturally as limits of Higgs bundles in the Hitchin com-
ponents [14]. Also, there is a profound applications of opers to the geometric Langlands
program [6], [12]. Moreover, in [5], Biswas introduced the notion of coupled connection
over a compact Riemann surface, which is nothing but the GL(n,C)-opers arising from
the second fundamental form associated with a holomorphic connection.

Motivated by these, in this article we introduce the notion of relative opers or relative
GL(n,C)-opers over the complex analytic family of compact complex manifolds, and gen-
eralise results from [5] in the relative context. For the theory of complex analytic family of
compact complex manifolds see [13]. The generalisation in the relative setup is important
because the relative opers may correspond to the relative projective structures on the
family of compact Riemann surfaces, as this correspondence holds for the absolute setup,
that is, there is a correspondence between PGL(2,C) opers and projective structures. For
the relative projective structures see [7, Section 7]. In addition, it would not be very
difficult to show that the relative SL(2)-opers gives rise to relative projective structures
as defined in [7, Section 7]. Moreover, the space of differential operators plays a crucial
role while establishing the correspondence between the space of opers and the space of
projective structures on a compact Riemann surface (see [5, Section 6, Theorem 6.1]).
Therefore, it is interesting to see firstly the correspondence between relative opers and
relative differential operators.

A Complex analytic family of compact complex manifold is equivalent to a surjective
holomorphic proper submersion π : X → S between complex manifolds X and S. Further
we assume that the relative dimension is one, which is same as saying each fibre of π is
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2 A. SINGH AND A. UPADHYAY

of dimension one, that is, a compact Riemann surface. Many results in this article are
also true in the higher relative dimension. Therefore, we mention explicitly if the relative
dimension is ≥ 1 or exactly 1. We work in analytic category.

In section 2, we define a relative oper over π : X → S, the surjective holomorphic
proper submersion of relative dimension 1. A relative oper is also called a S-oper. Let
E be a holomorphic vector bundle over X , and ∇ a relative holomorphic connection on
E. Let F be a subbundle of E. Then, we have the second fundamental form βX/S(F,∇)
associated with the relative holomorphic connection ∇ and subbundle F (see subsection
2.1). The second fundamental form βX/S(F,∇) gives a filtration (2.2) of E by subbundles
of E starting from F , see Proposition 3.2. We also define the relative oper associated
with the second fundamental form βX/S(F,∇). There is a natural notion of equivalence

of two relative opers, and we consider the set OpSFF
k (X/S) of equivalent relative opers

associated with the second fundamental form, where k is a positive integer and stands for
the length of the filtration.

In section 3, we recall the definitions of relative jet bundle, relative differential operator
and relative holomorphic connection. We also state some results from [8] in the relative
context necessary to prove theorems in the subsequent sections.

In section 4, we construct the relative opers arising from the differential operators whose
symbol is an identity automorphism. The first thing is to construct a relative holomorphic
connection from the above mentioned differential operators, more precisely we prove the
following (see Proposition 4.1).

Proposition 1.1. Let π : X → S be a surjective holomorphic proper submersion of
complex manifolds of relative dimension ≥ 1. For k ≥ 1, let

P : E → SymkΩ1
X/S ⊗ E

be a relative differential operator of order k with symbol

σk(P ) = 1E ∈ H0(X, SymkTX/S ⊗ EndOX
(E)),

the identity isomorphism of E, where σk is in (3.8). Then, P induces a relative holomor-
phic connection ∇P on (k − 1)-th relative jet bundle Jk−1

X/S(E) associated with E.

In view of above Proposition 1.1, we conclude the following result (see Corollary 4.3)
which is restatement of the Theorem 4.2

Theorem 1.2. Let π : X → S be a surjective holomorphic proper submersion of complex
manifolds of relative dimension 1. For k ≥ 1, let P : E → SymkΩ1

X/S ⊗ E be a relative
differential operator of order k with symbol as identity morphism 1E of E. Then the
triple (Jk−1

X/S(E),∇P , {Ki}) is a relative oper associated to the second fundamental form

βX/S(Sym
k−1Ω1

X/S⊗E,∇P ), where ∇P is the relative holomorphic connection on Jk−1
X/S(E)

arising from P in Proposition 1.1.

By a triple (E, P, σk(P ) = 1E), we mean that relative differential operators of order k
from E to SymkΩ1

X/S ⊗ E whose symbol is the identity automorphism 1E of E. Again

there is a natural notion for the equivalence of such triples (see end of the section 4). Let
Diffk(X/S) be the set of equivalent triples of the form (E, P, σk(P ) = 1E).
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Now, in view of Theorem 1.2, we get a map (see (4.13))

Υ : Diffk(X/S) −→ OpSFF
k (X/S) (1.1)

defined by sending (E, P, σk(P ) = 1E) to (Jk−1
X/S(E),∇P , {Ki}). We will show that Υ is a

bijective map (see Theorem 5.3).

In the last section 5, we show the bijective correspondence between Diffk(X/S) and
OpSFF

k (X/S) by constructing an inverse map of Υ. In particular, we show the following
(see Theorem 5.1)

Theorem 1.3. Let π : X → S be a surjective holomorphic proper submersion of complex
manifolds of relative dimension 1. Let (E,∇, EF

• ) be the relative oper associated to the
second fundamental form βX/S(F,∇). Then, there exists a relative differential operator

P∇ : Q −→ SymkΩ1
X/S ⊗Q. (1.2)

of order k such that σk(P∇) = 1Q, where Q = E/Fk−1, and Fk−1 is the last subbundle in
the filtration EF

• in (2.2).

2. Relative opers

In this section we define the notion of relative oper following [2]. Let π : X → S be a
surjective holomorphic proper submersion of relative dimension 1. Then the sheaf Ω1

X/S

of relative holomorphic 1-forms is a locally free sheaf of rank 1, equipped with a universal
S-derivation

dX/S : OX −→ Ω1
X/S ,

that is dX/S is a π−1OS- linear map and satisfies the Leibniz rule.

A relative oper or S-oper is a triple (E,∇, E•) where

(1) E is a holomorphic vector bundle over X .
(2) ∇ is a relative holomorphic connection on E, that is,

∇ : E → Ω1
X/S ⊗ E

is a π−1OS-linear map, which satisfies the Leibnitz identity

∇(fs) = f∇(s) + dX/S(f)s,

where f is a local section of OX and s is a local section of E.
(3) E• : 0 = E0 ⊂ E1 ⊂ · · · ⊂ En−1 ⊂ En = E is a filtration by subbundles of E

called S-oper flag.

These data have to satisfy the following conditions:

(1) ∇(Ei) ⊂ Ei+1 ⊗ Ω1
X/S for 1 ≤ i ≤ n− 1.

(2) The induced maps

Ei

Ei−1

∇
−→

Ei+1

Ei

⊗ Ω1
X/S

are isomorphism for 1 ≤ i ≤ n− 1.
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Given an S-oper (E,∇, E•), we denote

Q = E/En−1.

We define respectively the degree, type and length of a relative oper (E,∇, E•) as follows

deg(E,∇, E•) := deg(E),

type(E,∇, E•) := rk(E),

length(E,∇, E•) := n.

We say that two relative opers (E,∇, E•) and (E ′,∇′, E ′
•) of same length n are equiv-

alent if there exists a holomorphic isomorphism

α : E −→ E ′

such that the diagram

E

α

��

∇
// E ⊗ Ω1

X/S

α⊗1
Ω1
X/S

��

E ′ ∇′

// E ′ ⊗ Ω1
X/S

(2.1)

commutes, and α preserves the filtration, that is, α(Ei) = E ′
i for every 1 ≤ i ≤ n.

Let Opn(X/S) denote the set of all equivalent relative opers over X/S of length n.

2.1. Second fundamental form (SFF) and relative oper

Let E
̟
−→ X

π
−→ S be a holomorphic vector bundle equipped with a relative holomorphic

connection ∇. Let F be a subbundle of E. The second fundamental form of F with
respect to relative holomorphic connection ∇ on E is the following composition

F
ι
−→ E

∇
−→ Ω1

X/S ⊗ E
1
Ω1
X/S

⊗q

−−−−−→ Ω1
X/S ⊗ (E/F ),

denoted by

βX/S(F,∇) = (1Ω1
X/S

⊗ q) ◦ ∇ ◦ ι,

where q : E −→ E/F is the natural projection. In view of the Leibnitz identity, the
second fundamental form βX/S(F,∇) is an OX -linear map. The following proposition is
true for any relative dimension.

Proposition 2.1. The second fundamental form βX/S(F,∇) induces a filtration

EF
• : 0 := F0 ⊂ F1 := F ( F2 ( F3 ( · · ·Fn−1 ( Fn ⊆ E, (2.2)

of E by subbundles.

Proof. Since βX/S(F,∇) is an OX-linear map, we have

βX/S(F,∇) ∈ H0(X,HomOX
(TX/S ⊗ F, E/F )).

Let

P ⊂
E/F

βX/S(F,∇)(TX/S ⊗ F )
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be the torsion part of the cokernel of βX/S(F,∇). We have the natural projection

E/F −→
E/F

βX/S(F,∇)(TX/S ⊗ F )
,

and the inverse image P under the above projection is the unique subbundle of E/F of
minimal rank containing the image βX/S(F,∇)(TX/S ⊗ F ).

Denote this subbundle of E/F by F ′. The inverse image

q−1(F ′) =: F2

is the subbundle of E containing F .

Now, we replace F by F2, and repeat the above construction, that is, we get second
fundamental form βX/S(F2,∇) of F2 with respect to ∇, and above process give us a
subbundle F3 and so on. Since E is a vector budle of finite rank, the iterated construction
of filtration stabilizes. �

Remark 2.2. We have following observation from above construction.

(1) The relative holomorphic connection ∇ maps Fi to Fi+1 ⊗Ω1
X/S for every 1 ≤ i ≤

n− 1.
(2) F is preserved by ∇ if and only if n = 1.
(3) The last subbundle, i.e., Fn is preserved by ∇, if not, we get another subbundle

Fn+1 of E.
(4) The second fundamental forms for the subbundles {Fi} in the filtration (2.2) of E

give a homomorphism of vector bundles

αi : Fi/Fi−1 −→ Ω1
X/S ⊗ (Fi+1/Fi) (2.3)

for each i = 1, 2, · · ·, n−1, that is, α1 coincides with βX/S(F,∇), α2 coincides with
βX/S(F2,∇) and so on.

(5) The filtration (2.2) may stabilize to a proper subbundle of E.

The triple (E,∇, EF
• ) is called the relative oper associated with the second fun-

damental form βX/S(F,∇) if the corresponding filtration in (2.2) has the property that
Fn = E, that is, filtration does not stabilize to a proper subbundle of E and the homo-
morphism

αi : Fi/Fi−1 → Ω1
X/S ⊗ (Fi+1/Fi)

is an isomorphism for all i = 1, · · ·, n− 1.

If S is a single point, then X is a compact Riemann surface and in that case the triple
(E,∇, F ) is called coupled connection [5].

We say that two relative opers (E1,∇1, E
F1
1,•) and (E2,∇2, E

F2
2,•) associated to the second

fundamental forms βX/S(F1,∇1) and βX/S(F2,∇2) respectively, are equivalent if there is
a holomorphic isomorphism ϕ : E1 → E2 such that ϕ(F1) = F2 and the following diagram

E1

ϕ

��

∇1
// E1 ⊗ Ω1

X/S

ϕ⊗1
Ω1
X/S

��

E2
∇2

// E2 ⊗ Ω1
X/S

(2.4)
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commutes.

Since ϕ is an isomorphism and it maps F1 onto F2, and above digram (2.4) commutes,
we have

length(E1,∇1, E
F1
1,•) = length(E2,∇2, E

F2
2,•).

Let OpSFF
n (X/S) be the set of all equivalent relative opers associated with some second

fundamental form. Then OpSFF
n (X/S) ⊂ Opn(X/S). Our aim is to classify all relative

opers associated with some second fundamental form in terms of certain type of relative
differential operators.

3. Relative Jet bundles, relative differential operators and relative

holomorphic connections

In this section, we recall the notion of relative jet bundles, relative differential operators
and relative holomorphic connections on a holomorphic vector bundle. We also state some
results which we will use to show our main theorem.

3.1. Relative Jet bundle

Let π : X −→ S be a surjective proper submersion of complex manifolds with relative
dimension l ≥ 1. Also, assume that dimension of X is m and dimension of S is n. Then,
m − n = l. Let E

̟
−→ X

π
−→ S be a holomorphic vector bundle. We define a bundle

associated to E, called the relative jet bundle as follows. Consider the following

J1
X/S(E) := E ⊕ (E ⊗ Ω1

X/S)

as π−1OS-module. We equip J1
X/S(E) with a right OX -module structure

(s, σ) · f := (fs, fσ + s⊗ dX/Sf),

where s is a local section of E, f is a local section of OX and σ is a local section of
E ⊗ Ω1

X/S . We shall always consider J1
X/S(E) with this right OX -module structure, and

call it first order relative jet bundle (see [9]) . This first order relative jet bundle
J1
X/S(E) fits into the following short exact sequence

0 −→ E ⊗ Ω1
X/S −→ J1

X/S(E)
pE
−→ E −→ 0, (3.1)

of OX-modules. Note that the short exact sequence (3.1) need not be holomorphically
splitting as an OX -modules. We will see that the holomorphic splitting of (3.1) is equiv-
alent to the fact that E admits a relative holomorphic connection.

We now define higher order relative jet bundle and describe some of its functorial
property. Consider the second order relative jets

J2
X/S(E) = J1

X/S(E)⊕ (E ⊗ Sym2Ω1
X/S) = E ⊕ (E ⊗ Ω1

X/S)⊕ (E ⊗ Sym2Ω1
X/S)

as π−1OS-module, where Sym2Ω1
X/S denotes the second symmetric power of Ω1

X/S .

Note that the relative derivation dX/S : OX → Ω1
X/S induces naturally the quadratic

differential d
(2)
X/S : OX −→ Sym2Ω1

X/S .

Now, we express the quadratic differential d
(2)
X/S in terms of local coordinates. Let x ∈ X

be a point and let (U, φ = (z1, · · · , zl, zl+1, · · · , zl+n)) be a holomorphic chart on X
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around x. Then, {dzi | 1 ≤ i ≤ l} is an OU -basis of Ω1
X/S |U . Since π : X → S is a

holomorphic proper submersion of relative dimension l ≥ 1, for any holomorphic function
f on U , we have

dX/S(f) =
l∑

i=1

∂f

∂zi
dzi. (3.2)

Now, using the local basis for Sym2Ω1
X/S over the holomorphic chart (U, φ), we can express

the quadratic differential d
(2)
X/S(f) in the local co-ordinates (U, φ) as follows

d
(2)
X/S(f) =

1

2!

∑

i,j

∂2f

∂zi∂zj
dzi ⊙ dzj,

where ⊙ denotes the symmetric product.

The right OX-module structure on J2
X/S(E) is defined as follows

(s, σ, τ) · f = (fs, fσ + s⊗ dX/Sf, fτ + σ ⊗ dX/Sf + s⊗ d
(2)
X/Sf).

Here σ⊗dX/Sf , we mean that the image of σ⊗dX/Sf ∈ E⊗Ω1
X/S⊗Ω1

X/S in E⊗Sym2Ω1
X/S

under the symmetrization map

E ⊗ Ω1
X/S ⊗ Ω1

X/S −→ E ⊗ Sym2Ω1
X .

It is easy to verify that the right OX -module structure on J2
X/S(E) is independent of the

local coordinate system.

Inductively we define k-th order relative jets for k ≥ 1 as follows.

Jk
X/S(E) := Jk−1

X/S(E)⊕ (E ⊗ SymkΩ1
X/S)

as π−1OS-module and SymkΩ1
X/S denote the k-th symmetric powers of Ω1

X/S .

Let d
(j)
X/S : OX −→ SymjΩ1

X/S be the j-th order differential induced from the relative

derivation dX/S. Then, d
(j)
X/S(f) can be expressed in the local coordinates (U, φ) considered

above as follows

d
(j)
X/S(f) =

1

j!

∑

i1,···,ij

∂jf

∂zi1 · · · ∂zij
dzi1 ⊙ · · · ⊙ dzij .

Let (s0, s1, · · ·, sk) be a section of Jk
X/S(E) with si are local section of E ⊗ SymiΩ1

X/S for
every i = 0, . . . , k. Then, for any f a local section of OX , we set

(s0, s1, · · ·, sk) · f = (t0, t1, · · ·, tk),

where ti is a local section of E ⊗ SymiΩ1
X/S given by the following expression

ti =

i∑

j=0

sj ⊗ di−j
X/Sf.

Also, the right OX -module structure on Jk
X/S(E) is independent of the local coordinate

system. See [9] for more details on higher order relative jet bundles and higher order
differentials.
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In view of the definition of higher order relative jets Jk
X/S(E) associated with E, we get

an exact sequence

0 −→ E ⊗ SymkΩ1
X/S −→ Jk

X/S(E)
pkE−→ Jk−1

X/S(E) −→ 0 (3.3)

of OX -modules, for every k ≥ 1. The short exact sequence (3.3) in general does not
holomorphically split as an OX -modules, although it splits holomorphically as π−1OS-
modules.

Let F be another holomorphic vector bundle over X/S, and Φ : E −→ F a holomorphic
homomorphism. Then from the above definition of relative jet bundle, it is immediate
that Φ : E −→ F induces a homomorphism

Jk
X/S(Φ) : J

k
X/S(E) −→ Jk

X/S(F ),

for each k ≥ 0 and the corresponding diagram of homomorphisms

Jk+1
X/S(E)

��

Jk+1
X/S

(Φ)
// Jk+1

X/S(F )

��

Jk
X/S(E)

Jk
X/S

(Φ)
// Jk

X/S(F )

(3.4)

is commutative, where the vertical arrows are natural projections defined in (3.3).

For any integer k ≥ 0, from the definition of relative jet bundle and injective homo-
morphism in the short exact sequence (3.3)

E ⊗ SymkΩ1
X/S −→ Jk

X/S(E),

there is a natural injective homomorphism of vector bundles

θ : Jk+1
X/S(E) −→ J1

X/S(J
k
X/S(E)). (3.5)

Note that for k = 0, θ is an isomorphism. We will explicitly describe θ for k = 1. We
have the natural projection (see (3.1))

pE : J1
X/S(E) −→ E.

The above projection induces a morphism

J1
X/S(pE) : J

1
X/S(J

1
X/S(E)) −→ J1

X/S(E).

Next, consider the equation (3.1) and replacing E by J1
X/S(E), we get another map

pJ1
X/S

(E) : J
1
X/S(J

1
X/S(E)) −→ J1

X/S(E).

Note that J1
X/S(pE) and pJ1

X/S
(E) both projects to E under the composition with the

projection pE : J1
X/S(E) −→ E. Therefore,

J1
X/S(pE)− pJ1

X/S
(E) : J

1
X/S(J

1
X/S(E)) −→ E ⊗ Ω1

X/S ⊆ J1
X/S(E).

Now consider θ defined in equation (3.5) for k = 1, then

Im(θ) = Ker(J1
X/S(pE)− pJ1

X/S
(E)).

It should be noted that the diagram
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J1
X/S(J

k+1
X/S(E))

��

// Jk+1
X/S(E)

��

J1
X/S(J

k
X/S(E)) Jk+1

X/S(E)
θ

oo

(3.6)

does not commute (unless E = 0 or k = 0).

3.2. Relative differential operators

In this section, we follow [10] and [15] to recall the definition of finite order relative
differential operators, and symbol map associated with it.

Let E and F be two vector bundles over X
π
−→ S. Let k ≥ 0 be any integer. A k-th order

relative differential operator (or S-differential operator) is a π−1OS-linear homomorphism

P : E → F

such that for any open subset U ⊂ X and for any f ∈ OX(U), the bracket

[P |U , f ] : E|U → F |U

defined as

[P |U , f ]V (s) = PV (f |V s)− f |V PV (s)

is a relative differential operator of order (k − 1), for any open subset V ⊂ U , and for all
s ∈ E(V ). For the case k = 0, we define a relative differential operator to be an OX-linear
map from E to F .

LetHomS(E, F ) be the sheaf of π
−1OS-linear morphism from E to F . ThenHomS(E, F )

has OX -bimodule structure defined as follows:

For every local sections f of OX , and P of HomS(E, F ), the S-linear morphisms fP
and Pf are respectively, given by

fP (α) = f(P (α)) and Pf(α) = P (fα),

where α is a local section of E. The first operation gives the left and second gives the
right OX -module structure on HomS(E, F ). Unless and otherwise stated we always use
left OX-module structure on HomS(E, F ).

Let Diffk
S(E, F ) denote the set of all S-differential operators from E to F of order k.

For any open subset U of X , the assignment

U 7−→ Diffk
S(E|U , F |U)

is the sheaf of S-differential operators over X of order k. This sheaf is denoted by
Diff k

S(E, F ) and this is an OX-subbimodule of HomS(E, F ). We have following in-
creasing chain of inclusions of subsheaves of HomS(E, F )

HomOX
(E, F ) ⊂ Diff 1

S(E, F ) ⊂ Diff 2
S(E, F ) ⊂ · · · ⊂ HomS(E, F ).

From [8, Proposition 4.2], we have the following symbol exact sequence,

0 → HomOX
(E, F )

ι
−→ Diff 1

S(E, F )
σ1−→ TX/S ⊗HomOX

(E, F ) → 0, (3.7)

where σ1 is the symbol map.
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The above symbol exact sequence also makes sense for the higher order differential
operator (see [15, Chapter 2, Definition 7.15, Definition 7.18]) and can be given as follows

0 → Diff k−1
S (E, F ) → Diff k

S(E, F )
σk−→ SymkTX/S ⊗HomOX

(E, F ) → 0, (3.8)

where σk denotes the k-th order symbol map.

Remark 3.1. For a morphism π : X → S of complex analytic spaces or complex algebraic

varieties, the theory of relative principal parts of order n denoted as P
(n)
X/S has been de-

veloped in [10, p.n.14, 16.3], [11, section 2] and [15, section 3]. We also have notion of
relative principal parts of order n associated with a holomorphic vector bundle E over

X/S, denotes as P
(n)
X/S(E) (see [10, p.n. 37, 16.7]).

Since, we are considering that the complex analytic spaces X and S are smooth, that
is, they are complex manifolds and π is a holomorphic surjective proper submersion, we
have an isomorphism of vector bundles (see [15, Proposition 4.2])

P
(k)
X/S(E)

∼= Jk
X/S(E)

for every k ≥ 0.

We describe relative differential operators as functors on the category of OX -modules.
Let OX −Mod denote the category of OX -modules. Fix an OX-module F ∈ Ob(OX −
Mod). Define a functor

Fk
F : OX −Mod −→ OX −Mod (3.9)

by
Fk

F (E) = Diff k
S(E, F ). (3.10)

Then, Fk
F is a contravariant functor.

In view of above Remark 3.1 and [10, p.n. 41, Proposition 16.8.4], we have

Proposition 3.2. Let π : X → S be a surjective proper submersion of complex manifolds.
Then, for every k ≥ 0, the contravariant functor Fk

F is representable. More precisely, it
is represented by the k-th order relative jet bundle, that is,

Fk
F (E) = Diff k

S(E, F )
∼= HomOX

(Jk
X/S(E), F ) (3.11)

In fact, applying HomOX
(−, F ) to the short exact sequence (3.3), we get the symbol

exact sequence (3.8).

3.3. Relative holomorphic connection

Now, we describe the relationship among relative jet bundles, relative differential operators
and relative holomorphic connections. For details on relative holomorphic connections see
[8]. Consider the short exact sequence (3.7), and take E = F , we get

0 → HomOX
(E, E) → Diff 1

S(E, E)
σ1−→ TX/S ⊗HomOX

(E, E) → 0. (3.12)

We denote HomOX
(E, E) by EndOX

(E). The subbundle

AtS(E) = σ−1
1 (TX/S ⊗ 1E) ⊂ Diff 1

S(E, E)

is known as relative Atiyah bundle. We get a short exact sequence

0 → EndOX
(E) → AtS(E)

σ1−→ TX/S → 0, (3.13)
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which is known as relative Atiyah sequence.

Let atS(E) ∈ H1(X, Ω1
X/SEndOX

(E)) denote the extension class of the short exact

sequence (3.13), called the relative Atiyah class. Then we have well established known
facts.

Proposition 3.3. Let π : X → S be a surjective proper submersion of complex manifolds,
and E be a holomorphic vector bundle over X.

(1) E admits a relative holomorphic connection.
(2) The relative Atiyah sequence (3.13) splits holomorphically.
(3) The relative Atiyah class atS(E) vanishes.
(4) The first order relative jet bundle sequence in (3.1) splits holomorphically.

Proof. For the equivalence of (1), (2), (3) see [8, Proposition 4.3] and [8, Corollary 4.4].
Next, equivalence (2) and (4) follows from (3.11). �

A relative holomorphic connection ∇ on E is in fact a relative first order differential
operator whose symbol is an identity morphism of E. More precisely, since ∇ satisfies
Leibniz identity

∇(fs) = f∇(s) + dX/S(f)⊗ s, (3.14)

where f is a local section of OX , and s is a local section of E. From (3.14), we have

[∇, f ](s) = dX/S(f)⊗ s,

where [∇, f ](s) = ∇(fs) − f∇(s). Note that ∇ is in fact first order relative differential
operator whose symbol σ1(∇) is the identity automorphism of E, because

σ1(∇)(dX/Sf)(s) = [∇, f ](s) = dX/S(f)⊗ s.

Thus, ∇ ∈ H0(X, Diff 1
S(E, E ⊗ Ω1

X/S)) such that σ1(∇) = 1E .

From (3.11), H0(X, Diff 1
S(E, E⊗Ω1

X/S))
∼= H0(X, HomOX

(J1
X/S(E), E⊗Ω1

X/S)), there-
fore, we have an OX -linear map

∇̃ : J1
X/S(E) −→ E ⊗ Ω1

X/S ,

which gives an splitting of short exact sequence (3.1), because σ1(∇) = 1E.

Thus, a relative holomorphic connection on E is a holomorphic map

∇̂ : E −→ J1
X/S(E)

(as OX-module) such that the composition

E
∇̂
−→ J1

X/S(E)
pE
−→ E

is the identity morphism 1E .

4. Relative opers arising from relative differential operators with

symbol an isomorphism

We investigate the relative differential operators from E to SymkΩ1
X/S ⊗E whose symbol

is the identity automorphism 1E.
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Proposition 4.1. Let π : X → S be a surjective holomorphic proper submersion of
complex manifolds of relative dimension ≥ 1. For k ≥ 1, let

P : E → SymkΩ1
X/S ⊗ E

be a relative differential operator of order k with symbol

σk(P ) = 1E ∈ H0(X, SymkTX/S ⊗ EndOX
(E)),

the identity isomorphism of E, where σk is in (3.8). Then, P induces a relative holomor-
phic connection ∇P on (k − 1)-th relative jet bundle Jk−1

X/S(E) associated with E.

Proof. From (3.11), we have

Diff k
S(E, Sym

kΩ1
X/S ⊗ E) ∼= HomOX

(Jk
X/S(E), Sym

kΩ1
X/S ⊗ E).

Therefore, the differential operator P gives a morphism

φP : Jk
X/S(E) −→ SymkΩ1

X/S ⊗E.

Now, φP is an splitting of the short exact sequence (3.3), because σk(P ) = 1E .

Next, the splitting φP defines a morphism

ΨP : Jk−1
X/S(E) −→ Jk

X/S(E) (4.1)

of vector bundles whose composition with the projection pkE in (3.3) is the identity auto-
morphism 1Jk−1

X/S
(E).

Consider the following commutative diagram of vector bundles

0 // SymkΩ1
X/S ⊗ E

��

// Jk
X/S(E)

θ
��

// Jk−1
X/S(E)

// 0

0 // Ω1
X/S ⊗ Jk−1

X/S(E)
// J1

X/S(J
k−1
X/S(E))

// Jk−1
X/S(E)

// 0

(4.2)

where θ is defined in equation (3.5), the top exact sequence is the relative jet bundle
exact sequence in (3.3) and the bottom jet bundle exact sequence is obtained from (3.1)
by putting Jk−1

X/S(E) in place of E. The morphism ΨP in equation (4.1) composed with θ

gives a morphism

θ ◦ΨP : Jk−1
X/S(E) −→ J1

X/S(J
k−1
X/S(E))

of vector bundles which is nothing but the splitting of bottom short exact sequence in
(4.2). From Proposition 3.3 (4), Jk−1

X/S(E) admits a relative holomorphic connection.

Moreover, let

χP : J1
X/S(J

k−1
X/S(E)) −→ Ω1

X/S ⊗ Jk−1
X/S(E)

be the morphism of vector bundles obtained from the splitting of the bottom exact se-
quence in (4.2). Then from (3.11), χP corresponds to a first order differential operator

∇P ∈ H0(X, Diff 1
S(J

k−1
X/S(E), Ω

1
X/S ⊗ Jk−1

X/S(E))) (4.3)

such that σ1(∇P ) is the identity automorphism 1Jk−1
X/S

(E), which is nothing but the relative

holomorphic connection in Jk−1
X/S(E). �
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Consider the following chain of projections of the vector bundle Jk−1
X/S(E)

Jk−1
X/S(E)

pk−1
−−→ Jk−2

X/S(E)
pk−2
−−→ Jk−3

X/S(E)
pk−3
−−→ · · ·

p1
−→ J0

X/S(E) = E
p0
−→ 0. (4.4)

Let

γk−1−i : J
k−1
X/S(E) → Jk−1−i

X/S (E) (4.5)

be the projection defined by the composition

γk−1−i = pk−1−i+1 ◦ · · · ◦ pk−2 ◦ pk−1,

for i = 1, . . . , k− 1. We denote the kernel of γk−1−i by Ki, then we get following filtration
of Jk−1

X/S(E)

0 = K0 ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Kk−1 ⊂ Kk = Jk−1
X/S(E). (4.6)

Moreover, E ⊗ Symk−1Ω1
X/S is a subbundle of Jk−1

X/S(E), and from Proposition 4.1,

∇P is a relative holomorphic connection on Jk−1
X/S(E), then from Proposition 3.2, we get a

filtration (2.2) corresponding to the second fundamental form βX/S(E⊗Symk−1Ω1
X/S ,∇P )

of the subbundle E ⊗ Symk−1Ω1
X/S.

Theorem 4.2. Let π : X → S be a surjective holomorphic proper submersion of complex
manifolds of relative dimension 1. For k ≥ 1, let P : E → SymkΩ1

X/S ⊗ E be a relative
differential operator of order k with symbol as identity morphism 1E of E. Then the
filtration of Jk−1

X/S(E) as defined in (4.6) coincides with the filtration (2.2) in Proposition

3.2, after replacing E by Jk−1
X/S(E), F by E ⊗ Symk−1Ω1

X/S and ∇ by ∇P .

Further, the homomorphism αi defined in equation (2.3) coincides with the identity
automorphism of Symk−iΩ1

X/S ⊗ E, where i = 1, . . . , k − 1.

Proof. Note that the terms of the filtration in (4.6) can be explicitly given as

Ki = Ki−1 ⊕ Symk−iΩ1
X/S ⊗E, (4.7)

for i = 1, . . . , k. Now, applying the same steps as in the proof of the Proposition 3.2 for
the vector bundle Jk−1

X/S(E), subbundle F = Symk−1Ω1
X/S ⊗ E and relative holomorphic

connection ∇P on Jk−1
X/S(E) we get the following terms of the filtration in (2.2)





F1 = F = Symk−1Ω1
X/S ⊗ E; F2 = F1 ⊕ (Symk−2Ω1

X/S ⊗E)

F3 = F2 ⊕ (Symk−3Ω1
X/S ⊗E); . . . Fi = Fi−1 ⊕ (Symk−iΩ1

X/S ⊗E)

Fk−1 = Fk−2 ⊕ (Ω1
X/S ⊗ E); Fk = Fk−1 ⊕ E = Jk−1

X/S(E).

(4.8)

Thus, the two filtrations coincide and have same length k.

Next, we show that αi = βX/S(Ki,∇P ) = 1Symk−iΩ1
X/S

⊗E for i = 1, . . . , k − 1. Since the

relative dimension is 1, Ω1
X/S is a locally free sheaf of rank 1, and hence all its symmetric

powers are locally free sheaf of rank 1. Therefore, using the expression of Ki in (4.7),
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the successive quotients in the filtration (4.6) has the same rank. Now, we give another
description of βX/S(Ki,∇P ) as follows. Consider the following commutative diagram

0

��

Ki

ι
��

Jk
X/S(E)

ϕ

��

Jk−1
X/S(E)

ΨP
oo

γk−1−i

��

0 // Symk−iΩ1
X/S ⊗E

ι
// Jk−i

X/S(E)
pk−i
E

//

��

Jk−i−1
X/S (E) // 0

Jk−i−1
X/S (E) Jk−i−1

X/S (E)

(4.9)

where Ki = Ker(γk−1−i) and ΨP is defined in (4.1). Because of the commutativity of the
above diagram (4.9), we have

pk−i
E ◦ ϕ ◦ΨP ◦ ι = 0.

Thus, the morphism ϕ ◦ ΨP ◦ ι factors through Symk−iΩ1
X/S ⊗ E, and hence we get a

morphism
µi : Ki → Symk−iΩ1

X/S ⊗ E

which is nothing but the second fundamental form for the subbundle Ki of J
k−1
X/S(E) with

respect to ∇P , i.e., µi = βX/S(Ki,∇P ). Also, note that µi(Ki−1) = 0, therefore we have

µi = βX/S(Ki,∇P ) :
Ki

Ki−1

→ Symk−iΩ1
X/S ⊗ E.

Further consider the following commutative diagram

0 // Ki

ν

��

// Jk−1
X/S(E)

��

γk−1−i
// Jk−1−i

X/S (E) // 0

0 // Symk−iΩ1
X/S ⊗ E // Jk−i

X/S(E)
pk−i
E

// Jk−i−1
X/S (E) // 0

(4.10)

where ν is defined due to commutativity of the diagram. Note that ν coincides with µi,
and have property that it vanishes on the subbundle Ki−1 ⊂ Ki.

Now the morphism in (4.10) induces a morphism

ν̃ :
Ki

Ki−1

= Symk−iΩ1
X/S ⊗ E −→ Symk−iΩ1

X/S ⊗E (4.11)

which is an isomorphism. Thus, the morphism αi = βX/S(Ki,∇P ) is the identity auto-
morphism of Symk−1Ω1

X/S ⊗E. This completes the proof of the theorem. �

From above Theorem 4.2, we have
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Corollary 4.3. Let π : X → S be a surjective holomorphic proper submersion of complex
manifolds of relative dimension 1. For k ≥ 1, let P : E → SymkΩ1

X/S ⊗ E be a relative
differential operator of order k with symbol as identity morphism 1E of E. Then the
triple (Jk−1

X/S(E),∇P , {Ki}) is a relative oper associated to the second fundamental form

βX/S(Sym
k−1Ω1

X/S⊗E,∇P ), where ∇P is the relative holomorphic connection on Jk−1
X/S(E)

arising from P in Proposition 4.1.

We want to consider the set of all equivalent relative differential operators of order k
from E to SymkΩ1

X/S ⊗ E whose symbol is the identity automorphism of E. First we
define the equivalence of two relative differential operators.

Let us denote such differential operator by a triple (E, P, σk(P ) = 1E).

Let (Ei, Pi, σk(Pi) = 1Ei
) be the two triples for i = 1, 2, that is, E1 and E2 are two

holomorphic vector bundles over X
π
−→ S and

Pi ∈ H0(X, Diff k
S(Ei, Sym

kΩ1
X/S ⊗Ei))

for i = 1, 2, two relative differential operators of order k with symbol σk(Pi) = 1Ei
.

We say that (E1, P1, σk(P1) = 1E1) is equivalent to (E2, P2, σk(P2) = 1E2) or P1 is
equivalent to P2 if there is a holomorphic isomorphism T : E1 → E2 such that the
following diagram

E1

T

��

P1
// SymkΩ1

X/S ⊗ E1

1
SymkΩ1

X/S
⊗T

��

E2
P2

// SymkΩ1
X/S ⊗ E2

(4.12)

commutes.

Let Diffk(X/S) be the set of all equivalent triples (E, P, σk(P ) = 1E).

Note that equivalent relative differential operators will produce equivalent relative op-
ers, and therefore, in view of Corollary 4.3, we get a map

Υ : Diffk(X/S) −→ OpSFF
k (X/S) (4.13)

defined by sending (E, P, σk(P ) = 1E) to (Jk−1
X/S(E),∇P , {Ki}). Our aim is to show that

Υ is a bijective map.

5. Bijective correspondence between Diffk(X/S) and OpSFF
k (X/S)

In this section we show that the two sets Diffk(X/S) and OpSFF
k (X/S) are in bijective

correspondence, that is, the map Υ defined in (4.13) is a bijective map. Strategy is to
construct a map from OpSFF

k (X/S) to Diffk(X/S) and then show that it is inverse of Υ.

Theorem 5.1. Let π : X → S be a surjective holomorphic proper submersion of complex
manifolds of relative dimension 1. Let (E,∇, EF

• ) be the relative oper associated to the
second fundamental form βX/S(F,∇). Then, there exists a relative differential operator

P∇ : Q −→ SymkΩ1
X/S ⊗Q. (5.1)

of order k such that σk(P∇) = 1Q, where Q = E/Fk−1, and Fk−1 is the last subbundle in
the filtration EF

• in (2.2).
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To show above theorem we will use another description of the relative jet bundle given
by using k-th infinitesimal neighbourhoods.

Let π : X −→ S be as in the Theorem 5.1. Let ∆ ⊂ X ×S X be the diagonal as a
closed complex submanifold of X ×S X , and I the defining ideal sheaf of ∆. For each
k ≥ 0, the k-th infinitesimal neighbourhood of ∆ in X ×S X is defined to be the complex
analytic space

∆
(k)
X/S := (∆,OX×SX/I

k+1).

We can view O
∆

(k)
X/S

as a sheaf of OX -algebras in a natural way, that is, considering ∆
(k)
X/S

as an analytic space over X via the following morphism

∆
(k)
X/S

δk−→ X ×S X
pr1−−→ X,

where δk is arising from the fact that we have natural projection OX×SX −→ OX×SX/I
k+1.

As ψ := pr1◦δk is the identity on the underlying spaces, ψ−1OX = OX , ψ∗O∆
(k)
X/S

= O
∆

(k)
X/S

and ψ∗OX = O
∆

(k)
X/S

. We thus obtain a map of sheaves

pr∗1 : OX −→ O
∆

(k)
X/S

.

On the stalk level the morphism ψx is the following composition

OX,x

pr♯1−−→ OX×SX, (x,x)

δ♯k−→ OX×SX, (x,x)/I
k+1
(x,x) = O

∆
(k)
X/S

, x
.

By the relative jet of order k over X/S, denoted by Jk
X/S , we mean the structure sheaf

of ∆
(k)
X/S viewed as a sheaf of OX -algebras via the map pr∗1 : OX −→ O

∆
(k)
X/S

, that is,

Jk
X/S := OX×SX/I

k+1, (5.2)

together with its sheaf of OX -algebras structure described above.

Now for a vector bundle E over X , we define

Jk
X/S(E) := Jk

X/S ⊗OX
E (5.3)

as OX-module.

Therefore, one can realize the section of Jk
X/S(E) as a section of E restricting to the

k-th order infinitesimal neighbourhood.

Proof of Theorem 5.1. Let (E,∇, EF
• ) ∈ OpSFF

k (X/S) be the relative oper associated
to the second fundamental form βX/S(F,∇). Note that Fk = E and Fk−1 ( E. Set

Q :=
E

Fk−1

to be the final quotient in the filtration EF
• in (2.2). Let p : E → Q be the natural

projection. Take a point x ∈ X and a vector v ∈ Ex in the fibre of E over x. Let U be
an open subset of X containing x, and sv : U → E be a holomorphic section satisfying
two conditions

(1) sv(x) = v
(2) ∇(sv) = 0, i.e., sv is flat with respect to the connection ∇ on E.
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Then p(sv) is a holomorphic section of Q defined around x. Now, restricting p(sv) to the
k-th order infinitesimal neighbourhood of x, we get an element ηk(v) ∈ Jk

X/S(Q)x in the

fibre of Jk
X/S(Q) over x.

Define a homomorphism for j ≥ 0

ηj : E → J j
X/S(Q) (5.4)

by sending any v to the corresponding element ηj(v) as above.

Now, we show that the homomorphism

ηk−1 : E → Jk−1
X/S(Q) (5.5)

is an isomorphism. Note that rank rk(Jk−1
X/S(Q)) = k rk(Q). Since the given relative oper

(E,∇, EF
• ) has length k, it follows that k rk(Q) = rk(E). Thus, rk(E) = rk(Jk−1

X/S(Q)).

Therefore, to show that ηk−1 is an isomorphism, it is enough to show that for any x ∈ X ,
v ∈ Ex \ {0}, ηk−1(v) = 0 implies v = 0.

By the interval [0, k − 1], we mean the integer values from 0 to k − 1. First, we show
the following assertion using induction on i:

If ηi(v) = 0 for some i ∈ [0, k − 1], then v ∈ (Fk−i−1)x ⊂ Ex where Fk−i−1 is the
subbundle of E in filtration (2.2) and the homomorphism ηi as defined in (5.4).

For i = 0, we have η0 : E → Q. Therefore, η0(v) = 0 will imply that v ∈ (Fk−1)x.
Thus, the assertion is true for i = 0.

Suppose that ηi(v) = 0 for i = 0, 1, and assertion is true for i = 0, then we show that
assertion is true for i = 1. Since η0(v) = 0 and assertions is true for i = 0, v ∈ (Fk−1)x.

Let v1 ∈ (Fk−1)x
(Fk−2)x

be the image of v by the natural projection (Fk−1)x → (Fk−1)x
(Fk−1)x

. The

condition η1(v) = 0 implies that image

αk−1(v1) ∈ (Ω1
X/S ⊗ Fk/Fk−1)x

is zero, where αk−1 is in (2.2). Since αk−1 is an isomorphism, we get v1 = 0. Therefore,
v ∈ (Fk−2)x ⊂ Ex. Thus, the assertion is true for i = 1.

Next, suppose that ηi(v) = 0, for 0 ≤ i ≤ (n + 1) and assertion is true for all i ≤ n.
Using the similar steps as above, we show that assertion is true for i = n + 1. Since
assertion is true for i = n, we get v ∈ (Fk−n−1)x ⊂ Ex.

Let vn ∈ (Fk−n−1)x
(Fk−n−2)x

be the image of v by the natural projection

(Fk−n−1)x →
(Fk−n−1)x
(Fk−n−2)x

.

The condition ηn+1(v) = 0 implies that the image of vn under

αk−n−1 :
Fk−n−1

Fk−n−2
−→ Ω1

X/S ⊗
Fk−n

Fk−n−1
(5.6)

is zero, that is, αk−n−1(vn) = 0.

Since αk−n−1 is an isomorphism, this implies that vn = 0. Therefore, v ∈ (Fk−n−2)x ⊂
Ex. In other words, the assertion is true for i = n+ 1.
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Note that as F0 = 0, setting i = k − 1 in the above assertion we conclude that

ηk−1(v) = 0 =⇒ v = 0.

Thus, ηk−1 in (5.5) is an isomorphism.

Since ηk−1 is an isomorphism, consider the homomorphism

ηk ◦ η
−1
k−1 : J

k−1
X/S(Q) −→ Jk

X/S(Q)

which is an splitting of the following jet bundle exact sequence

0 → SymkΩ1
X/S ⊗Q

ι
−→ Jk

X/S(Q)
pk
Q

−→ Jk−1
X/S(Q) → 0.

The above splitting gives a homomorphism of vector bundles

P̃∇ : Jk
X/S(Q) → SymkΩ1

X/S ⊗Q, (5.7)

such that

ι ◦ P̃∇ = 1Jk
X/S

(Q).

Since Diff k
S(Q, Sym

kΩ1
X/S ⊗Q) ∼= HomOX

(Jk
X/S(Q), SymkΩ1

X/S ⊗Q), we get a relative
differential operator

P∇ : Q → SymkΩ1
X/S ⊗Q (5.8)

of order k such that σk(P∇) = 1Q.

This completes the proof of the theorem. �

Remark 5.2. Under the assumption of above Theorem 5.1, we also get the following:

(1) ηk−1(Fi) = Ki for each i ∈ [0, k − 1], where Fi’s are terms in the filtration (2.2).
(2) There is an isomorphism

ηi :
E

Fi
→ Jk−1−i

X/S (Q)

such that the following diagram

E
ηk−1

//

��

Jk−1
X/S(Q)

��

E/Fi

ηi
// Jk−1−i

X/S (Q)

(5.9)

where Jk−1
X/S(Q) → Jk−1−i

X/S (Q) is the projection.

It is easy to see that the equivalent relative opers will produce equivalent relative
differential operators, so in view of Theorem 5.1, we have a map

Φ : OpSFF
k (X/S) −→ Diffk(X/S) (5.10)

defined by sending the triple (E,∇, EF
• ) to the triple (Q, P∇, σk(P∇) = 1Q), where P∇ is

constructed in (5.8) is a relative differential operator on Q of order k such that σk(P∇) =
1Q.
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Theorem 5.3. Let π : X → S be a surjective holomorphic proper submersion of relative
dimension 1. Then the two maps Υ and Φ defined in (4.13) and (5.10) respectively, are
inverses of each other, that is

Φ ◦Υ = 1Diffk(X/S), (5.11)

Υ ◦ Φ = 1OpSFF
k (X/S). (5.12)

Proof. To show (5.11), let (E, P, σk(P ) = 1E) ∈ Diffk(X/S). Then applying Υ on it,
from Corollary 4.3, we get a relative oper (Jk−1

X/S(E),∇P , {Ki}) associated to the second

fundamental form βX/S(Sym
k−1Ω1

X/S ⊗ E,∇P ), where ∇P is the relative holomorphic

connection on Jk−1
X/S(E) arising from P in Proposition 4.1, and Ki’s are the terms of the

filtration in (4.6).

Now, applying Φ on (Jk−1
X/S(E),∇P , {Ki}) gives a relative differential operator P∇P

on

Q := Jk−1
X/S(E)/Kk−1 such that σk(P∇P

) = 1Q.

Since Q := Jk−1
X/S(E)/Kk−1 ≃ E, we get the P∇P

on E. Now using the same steps in

Theorem 5.1, we conclude that P and P∇P
coincide.

Next to show (5.12), let (E,∇, EF
• ) ∈ OpSFF

k (X/S). Now, applying Φ on it, from
Theorem 5.1, we get the triple (Q, P∇, σk(P∇) = 1Q) ∈ Diffk(X/S), where Q = E

Fk−1

Apply Υ on the later triple, we get the triple (Jk−1
X/S(Q),∇P∇

,QK1
• ) ∈ OpSFF

k (X/S). In

the proof of the Theorem 5.1, from (5.5), we have Jk−1
X/S(Q) ≃ E. Using the steps similar

to the Theorem 4.2, we get that ∇ coincides with ∇P∇
and filtration EF

• coincides with
the filtration QK1

• . This completes the proof. �

acknowledgements

The authors would like to thank referees for their detailed and helpful comments.

References

[1] A. Beilinson A., V. Drinfeld, Quantization of Hitchin’s integrable system and Hecke eigensheaves,
Preprint, 1991.

[2] A. Beilinson, V. Drinfeld, Opers, arXiv:math/0501398
[3] V. G. Drinfeld and V. V. Sokolov, Equations of Korteweg-deVries type and simple Lie algebras,

Soviet Mathematics Doklady, vol. 23 (1981), No. 3, p. 457–462.
[4] V. G. Drinfeld and V. V. Sokolov, Lie algebras and equations of Korteweg-deVries type, Journal of

Soviet Mathematics, vol. 30 (1985), p. 1975–2035.
[5] I. Biswas, Coupled connections on a compact Riemann surface J. Math. Pures Appl., 82 (2003),

pp. 1-42
[6] D. Ben-Zvi, E. Frenkel, Spectral curves, opers and integrable systems, Publ. Math. Inst. Hautes
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