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SCATTERING AND ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO THE

VLASOV-POISSON SYSTEM IN HIGH DIMENSION

STEPHEN PANKAVICH

Abstract. We consider the repulsive Vlasov-Poisson system in dimension d ≥ 4. A condition on the decay
rate of the associated electric field is presented that guarantees the scattering and determination of the
complete asymptotic behavior of large data solutions as t → ∞. More specifically, we show that under this
condition the spatial average of the particle distribution function converges, and we establish the precise
asymptotic profiles of the electric field and macroscopic densities. An L∞ scattering result for the particle
distribution function along the associated trajectories of free transport is also proved. Finally, we construct
small data solutions that display this asymptotic behavior. These solutions do not require smallness of
‖f0‖∞ or derivatives, as only a condition on integrated moments of the distribution function is imposed.

1. Introduction

We consider the electrostatic Vlasov-Poisson system with t ≥ 0 and x, v ∈ R
d, namely

(VP)























∂tf + v · ∇xf + E · ∇vf = 0

ρ(t, x) =

∫

Rd

f(t, x, v) dv

E(t, x) = ∇x(∆x)
−1ρ(t, x) =

1

dωd

∫

Rd

x− y

|x− y|d
ρ(t, y) dy

where ωd represents the volume of the unit ball in R
d. Here, the particles are distributed in phase space at

time t ≥ 0 according to the function f(t, x, v) and the initial distribution is given by f(0, x, v) = f0(x, v).
Additionally, E(t, x) represents the electric field induced by the charged particles, ρ(t, x) is the charge density,
and the current density is defined by

j(t, x) =

∫

vf(t, x, v) dv.

For simplicity, we have taken only a single species of charge and normalized the particle mass. Assuming
f0 ∈ L1(R2d), the solution remains integrable in phase space as the total charge is conserved in time, namely

∫∫

f(t, x, v) dvdx =

∫∫

f0(x, v) dvdx =: M.

Furthermore, given smooth initial data (VP) has been shown to possess a smooth global-in-time solution
[20, 25, 27] for d = 3, though such results have yet to be successfully extended to d ≥ 4. These global
existence theorems depend upon either the propagation of higher (spatial, velocity, or transported) moments
or precise estimates on the growth of the characteristics associated to (VP), which are defined by

(1)

{

Ẋ (t, τ, x, v) = V(t, τ, x, v)

V̇(t, τ, x, v) = E(t,X (t, τ, x, v))

with initial conditions X (τ, τ, x, v) = x and V(τ, τ, x, v) = v. For additional background, we refer the reader
to [9, 26] as general references concerning (VP) and associated kinetic equations.

Though the well-posedness of solutions to (VP) has been thoroughly studied, their time asymptotic
behavior is less understood. Partial results concerning the asymptotic growth or decay of quantities in the
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system are known in some situations, including small data [1, 8, 17, 19, 30], monocharged and spherically-
symmetric data [3, 15, 22], and lower-dimensional (d = 1, 2) settings [2, 4, 10, 11, 12, 29]. In particular,
these results provide either time asymptotic growth estimates of characteristics or decay estimates of the
electric field and charge density. We specifically note that small-data solutions for d ≥ 4 were constructed in
[30] using vector field methods, and many of those constructed in three dimensions [1, 28] can be extended
to higher dimensions as well. While these solutions are shown to achieve sharp decay rates of the field
and charge density, the asymptotic limits of such quantities are not determined. Our results remedy this
issue and will apply immediately to those solutions, but we will also construct small data solutions with less
restrictive smallness assumptions that further display the sharp large time behavior and asymptotic limits
of the field, density, and the particle distribution.

One generally expects that the field and charge density tend to zero as t → ∞ like t1−d and t−d, respec-
tively, for all smooth solutions of (VP) due to the dispersive properties induced within the system by the
transport operator ∂t + v · ∇x, the repulsive force generated by the electric field, and the velocity averaging
inherent to these quantities. In fact, it is known that the Cauchy problem does not possess smooth steady
states (cf., [13]). That being said, it remains a longstanding open problem to demonstrate that for some
d ∈ N all smooth solutions of (VP) satisfy these decay properties or scatter to a profile along the trajectories
generated by the (possibly modified) free transport operator as t→ ∞. Further evidence has been provided
indicating that this behavior should be likely to occur in higher dimensions. Indeed, under the assumption
of neutrality the well-known phenomenon of Landau Damping [21] has been shown to occur for any d ∈ N,
and even without neutrality, the dispersive effects within the Vlasov equation are expected to dominate the
influence of the force field in higher dimensions more so than in lower dimensions [4, 23]. Admittedly, the
physical significance of (VP) becomes less obvious when posed in higher spatial and momentum dimensions,
but understanding the inherent properties of the system and the behavior of solutions for d ≥ 4 may lead
to greater insights concerning the three-dimensional problem or its lower-dimensional analogues. Hence, the
goal of the current work is to establish a precise condition on the decay of the electric field that allows one
to identify and establish the precise large-time behavior of any solution to (VP), and also construct small
data solutions that display exactly this asymptotic dynamic.

1.1. Overview and Organization. As we are primarily concerned with large time estimates, we use the
notation

A(t) . B(t)

to represent the statement that there is C > 0 such that A(t) ≤ CB(t) for all t ≥ 0. In this vein, we will
often use the bracket notation

〈u〉 =
√

1 + |u|2

for any u ∈ R
d. When necessary, C will denote a positive constant (independent of the solution) that may

depend upon dimension d ≥ 4, α ≥ 0 (fixed below), and initial data and can change from line to line.
Throughout we take f0 ∈ C1

0 (R
2d), which represents the space of continuously differentiable functions that

tend to zero as |x| → ∞, so that we may consider smooth solutions, and let f(t, x, v) denote the corresponding
C1

0 solution of (VP) launched by f0. Additionally, we take the initial distribution to be nonnegative, i.e.
f0(x, v) ≥ 0, which is a property well known to be maintained in time by the solution. Unlike [23] we
do not assume compactly-supported initial data, and instead propagate translated spatial moments of the
distribution function in time. In addition to the spatial decay as |x| → ∞, the regularity assumptions on
initial data could possibly be altered to arrive at similar convergence results in weaker topologies (see [19]
for d = 3). Still, we will require only C1 initial data rather than higher derivatives in L1 or L2 (as for vector
field and harmonic methods) and can address all dimensions d ≥ 4 simultaneously.

1.2. Main Results. Fixing α ≥ 0, we define for any t ≥ 0 the kth transported moment of f(t) by

Mk(t) =

∫∫

|x− v(t+ α)|kf(t, x, v) dvdx.

Our results can be summarized within three theorems. First, we show that a sufficiently rapid rate of decay
for the electric field implies the expected dispersive decay rate and uniformly bounded moments.
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Theorem 1.1 (Improved Decay). Let d ≥ 4. Assume Mn(0) <∞ for some n > d(d− 1) and α ≥ 0, and

(A) ‖E(t)‖∞ . (t+ α)−a

for some a > ã(d) := d2−d−4
d2−2d−2 . Then,

‖E(t)‖∞ . (t+ α)1−d and Mk(t) . 1

for all 0 ≤ k ≤ n.

We note that ã(d) is decreasing for d ≥ 4 with ã(d) → 1 as d → ∞. Thus, a slower decay rate of
the electric field is required in higher dimensions in order to obtain the dispersive decay rate stated in the
conclusion of Theorem 1.1.

Remark 1.1. As an alternative to (A), one may impose a growth condition on translated moments, namely

Mn(t) . (t+ α)(2−a)(n−2)

for some n > d(d− 1) and a > ã(d), in order to arrive at the same result. For d sufficiently large this yields

Mn(t) . (t+ α)n−2+ǫ

for n > d(d − 1) and some small ǫ > 0. The growth of such quantities has been investigated recently in [6]
for d = 3. Though moments satisfying n > d(d − 1) = 6 were not included therein, the authors do obtain
the estimate

Mk(t) . (t+ α)
9k−11

7

for k → 11
2

−
, which may be close to the above estimate, depending upon the value of d. In addition, instead

of estimating moments, one can take f0 ∈ C1
c (R

2d) and estimate the growth of the maximal translated spatial
characteristics, namely

R(t) = sup {|X (t, 0, x, v)− (t+ α)V(t, 0, x, v)| : (x, v) ∈ supp(f0)} .

Then, the field decay assumption (A) can be replaced by a rate of growth on these characteristics, namely

R(t) . (t+ α)1−
a

d−1

for some a > ã(d). As ã(d) → 1 as d → ∞, we have 1 − ã(d)
d−1 → 1 as d → ∞, and using the best available

estimate of the velocity support for d = 3 [31], one can currently derive the growth estimate

R(t) . (t+ α)
9
8 .

While this power would be insufficient to obtain (A) even for d ≥ 4, we note that it is not significantly distant
from the required growth rate when d is sufficiently large, and an advance in this direction may ultimately
show that all smooth solutions of (VP) scatter and satisfy the asymptotic behavior stated in Theorem 1.2,
especially in higher phase space dimensions.

Next, we show that (A) provides suitable information to obtain the precise asymptotic behavior of many
quantities in the system, including the macroscopic densities and the distribution function along the flow
generated by the linear transport operator.

Theorem 1.2 (Asymptotic Behavior). Let d ≥ 4. Assume the conditions of Theorem 1.1 hold and 〈x −
αv〉pf0 ∈ W 1,∞(R2d) for some p > d+ 1 and α ≥ 0. Then, we have the following:

(a) There exist a continuous F∞ ∈ L1(Rd) ∩ L∞(Rd) such that the spatial average

F (t, v) =

∫

f(t, x, v) dx

satisfies F (t, v) → F∞(v) uniformly as t→ ∞ with

‖F (t)− F∞‖∞ . (t+ α)2−d.
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(b) Define E∞(v) = ∇v(∆v)
−1F∞(v). Then, we have the self-similar asymptotic profiles

sup
x∈Rd

∣

∣

∣

∣

(t+ α)d−1E(t, x)− E∞

(

x

t+ α

)∣

∣

∣

∣

. (t+ α)
1−d
d ,

sup
x∈Rd

∣

∣

∣

∣

(t+ α)dρ(t, x)− F∞

(

x

t+ α

)
∣

∣

∣

∣

. (t+ α)−1,

sup
|x|.t+α

∣

∣

∣

∣

(t+ α)dj(t, x)−
x

t+ α
F∞

(

x

t+ α

)∣

∣

∣

∣

. (t+ α)−1.

(c) There is a continuous f∞ ∈ L1(R2d) ∩ L∞(R2d) such that

f(t, x+ v(t+ α), v) → f∞(x, v)

uniformly as t→ ∞, namely we have the convergence estimate

sup
(x,v)∈R2d

|f(t, x+ v(t+ α), v)− f∞(x, v)| . (t+ α)2−d.

We note that due to the faster dispersive decay rate of the electric field for d ≥ 4 in comparison with
d = 3, modifications to the trajectories along which the distribution function scatters are not needed, which
differs from the results of [19, 23].

Remark 1.2. The reader may notice that the optimal rate of (t + α)−1 is not quite achieved for the
convergence of the field to its limiting function. This can be remedied by further assuming 〈x−αv〉p〈v〉qf0 ∈
W 1,∞(R2d) for some p > d+ 1, q > d, α ≥ 0 and uniformly bounding these moments in time. The methods
of Lemma 3.3 then allow one to show

‖F (t)− F∞‖1 . (t+ α)2−d,

which can be used in the proof of Lemma 3.4 to obtain the (t+ α)−1 convergence rate of the field.

Remark 1.3. Theorems 1.1 and 1.2 can be extended to d = 3, but require a stronger decay assumption than
(A) and a modification to the trajectories along which f scatters (see [19, 23]). Furthermore, the results of
[23] can be extended to d ≥ 4, but require f0 ∈ C1

c (R
2d). For such initial data, the tools of [23] show that no

mass, momentum, or energy are lost in the limit, and the decay rates of the field and densities in the case
of a neutral (i.e., M = 0), multispecies system are actually faster than stated above if the limiting charge
density vanishes.

As solutions in higher dimensions have not been widely studied, with the exception of [30], only the
small-data solutions [1, 28] established in three-dimensions can be readily extended to d ≥ 4 (see [7]). For
this reason, our last result serves to establish global-in-time solutions launched by small initial moments
in L1(R2d) by taking advantage of the increased dispersive effects of the system posed in d ≥ 4 and their
influence on the electric field. One particular novelty of these solutions is that, unlike previous small data
solutions [1, 19, 28] for d = 3 and [30] for d ≥ 4, they allow ‖f0‖∞ to be arbitrarily large and further do not
require a smallness assumption on derivatives of initial data.

Theorem 1.3 (Small Moment Solutions). Let d ≥ 4. Assume 〈x−αv〉pf0 ∈W 1,∞(R2d) for some p > d+1
and α > 0. Then, there exists ǫ0 > 0, depending only upon d, α, and n, such that for all 0 < ǫ ≤ ǫ0, if
Mn(0) ≤ ǫ for some n > d(d − 1) then the classical solution of (VP) launched by f0 exists globally in time
and satisfies

Mn(t) ≤ 2ǫ

and

‖E(t)‖∞ . ǫ
(d−2)(d+1)

d(n−2) (t+ α)1−d.

Furthermore, the conclusions of Theorem 1.2 immediately apply.

Remark 1.4. The introduction of the parameter α > 0 is only used to unify the three results and eliminate
the singularity within the estimates that occurs as t → 0+. One may take α = 0 in Theorems 1.1 and 1.2
and use known estimates (c.f. [5]) to control all quantities for sufficiently small time. For this reason, we
will inherently assume α > 0 within the proofs of these two theorems. However, as Theorem 1.3 focuses
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on small data solutions, α > 0 is needed to obtain control of the field near t = 0. Furthermore, note that
taking α = 0 in Theorem 1.1 requires only |x|nf0 ∈ L1(R2d), while the additional condition in Theorem 1.2
is merely 〈x〉pf0 ∈ W 1,∞(R2d). Hence, our results allow for classical solutions with heavy tails in the velocity
variable, as well as infinite kinetic energy.

Remark 1.5. The reader will note that we only study the repulsive Vlasov-Poisson system, rather than also
considering the possibility of an attractive force field arising, for instance, within the analogous gravitational
model. Indeed, while our methods do depend upon the repulsive nature of the force field (see the comment
preceding Lemma 2.2), this dependence may not be crucial to our main arguments. Hence, it is likely that
similar methods can be used in the attractive case to study the asymptotic behavior of small data solutions
(cf., [19]). However, it is known [16] that any smooth solution of the attractive Vlasov-Poisson system for
d ≥ 4 that possesses negative energy can only exist on a finite time interval. Thus, the dynamical behavior
of solutions in the attractive case may be quite different.

1.3. Strategy of the Proofs. To establish the theorems we will reformulate the original problem within a
dispersive reference frame that is co-moving with the particles. More specifically, let

g(t, x, v) = f(t, x+ v(t+ α), v)

and apply a change of variables inspired by [19] (see the proofs of Lemmas 3.4 and 3.5) to the field and
charge density so that (VP) becomes

(VPg)







∂tg − (t+ α)E(t, x + v(t+ α)) · ∇xg + E(t, x+ v(t+ α)) · ∇vg = 0

E(t, x+ v(t+ α)) = (t+ α)1−d 1

dωd

∫∫

ξ

|ξ|d
g

(

t, w, v − ξ +
x− w

t+ α

)

dwdξ

with

ρ(t, x) = (t+ α)−d

∫

Rd

g

(

t, w,
x− w

t+ α

)

dw

and the initial conditions g(0, x, v) = f0(x+ αv, v). Additionally, the translated moments merely become

Mk(t) =

∫∫

|x|kg(t, x, v) dvdx

for every k ≥ 0. This reformulation is performed because g possesses nicer properties than the original
distribution function f . Indeed, both spatial moments and derivatives of g can be uniformly bounded in
time (Lemmas 3.1 and 3.2), while the corresponding quantities for f must grow in time. Additionally, we
note that the convolution in the electric field is now in the velocity variable rather than the spatial variable.
Hence, as t→ ∞ one expects

E(t, x+ v(t+ α)) ∼ (t+ α)1−d 1

dωd

∫∫

ξ

|ξ|d
g(t, w, v − ξ) dwdξ = (t+ α)1−d∇v (∆v)

−1
F (t, v)

locally in x. Because of this, estimates of the field require an understanding of the growth of spatial moments
of g to control F (t, v), and velocity derivatives of g will be instrumental to demonstrating the asymptotic
limit of the field. Thus, our results may also provide better tools to obtain a priori estimates on the growth
of moments of g and velocity derivatives ∇vg, which are the two main ingredients in the theorems.

In the next section, we establish preliminary estimates on the electric field and integrated moments of the
distribution function, then use them to prove Theorem 1.1. Section 3 assumes the decay rate of the field
guaranteed by Theorem 1.1 and then establishes estimates on derivatives of the field and the convergence
of the spatial average. The precise asymptotic behavior of the electric field and the charge and current
densities is also obtained, as is the scattering of the distribution function stated in Theorem 1.2. Finally, the
construction of global-in-time small data solutions via the proof of Theorem 1.3 is provided in Section 4.

2. Preliminary Lemmas & Proof of Theorem 1.1

We first generalize an identity described within [18, 24] for the three-dimensional Vlasov-Poisson system
and use it to obtain a priori bounds on the second moment of the translated distribution function, as well
as a decay estimate for the potential energy.
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Lemma 2.1. Let f(t) ∈ C1
0 (R

2d) be a classical solution of (VP) and M2(0) < ∞ for some α ≥ 0. Then,
the following identity holds

d

dt

(

M2(t) + (t+ α)2
∫

|E(t, x)|2 dx

)

= (4− d)(t+ α)

∫

|E(t, x)|2 dx.

Proof. We first recall that the potential U(t, x) satisfies ∆U = ρ, and thus

U(t, x) =
1

d(2 − d)ωd

|x|2−d ⋆ ρ(t, x).

With this, the field is given by

E(t, x) = ∇xU(t, x) =
1

dωd

x

|x|d
⋆ ρ(t, x).

Then, computing the time derivative of the second transported moment gives

M ′
2(t) = −2(t+ α)

∫∫

(x− v(t+ α)) · E(t, x)f(t, x, v) dvdx

= −2(t+ α)

∫

x · E(t, x)ρ(t, x) dx+ 2(t+ α)2
∫

E(t, x) · j(t, x) dx

=: −2(t+ α)A(t) + 2(t+ α)2B(t).

Further, we compute

A(t) =

∫

x · E(t, x)ρ(t, x) dx

=
1

dωd

∫∫

x ·
x− y

|x− y|d
ρ(t, x)ρ(t, y) dy dx

=
1

dωd

∫∫

|x− y|2−dρ(t, x)ρ(t, y) dy dx−

∫

y ·E(t, y)ρ(t, y) dy

= (2 − d)

∫

U(t, x)ρ(t, x) dx−A(t).

Hence, upon using ρ = ∆U and integrating by parts we find

A(t) =
2− d

2

∫

U(t, x)ρ(t, x) dx =
d− 2

2

∫

|E(t, x)|2 dx.

Next, we compute the B term using the continuity equation

∂tρ+∇x · j = 0,

which is obtained by integrating the Vlasov equation in v. Then, integrating by parts we find

B(t) =

∫

E(t, x) · j(t, x) dx

= −

∫

U(t, x)∇x · j(t, x) dx

=

∫

U(t, x)∂tρ(t, x) dx

=
1

2

d

dt

∫

U(t, x)ρ(t, x) dx

= −
1

2

d

dt

∫

|E(t, x)|2 dx.

With these expressions, the derivative of the transported second moment becomes

M ′
2(t) = (2− d)(t+ α)

∫

|E(t, x)|2 dx− (t+ α)2
d

dt

∫

|E(t, x)|2 dx.

6



The right side can be rewritten as

−
d

dt

(

(t+ α)2
∫

|E(t, x)|2 dx

)

+ (4 − d)(t+ α)

∫

|E(t, x)|2 dx.

and the identity follows. �

As mentioned in [18], this identity holds only for the repulsive Vlasov-Poisson system, as it implies decay
of the potential energy, which we now demonstrate.

Lemma 2.2. For d ≥ 4 we have

‖E(t)‖2 . (t+ α)−1

and

M2(t) . 1.

Proof. We let

ψ(t) = (t+ α)2‖E(t)‖22

so that the identity in Lemma 2.1 reads

d

dt

(

M2(t) + ψ(t)

)

= (4− d)
ψ(t)

t+ α

With this, we have
d

dt
(M2(t) + ψ(t)) ≤ 0

as d ≥ 4 and ψ(t) ≥ 0. Of course, this implies

ψ(t) ≤M2(0) + ψ(0)−M2(t) . 1

and

M2(t) ≤M2(0) + ψ(0)− ψ(t) . 1,

and the stated estimates follow. �

Next, we obtain improved field decay rates that follow from the main assumption (A). First, we state a
standard estimate on the gradient of the inverse Laplace operator, which will be used throughout.

Lemma 2.3. For any 1 ≤ p < d < q ≤ ∞ and φ ∈ Lp(Rd) ∩ Lq(Rd), we have

‖∇(∆)−1φ‖∞ . ‖φ‖
p(q−d)
d(q−p)
p ‖φ‖

q(d−p)
d(q−p)
q .

In particular, for d 6= 1, choosing p = 1 and q = ∞ yields

‖∇(∆)−1φ‖∞ . ‖φ‖
1
d

1 ‖φ‖
d−1
d

∞ .

Similarly, for any k > d(d− 1) with d ≥ 4 we may choose p = d+2
d

and q = d+k
d

to find

‖E(t)‖∞ . ‖ρ(t)‖
(d+2)(k−d2+d)

d2(k−2)

d+2
d

‖ρ(t)‖
(d+k)(d−2)(d+1)

d2(k−2)

d+k
d

.

Proof. To establish the estimates, we decompose the spatial integral into contributions near and far from
the singularity, so that

|∇(∆)−1φ(x)| .

∫

|x−y|<R

φ(y)

|x− y|d−1
dy +

∫

|x−y|>R

φ(y)

|x− y|d−1
dy := I + II.

As q > d the first portion provides the estimate

I . ‖φ(t)‖q

(

∫ R

0

r(d−1)(1− q
q−1 ) dr

)

q−1
q

. ‖φ(t)‖qR
q−d
q ,

while the second analogously yields

II . ‖φ(t)‖pR
p−d
p

7



as p < d. Combining these estimates and choosing

R =

(

‖φ(t)‖p
‖φ(t)‖q

)

pq

d(q−p)

gives

|∇(∆)−1φ(x)| . ‖φ‖
p(q−d)
d(q−p)
p ‖φ‖

q(d−p)
d(q−p)
q ,

and the stated estimates follow. �

Lemma 2.4. For any k ≥ 0 we have

‖ρ(t)‖ d+k
d

. (t+ α)
−kd
d+kMk(t)

d
d+k .

In particular, for d ≥ 4 using Lemma 2.2 with k = 2 gives

‖ρ(t)‖ d+2
d

. (t+ α)
−2d
d+2 .

Proof. For any R > 0, we decompose the integral into

|ρ(t, x)| .

∫

| x
t+α

−v|< R
t+α

f(t, x, v) dv +

∫

| x
t+α

−v|> R
t+α

f(t, x, v) dv

.

(

R

t+ α

)d

+R−k

∫

|x− v(t+ α)|kf(t, x, v) dv

. Rd(t+ α)−d +R−kmk(t, x)

where we have denoted mk(t, x) =
∫

|x− v(t+ α)|2f(t, x, v) dv. Choosing

R = (t+ α)
d

d+kmk(t, x)
1

d+k

yields

ρ(t, x) . (t+ α)−
kd

d+kmk(t, x)
d

d+k

and thus
∫

ρ(t, x)
d+k
d dx . (t+ α)−k

∫

mk(t, x) dx = (t+ α)−kMk(t).

Raising this inequality to the d
d+k

power gives the first result, and invoking Lemma 2.2 for k = 2 produces
the latter estimate. �

Corollary 2.5. Combining the final estimate of Lemma 2.3 and the results of Lemma 2.4 for any k > d(d−1)
provides the estimate

‖E(t)‖∞ . (t+ α)1−d Mk(t)
(d−2)(d+1)

d(k−2) .

Now that we have established control of the field in terms of moments, we will bound moments in terms
of the supremum of the field. This will be accomplished by propagating moments in time via the Vlasov
equation, but first we need an interpolation estimate for Mk(t).

Lemma 2.6. For any ℓ ≥ 0, p ∈ [0, ℓ] and q ∈ [0,∞), we have

Mℓ(t) ≤Mℓ−p(t)
q

p+qMℓ+q(t)
p

p+q .

Proof. The proof is straightforward, but we include it for completeness. Separating the estimates into regions
within which the moments are small and large, respectively, we find

Mℓ(t) =

∫∫

|x−v(t+α)|<R

|x− v(t+ α)|ℓf(t, x, v) dvdx +

∫∫

|x−v(t+α)|>R

|x− v(t+ α)|ℓf(t, x, v) dvdx

≤ RpMℓ−p(t) +R−qMℓ+q(t)

for any ℓ ≥ p ≥ 0 and q ≥ 0. Optimizing in R yields R =
(

Mℓ+q(t)
Mℓ−p(t)

)
1

p+q

, and the estimate follows with this

choice of R. �
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Lemma 2.7. For any k ≥ 3, if Mk(0) <∞ then for all t ≥ 0

Mk(t)
1

k−2 ≤Mk(0)
1

k−2 + C

∫ t

0

(s+ α)‖E(s)‖∞ ds.

Proof. Taking a derivative of Mk(t) gives

|M ′
k(t)| . (t+ α)

∣

∣

∣

∣

∫∫

|x− v(t+ α)|k−2(x− v(t+ α)) · E(t, x)f(t, x, v) dvdx

∣

∣

∣

∣

. (t+ α)‖E(t)‖∞Mk−1(t).

Using Lemma 2.6 for any ℓ ≥ 2 with p = ℓ− 2 and q = 1 yields

Mℓ(t) ≤ CMℓ+1(t)
ℓ−2
ℓ−1

as M2(t) . 1 due to Lemma 2.2. Then, taking ℓ = k − 1 gives

Mk−1(t) .Mk(t)
k−3
k−2 .

Using this in the above inequality for the derivative then implies

|M ′
k(t)| . (t+ α)‖E(t)‖∞Mk(t)

k−3
k−2 ,

and thus
∣

∣

∣

∣

d

dt

(

Mk(t)
1

k−2

)

∣

∣

∣

∣

. (t+ α)‖E(t)‖∞.

Integrating yields the stated result, namely

Mk(t)
1

k−2 ≤Mk(0)
1

k−2 + C

∫ t

0

(s+ α)‖E(s)‖∞ ds.

�

With these estimates established, we can now prove the first theorem.

Proof of Theorem 1.1. Assuming (A) for some a > ã(d) := d2−d−4
d2−2d−2 , we let ǫ = a− ã(d) > 0 so that

‖E(t)‖∞ . (t+ α)−ã(d)−ǫ.

Using Lemma 2.7 with k = n and inserting the above field estimate gives

Mn(t)
1

n−2 .Mn(0)
1

n−2 +

∫ t

0

(s+ α)1−ã(d)−ǫ ds .Mn(0)
1

n−2 +max
{

1, (t+ α)2−ã(d)−ǫ
}

and thus
Mn(t) . max{1, (t+ α)r}

where
r = (2− ã(d)− ǫ) (n− 2).

Next, we use Corollary 2.5 so that

‖E(t)‖∞ . (t+ α)1−d max{1, (t+ α)r}
(d−2)(d+1)

d(n−2) . max{(t+ α)1−d, (t+ α)s}

where

s = 1− d+ r
(d− 2)(d+ 1)

d(n− 2)
= 1− d+

(1− ǫ− (ã(d)− 1)) (d− 2)(d+ 1)

d
.

Using the identity
(ã(d)− 1)(d− 2)(d+ 1) = dã(d) − 2,

a brief calculation shows that this exponent can be rewritten as

s = −ã(d) − ǫ
(d− 2)(d+ 1)

d
.

Note that the original assumption on the decay of the field, namely (A), can be expressed as

‖E(t)‖∞ . max
{

(t+ α)1−d, (t+ α)−ã(d)−ǫ
}

.
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Thus, we have achieved an improved estimate, given by

‖E(t)‖∞ . max
{

(t+ α)1−d, (t+ α)−ã(d)−ǫ
(d−2)(d+1)

d

}

as

(2)
(d− 2)(d+ 1)

d
=

(

1−
2

d

)

(d+ 1) ≥
5

2

for d ≥ 4. Iterating this process then gives

‖E(t)‖∞ . max

{

(t+ α)1−d, (t+ α)−ã(d)−ǫ( (d−2)(d+1)
d )

k
}

for any k ∈ N. Due to (2), taking k sufficiently large implies

(t+ α)−ã(d)−ǫ( (d−2)(d+1)
d )

k

. (t+ α)1−d,

and thus the sharp decay rate for the field is ultimately achieved, namely

‖E(t)‖∞ . (t+ α)1−d.

Lemma 2.7 then provides the moment bound, namely

Mn(t) .

(

Mn(0)
1

n−2 +

∫ t

0

(s+ α)‖E(s)‖∞ ds

)n−2

.

(

1 +

∫ t

0

(s+ α)2−d ds

)n−2

. 1.

Finally, the bound on Mk(t) for 0 ≤ k ≤ n is achieved via interpolation with M0(t) = M and Mn(t). �

3. Asymptotic Behavior and Proof of Theorem 1.2

Next, we establish a number of lemmas that will culminate in the proof of Theorem 1.2. In view of
Theorem 1.1, we assume throughout this section that the electric field decays at the rate stated in the
conclusion of that result, namely

‖E(t)‖∞ . (t+ α)1−d

with uniform bounds on moments
Mk(t) . 1

for all 0 ≤ k ≤ n.
Prior to stating the lemmas, we first introduce some notation relating to the translated distribution

function. As mentioned in the introduction, we let

g(t, x, v) = f(t, x+ v(t+ α), v).

From the original characteristics given by (1), we define the new spatial characteristics associated to this
distribution function by

Y(t, τ, x, v) = X (t, τ, x, v) − (t+ α)V(t, τ, x, v)

with Y(τ, τ, x, v) = x− (τ + α)v.
As our approach relies heavily upon the growth of the spatial moments and velocity derivatives of g, we

further define the useful quantities

G(t) = 1 + sup
x,v∈Rd

(

〈x〉pg(t, x, v)

)

,

Gx(t) = 1 + sup
x,v∈Rd

|〈x〉p∇xg(t, x, v)|,

and
Gv(t) = 1 + sup

x,v∈Rd

|〈x〉p∇vg(t, x, v)|.

Notice that
G(0) = 1 + sup

x,v∈Rd

|〈x〉pf0(x+ αv, v)| = 1 + sup
x,v∈Rd

|〈x− αv〉pf0(x, v)|

and similarly for Gx(0) and Gv(0); hence, these quantities are all initially finite due to the assumptions of
the theorem.
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Our first lemma uses the field decay to uniformly bound the moments of g and obtain the sharp decay
rate of the charge density.

Lemma 3.1. We have

G(t) . 1 and ‖ρ(t)‖∞ . (t+ α)−d.

Proof. Define the operator V by

Vh = ∂th− (t+ α)E(t, x+ v(t+ α)) · ∇xh+ E(t, x+ v(t+ α)) · ∇vh

for any h = h(t, x, v) so that Vg = 0. Then, applying the operator to 〈x〉pg yields

V (〈x〉pg) = −p(t+ α)〈x〉p−2x · E(t, x+ v(t+ α))g(t, x, v).

Inverting the operator via integration along characteristics then gives

〈x〉pg(t, x, v) = 〈Y(0)〉pg(0,Y(0),V(0))− p

∫ t

0

(s+ α)〈Y(s)〉p−2Y(s) · E(s,Y(s))g(s,Y(s),V(s)) ds,

and this further yields

‖〈x〉pg(t)‖∞ ≤ ‖〈x〉pg(0)‖∞ + C

∫ t

0

(s+ α)‖E(s)‖∞‖〈x〉pg(s)‖∞ ds

≤ ‖〈x− αv〉pf0‖∞ + C

∫ t

0

(s+ α)2−d‖〈x〉pg(s)‖∞ ds.

Applying Gronwall’s inequality, we find

‖〈x〉pg(t)‖∞ . exp

(
∫ t

0

(s+ α)2−d ds

)

. 1,

which gives the former result.
With this, we estimate the charge density using the change of variables w = x− v(t+ α) so that

ρ(t, x) =

∫

g(t, x− v(t+ α), v) dv

= (t+ α)−d

∫

g

(

t, w,
x− w

t+ α

)

dw

≤ (t+ α)−d

∫

〈w〉−p sup
ξ∈Rd

(

〈w〉pg (t, w, ξ)

)

dw

≤ (t+ α)−dG(t)

(
∫

〈w〉−p dw

)

. (t+ α)−d,

which provides the latter result. �

The decay of the field and charge density lead directly to estimates of field derivatives and derivatives of
the distribution function. In particular, we show that derivatives of g are uniformly bounded.

Lemma 3.2. We have the estimates

‖∇xE(t)‖∞ . (t+ α)−d ln(1 + t+ α), Gv(t) . 1, and Gx(t) . 1.

Proof. We will establish an extension of the well-known three-dimensional estimate of field derivatives (c.f.
[9, p. 122-123]) to higher dimensions. In particular, we apply a derivative to the field, use the identity

∂xj

(

xi − yi

|x− y|d

)

= −∂yj

(

xi − yi

|x− y|d

)

,
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and integrate by parts to find for any 0 < R1 < R2

∂xj
Ei(t, x) = C

∫

Rd

∂xj

(

xi − yi

|x− y|d

)

ρ(t, y) dy

= C

∫

Rd

xi − yi

|x− y|d
∂yj

ρ(t, y) dy

= C

∫

|x−y|<R1

xi − yi

|x− y|d
∂yj

ρ(t, y) dy + C

∫

|x−y|>R1

xi − yi

|x− y|d
∂yj

ρ(t, y) dy

= C

∫

|x−y|<R1

xi − yi

|x− y|d
∂yj

ρ(t, y) dy + C

∫

|x−y|=R1

xi − yi

|x− y|d
ρ(t, y)

xj − yj

|x− y|
dSy

+C

∫

R1<|x−y|<R2

∂yj

(

xi − yi

|x− y|d

)

ρ(t, y) dy + C

∫

|x−y|>R2

∂yj

(

xi − yi

|x− y|d

)

ρ(t, y) dy

=: I − IV.

Next, we estimate each contribution so that

I . ‖∇xρ(t)‖∞

(

∫

|x−y|<R1

|x− y|1−d dy

)

. ‖∇xρ(t)‖∞R1,

and

II . ‖ρ(t)‖∞

(

∫

|x−y|=R1

|x− y|1−d dSy

)

. ‖ρ(t)‖∞.

To estimate the final two terms, we use
∣

∣

∣

∣

∂yj

(

xi − yi

|x− y|d

)∣

∣

∣

∣

≤ C|x− y|−d

to find

III . ‖ρ(t)‖∞

(

∫

R1<|x−y|<R2

|x− y|−d dy

)

. ‖ρ(t)‖∞ ln∗
(

R2

R1

)

,

and
IV . R−d

2 ‖ρ(t)‖1 . R−d
2

where

ln∗(s) =

{

0, if s ≤ 1

ln(s), if s ≥ 1.

Taking

R1 =
‖ρ(t)‖∞

‖∇xρ(t)‖∞
and R2 = ‖ρ(t)‖

− 1
d

∞

yields

(3) ‖∇xE(t)‖∞ .

(

1 + ln∗

(

‖∇xρ(t)‖∞

‖ρ(t)‖
d+1
d

∞

))

‖ρ(t)‖∞.

We note that this bound is increasing in the contribution of ‖ρ(t)‖∞, and using Lemma 3.1 in (3) yields

‖∇xE(t)‖∞ .
(

1 + ln∗
(

(t+ α)d+1‖∇xρ(t)‖∞
))

(t+ α)−d.

As in the proof of Lemma 3.1, we can bound the derivative of ρ using moments of derivatives of g so that

|∇xρ(t, x)| . (t+ α)−d

∫
∣

∣

∣

∣

∇xg

(

t, w,
x− w

t+ α

)∣

∣

∣

∣

dw . (t+ α)−dGx(t),

and thus

(4) ‖∇xE(t)‖∞ .

(

1 + ln (Gx(t))

)

(t+ α)−q

for any 0 < q < d that can be chosen as close to d as desired.
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Next, we estimate derivatives of g in order to close the argument. Denoting the translated Vlasov operator
by V as before so that

Vh = ∂th− (t+ α)E(t, x + v(t+ α)) · ∇xh+ E(t, x+ v(t+ α)) · ∇vh,

we take derivatives in the Vlasov equation and apply 〈x〉p to find

V

(

〈x〉p∂vkg

)

= −p(t+α)〈x〉p−2x·E(t, x+v(t+α))∂vkg(t, x, v)+(t+α) ((t+ α)∇xg −∇vg)·∂xk
E(t, x+v(t+α)).

Inverting the operator by integrating along characteristics and taking supremums then gives

‖〈x〉p∂vkg(t)‖∞ ≤ ‖〈x〉p∂vkg(0)‖∞ + C

∫ t

0

(s+ α)‖E(s)‖∞‖〈x〉p∇vg(s)‖∞ ds

+

∫ t

0

(s+ α)‖∇xE(s)‖∞

(

(s+ α)‖∇xg(s)‖∞ + ‖∇vg(s)‖∞

)

ds

≤ Gv(0) + C

∫ t

0

(s+ α)2−dGv(s)ds

+

∫ t

0

(s+ α)1−q

(

1 + ln (Gx(s))

)(

(s+ α)Gx(s) + Gv(s)

)

ds

where we have used (4) to estimate field derivatives. Summing over k = 1, ..., d gives

(5) Gv(t) . 1 +

∫ t

0

(s+ α)2−q

(

1 + ln (Gx(s))

)(

Gx(s) + Gv(s)

)

ds.

We estimate x derivatives in the same manner to find

V

(

〈x〉p∂xk
g

)

= −p(t+α)〈x〉p−2x ·E(t, x+v(t+α))∂xk
g(t, x, v)+((t+ α)∇xg −∇vg) ·∂xk

E(t, x+v(t+α)),

and thus

(6) Gx(t) . 1 +

∫ t

0

(s+ α)1−q

(

1 + ln (Gx(s))

)(

Gx(s) + Gv(s)

)

ds.

Defining

D(t) = e2 + Gx(t) + Gv(t)

and adding (5) and (6) yields

D(t) . 1 +

∫ t

0

(s+ α)2−qD(s) ln (D(s)) ds.

Invoking a variant of Gronwall’s inequality then yields

D(t) . exp

(

exp

(
∫ t

0

(s+ α)2−q ds

))

. 1

as q is sufficiently close to d ≥ 4. As D(t) is bounded, we find

Gv(t) . 1 and Gx(t) . 1,

and the second and third conclusions follow. Additionally, the first conclusion is obtained upon using the
bound on Gx(t) within the estimate of ‖∇xE(t)‖∞ given by (4). �

3.1. Convergence of the spatial average. Because the field and charge density decay rapidly in time
and velocity derivatives of g are uniformly bounded, we can establish the convergence of spatial averages.

Lemma 3.3. There exists a continuous F∞ ∈ L1(Rd) ∩ L∞(Rd) such that

F (t, v) =

∫

f(t, x, v) dx

satisfies F (t, v) → F∞(v) in C(Rd) as t→ ∞ with

‖F (t)− F∞‖∞ . (t+ α)2−d.
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Proof. Upon integrating the Vlasov equation of (VPg) in x and integrating by parts, we find
∣

∣

∣

∣

∂t

∫

g(t, x, v) dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

E(t, x+ v(t+ α)) · ((t+ α)∇x −∇v)g(t, x, v) dx

∣

∣

∣

∣

=

∣

∣

∣

∣

(t+ α)

∫

ρ(t, x+ v(t+ α))g(t, x, v) dx +

∫

E(t, x + v(t+ α)) · ∇vg(t, x, v) dx

∣

∣

∣

∣

. (t+ α)‖ρ(t)‖∞F (t, v) + ‖E(t)‖∞Gv(t).

Thus, we use Lemmas 3.1 and 3.2 to find

|∂tF (t, v)| . (t+ α)1−dF (t, v) + (t+ α)1−d.

As ‖F (0)‖∞ ≤ G(0) and the latter term above is integrable in time, we find

F (t, v) ≤ F (0, v) +

∫ t

0

|∂tF (s, v)| ds . 1 +

∫ t

0

(s+ α)1−dF (s, v) ds,

and after taking the supremum and invoking Gronwall’s inequality, this yields

(7) ‖F (t)‖∞ . exp

(
∫ t

0

(s+ α)1−d ds

)

. 1.

Returning to the estimate of ∂tF , we use the uniform bound on ‖F (t)‖∞ to find

|∂tF (t, v)| . (t+ α)1−d,

which implies that ‖∂tF (t)‖∞ is integrable. This bound then establishes the estimate for s ≥ t

‖F (t)− F (s)‖∞ =

∥

∥

∥

∥

∫ t

s

∂tF (τ) dτ

∥

∥

∥

∥

∞

≤

∫ s

t

‖∂tF (τ)‖∞ dτ . (t+ α)2−d,

and taking s → ∞ establishes the limit. More precisely, as F (t, v) is continuous and the limit is uniform,
there is F∞ ∈ C(Rd) such that

‖F (t)− F∞‖∞ . (t+ α)2−d.

Furthermore, as
∫

F (t, v) dv = M for every t ≥ 0, we have F∞ ∈ L1(Rd) with 0 ≤
∫

F∞(v) dv ≤ M.
�

3.2. Convergence of the field and macroscopic densities. Now that we have shown the convergence
of F (t, v), we establish the precise asymptotic profile of the field and the charge and current densities. From
the limiting density F∞(v), we define its induced electric field by

E∞(v) = ∇v(∆v)
−1F∞(v) =

1

dωd

∫

ξ

|ξ|d
F∞(v − ξ) dξ

for every v ∈ R
d. To ensure the necessary regularity of the limiting field we note that due to Lemma 2.3

‖E∞‖∞ < ∞, as F∞ ∈ L1(Rd) ∩ L∞(Rd) by Lemma 3.3. With this, we establish a refined estimate of the
electric field.

Lemma 3.4. We have

sup
x∈Rd

∣

∣

∣

∣

(t+ α)d−1E(t, x)− E∞

(

x

t+ α

)∣

∣

∣

∣

. (t+ α)
1−d
d

Proof. In order to properly decompose the difference of these quantities, we first represent the field in terms
of the translated distribution function. In particular, we have

E(t, x) =
1

dωd

∫∫

x− y

|x− y|
d
g(t, y − u(t+ α), u) dudy,

which, upon performing the change of variables

ξ =
x− y

t+ α

with respect to y and
w = x− (u+ ξ)(t+ α)
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with respect to u, gives

E(t, x) = (t+ α)1−d 1

dωd

∫∫

ξ

|ξ|d
g

(

t, w,
x− w

t+ α
− ξ

)

dwdξ.

Therefore, due to the convolution structure of E∞ we have

(8) (t+ α)d−1E(t, x)− E∞

(

x

t+ α

)

=
1

dωd

∫

ξ

|ξ|d

(
∫

g

(

t, w,
x− w

t+ α
− ξ

)

dw − F∞

(

x

t+ α
− ξ

))

dξ.

Next, we split the ξ-integrand so that
∫

g

(

t, w,
x− w

t+ α
− ξ

)

dw − F∞

(

x

t+ α
− ξ

)

= A1

(

t,
x

t+ α
− ξ

)

+A2

(

t,
x

t+ α
− ξ

)

where

(9) A1(t, v) =

(
∫

g(t, w, v)dw − F∞(v)

)

= F (t, v)− F∞(v)

and

(10) A2(t, v) =

∫
(

g

(

t, w, v −
w

t+ α

)

− g(t, w, v)

)

dw.

Using this decomposition in (8), we have
∣

∣

∣

∣

(t+ α)d−1E(t, x)− E∞

(

x

t+ α

)
∣

∣

∣

∣

≤
∥

∥∇v(∆v)
−1A1(t)

∥

∥

∞
+
∥

∥∇v(∆v)
−1A2(t)

∥

∥

∞
.

To estimate the convolution terms on the right side of the inequality, we will use Lemma 2.3.
Now, to estimate the A1 term we find

‖A1(t)‖1 = ‖F (t)− F∞‖1 ≤ 2M . 1

and of course
‖A1(t)‖∞ = ‖F (t)− F∞‖∞ . (t+ α)2−d.

Using these estimates with Lemma 2.3 yields

(11) ‖∇v(∆v)
−1A1(t)‖∞ . ‖F (t)− F∞‖∞ . (t+ α)

(d−1)(2−d)
d .

To control the A2 term, we use the bound on spatial moments and velocity derivatives of g, which yields

‖A2(t)‖∞ = sup
v∈Rd

∣

∣

∣

∣

∫
[

g

(

t, w, v −
w

t+ α

)

− g(t, w, v)

]

dw

∣

∣

∣

∣

. sup
v∈Rd

∫
∣

∣

∣

∣

∫ 1

0

d

dθ

(

g

(

t, w, v − θ
w

t+ α

))

dθ

∣

∣

∣

∣

dw

. (t+ α)−1 sup
v∈Rd

∫ 1

0

∫

|w|

∣

∣

∣

∣

∇vg

(

t, w, v − θ
w

t+ α

)
∣

∣

∣

∣

dwdθ

. (t+ α)−1Gv(t)

(
∫

〈w〉1−pdw

)

. (t+ α)−1.

In order to estimate ‖A2(t, x)‖1, we merely use charge conservation so that

‖A2(t)‖1 ≤

∫∫
∣

∣

∣

∣

g

(

t, w, v −
w

t+ α

)

− g(t, w, v)

∣

∣

∣

∣

dwdv ≤ 2M . 1.

Combining this with the bound on ‖A2(t)‖∞ within Lemma 2.3 gives

(12) ‖∇v(∆v)
−1A2(t)‖∞ . (t+ α)

1−d
d .

Finally, collecting (11) with d ≥ 4 and (12) we conclude

sup
x∈Rd

∣

∣

∣

∣

(t+ α)d−1E(t, x)− E∞

(

x

t+ α

)∣

∣

∣

∣

. (t+ α)
1−d
d .
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Next, we estimate the charge density using the same tools.

Lemma 3.5. We have

sup
x∈Rd

∣

∣

∣

∣

(t+ α)dρ(t, x) − F∞

(

x

t+ α

)∣

∣

∣

∣

. (t+ α)−1.

Proof. As for the field, we must rewrite this difference in terms of the translated distribution function. To
this end, we have

ρ(t, x) =

∫

g(t, x− u(t+ α), u) du,

and, upon performing the change of variables

y = x− u(t+ α)

with respect to u, we find

ρ(t, x) = (t+ α)−d

∫

g

(

t, y,
x− y

t+ α

)

dy.

Hence, the difference of the densities can be split into two terms as
∣

∣

∣

∣

(t+ α)dρ(t, x)− F∞

(

x

t+ α

)∣

∣

∣

∣

≤

∣

∣

∣

∣

∫
[

g

(

t, y,
x− y

t+ α

)

− g

(

t, y,
x

t+ α

)]

dy

∣

∣

∣

∣

+

∣

∣

∣

∣

F

(

t,
x

t+ α

)

− F∞

(

x

t+ α

)∣

∣

∣

∣

=: I + II.

Using methods similar to the previous lemma, the first term satisfies

I . (t+ α)−1

∫ 1

0

∫

|y|

∣

∣

∣

∣

∇vg

(

t, y,
x− θy

t+ α

)∣

∣

∣

∣

dydθ . (t+ α)−1Gv(t)

(
∫

〈y〉1−p dy

)

. (t+ α)−1,

while the second term is straightforward, namely

II ≤ ‖F (t)− F∞‖∞ . (t+ α)2−d.

Combining these estimates and using d ≥ 4 then yields the stated result. �

Finally, we estimate the current density in a similar fashion, but restricted to spatial subsets with linear
growth in t.

Lemma 3.6. We have

sup
|x|.t+α

∣

∣

∣

∣

(t+ α)dj(t, x)−
x

t+ α
F∞

(

x

t+ α

)
∣

∣

∣

∣

. (t+ α)−1.

Proof. Throughout, we consider only |x| . t+ α. Performing the same change of variables as in Lemma 3.5
transforms j(t, x) into

j(t, x) = (t+ α)−d

∫
(

x− y

t+ α

)

g

(

t, y,
x− y

t+ α

)

dy.

Hence, the difference can be split into three terms as
∣

∣

∣

∣

(t+ α)dj(t, x)−
x

t+ α
F∞

(

x

t+ α

)
∣

∣

∣

∣

≤

∣

∣

∣

∣

∫

y

t+ α
g

(

t, y,
x− y

t+ α

)

dy

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

x

t+ α

[

g

(

t, y,
x− y

t+ α

)

− g

(

t, y,
x

t+ α

)]

dy

∣

∣

∣

∣

+

∣

∣

∣

∣

x

t+ α

(

F

(

t,
x

t+ α

)

− F∞

(

x

t+ α

))∣

∣

∣

∣

=: I + II + III.
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The first term is estimated using G(t) so that

I . (t+ α)−1G(t)

(
∫

〈y〉1−p dy

)

. (t+ α)−1.

The second term has similar structure, but involves velocity derivatives of g, and we find

II . |x|(t+ α)−2Gv(t)

(
∫

〈y〉1−pdy

)

. (t+ α)−1.

Finally, the third term is straightforward and yields

III . |x|(t + α)−1‖F (t)− F∞‖∞ . (t+ α)2−d.

Combining these estimates then yields the stated result. �

3.3. Scattering of the distribution function. With the field and derivative estimates solidified, we prove
that the distribution functions scatter to a limiting value as t → ∞ along their free-streaming trajectories
in phase space.

Lemma 3.7. There exists a continuous f∞ ∈ L1(R2d) ∩ L∞(R2d) such that

g(t, x, v) → f∞(x, v)

uniformly as t→ ∞. In particular, we have

sup
(x,v)∈R2d

|f (t, x+ v(t+ α), v)− f∞(x, v)| . (t+ α)3−d.

Proof. Because g satisfies (VPg), we have

∂tg = (t+ α)E(t, x+ v(t+ α)) · ∇xg(t, x, v)− E(t, x + v(t+ α)) · ∇vg(t, x, v).

Similar to the proof of Lemma 3.3, we wish to show that ‖∂tg(t)‖∞ is integrable in order to establish the
existence of a limiting function in this norm.

To this end, we merely estimate the terms on the right side of the equation. Using the field decay and
Lemma 3.2, we find

|(t+ α)E(t, x + v(t+ α))∇xg(t, x, v)| . (t+ α)‖E(t)‖∞Gx(t) . (t+ α)2−d

and

|E(t, x+ v(t+ α))∇vg(t, x, v)| . ‖E(t)‖∞Gv(t) . (t+ α)1−d.

Combining yields

‖∂tg(t)‖∞ . (t+ α)2−d.

As d ≥ 4, this bound is integrable in time and there is f∞ ∈ C(R2d) such that

‖g(t)− f∞‖∞ . (t+ α)3−d.

Similar to the spatial average, the limiting function is integrable as
∫∫

g(t, x, v) dvdx = M

for all t ≥ 0, and bounded as ‖g(t)‖∞ ≤ ‖f0‖∞ for all t ≥ 0.
�

With these lemmas firmly in place, Theorem 1.2 follows by merely collecting the stated estimates.
17



4. Small moment solutions and proof of Theorem 1.3

In the final section, we establish the global-in-time existence of small data solutions. We note that the
smallness condition neither involves derivatives of f0 nor restricts the value of ‖f0‖∞.

Proof of Theorem 1.3. Let Mn(0) = ǫ > 0 for some n > d(d − 1) and denote the maximal time of existence
by Tmax > 0. We will impose conditions on ǫ as we continue. Let

T∞ = sup{t ≥ 0 :Mn(t) ≤ 2ǫ}.

Notice that T∞ > 0 by continuity. Throughout, constants may depend upon d, α, and n, but not on any
other quantities.

Next, we employ Corollary 2.5 with k = n to find

‖E(t)‖∞ ≤ C(t+ α)1−d Mn(t)
(d−2)(d+1)

d(n−2) ≤ C(t+ α)1−d ǫ
(d−2)(d+1)

d(n−2)

for all t ∈ [0, T∞). In particular, though the corollary (and Lemmas 2.3 and 2.4, on which it depends) only
state estimates for t sufficiently large, the proofs hold for any t ≥ 0 whenever α > 0. We use this field
estimate along with Lemma 2.7 for k = n so that

Mn(t)
1

n−2 ≤ Mn(0)
1

n−2 + C

∫ t

0

(s+ α)‖E(s)‖∞ ds

≤ ǫ
1

n−2 + Cǫ
(d−2)(d+1)

d(n−2)

∫ ∞

0

(s+ α)2−d ds

≤ ǫ
1

n−2 + C
(

ǫ
(d−2)(d+1)

d

)
1

n−2

for t ∈ [0, T∞). For d ≥ 4, we have

(d− 2)(d+ 1)

d
=

(

1−
2

d

)

(d+ 1) ≥
5

2

and thus taking ǫ < 1 implies
(

ǫ
(d−2)(d+1)

d

)
1

n−2

≤ ǫ
2

n−2 .

Therefore, we find

Mn(t)
1

n−2 ≤ ǫ
1

n−2 +
(

Cǫ
1

n−2

)

ǫ
1

n−2 =
(

1 + Cǫ
1

n−2

)

ǫ
1

n−2 ,

and taking ǫ smaller if necessary yields

Mn(t) ≤
3

2
ǫ < 2ǫ

for all t ∈ [0, T∞) and ǫ sufficiently small. By the definition of T∞ it follows that T∞ = Tmax, and this
further yields

‖E(t)‖∞ ≤ Cǫ
(d−2)(d+1)

d(n−2) (t+ α)1−d

for the lifespan of the solution. The field estimate then provides a uniform upper bound on moments of g,
and Tmax = ∞ follows. With the field decay established, Theorem 1.2 can be applied to provide the complete
asymptotic behavior of solutions, as well. �
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