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HODGE-TATE PRISMATIC CRYSTALS AND SEN THEORY

HUI GAO

Abstract. Let K be a mixed characteristic complete discrete valuation field with perfect residue
field, and let K∞/K be a Kummer tower extension by adjoining a compatible system of p-power
roots of a chosen uniformizer. We use this Kummer tower to reconstruct Sen theory which clas-
sically is obtained using the cyclotomic tower. Using this Sen theory over the Kummer tower, we
prove a conjecture of Min-Wang which predicts that Hodge-Tate prismatic crystals are determined
by the Sen operator; this implies that the category of (rational) Hodge-Tate prismatic crystals is
equivalent to the category of nearly Hodge-Tate representations.
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1. Introduction

The goal of this paper is to study Hodge-Tate prismatic crystals, and the main result is stated
in §1.1. We explain how to reduce the prismatic theorem to a more “classical” (non-prismatic)
problem, which in turn will be addressed in §1.2 using Sen theory over the Kummer tower.

1.1. Prismatic site and prismatic crystals. In [BS19], Bhatt-Scholze introduce the prismatic
site and use it to recover all known integral p-adic cohomology theories, including the ones con-
structed in the work of Bhatt-Morrow-Scholze [BMS18, BMS19]. The cohomology theories in
[BS19] are defined over the relative prismatic site, where one only considers prisms over a fixed
prism. Nonetheless, an absolute prismatic site is also defined and used therein. It turns out this
absolute prismatic site is more suitable to study “arithmetic” problems. For example, Anschütz-
Le Bras [ALB] show that for a (Zp-flat) quasi-syntomic ring R, filtered prismatic Dieudonné
crystals on R∆ (the absolute prismatic site of R) classify p-divisible groups over R. Recently,
Bhatt-Scholze [BS21] show that for OK a mixed characteristic complete discrete valuation ring
with perfect residue field, prismatic F -crystals on (OK)∆ classify integral crystalline Galois repre-
sentations. In this paper, we study Hodge-Tate prismatic crystals on (OK)∆. Let us now quickly
set up some notations to facilitate our discussions.

Notation 1.1.1. (1) Let OK be a mixed characteristic complete discrete valuation ring with
perfect residue field k. Let K be its fraction field; fix an algebraic closure K and de-
note GK = Gal(K/K). Let RepGK

(Zp) be the category of finite free (continuous) Zp-
representations of GK , and let Repcrys

GK
(Zp) be the sub-category of integral crystalline rep-

resentations.
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(2) Let (OK)∆ denote the absolute prismatic site of OK . It is the opposite of the category of
bounded prisms (A, I) together with a map OK → A/I, endowed with the Grothendieck
topology for which covers are morphisms of prisms (A, I) → (B, J), such that the under-

lying ring map A → B is (p, I)-completely faithfully flat. Let (OK)
perf

∆
be the sub-site

consisting of perfect prisms.
(3) Let O∆ be the structure sheaf on (OK)∆, so that O∆((A, I)) = A. We define the sheaf I∆

resp. O∆ so that

I∆((A, I)) = I resp. O∆((A, I)) = A/I.

Let O∆[1/I∆]
∧
p be the p-adic completion of O∆[1/I∆], and let O∆[1/p] be the sheaf with

p inverted. See [BS21, §2] for more discussion about these sheaves.
(4) Let Vect((OK)∆,O∆) denote the category of prismatic crystals (of vector bundles) on

(OK)∆. Namely, an object M is a sheaf of O∆-modules such that for any (A, I) ∈ (OK)∆,
M((A, I)) is a finite projective A-module and that for any morphism (A, I) → (B, J), the
natural map

M((A, I))⊗A B → M((B, J))

is an isomorphism. Let Vectϕ((OK)∆,O∆) denote the category of prismatic F -crystals (of
vector bundles) on (OK)∆, where an object is a prismatic crystal M equipped with an
identification

ϕM : ϕ∗M[1/I∆] ≃ M[1/I∆].

(5) We can analogously define:
• Vectϕ((OK)∆,O∆[1/I∆]

∧
p ), called the category of Laurent prismatic F -crystals, cf.

[BS21, Def. 3.2, Ex. 4.4].
• Vect((OK)∆,O∆[1/p]), called the category of rational Hodge-Tate prismatic crystals.

• Vect((OK)
perf

∆
,O∆[1/p]), called the category of rational Hodge-Tate prismatic crystals

on the perfect prismatic site.
Note the last two categories (defined in [MW21]) do not have ϕ-structures; cf. also §4 for
detailed definitions.

The main results of [BS21] can be summarized by the following diagram (of tensor functors),
where we use ≃ resp. →֒ to signify an equivalence resp. a fully faithful functor.

(1.1.1)

Vectϕ((OK)∆,O∆) Vectϕ((OK)∆,O∆[1/I∆]
∧
p )

Repcrys
GK

(Zp) RepGK
(Zp)

≃ ≃

Here, the left vertical equivalence is their main theorem [BS21, Thm. 1.2], and the right vertical
equivalence is a special case of [BS21, Cor. 3.7, Ex. 4.4]. (Recently, this picture is generalized to
the semi-stable case by Du-Liu [DL21], using the log-prismatic site of Koshikawa [Kos21].)

Our main result Thm. 1.1.5 constructs an analogous diagram. To state the theorem, we quickly
recall Sen theory [Sen81]. Let C be the p-adic completion of K, on which GK acts continuously.
Let RepGK

(C) be the category of “C-representations”: an object is a finite dimensional C-vector
space together with a continuous and semi-linear action of GK . Let Kp∞ be the (cyclotomic)
extension of K by adjoining all p-power roots of unity. To a C-representation, Sen constructs a
canonical finite dimensional Kp∞-vector space equipped with a linear operator; this operator is
nowadays called the Sen operator, whose eigenvalues are called the (Hodge-Tate-)Sen weights of
the corresponding C-representation.

Notation 1.1.2. Let W (k) be the ring of Witt vectors, and let K0 = W (k)[1/p]. Let π ∈ K be a
fixed uniformizer, and let E(u) = Irr(π,K0) ∈ W (k)[u] be the minimal polynomial over K0. Let
E ′(u) = d

du
E(u).
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Definition 1.1.3. Say W ∈ RepGK
(C) is nearly Hodge-Tate if all of its Sen weights are in the

subset

(1.1.2) Z+ (E ′(π))−1 ·mOK
,

where OK is the ring of integers of K with mOK
its maximal ideal. That is: the Sen weights are

near to being an integer up to a bounded distance. (Recall by [Ser79, Chap. III, §6, Cor. 2], the
ideal E ′(π) · OK is precisely the different DOK/W (k) and hence is independent of choices of π; thus

our definition is also independent of choices of π.) Write RepnHT
GK

(C) for the (tensor) subcategory
of RepGK

(C) consisting of these objects.

Remark 1.1.4. Let W ∈ RepGK
(C) and let L/K be a finite extension. Then W is nearly Hodge-

Tate implies that the restriction W |GL
is also nearly Hodge-Tate, but not vice versa (unless L/K

is unramified).

The following is our main theorem, which in particular confirms a conjecture of Yu Min and
Yupeng Wang [MW21, Conj. 3.17].

Theorem 1.1.5. We have a commutative diagram of tensor functors:

(1.1.3)

Vect((OK)∆,O∆[
1
p
]) Vect((OK)

perf

∆
,O∆[

1
p
])

RepnHT
GK

(C) RepGK
(C)

≃ ≃

Remark 1.1.6. We comment on the genesis of the theorem, and its relation with other works.

(1) In the diagram (1.1.3), the right vertical equivalence is already proved by Min-Wang
[MW21, Thm. 3.12], cf. also Prop. 4.2.3 in this paper for a review. The left verti-
cal equivalence, proved in Thm. 4.3.5, is a consequence of a Conjecture of Min-Wang
[MW21, Conj. 3.17] which in turn is proved in Thm. 4.3.3. We remark that the notion of
nearly Hodge-Tate representations, although not explicitly mentioned in [MW21], is first
discovered by Min-Wang (as a consequence of their conjecture just mentioned); the author
thanks them for informing him this notion and for allowing him to discuss it in this paper.

(2) The techniques and ideas in this paper can be generalized to the relative case (i.e., for a
smooth formal scheme over OK), for example, we can prove [MW22, Conj. 3.21] in the
recent preprint of Min-Wang, which is generalization of [MW21, Conj. 3.17] to the relative
case. Details will appear elsewhere.

(3) Hodge-Tate prismatic crystals (in the relative case) are also studied in the recent preprints
of Bhatt-Lurie [BL22a] and [BL22b], using (the Hodge-Tate divisor of) the Cartier-Witt
stack ; in particular, relation with Sen theory is discussed in [BL22a, §3.9]. The exact
connection with our work is yet to be discovered.

Remark 1.1.7. We make some more general remarks about the main theorem.

(1) Recall W ∈ RepGK
(C) is called almost Hodge-Tate (cf. [Fon04]) if its Sen weights are

integers, and is called Hodge-Tate if additionally the Sen operator is semi-simple. Thus, the
nearly Hodge-Tate representations are those near to an almost Hodge-Tate representation.
The similarities between the diagrams (1.1.1) and (1.1.3) seem to suggest that the nearly
Hodge-Tate representations could be regarded as the “crystalline objects” (whatever that
means) in the category of C-representations; this analogy deserves further studies.

(2) If one changes the two appearances of O∆[
1
p
] in Diagram (1.1.3) to a “prismatic de Rham

sheaf” (cf. [BS21, Construction 6.4] for a related discussion), it might be possible to
introduce the “nearly de Rham representations”; recall almost de Rham representations
are discussed in [Fon04]. Nonetheless, we expect this picture to be substantially more
complicated: indeed, the Sen operator is only a linear operator, but the Sen-Fontaine
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operator in [Fon04] is a differential operator. We hope to come back to this direction in
the near future.

(3) In [MW21], they also give precise classification of the integral Hodge-Tate prismatic crys-
tals via (integral) stratifications, cf. §4.1. It remains a curious question that if one can
obtain an integral version of diagram (1.1.3): namely, remove 1/p on the top, and change
C to OC in the bottom. This (at least) would entail a substantial (integrality) checking of
many results, including those in the classical paper [Sen81]. We do not pursue this here.

We now explain how to reduce the above “prismatic” theorem to a more “classical” problem
close to the context in the study of (overconvergent) (ϕ, τ)-modules. We first recall the two (most)
important prisms.

Notation 1.1.8. (1) Let S = W (k)[[u]], and equip it with a Frobenius ϕ extending the
absolute Frobenius on W (k) and such that ϕ(u) = up. Then (S, (E(u)) ∈ (OK)∆, and is
called the Breuil-Kisin prism (associated to π).

(2) Recall C is the p-adic completion of K, let C♭ be the tilt with ring of integers OC♭ . Let
Ainf = W (OC♭) be the ring of Witt vectors, equipped with the absolute Frobenius. There is
a usual Fontaine’s map θ : Ainf → OC whose kernel principal. Then (Ainf , ker θ) ∈ (OK)∆,
and is called the Fontaine prism.

(3) Let π0 = π, and for each n ≥ 1, inductive choose some πn so that πp
n = πn−1. This

compatible sequence defines an element π ∈ O♭
C . We can define a morphism of prisms

(S, (E)) → (Ainf , ker θ)

which is a W (k)-linear map sends u to the Teichmüller lift [π].
(4) We further introduce some field notations. Let µ1 be a primitive p-root of unity, and

inductively, for each n ≥ 2, choose µn a p-th root of µn−1. Define the fields

K∞ = ∪∞
n=1K(πn), Kp∞ = ∪∞

n=1K(µn), L = ∪∞
n=1K(πn, µn).

Let

GK∞
:= Gal(K/K∞), GKp∞

:= Gal(K/Kp∞), GL := Gal(K/L).

Further define ΓK , Ĝ as in the following diagram, where we let τ be a topological generator
of Gal(L/Kp∞) ≃ Zp, cf. Notation 1.4.1 for more details.

(1.1.4)

L

Kp∞ K∞

K

<τ>

ΓK

Ĝ

Coming back to Thm. 1.1.5, we focus on explaining the left vertical equivalence. In fact, the
difficulty lies in constructing the functor; once constructed, one then uses results from [Sen81] to
show it is an equivalence. Indeed, let M ∈ Vect((OK)∆,O∆[

1
p
]), and consider the evaluation

W := M((Ainf , ker θ)) ∈ RepGK
(C);

it suffices to show that W is nearly Hodge-Tate. We now use the Breuil-Kisin prism (S, (E)),
which is a cover of the final object in Shv((OK)∆). Thus M is completely determined by the
evaluation

M := M((S, (E)))

together with a stratification (the idea is similar to classical crystalline crystal theory). Note

O∆[1/p]((S, (E))) = (S/E)[1/p] = K,
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hence M is nothing but a K-vector space. In fact (cf. §4.1 for details), Min-Wang show: after
choosing a basis e of M , a stratification can be written as

(1.1.5) ε(e) = e ·
∑

n≥0

An
Xn

n!
,

where X is a variable, and each An a matrix over K. Furthermore, A0 = I is identity and

(1.1.6) An+1 =
n∏

i=0

(iE ′(π) + A1) for each n ≥ 0, and p-adically converges to zero as n → ∞,

where E ′(π) is the evaluation at π of the u-derivative E ′(u). One quickly notices (1.1.6) is
equivalent to say that the eigenvalues of −A1

E′(π)
are exactly of the form as in (1.1.2)! Hence to show

W is nearly Hodge-Tate, it would suffice to show the following, which confirms the conjecture of
Min-Wang [MW21, Conj. 3.17].

Theorem 1.1.9. (cf. Thm. 4.3.3.) The matrix −A1

E′(π)
is the matrix of the Sen operator for some

basis of W .

The proof of Thm. 1.1.9 uses yet another “interpretation” of the Sen operator (in addition to

stratifications discussed above). Indeed, by taking GL-invariants, the space WGL becomes a L̂-

vector space with Ĝ-action, where L̂ is the p-adic completion of L. Min-Wang explicitly compute
this Ĝ-action. Using the basis e from (1.1.5), they compute the τ -action:

τ i(e) = (e)(1− i · ∗)
−

A1
E′(π) , ∀i ∈ Zp,

where ∗ is some constant that we do not specify here. Thus, one observes that if we “take the log
of τ”, we obtain (up to scaling) our target matrix −A1

E′(π)
! In other words, to prove Thm. 1.1.9, it

is equivalent to show that: “taking the log of τ” gives rise to Sen operator ; this will be addressed
in next subsection.

1.2. Kummer tower and Sen theory. In this subsection, we explain how to use techniques
of locally analytic vectors —developed in our study of overconvergent (ϕ, τ)-modules — to prove
Thm. 1.1.9. As we explained above, the goal, roughly speaking, is to show Kummer tower can
be used to recover Sen theory, and in particular, “log τ” can recover Sen operator.

Let us first quickly recall some ideas and results in [GP21] to set up the context. Recall in
(algebraic) p-adic Hodge theory, we study representations of the Galois group GK . A key idea
is to first restrict the representations to some subgroups of GK . A most convenient subgroup is
GKp∞

since it is normal and the quotient group ΓK is a 1-dimensional p-adic Lie group, to which
many techniques in p-adic analysis — e.g. locally analytic vectors (cf. Def. 2.1.1) — can be
applied.

Indeed, for W ∈ RepGK
(C), the classical Sen module, reviewed above Def. 1.1.3, can be

obtained via

(1.2.1) DSen,Kp∞
(W ) = (W

GKp∞ )ΓK -la

Here, the notation “ΓK-la” denotes the subset of locally analytic vectors under the action of the
p-adic Lie group ΓK . Using this framework, the Sen operator is precisely the Lie algebra operator.
See §3.1 for more details.

For another example, for V ∈ RepGK
(Qp), the famous theorem of Cherbonnier-Colmez [CC98]

says that one can attach an overconvergent (ϕ,Γ)-module to it. To save space, we recall the
following (loose) formula which constructs the rigid-overconvergent (ϕ,Γ)-module (cf. §2.2 for

Berger’s well-known ring B̃
†
rig):

(1.2.2) D†
rig,Kp∞

(V ) ≈
(
(V ⊗Qp B̃

†
rig)

GKp∞

)ΓK -la

.
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(For the interested reader, the correct formula replaces left hand side by the union ∪nϕ
−n(D†

rig,Kp∞
(V )),

cf. [Ber16, Thm. 8.1]; applying Kedlaya’s slope filtration theorem [Ked05] to these objects then
recovers Cherbonnier-Colmez’s theorem).

Now, consider the subgroup GK∞
of GK constructed using the Kummer tower. The field

K∞ (similar to Kp∞) is still an APF extension (cf. [Win83]), hence Caruso [Car13] shows one
can construct the étale (ϕ, τ)-modules (similar to the étale (ϕ,Γ)-modules) to classify Galois
representations. In two papers joint with Liu and Poyeton respectively, [GL20, GP21], we prove
a conjecture of Caruso, which says that similar to Cherbonnier-Colmez’s theorem, one can also
attach overconvergent (ϕ, τ)-modules to V ∈ RepGK

(Qp). The proof in [GP21] uses crucially the
idea of locally analytic vectors, indeed, the main formula (again loosely written) is the following.

(1.2.3) D†
rig,K∞

(V ) ≈
(
(V ⊗Qp B̃

†
rig)

GL

)γ=1,τ -la

.

(Similar comments below (1.2.2) still apply, cf. [GP21] for full details.) Here γ = 1 denotes
the invariant under Gal(L/K∞)-action, and τ -la denotes the locally analytic vectors under the
Gal(L/Kp∞)-action, cf. Notation 2.1.2. A key difference from (1.2.2) is that we can not take
GK∞

-invariants first, because GK∞
⊂ GK is not normal. This fact complicates the computation

for (1.2.3). Nonetheless, we still manage to show it is a free module of full rank, and furthermore,
there is a “comparison” identification (cf. Convention 1.4.4):

(1.2.4) D†
rig,K∞

(V )⊗
(
(B̃†

rig)
GL

)Ĝ-la

= D†
rig,Kp∞

(V )⊗
(
(B̃†

rig)
GL

)Ĝ-la

.

Now, let us come back to our objective to construct a Sen theory over the Kummer tower. It
turns out the formulae are in parallel with those in the study of overconvergent (ϕ, τ)-modules.

Theorem 1.2.1. (cf. Thm. 3.3.1.) For W ∈ RepGK
(C), define

(1.2.5) DSen,K∞
(W ) := (WGL)γ=1,τ -la.

Then it is a K∞-vector space of dimension equal to dimC W . In addition, there is an identification:

(1.2.6) DSen,K∞
(W )⊗K∞

(L̂)Ĝ-la = DSen,Kp∞
(W )⊗Kp∞

(L̂)Ĝ-la.

Let us mention that a key ingredient in the proof of above theorem is an explicit description

of the set of locally analytic vectors (L̂)Ĝ-la: one such description is already obtained in [BC16];
we will obtain an alternative description which is convenient for us, cf. Prop. 3.2.8. Our task
does not stop here yet. Recall our objective, Thm. 1.1.9, is to construct a Sen theory over the
Kummer tower which (up to conjugation) should be “the same” as the cyclotomic-Sen theory.
Note since the Kp∞-Sen module DSen,Kp∞

(W ) (resp. the K∞-Sen module DSen,K∞
(W )) is defined

via locally analytic vectors, we can define the Lie algebra operator ∇γ associated to ΓK-action
(resp. ∇τ associated to τ -action). The following lemma is crucial, and follows from a theorem of
Berger-Colmez [BC16].

Lemma 1.2.2. (cf. Cor. 3.2.4) The two Lie algebra operators ∇γ and ∇τ are linearly dependent

over (L̂)Ĝ-la.

The above lemma implies that, roughly speaking, the two operators ∇γ and ∇τ (up to scaling)
acting on the comparison isomorphism (1.2.6), are indeed a same operator acting on two different
basis of a common vector space! Since the ∇γ-operator on DSen,Kp∞

(W ) is precisely the Sen
operator, thus so is ∇τ up to scaling! This finally achieves our desired goal. In precise words, we
obtain the following.

Theorem 1.2.3. (cf. Thm. 3.3.2.) Let W ∈ RepGK
(C), then we can construct a K∞-linear Sen

operator over the Kummer tower

(1.2.7)
∇τ

∗
: DSen,K∞

(W ) → DSen,K∞
(W ),
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where ∗ ∈ (L̂)Ĝ-la is some “normalizing constant” that we do not specify here. This operator,
after C-linearly extending to ∇τ

∗
: W → W , is the same as the C-linear extension of classical

Sen operator; hence in particular, they have the same characteristic polynomial and the same
semi-simplicity property.

Remark 1.2.4. For the overconvergent (ϕ,Γ)-module (1.2.2), there is also a differential operator
∇γ defined in [Ber02]. A differential operator N∇ (cf. 2.2.4) for the overconvergent (ϕ, τ)-
modules is defined in [Gao], which roughly speaking is a normalization of ∇τ : this operator plays
a significant role (that can not be obtained using only (ϕ,Γ)-module theory) in [Gao] to develop
integral p-adic Hodge theory. The above discussions, particularly Lem. 1.2.2 seem to suggest
that one might discover more connections between these two operators; this could be useful for
integral p-adic Hodge theory.

1.3. Structure of the paper. In §2, we review some results from [GP21, Gao] on locally analytic
vectors; in particular, we review some differential operators defined in loc. cit.. In §3, we construct
Sen theory over the Kummer tower, using techniques reviewed in §2. In §4, we use Sen theory over
the Kummer tower to study Hodge-Tate prismatic crystals; we prove the conjecture of Min-Wang,
and establish the link with nearly Hodge-Tate representations.

1.4. Notations and conventions.

Notation 1.4.1. Note Ĝ = Gal(L/K) is a p-adic Lie group of dimension 2. We recall the
structure of this group in the following.

(1) Recall that:
• ifK∞∩Kp∞ = K (always valid when p > 2, cf. [Liu08, Lem. 5.1.2]), then Gal(L/Kp∞)

and Gal(L/K∞) generate Ĝ;
• if K∞ ∩Kp∞ ) K, then necessarily p = 2, and K∞ ∩Kp∞ = K(π1) (cf. [Liu10, Prop.
4.1.5]) and ±i /∈ K(π1), and hence Gal(L/Kp∞) and Gal(L/K∞) generate an open

subgroup of Ĝ of index 2.
(2) Note that:

• Gal(L/Kp∞) ≃ Zp, and let τ ∈ Gal(L/Kp∞) be the topological generator such that

(1.4.1)

{
τ(πi) = πiµi, ∀i ≥ 1, if K∞ ∩Kp∞ = K;

τ(πi) = πiµi−1 = πiµ
2
i , ∀i ≥ 2, if K∞ ∩Kp∞ = K(π1).

• Gal(L/K∞) (⊂ Gal(Kp∞/K) ⊂ Zp
×) is not necessarily pro-cyclic when p = 2; how-

ever, this issue will never bother us.
(3) (This will only be briefly used in §3.2). If we let ∆ ⊂ Gal(L/K∞) be the torsion sub-

group, then Gal(L/K∞)/∆ is pro-cyclic; choose γ′ ∈ Gal(L/K∞) such that its image in

Gal(L/K∞)/∆ is a topological generator. Let Ĝn ⊂ Ĝ be the subgroup topologically
generated by τ p

n
and (γ′)p

n
.

Convention 1.4.2. In our set-up, the Hodge-Tate-Sen weight of the cyclotomic character is 1,
which is the same as in [Sen81] and [MW21], but is opposite to that in [Gao].

Definition 1.4.3. Suppose G is a topological group that acts continuously on a topological ring R.
We use RepG(R) to denote the category where an object is a finite free R-module M (topologized
via the topology on R) with a continuous and semi-linear G-action in the usual sense that

g(rx) = g(r)g(x), ∀g ∈ G, r ∈ R, x ∈ M.

(The only case in this paper where the action is linear is when R = Zp).

Examples of the above definition include RepC(GK) (already mentioned in the introduction),
as well as several categories in §3.
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Convention 1.4.4. Let M be a A-module where A is a ring. Let B ⊂ A be a subring, and let
N ⊂ M be a sub-B-module. If the natural map N ⊗B A → M is an isomorphism, then we call it
an identification, and simply write

N ⊗B A
≃
−→ M

or just
N ⊗B A = M

1.5. Acknowledgement. I thank Heng Du, Tong Liu, Zeyu Liu, Yu Min, and Yupeng Wang for
useful discussions and correspondences. Special thanks to Yupeng Wang for answering my many
questions and for several useful suggestions. The author is partially supported by the National
Natural Science Foundation of China under agreement No. NSFC-12071201.

2. Locally analytic vectors

In this section, we review some results from [GP21, Gao]. We recall the notion of locally
analytic vectors, and define some differential operators; these operators will be specialized to the
Sen theory setting in §3 and will be crucially used there.

2.1. Locally analytic vectors. Let us very quickly recall the theory of locally analytic vectors,
see [BC16, §2.1] and [Ber16, §2] for more details. Recall the multi-index notations: if c =

(c1, . . . , cd) and k = (k1, . . . , kd) ∈ Nd (here N = Z≥0), then we let ck = ck11 · . . . · ckdd . Recall that a
Qp-Banach space W is a Qp-vector space with a complete non-Archimedean norm ‖ · ‖ such that
‖aw‖ = ‖a‖p‖w‖, ∀a ∈ Qp, w ∈ W , where ‖a‖p is the p-adic norm on Qp.

Definition 2.1.1. (1) Let G be a p-adic Lie group, and let (W, ‖ · ‖) be a Qp-Banach rep-
resentation of G. Let H be an open subgroup of G such that there exist coordinates
c1, . . . , cd : H → Zp giving rise to an analytic bijection c : H → Zp

d. We say that an
element w ∈ W is an H-analytic vector if there exists a sequence {wk}k∈Nd with wk → 0
in W , such that

g(w) =
∑

k∈Nd

c(g)kwk, ∀g ∈ H.

Let WH-an denote the space of H-analytic vectors.
(2) WH-an injects into Can(H,W ) (the space of analytic functions on H valued in W ), and we

endow it with the induced norm, which we denote as ‖·‖H . We have ‖w‖H = sup
k∈Nd‖wk‖,

and WH-an is a Banach space.
(3) We say that a vector w ∈ W is locally analytic if there exists an open subgroup H as

above such that w ∈ WH-an. Let WG-la denote the space of such vectors. We have
WG-la = ∪HW

H-an where H runs through open subgroups of G. We can endow W la with
the inductive limit topology, so that W la is an LB space.

(4) We can naturally extend these definitions to the case when W is a Fréchet- or LF- repre-
sentation of G, and use WG-pa to denote the pro-analytic vectors, cf. [Ber16, §2].

Notation 2.1.2. We set up some notations with respect to representations of Ĝ (cf. Notation
1.4.1).

(1) Given a Ĝ-representation W , we use

W τ=1, W γ=1

to mean
WGal(L/Kp∞)=1, WGal(L/K∞)=1.

And we use
W τ -la, W γ-la

to mean
WGal(L/Kp∞)-la, WGal(L/K∞)-la.
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(2) Let W τ -la,γ=1 := W τ -la ∩W γ=1, then by [GP21, Lem. 3.2.4]

W τ -la,γ=1 ⊂ W Ĝ-la.

Remark 2.1.3. Note that we never define γ to be an element of Gal(L/K∞); although when
p > 2 (or in general, when Gal(L/K∞) is pro-cyclic), we could have defined it as a topological
generator of Gal(L/K∞). In particular, although “γ = 1” might be slightly ambiguous (but only
when p = 2), we use the notation for brevity.

Notation 2.1.4. For g ∈ Ĝ, let log g denote the (formally written) series (−1) ·
∑

k≥1(1− g)k/k.

Given a Ĝ-locally analytic representation W , the following two Lie-algebra operators (acting on
W ) are well defined:

• for g ∈ Gal(L/K∞) enough close to 1, one can define ∇γ := log g
log(χp(g))

;

• for n ≫ 0 hence τ p
n
enough close to 1, one can define ∇τ := log(τp

n
)

pn
.

Clearly, these two Lie-algebra operators form a Zp-basis of Lie(Ĝ).

2.2. Locally analytic vectors in B̃I. We briefly recall the rings ÃI and B̃I , see [GP21, §2] for
detailed discussions, also see [Gao, §2] for a faster summary.

Recall in Notation 1.1.8, using the sequence πn, we defined an embedding S →֒ Ainf , and

henceforth, we identify u with the element [π] ∈ Ainf . For n ≥ 0, let rn := (p−1)pn−1. Let Ã[rℓ,rk]

be the p-adic completion of Ã+[ p

uepℓ
, uepk

p
], and let

B̃[rℓ,rk] := Ã[rℓ,rk][1/p].

These spaces are equipped with p-adic topology. When I ⊂ J are two closed intervals as above,

then by [Ber02, Lem. 2.5], there exists a natural (continuous) embedding B̃J →֒ B̃I . Hence we
can define the nested intersection

B̃[rℓ,+∞) :=
⋂

k≥ℓ

B̃[rℓ,rk],

and equip it with the natural Fréchet topology. Finally, let

B̃
†
rig :=

⋃

n≥0

B̃[rn,+∞),

which is a LF space.

Convention 2.2.1. When Y is a ring with a GK-action, X ⊂ K is a subfield, we use YX to denote

the Gal(K/X)-invariants of Y . Examples include when Y = ÃI , B̃I and X = L,K∞. This “style
of notation” imitates that of [Ber02], which uses the subscript ∗K to denote GKp∞

-invariants.

Definition 2.2.2. (cf. [GP21, §5.1] for full details). The compatible sequence (1, µ1, µ2, · · · ) in
Notation 1.1.8 defines an element ε ∈ O♭

C . Let [ε] ∈ Ainf be its Techmüller lift. Let t = log([ε]) ∈
B+

cris be the usual element, where B+
cris is the usual crystalline period ring. Define the element

λ :=
∏

n≥0

(ϕn(
E(u)

E(0)
)) ∈ B+

cris.

Define

t =
t

pλ
,

then it turns out t ∈ Ainf .

Lemma 2.2.3. [GP21, Lem. 5.1.1] There exists some n = n(t) ≥ 0, such that t, 1/t ∈ B̃[rn,+∞).

In addition, t, 1/t ∈ (B̃
[rn,+∞)
L )Ĝ-pa.
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Let us caution that t is an element of (the Banach space) (Ainf)
GL, but it is not a locally

analytic vector inside it; roughly speaking, we need the bigger spaces B̃I
L (which contains t, the

p-adic 2πi) to take “derivatives”.

Definition 2.2.4. We define two differential operators on the ring (B̃†
rig,L)

Ĝ-pa, which are “nor-
malized” operators of those in Notation 2.1.4.

(1) (cf. [Gao, §4]). Define

N∇ : (B̃†
rig,L)

Ĝ-pa → (B̃†
rig,L)

Ĝ-pa

by setting

(2.2.1) N∇ :=





1
pt
· ∇τ , if K∞ ∩Kp∞ = K;

1
p2t

· ∇τ =
1
4t
· ∇τ , if K∞ ∩Kp∞ = K(π1), cf. Notation 1.4.1.

(the definition is valid over the bigger “log ring” (B̃†
log,L)

Ĝ-pa which is not needed here.)

Note that 1/t is in (B̃†
rig,L)

Ĝ-la by Lem 2.2.3, hence division by t is allowed. A convenient
and useful fact is that N∇ commutes with Gal(L/K∞), i.e., gN∇ = N∇g, ∀g ∈ Gal(L/K∞),
cf. [Gao, Eqn. (4.2.5)].

(2) (cf. [GP21, 5.3.4].) Define

∂γ : (B̃†
rig,L)

Ĝ-pa → (B̃†
rig,L)

Ĝ-pa

via

∂γ :=
1

t
∇γ.

Since γ(t) = χ(γ) · t, we have ∇γ(t) = t and hence

∂γ(t) = 1.

Remark 2.2.5. We mention some remarks about N∇ that are not used in the sequel.

(1) The p (resp. p2) in the denominator of (3.2.2) makes our monodromy operator compatible
with earlier theory of Kisin in [Kis06], but up to a minus sign. See also [Gao, 1.4.6] for
general convention of minus signs in that paper.

(2) The operator N∇ in fact restricts to an operator

N∇ : B†
rig,K∞

→ B
†
rig,K∞

,

where B
†
rig,K∞

is the Robba ring in the (ϕ, τ)-module setting, cf. [Gao, §4].

3. Kummer tower and Sen theory

In this section, we first review classical (cyclotomic) Sen theory. We then compute the set of

locally analytic vectors (L̂)Ĝ-la; this is used as a bridge transporting the Kp∞-Sen theory to the
K∞-Sen theory. To be more precise, in §3.3, we define the K∞-Sen module DSen,K∞

(W ), and
define the K∞-Sen operator 1

θ(uλ′)
· N∇. This operator, when linearly extended over C (in fact,

(L̂)Ĝ-la is enough), becomes the same as the classical Sen operator.

3.1. Cyclotomic tower and Sen theory. Let K̂p∞ be the p-adic completion of Kp∞. Similar to

RepGK
(C), let RepΓK

(Kp∞) resp. RepΓK
(K̂p∞) denote the category of semi-linear representations.

Theorem 3.1.1. Base change functors induce equivalences of categories

RepΓK
(Kp∞) ≃ RepΓK

(K̂p∞) ≃ RepGK
(C).
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Here, given W ∈ RepGK
(C), the corresponding object in RepΓK

(K̂p∞) is W
GKp∞ , and the corre-

sponding object in RepΓK
(Kp∞) is

(3.1.1) DSen,Kp∞
(W ) := (W

GKp∞ )ΓK-la

Proof. This is proved in [Sen81], except the last formula (3.1.1). In [Sen81], DSen,Kp∞
(W ) is

recovered as the “K-finite vectors”; it turns out they coincide with the locally analytic vectors,
by [BC16, Thm. 3.2]. �

Notation 3.1.2. Let W ∈ RepGK
(C).

(1) Since (3.1.1) implies ΓK-action on DSen,Kp∞
(W ) is locally analytic, thus the operator ∇γ

in Notation 2.1.4 induces a operator

(3.1.2) ∇γ : DSen,Kp∞
(W ) → DSen,Kp∞

(W ).

This is called the Sen operator : it is Kp∞-linear because ∇γ kills Kp∞ .
(2) We can C-linearly extend ∇γ to DSen,Kp∞

(W )⊗Kp∞
C = W . That is, we obtain a C-linear

operator

(3.1.3) ∇γ : W → W ;

we still call it the Sen operator.

3.2. Locally analytic vectors in L̂. Let B+
dR denote the usual de Rham period ring. Let

θ : B+
dR → C be the usual map which extends θ : Ainf → OC . Recall that as in [Ber02, §2.2],

when rn ∈ I, there exists a continuous embedding ιn : B̃I →֒ B+
dR.

Lemma 3.2.1. Consider the image of t via the map θ : Ainf → OC, then 0 6= θ(t) ∈ (L̂)Ĝ-la. In

addition, 1/θ(t) ∈ (L̂)Ĝ-la.

Proof. We first check θ(t) 6= 0. Recall t = t
pλ
. Note θ( t

[ε]−1
) = 1 using the expansion t = log([ε]).

Hence it suffices to show θ( [ε]−1
E(u)

) 6= 0: this holds because both E and [ε]−1
ϕ−1([ε]−1)

generate the

principal ideal ker θ.
The proof of analyticity for θ(t) and 1/θ(t) are the same; alternatively, we can use the fact that

(L̂)Ĝ-la is a field [BC16, Lem. 2.5]. We treat θ(t) in the following. Choose n ≥ n(t) as in Lem.

2.2.3 so that t ∈ (B̃
[rn,rn]
L )Ĝ-la. Consider the image of t under the following composite map

(3.2.1) B̃[rn,rn] ιn−→ B+
dR

θ
−→ C;

since both maps are continuous, hence the image is an element in (L̂)Ĝ-la. Unfortunately, the map
ιn factors as

B̃[rn,rn] ϕ−n

−−→ B̃[r0,r0] ι0−→ B+
dR,

hence the image of t under (3.2.1) is only θ(ϕ−n(t)). That is, we obtained

θ(ϕ−n(t)) ∈ (L̂)Ĝ-la.

Nonetheless, we have ϕ(t) = pE(u)
E(0)

t. One can deduce that

t = ϕ−n(t) ·

n∏

i=1

ϕ−i(
pE(u)

E(0)
),

which holds as an equality inside Ainf . To see that θ(t) ∈ (L̂)Ĝ-la, it then suffices to see that each

θ(ϕ−i(pE(u)
E(0)

)) is locally analytic: but each of these is an element of K∞ hence is locally analytic

(indeed, locally trivial). �

Definition 3.2.2. Over the field (L̂)Ĝ-la, we can define two differential operators, which are
precisely “θ-specializations” of those in Def. 2.2.4.
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(1) Define

N∇ : (L̂)Ĝ-la → (L̂)Ĝ-la

by setting

(3.2.2) N∇ :=





1
pθ(t)

· ∇τ , if K∞ ∩Kp∞ = K;

1
p2θ(t)

· ∇τ =
1

4θ(t)
· ∇τ , if K∞ ∩Kp∞ = K(π1), cf. Notation 1.4.1.

Similar as in Def. 2.2.4, we have gN∇ = N∇g, ∀g ∈ Gal(L/K∞).
(2) Define

∂γ : (L̂)Ĝ-la → (L̂)Ĝ-la

via

∂γ :=
1

θ(t)
∇γ.

(3) Both these (normalized) differential operators are well-defined for a (L̂)Ĝ-la-vector space

equipped with semi-linear and locally analytic action by Ĝ.

The following theorem of Berger-Colmez is crucial for the discussion in the following.

Theorem 3.2.3. Let K̃/K be a Galois extension contained in K whose Galois group is a p-adic

Lie group with Lie algebra g, and let
̂̃
K be the p-adic completion. There exists some m ∈ N, a

non-zero element a ∈ O ̂̃
K(µpm )

⊗Zp g such that a = 0 over (
̂̃
K)Gal(K̃/K)-la.

Proof. This follows from [BC16, Thm. 6.1, Prop. 6.3]. Note in loc. cit., one can make a

“primitive” (defined above [BC16, Thm. 6.1]. In addition, this a can be chosen as a certain “Sen
operator” (see [BC16, Prop. 6.3]). �

Corollary 3.2.4. Up to a nonzero scalar, the combination θ(uλ′)∇γ + N∇ (from Def. 3.2.2) is

the unique non-zero operator in L̂⊗Zp Lie(Ĝ) that kills all of (L̂)Ĝ-la. Here λ′ is the u-derivative
of λ defined in Def. 2.2.2.

Proof. The existence of a linear combination a∇γ + b∇τ that kills (L̂)Ĝ-la is guaranteed by Thm.

3.2.3. In addition, neither ∇γ nor ∇τ alone can kill all of (L̂)Ĝ-la; hence the combination has
to be unique up to a non-zero scalar. It hence suffices to compute this operator against the

element θ(t) ∈ (L̂)Ĝ-la. Indeed, we can even make the computation inside (B̃†
rig,L)

Ĝ-pa. It is easy
to see ∇γ(t) = t. Using the formula in [Gao, Lem. 4.1.2] (which holds uniformly even when
K∞ ∩Kp∞ = K(π1)), one computes

N∇(t) = N∇(
t

pλ
) =

t

p
· (−

1

λ2
)N∇(λ) =

−t

pλ2
· λu ·

d

du
(λ) = −tuλ′.

Hence we can conclude. We remark that it is more convenient to use N∇ instead of ∇τ in the
formula as it already subsumes the possible normalization issues when p = 2. �

We now determine the structure of (L̂)Ĝ-la. We first review a description Prop. 3.2.7 by Berger-
Colmez. We then obtain an alternative description Prop. 3.2.8 which is more convenient for
us.

Construction 3.2.5. (1) As in [BC16, §4.4], consider the 2-dimensional Qp-representation of
GK (associated to our choice of {πn}n≥0) such that g 7→

(
χ(g) c(g)
0 1

)
where χ is the p-adic

cyclotomic character. Since the co-cycle c(g) becomes trivial over Cp, there exists α ∈ Cp

(indeed, α ∈ L̂) such that c(g) = g(α)χ(g)− α. This implies g(α) = α/χ(g) + c(g)/χ(g)

and so α ∈ L̂Ĝ-la.
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(2) Now similarly as in the beginning of [BC16, §4.2], let αn ∈ L such that ‖α− αn‖p ≤ p−n.
Then there exists r(n) ≫ 0 such that if m ≥ r(n), then ‖α − αn‖Ĝm

= ‖α − αn‖p and

α − αn ∈ L̂Ĝm-an (see Notation 1.4.1 for Ĝm, and see Def. 2.1.1 for ‖ · ‖Ĝm
). We can

furthermore suppose that {r(n)}n is an increasing sequence.

Definition 3.2.6. Let (H, ‖ · ‖) be a Qp-Banach algebra such that ‖ · ‖ is sub-multiplicative,
and let W ⊂ H be a Qp-subalgebra. Let T be a variable, and let W{{T}}n be the vector space
consisting of

∑
k≥0 akT

k with ak ∈ W , and pnkak → 0 when k → +∞. For h ∈ H such that

‖h‖ ≤ p−n, denote W{{h}}n the image of the evaluation map W{{T}}n → H where T 7→ h.

Proposition 3.2.7. (1) L̂Ĝ-la = ∪n≥1K(µr(n), πr(n)){{α− αn}}n.

(2) L̂Ĝ-la,∇γ=0 = L.

(3) L̂τ -la,γ=1 = K∞.

Proof. Item (1) is [BC16, Prop. 4.12], the rest follow easily, cf. [GP21, Prop. 3.3.2]. We quickly

recall the proof of Item (1) here. Suppose x ∈ L̂Ĝn-an. For i ≥ 0, let

yi =
∑

k≥0

(−1)k(α− αn)
k∇k+i

τ (x)

(
k + i

k

)
,

then there exists m ≥ n such that yi ∈ L̂Ĝm-an, and

(3.2.3) x =
∑

i≥0

yi(α− αn)
i ∈ L̂Ĝm-an

Note roughly speaking, (3.2.3) is the “Taylor expansion” of x with respect to the “variable” α−αn.
The equality (3.2.3) holds precisely because

(3.2.4) ∇τ (α− αn) = ∇τ (α) = 1.

Finally, the fact ∇τ (yi) = 0 will imply that yi ∈ K(µm, πm), concluding (1). �

Proposition 3.2.8. Denote β = θ(t). Apply the same procedure as in Item (2) of Construction
3.2.5, choose the analogous elements βn ∈ L. Then

L̂Ĝ-la = ∪n≥1K(µr(n), πr(n)){{β − βn}}n.

Proof. Recall in Def. 3.2.2, we defined ∂γ := ∇γ

β
. Since ∇γ(β) = β, we have

(3.2.5) ∂γ(β − βn) = ∂γ(β) = 1.

This is the key analogue of Eqn. (3.2.4). Now similar to the proof in Prop. 3.2.7, suppose

x ∈ L̂Ĝn-an, we can define

zi =
∑

k≥0

(−1)k(β − βn)
k∂k+i

γ (x)

(
k + i

k

)
,

then there exists m ≥ n such that zi ∈ L̂Ĝm-an, and

(3.2.6) x =
∑

i≥0

zi(β − βn)
i ∈ L̂Ĝm-an

Finally, ∂γ(zi) = 0 implies that ∇γ(zi) = 0 and hence zi ∈ K(µm, πm). �
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3.3. Kummer tower and Sen theory.

Theorem 3.3.1. Given W ∈ RepGK
(C) of dimension d, define

DSen,K∞
(W ) := (WGL)τ -la,γ=1.

Then this is a K∞-vector space of dimension d, and there are identifications (cf. Convention
1.4.4):

(3.3.1) DSen,K∞
(W )⊗K∞

(L̂)Ĝ-la = DSen,Kp∞
(W )⊗Kp∞

(L̂)Ĝ-la = (WGL)Ĝ-la.

Proof. We study DSen,K∞
(W ) = (WGL)τ -la,γ=1 in two steps. In Step 1, we show (WGL)Ĝ-la,∇γ=0 is

of dimension d over L, this is achieved via a monodromy descent. In Step 2, via an (easy) étale
descent, we further show the (γ = 1)-invariant DSen,K∞

(W ) has dimension d.
Step 1 (monodromy descent). We claim the following:

• Let M be a L̂Ĝ-la-vector space of dimension d with a semi-linear and locally analytic
Ĝ-action. Then the subspace M∇γ=0 is a L-vector space of dimension d such that

(3.3.2) M∇γ=0 ⊗L L̂Ĝ-la = M

This is a “θ-specialization” of the argument [GP21, Rem. 6.1.7], hence the proof is practically
verbatim. To proceed, as in Prop. 3.2.8, we denote β = θ(t). There, we also made use of the
operator ∂γ = 1

β
∇γ, which is precisely θ-specialization of the operator (with same notation) in

[GP21, 5.3.4]. Choose a basis of M , and let Dγ = Mat(∂γ), then it suffices to show that there

exists H ∈ GLd(L̂
Ĝ-la) such that

(3.3.3) ∂γ(H) +DγH = 0

For k ∈ N, let Dk = Mat(∂k
γ ). For n large enough, the series given by

H =
∑

k≥0

(−1)kDk
(β − βn)

k

k!

converges to the desired solution of (3.3.3). Here, β − βn is used as a “variable” just as in the
proof of Prop. 3.2.8.

Step 2 (etale descent). By [GP21, Prop. 3.1.6], we know

(3.3.4) (WGL)Ĝ-la = DSen,Kp∞
(W )⊗Kp∞

(L̂)Ĝ-la.

Apply Step 1 to the above vector space, and so

X := (WGL)Ĝ-la,∇γ=0

is a vector space over L of dimension d. In addition, X is stable under Gal(L/K∞)-action as
this action commutes with ∇γ . (Note however τ -action does not commute with ∇γ, not even on
the ring level: for example τ∇γ(u) = 0 6= ∇γτ(u).) In summary, X is a L-vector space with a
Gal(L/K∞)-action. Note L = ∪nK(πn, µn) and Gal(L/K∞) is topologically finitely generated.
Thus, for n ≫ 0, X descends to some Gal(L/K∞)-stable vector space Xn over K(πn, µn). By
Galois descent, Xγ=1

n is a K(πn)-vector space of dimension d, and hence Xγ=1
n ⊗K(πn) K∞ is

precisely the desired DSen,K∞
(W ). Finally, apply [GP21, Prop. 3.1.6] again, then we have

(3.3.5) (WGL)Ĝ-la = DSen,K∞
(W )⊗K∞

(L̂)Ĝ-la,

which together with (3.3.4) proves (3.3.1). �

Let W ∈ RepGK
(C), since DSen,K∞

(W ) are locally analytic vectors, we can define (cf. Def.
3.2.2)

(3.3.6) N∇ : DSen,K∞
(W ) → (WGL)Ĝ-la
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Theorem 3.3.2. Let W ∈ RepGK
(C), then Eqn. (3.3.6), after linear scaling, induces a K∞-linear

operator, which we call the Sen operator over the Kummer tower

(3.3.7)
1

θ(uλ′)
·N∇ : DSen,K∞

(W ) → DSen,K∞
(W ).

(We also sometimes use the simplified terminology “K∞-Sen operator”). Extend it C-linearly to
a C-linear operator on DSen,K∞

(W )⊗K∞
C = W , and denote it by the same notation:

(3.3.8)
1

θ(uλ′)
·N∇ : W → W

Then this is precisely the (uniquely defined) Sen operator in Eqn. (3.1.3).

Proof. Note we have the relation gN∇ = N∇g, ∀g ∈ Gal(L/K∞), hence N∇ stabilizes DSen,K∞
(W ).

Furthermore, θ(uλ′) ∈ K∞, hence 1
θ(uλ′)

· N∇ still stabilizes DSen,K∞
(W ). Thus (3.3.7) is well-

defined. This is a K∞-linear operator because ∇τ hence 1
θ(uλ′)

·N∇ kills K∞.

By Cor. 3.2.4, a = ∇γ +
1

θ(uλ′)
N∇ is an (L̂)Ĝ-la-linear operator on both sides of the following:

DSen,K∞
(W )⊗K∞

(L̂)Ĝ-la = DSen,Kp∞
(W )⊗Kp∞

(L̂)Ĝ-la.

On the right hand side, N∇ kills DSen,Kp∞
(W ) and hence a = ∇γ is precisely the (L̂)Ĝ-la-linear ex-

tension of the Sen operator in Eqn. (3.1.2). Similarly, on the left hand side, ∇γ kills DSen,K∞
(W ),

and hence a is the same as the (L̂)Ĝ-la-linear extension of (3.3.7). We can conclude by further
extending C-linearly. �

Corollary 3.3.3. The two operators 1
θ(uλ′)

·N∇ in Eqn. (3.3.7) and ∇γ in Eqn. (3.1.2) have the

same eigenvalues, and have the same semi-simplicity property.

Notation 3.3.4. Let F be a field. Write EndoF for the category consisting of (M, f) where M
is a finite dimensional F -vector space and f : M → M is an F -linear endomorphism.

Proposition 3.3.5. Let W1,W2 ∈ RepGK
(C). By abuse of notation, we use φSen to denote the

Sen operators on DSen,Kp∞
(Wi) as well as on Wi, cf. Notation 3.1.2. Similarly, we use φK∞−Sen

to denote the K∞-Sen operators on DSen,K∞
(Wi), cf. Thm. 3.3.2. The following are equivalent.

(1) W1 and W2 are isomorphic as objects in RepGK
(C).

(2) (DSen,Kp∞
(W1), φSen) and (DSen,Kp∞

(W2), φSen) are isomorphic as objects in EndoKp∞
.

(3) (W1, φSen) and (W2, φSen) are isomorphic as objects in EndoC.
(4) (DSen,K∞

(W1), φK∞−Sen) and (DSen,K∞
(W2), φK∞−Sen) are isomorphic as objects in EndoK∞

.

Proof. Clearly, (1) implies (2)-(4). (2) obviously implies (3); (4) implies (3) by Thm. 3.3.2. The
implication from (3) to (1) is proved in [Sen81, p. 101, Thm. 7]. �

4. Hodge-Tate prismatic crystals

In §4.1 and §4.2, we review results of Min-Wang about Hodge-Tate prismatic crystals and their
relation with stratifications. In §4.3, we show that a linear operator appearing in the stratification,
upon scaling, is precisely our K∞-Sen operator constructed in §3.3. This makes it possible to
classify rational Hodge-Tate prismatic crystals by nearly Hodge-Tate representations. In §4.4, we
make comparison with a theorem of Sen.

4.1. Hodge-Tate prismatic crystals.

Definition 4.1.1 (Hodge–Tate crystals). [MW21, Def. 3.1]

(1) A Hodge-Tate prismatic crystal on (OK)∆ is a sheaf M of O∆-modules such that for any
(A, I) ∈ (OK)∆, M((A, I)) is a finite projective A/I-module and that for any morphism
(A, I) → (B, J), the natural map

M((A, I))⊗A B → M((B, J)).
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is an isomorphism. Denote by Vect((OK)∆,O∆) the category of such objects.

(2) The category Vect((OK)∆,O∆[1/p]) is defined analogously using the sheaf O∆[1/p]: e.g.,
M((A, I)) is a finite projective (A/I)[1/p]-module.

Definition 4.1.2 (Stratification). cf. [MT, Def. 3.14] or [MW21, Def. 3.2]. Let (B, I) ∈ (OK)∆,
and let (B•, IB•) be the associated co-simplicial prism. Let p0, p1 : B → B1, p01, p02, p12 : B

1 →
B2 be the canonical morphisms. Let M be a B-module.

(1) A stratification on M is a B1-linear isomorphism

ε : M ⊗B,p1 B
1 → M ⊗B,p0 B

1.

(2) Say a stratification ε satisfies the cocycle condition if

p∗01(ε)p
∗
12(ε) = p∗02(ε).

The Breuil-Kisin prism (S, E) is a cover of the final object of Shv((OK)∆) (cf. [MW21, Lem.
2.2]), hence by a well-known argument, e.g., [MT, Cor. 3.9], the category of Hodge-Tate prismatic
crystals is equivalent to the category of finite free OK-modules equipped with stratifications (with
respect to the prism (S, E)) satisfying the cocycle condition.

To compute the stratification explicitly, one needs to know the structures of the rings Si/E.
Note for any i ≥ 0, we have

Si+1 = W (k)[[u0, . . . , ui]]{
u0 − u1

E(u0)
, . . . ,

u0 − ui

E(u0)
}
∧(p,E(u0))

δ ,

which is the (p, E(u0))-adic completion of the δ-ring W (k)[[u0, . . . , ui]]{
u0−u1

E(u0)
, . . . , u0−ui

E(u0)
}δ. This

ring is extremely complicated; fortunately, it becomes very simple after modulo E.

Lemma 4.1.3. [MW21, Lem. 2.7] For any 1 ≤ i ≤ n, denote Xi the image of u0−ui

E(u0)
∈ Sn modulo

(E), then
Sn/(E) ≃ OK{X1, . . . , Xn}

∧
pd

where the right hand side is the free pd-polynomial ring on the variables X1, . . . , Xn.

Thus, for M a finite free OK-module, a stratification with respect to (S, E) can be written
explicitly. Indeed, for e = (e1, . . . , el) an OK-basis of M , a stratification can be expressed via

(4.1.1) ε(e) = e ·
∑

n≥0

An
Xn

n!
,

where each An is a matrix over OK . We now determine all such possible An.

Proposition 4.1.4. cf. [MW21, Thm. 3.5, Rem. 3.7] Let M be a finite free OK-module with a
basis e. Then a rule

(4.1.2) ε(e) = e ·
∑

n≥0

An
Xn

n!

determines a stratification satisfying the cocycle condition if and only if

• A0 = I, and
• An+1 =

∏n
i=0(iE

′(π) + A1) for each n ≥ 0, and converges to zero as n → ∞.

If the above is satisfied, Eqn. (4.1.2) can be re-written as

(4.1.3) ε(e) = e · (1−E ′(π)X)
−

A1
E′(π)

where E ′(π) is the evaluation at π of the derivative E ′(u).

Definition 4.1.5. Define the (tensor) category of Hodge-Tate prismatic modules to consist of
pairs (M, f) where M is a finite free OK-module, f : M → M is an OK-module endomorphisms
such that all of its eigenvalues (in K) are of the form

(4.1.4) iE ′(π) +mOK
for some i ∈ Z.
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That is, the eigenvalues belong to Z+mOK
when K is unramified, and belong to mOK

when K has
non-trivial ramification. A morphism (M, f) → (N, g) is an OK-module homomorphism M → N
compatible with f and g.

Corollary 4.1.6. The category Vect((OK)∆,O∆) is tensor equivalent to the category of Hodge-
Tate prismatic modules via the evaluation functor:

M 7→ M((S, (E))).

Proof. Let (M, f) be an OK-module with an endomorphism, and let A1 be the matrix of f with
respect to a chosen basis of M . These data, via Eqn. (4.1.3), induce a stratification if and only if∏n

i=0(iE
′(π)+A1) converges to zero. This is equivalent to the condition that for each eigenvalue α

of A1, the element
∏n

i=0(iE
′(π)+α) converges to zero in C. Hence in particular, one of the terms

iE ′(π) + α is in the maximal ideal, giving rise to the condition (4.1.4). Conversely, if iE ′(π) + α
is in the maximal ideal, then each jE ′(π) + α is integral, and each (i + kp)E ′(π) + α is in the
maximal ideal, and hence

∏n
i=0(iE

′(π) + α) converges to zero. �

Remark 4.1.7. All the above discussions hold for rational Hodge-Tate prismatic crystals, simply
by replacing all appearances of “OK-modules” by “K-vector spaces”.

4.2. Hodge-Tate crystals on perfect prismatic site.

Definition 4.2.1. A rational Hodge-Tate prismatic crystal on the perfect prismatic site (OK)
perf

∆

is a sheaf M of O∆[
1
p
]-modules such that for any (A, I) ∈ (OK)

perf

∆
, M((A, I)) is a finite projective

A/I[1
p
]-module and that for any morphism (A, I) → (B, J), the natural map

M((A, I))⊗A B → M((B, J))

is an isomorphism. Denote by Vect((OK)
perf

∆
,O∆[

1
p
]) the category of such objects.

Construction 4.2.2. Let M ∈ Vect((OK)
perf

∆
,O∆[

1
p
]). Let ξ := [ε]−1

ϕ−1([ε]−1)
, which is a generator of

ker θ.

(1) The evaluation of M at (Ainf , (ξ)) is a C-vector space, which has a canonical semi-linear
GK-action induced from the GK-action on the prism (Ainf , (ξ)).

(2) Let Ainf,L := (Ainf)
GL , then (Ainf,L, (ξ)) is still a perfect prism. The evaluation of M at

(Ainf,L, (ξ)) induces a L̂-vector space with a semi-linear Ĝ-action.

Proposition 4.2.3. [MW21, Thm. 3.12, Rem. 3.13] The evaluations above induce tensor equiv-
alences of categories:

(4.2.1)

RepGK
(C)

Vect((OK)
perf

∆
,O∆[

1
p
])

RepĜ(L̂)

Here the vertical equivalence is a well-known consequence of Falting’s almost purity theorem (es-

sentially because L̂ is a perfectoid field).

4.3. Hodge-Tate prismatic crystals and Sen theory.

Notation 4.3.1. Let M ∈ Vect((OK)∆,O∆[1/p]). Consider evaluations

M := M((S, E)), V (M) := M((Ainf,L, (ξ))) ∈ RepĜ(L̂), W := M((Ainf , ξ)) ∈ RepGK
(C);

they give rise to identifications (of vector spaces)

(4.3.1) M ⊗OK
L̂ = V (M), V (M)⊗L̂ C = W.



18

Proposition 4.3.2. [MW21, Thm. 3.15] Use notations in 4.3.1. Let (M, f) be the corresponding
pair as in Def. 4.1.5, except now with M a K-vector space, cf. Rem. 4.1.7. Let e be a basis of
M , and let A1 be the matrix of f with respect to this basis. Then the (semi-linear) action of Ĝ
on V (M) is given by:

(4.3.2) g(e) = (e) ·
(
1− c(g)E ′(π)πλMW(1− µp)

)− A1
E′(π) .

Here c(g) ∈ Zp is determined by g(π) = εc(g)π; the symbol λMW, denoted as “λ” in [MW21, Prop.
3.14], equals to θ(ξ/E).

Theorem 4.3.3. Use notations in 4.3.1 and Prop. 4.3.2.

(1) We have

(4.3.3) DSen,K∞
(W ) = M ⊗K K∞.

(2) Scaling f : M → M by −1
E′(π)

and extending K∞-linearly gives rise to

−1

E ′(π)
f : M ⊗K K∞ → M ⊗K K∞;

then this is the same (via (4.3.3)) as the K∞-Sen operator

1

θ(uλ′)
·N∇ : DSen,K∞

(W ) → DSen,K∞
(W )

defined in Thm. 3.3.2.

The above theorem proves [MW21, Conj. 3.17]: indeed, the C-linear extension

−1

E ′(π)
f : W → W,

via Thm. 3.3.2 again, is the Sen operator on W as in Notation 3.1.2.

Proof. Item (1). The formula (4.3.2) implies that Gal(L/K∞) acts trivially on M . In addition,
the formula

(4.3.4) τ i(e) = (e)
(
1− c(τ i) · E ′(π) · π · λMW · (1− µp)

)− A1
E′(π) ,

implies that elements of M are τ -locally analytic. Here note

c(τ i) = i, resp. 2i, when K∞ ∩Kp∞ = K, resp. K(π1).

In summary,
M ⊂ V (M)γ=1,τ -la

Thus [GP21, Prop. 3.1.6] implies that

DSen,K∞
= M ⊗K K∞.

Item (2). The formula (4.3.4) further implies that

∇τ (e) = (e)πλMW (1− µp)A1, resp. (e)2πλMW (1− µp)A1,

when K∞ ∩Kp∞ = K, resp. K(π1). This implies our K∞-Sen operator acts via

(4.3.5)
1

θ(uλ′)
·N∇(e) = (e)

πλMW (1− µp)A1

pθ(uλ′t)
= (e)

πλMW (µp − 1)E ′(π)

pθ(uλ′t)
·
−A1

E ′(π)

To finish the proof of this theorem, it suffices to check the “scalar term” is 1, namely:

πλMW (µp − 1)E ′(π)

pθ(uλ′t)
= 1

Using λMW = θ( µ
ϕ−1(µ)E

) where µ = [ε]− 1, and θ(ϕ−1(µ)) = µp − 1, the above identity simplifies
as

θ(
µE ′

pλ′tE
) = 1
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Note θ( t
µ
) = 1 using t = log(µ+ 1), it suffices to check

(4.3.6) θ(
tE ′

pλ′tE
) = 1

Apply multiplication rule to λ′, one sees that

θ(λ′) =
E ′(π)

E(0)
θ(ϕ(λ))

Hence (4.3.6) becomes

θ(
t

p E
E(0)

ϕ(λ)t
) = 1

The denominator is p E
E(0)

ϕ(λ)t = pλt = t, thus we can conclude. �

Remark 4.3.4. We discuss “canonicity” of the equivalence in Cor. 4.1.6.

(1) Let π1, π2 be two uniformizers of K with minimal polynomials E1, E2 over K0. Thm. 4.3.3
implies that the linear endomorphisms encoded in the equivalence Cor. 4.1.6 (with respect
to the two different Breuil-Kisin prisms) are differed by a scalar of E ′

1(π1)/E
′
2(π2). Hence

the equivalence in Cor. 4.1.6 is independent of choices of uniformizers if and only if K is
unramified. Nonetheless, see also next item.

(2) We want to warn the readers a potential pitfall. In the identification M ⊗K C = W via
Eqn. (4.3.1), W is independent of choices of uniformizers. We can regard M as a K-sub-
vector space of W ; this sub-space is not independent of choices of the Kummer tower K∞,
(and hence perhaps we can say, that as a subspace of W , M is not “canonical”.) Indeed,
suppose otherwise, that M is independent of choices of Kummer towers K∞. The formula
(4.3.2) implies that M has trivial action by Gal(K/K∞), now for any possible Kummer
tower K∞. But these different possible Gal(K/K∞)’s generate the entire Gal(K/K), by
[EG, Lem. F15] or the discussions in [Gao, Lem. 7.3.2]. That is to say, GK acts on M
trivially; this implies that the Sen operator has to be zero, by formula (4.3.2), or by [Sen81,
p.100, Thm. 6].

The following theorem finally completes the diagram (1.1.3). Recall RepnHT
GK

(C) is defined in
Def. 1.1.3.

Theorem 4.3.5. The evaluation functor M 7→ W := M((Ainf , ξ)) in Notation 4.3.1 induces an
equivalence of categories:

Vect((OK)∆,O∆[1/p]) ≃ RepnHT
GK

(C).

Proof. Let M ∈ Vect((OK)∆,O∆[1/p]), we first show W (M) is nearly Hodge-Tate. Let (M, f) be
the associated pair via Cor. 4.1.6, then Thm. 4.3.3 implies −1

E′(π)
f is the Sen operator; hence the

condition (4.1.4) translates into the condition (1.1.2) in Def. 1.1.3. This shows W (M) is nearly
Hodge-Tate, and gives our desired functor

(4.3.7) Vect((OK)∆,O∆[1/p]) → RepnHT
GK

(C).

We now prove the functor is essentially surjective. For any W ∈ RepGK
(C), let φSen be the

Sen operator on DSen,Kp∞
(W ). By [Sen81, p.100, Thm. 5], there exists a sub-K-vector space

of full dimension M ⊂ DSen,Kp∞
(W ) which is stable under φSen.

1 If W is in addition nearly
Hodge-Tate, then the eigenvalues of φSen|M has to satisfy the condition in (1.1.2), and hence
(M, f = −E ′(π) · φSen|M) is a pair satisfying condition (4.1.4). Via Cor. 4.1.6, we can obtain a
stratification and hence a rational Hodge-Tate prismatic crystal M. Let W ′ = M((Ainf , (ξ))) ∈
RepGK

(C) be the associated representation, one needs to check it is isomorphic to W . By Thm.

4.3.3, DSen,K∞
(W ′) = M ⊗K K∞, and its K∞-Sen operator is precisely −1

E′(π)
f = φSen|M ⊗ 1; hence

1Note this sub-K-vector space is in general not unique. For example, consider the trivial C-representation whose
Sen operator is the zero map, then any sub-K-vector space is stable under the zero map.
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in particular, by Thm. 3.3.2, the C-linear Sen operator on W ′ = M ⊗K C is the same as that
on W = M ⊗K C. Thus W ′ is isomorphic to W by Prop. 3.3.5. (We point to Rem. 4.3.6 for a
possible confusion in the construction above.)

We now prove the functor is fully faithful. LetM1,M2 ∈ Vect((OK)∆,O∆[
1
p
]), let (M1, f1), (M2, f2)

be the corresponding pairs via Cor. 4.1.6, and let W1,W2 ∈ RepnHT
GK

(C) be the corresponding rep-
resentations. It suffices to show

Morph((M1, f1), (M2, f2)) → Morph(W1,W2)

is a bijection. It is injective because Mi contains a basis of Wi; it hence suffices to show both sides
have the same K-dimension. Note that (4.3.7) is a tensor functor and note fi’s are (scaled) Sen
operators. By considering the C-representation HomC(W1,W2), it suffices to show the following
statement: given M ∈ Vect((OK)∆,O∆[

1
p
]) with corresponding (M, f) and W , then we have

Mf=0 = WGK ;

but this follows from [Sen81, p.100, Thm. 6] (which implies the above two spaces are isomorphic
after tensoring with C). �

Remark 4.3.6. Let us point out a possible confusion in the proof of essential surjectivity above.
In the proof, we obtained a C-linear isomorphim W → W ′ compatible with the C-linear Sen
operators via

(4.3.8) W ≃ M ⊗K C ≃ M((S, E))⊗K C ≃ W ′

where the first isomorphism follows from Sen’s construction and the rest follow by construction
in Notation 4.3.1. Nonetheless, the “identity” map M ⊗K C ≃ M((S, E)) ⊗K C is not “GK-
equivariant”! Indeed, the τ -action on M is trivial under classical Sen theory; whereas the τ -action
on M((S, E)) is in general not trivial by Prop. 4.3.2. The powerful aspect of Sen’s theorem
[Sen81, p. 101, Thm. 7], is that the φSen-equivariant map (4.3.8) already guarantees existence of
a GK-equivariant isomorphism between W and W ′, although in an implicit way!

4.4. Comparison with a theorem of Sen. We recall a (rather peculiar) theorem of Sen which
also concerns about “K-rationality” of the Sen operator, and make some comparisons with our
result.

Theorem 4.4.1. [Sen81, p.110, Thm. 10] Suppose the residue field k is algebraically closed.
Then there exists a (non-canonical) equivalence between RepGK

(C) and the category of K-vector
spaces equipped with a linear operator. This non-canonical equivalence, which depend on choices
for each simple object in RepGK

(C), is never compatible with tensor products.

4.4.2. Let us say a few words about the rather technical proof of the above theorem.

(1) Recall, as we already used in the proof of our Thm. 4.3.5, Sen shows in [Sen81, p.100,
Thm. 5] that for any C-representation, the Sen operator is “K-rational”: that is, it is
stable on a (certainly non-unique!) sub-K-vector space.

(2) Conversely, when the residue field k is algebraically closed, [Sen81, p.104, Thm. 9] shows
that any K-matrix can be recovered as a Sen operator for some C-representation. Note
however, as stated in [Sen81, p.105, Thm. 9’], this only constructs a set bijection between
H1(GK ,GLn(C)) and the set of similarity classes of n×n matrices over K. One still needs
to build some functoriality into this bijection.

(3) Sen then chooses, for each simple C-representation U , a K-vector space U0 stable under
Sen operator; this builds a functor for semi-simple objects. To get the complete functor,
one first map a general C-representation W to its semi-simple part WS, then one notes
(WS)0 is still stable under the Sen operator of W (not just that of WS!), since Sen operator
is Galois equivariant.
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Remark 4.4.3. In the remark following [Fon04, Thm. 2.14], Fontaine mentions that Thm. 4.4.1
can also be obtained using his classification of C-representations: this also points to the non-
canonicity of Thm. 4.4.1.

4.4.4. In fact, in p-adic Hodge theory, many typical theorems say that there is an equivalence of
categories:

MOD ≃ REP

where MOD is certain “module category” and REP is certain “representation category”. We invite
the readers to consider the examples such as results of Bhatt-Scholze [BS21], of Cherbonnier-
Colmez [CC98], or Thm. 4.3.5. In proofs of these results, it is normally easy to construct a
functor from MOD to REP (sometimes perhaps initially to a bigger representation category, such
as in our Thm. 4.3.5). The most difficult part almost always is to show the functor is essentially
surjective (or, to determine its essential image).

What happens with Sen’s result Thm. 4.4.1, is that there is not even an obvious map from
MOD to REP; Sen can still construct a such map, by the set bijection mentioned in 4.4.2(2): but
then this is hopeless to be a functor. This forces Sen to go the other way around, by constructing
a functor from REP to MOD, which then unfortunately relies on many choices, and cannot be
canonical. We regard this strong contrast with our Thm. 4.3.5 as another hint (in addition to
Rem. 1.1.7) that the nearly Hodge-Tate representations deserve to be further studied and applied.
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