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Iterative distributed optimization algorithms involve multiple agents that communicate with each other, over time,
in order to minimize/maximize a global objective. In the presence of unreliable communication networks, the Age-
of-Information (Aol), which measures the freshness of data received, may be large and hence hinder algorithmic
convergence. In this paper, we study the convergence of general distributed gradient-based optimization algorithms
in the presence of communication that neither happens periodically nor at stochastically independent points in
time. We show that convergence is guaranteed provided the random variables associated with the Aol processes are
stochastically dominated by a random variable with finite first moment. This improves on previous requirements of
boundedness of more than the first moment. We then introduce stochastically strongly connected (SSC) networks,
anew stochastic form of strong connectedness for time-varying networks. We show: If for any p > 0 the processes
that describe the success of communication between agents in a SSC network are a-mixing with nP _la(n)
summable, then the associated Aol processes are stochastically dominated by a random variable with finite p-
th moment. In combination with our first contribution, this implies that distributed stochastic gradient descend
converges in the presence of Aol if «(n) is summable.

Keywords: Distributed Optimization; Stochastic Gradient Decent; Time-Varying Networks; Age of Information;
a-Mixing; Stochastic dominance

1. Introduction

Distributed optimization of stochastically approximated loss functions lies at the heart of many system-
level problems that arise in multi-agent learning [26], resource allocation for data centers [12], or
decentralized control of power systems [18]. In these scenarios, distributed implementations have many
advantages such as balanced workload or the avoidance of a single point of failure. However, this
usually comes with high communication costs for coordination [29], entailing that information can
only be exchanged rarely, causing local versions of global information to be significantly outdated.
Hence, it is of high interest to characterize conditions such that a distributed optimization algorithm
can converge when only significantly outdated information with sporadic updates is available.

We therefore consider distributed stochastic optimization problems (SOPs) where the choice of local
optimization variables has to be coordinated over an uncertain time-varying communication network.
A typical distributed SOP can take the following form:

a* = (a],...,2p) = argmin E¢ [f(z,£)] (1.1)
T€ERL

The objective is to minimize a real-valued function f : R% x S — R, which is function of an optimiza-
tion variable 2 € R% and a random variable & representing noise or uncertainty taken from a set S.
The optimization variable z is composed of local components x; € R% that are associated with local
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agents of a distributed system. Hence, no global control of z is possible. Moreover, the distribution
of £ is typically unknown in practical scenarios and the agents can only observe samples £” of the
uncertainty ¢ at discrete time steps . € Ng. Thus, the problem is that each agent ¢ has to coordinate
the local choice for its variable z; with all other agents by exchanging information over a network and
iteratively refine the choice based on the observed samples of uncertainty £”.

To solve this problem, we propose the following solution. Suppose every agent ¢ runs a local dis-
tributed stochastic gradient descent (SGD) algorithm that generates a sequence {z}' } 7, to solve prob-
lem (1.1). Ideally, every agent ¢« would like to have direct access to every new element of the sequences
{x;‘ o2 from every other agent j # 4 during run-time of its own local algorithm. However, due to
the distributed nature of the considered setting, the agents have to communicate their updates for their
local optimization variables to other agents via a communication network. Because of the uncertainty

of communication networks, each agent 7 can therefore only use delayed versions :C;-L_Tij (n) for all

J # i to update its own local variable z*. Here, :C;-L_Tij (n) denotes the newest update of ; available at

agent i at time 7 and 7;;(t) is its corresponding age. We refer to the 7;;(t)’s as the Age of Information
(Aol) variables. The resulting distributed algorithm is therefore in essence a “straightforward” imple-
mentation of SGD, where the true values of local variables are replaced by their aged counterparts.
Due to the size of generated information in large distributed systems, and the uncertainty and high cost
for communication over networks, the Aol variables can not be expected to be bounded and should
therefore be modelled as an unbounded sequence of random variables. The problem is therefore to
formulate mild network and communication assumptions that are representative and easily verifiable
such that this SGD algorithm that uses highly aged information will still converge.

A major challenge for this problem is the multitude of potential factors that affect the Aol random
variables. Information exchange between some pairs of agents might experience unbounded delays;
mobility of agents or network scheduling algorithms can induce a varying set of network topologies.
This can create dependencies among successive network transmissions, preventing agents from ex-
changing data for extended periods of time. In general, transmissions that happen close in some do-
main (e.g. time, frequency, or space in wireless communication) are expected to be highly correlated.
It is therefore important to formulate a communication network model and associated assumptions that
can represent these cases while being mathematically tractable for analysis. Notably, the assumption
of guaranteed periodic or stochastically independent communication is practically unrealistic.

1.1. Network models in the literature

One of the most common models in the distributed optimization literature is a time-varying network
model that is represented by a time-varying graph (Definition 5). For this graph, the most common
assumption is that there is a constant M such that the union graph associated with all time intervals
[n,n 4+ M] is strongly connected [32, 1, 34, 15]. A network with this property is typically called uni-
formly strongly connected [21], M -strongly connected [22, 28] or jointly strongly connected [33].
This model implies guaranteed periodic communication. Another common model is to assume a time-
varying network graph whose expected union graph is strongly connected, where the events that de-
scribe the success of communication across network edges are independent across time [3, 16, 14, 25].

In ref. [16, 22, 32, 28, 34, 14, 3, 15] the objective is that agents come to a consensus on one global
optimization variable to minimize the sum of real-valued functions, each of which associated with one
of the local agents. Although such consensus-type problems might appear quite different to (1.1), it
turns out that an algorithm for (1.1) can also find a solution for consensus problems after a minor
reformulation at the cost of additional communication, which we discuss in [27]. In contrast to the



consensus type problems, ref. [33, 1, 25] and this work consider distributed optimization problems
where each agent has to select a local optimization variable, such that the combination of all local
variables solves a global optimization problem.

Observe that literature exclusively considers network models that either guarantee periodic commu-
nication or require communication based on independent events. We believe that these are restrictive
assumptions that do not represent real-world communication networks well. To close this gap, we
present a less restrictive network model and verifiable network conditions that guarantee that an SGD
algorithm finds a solution to problems of the form (1.1). We also show the aforementioned typical
network assumptions from the literature are stronger versions of our new set of network assumptions
(Assumptions 5 and 6). Our assumptions only require a stochastic form of strong connectivity and a de-
pendency decay (mixing) property. To the best of our knowledge, ours is the first work that guarantees
asymptotic convergence of a distributed optimization scheme under such mildly restrictive conditions,
connecting an abstract optimization theory with a wide range verifiable network conditions. However,
it must be noted that other papers (such as those discussed above) can provide rate of convergence
results while we merely give an almost sure convergence analysis.

1.2. Summary of contribution

Our work contributes to the literature of network conditions that guarantee asymptotic convergence
to the set of stationary points of a distributed stochastic optimization problems with potentially non-
convex objective function. Our work, builds on our previous work on SGD for time-varying networks
[25]. However, whereas in [25] the focus was on the optimization iteration, with a strong and restrictive
i.i.d. network assumption, this work focuses on guaranteeing convergence under significantly weaker
network conditions. Most importantly, our network conditions cover time-varying network topologies,
unbounded communication delays, non-independent aperiodic communication, asynchronous local up-
dates and event-driven communication.

As the first step, we describe a distributed stochastic gradient descend algorithm (Algorithm 1) that
instead of true local variables uses aged variables as a consequence of network communication. The
Aol variables 7;;(n) therefore induce gradient errors when comparing Algorithm 1 with and without
Aol. As our first major contribution, we show in Lemma 2 that the aforementioned gradient errors
vanish asymptotically under an asymptotic growth conditions for the Aol variables. Specifically, we
require that all 7;;(n) for all n € Ny are stochastically dominated by a non-negative integer-valued
random variable with at least finite first moment. This provides a significant weakening of traditional
assumptions from the stochastic approximation literature in the present setting, since traditionally a
dominating random variable with at least a bounded moment greater than one was required. With
Lemma 2 we then show the convergence of Algorithm 1 in Theorem 1.

Our second contribution is a universally applicable time-varying network model and associated as-
sumptions to generally verify the existence of dominating random variables with an arbitrary required
moment conditions. Our time-varying network model is formulated using events A%, each of which
represents successful information exchange from some agent ¢ to another agent j during some time
slot n. We then introduce the notion of (e, k)-stochastically strongly connected (SSC) network with
e € (0,1) and x € Ng. This notion requires that there is a set of network edges that form a strongly

connected graph for which P (UQ"'“AZ-)) > ¢ for all n € Ny. In other words, for those edges commu-

nication is successful at least ones over every interval of length x with at least probability . We then
present a general recipe to validate stochastic dominance properties with required moment conditions.
Afterwards, Theorem 2 presents our main result: Fix any p > 0 and consider a (&, x)-SSC network. If

there exists some 7 € No, such that the processes ]lUZf” Az, are a-mixing with > nP~ta(n) < oo,
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then all Aol variables 7;;(n) are stochastically dominated by non-negative integer-valued random vari-
able 7 with E [7P] < co. This result, together with Theorem 1, will therefore imply our final con-
vergence result for Algorithm 1 under the minimal requirement of a SSC network with summable
a-mixing coefficients.

The rest of the paper is structured as follows: In Section 2 we state notation and preliminaries from
probability and graph theory. In Section 3 we discuss the problem formulation and our distributed
SGD algorithm. Afterwards we prove the almost sure convergence of Algorithm 1 in Section 4 un-
der asymptotic growth conditions for the Aol variables. We then introduce our time-varying network
model and associated assumptions in Section 5. Section 6 then presents our construction to validate
stochastic dominance properties and our main results. Finally, we discuss the verifiability of our net-
work assumptions and future work in Section 7.

2. Notation, definitions and preliminaries

This section presents notation, and preliminaries from probability and graph theory. Throughout our
work, discrete points in time are indicated by superscript letters n. We refer to a time slot n as the time
interval from time step n — 1 to n. We use n € Ny to denote n € NU {0}.

We make frequent use of the big O notation: Consider two real-valued sequences z™, y™. Then
2™ € O(y"), if limsup Ly < oo.

n—oo Y

From probability theory we need the concepts of stochastic dominance, expectation of non-negative

integer-valued random variables, measure of dependency and c-mixing:

Definition 1. A non-negative integer-valued random variable 7 is said to be stochastically domi-
nated by a random variable 7 if P (7 > m) <P (7 > m) for all m > 0.

Proposition 1 ([9]). Suppose T is non-negative integer-valued random variable, then

E[rP] = i((m+1)p—mp)P(T>m), p>0. 2.1

m=0

Let (2, F,P) be a probability space, and let A and B be two sub-o-algebras of F. The measure of
dependency o between A and B is defined as

a(A,B):= sup |P(ANDB)—-P(A)P(B)|. (2.2)
AcA,BeB

Consider a stochastic process X = {Xn}neNo- For 0 <1 < m < o0, define the sub-o-algebra gener-
ated from X; up to X, by

F'=0(Xn|l<n<m), 2.3)

Informally, the o-algebra generated by a stochastic process from a time interval describes the informa-
tion that can be extracted from the associated process realizations, see [11] for details.

Definition 2. The a-mixing coefficients of the process X are

a(n) = sup a(Fh,FPe,). (2.4)

for every n € Ng. The process X is called strongly mixing (or a-mixing), if «(n) — 0 as n — oo.



Mixing is a notion of asymptotic independence. We refer to [8] for a survey about different mixing
notions. We now introduce a subclass of strongly mixing processes with different rates of convergence:

Definition 3. The process X is called p-strongly mixing for some p > 0, if
o
Z nP~la(n) < co. (2.5)
n=0

We will use this new mixing property to describe dependency decay of different orders.
For details on graph theory we refer the reader to [30]. We require the following concepts:

Definition 4. A directed graph is called strongly connected, if every pair of nodes is connected by a
directed path.

Definition 5. A time-varying network is defined as sequence

{(V:€")}nenys (2.6)
where each element (V, ™) is a directed graph.
We will use the following new connectivity notion for time-varying networks:
Definition 6. A time-varying network {(V,E")}pen, is called (g, )-stochastically strongly con-

nected (SSC) with £ € (0,1) and x € Ny , if there exists a strongly connected graph (V, &), such that
for all n € Ny and for all (i,j) € £

n+k
P ((z’,j) cU 5’“) >e. 2.7)
k=n

3. Problem description

We consider a D-agent distributed optimization problem, where each agent i € V := {1,..., D} has
to choose values for a local variable ; € R% to minimize a global objective function F'. The global

optimization variable = (z1,...,2p) € R? is the concatenation of the local optimization variables
x; associated with the local agents. The objective function is assumed to be stochastic and given by
F(z) =E¢ [f(z,8)], 3.1

with f : RY x S — R a random real-valued function, where the randomness is modeled by an S-valued
random variable ¢ that represents noise or uncertainty.

As discussed in the introduction, if a central agent had direct control of the optimization vector
x, it would be straightforward to find a local minimum of (3.1) using stochastic gradient descend
(SGD) under suitable assumptions [7, Ch. 10]. However, as the components x; of z are associated with
distributed agents, we consider that the agents need to coordinate their choice for the local optimization
variables by exchanging information via a communication network.

We assume a synchronized communication setting according to a global clock n € Ng. Each agent
updates its local variable at every time step n based on a local gradient descend iteration. The iterations
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will be defined in Section 3.1. For each agent i € V), the local iterations generate a sequence {z}'} >
starting from an initial candidate value x? for the optimal value z7. To execute the local gradient
iteration, agent ¢ requires a locally available estimate of the current optimization variable x? of agent j
for all j # i. We consider that these information have to be communicated using a communication
network. Specifically, every agent will use the newest available local optimization variable from every
other agent to update its own local variable. Due to the potential uncertainty of the network only
aged/delayed versions of the local variables of the other agents are available at agent 7 at any time step.
Therefore, agent 7 has only access to the delayed version

XP = (x?—m(n), A .,xz_TiD(n)) (3.2)

n—ri;(n)
j A

time 7 and 7;(t)’s are the Aol random variables. Further, we refer to X" as the local believe vector of

of z™ at every time step n. Here, z denotes the newest update of z; available at agent 7 at

agent ¢ at time n. As the next step, we describe the gradient based iteration that uses X ; instead of 2"
to solve problem (3.1).

3.1. Algorithm

We consider that the agents iteratively refine their local variables using the partial derivatives
Va, f (+,€). We assume that the agents do not know the distribution of £, but during any time slot n an
agent can observe an i.i.d. realisation £ of £. For simplicity, we assume that all agents are affected by
the same realisation of the random variable £. In other words, when agent ¢ and agent j calculate their
partial derivatives during some time slot n, they use the same realisation £” of £, i.e. Vg, f(-,£™) and
Va, f (+,&™). The extension to agent-specific realisations of ¢ is merely a technical reformulation that
was already described in [24].

To evaluate the partial derivatives Vg, f(-,£™), agent ¢ uses the most recent available version of
the optimization variable arg‘ of agent j for all j # i, i.e. it calculates Vg, f (X 71,&") instead of
Ve, f(z™,&™). The following SGD iteration is used by each agent to update its local variable:

I;H_l = x? - a(n) (szf(inagn) + /\?) ) 3-3)

where {a(n)}nen, is a given step-size sequence and A}' is a local stochastic additive error that may
arise during the calculation of V, f. Algorithm 1 summarizes the protocol that runs on every agent
locally. For now, we assume that the agents use some communication protocol to exchange their local
believe vectors X ;¢ over a network. The protocol and the network properties therefore induce the dis-
tribution of the Aol variables 7;;(n). In the next section, we will proof the convergence of Algorithm 1
under an abstract growth conditions for the Aol variables. Section 5 then formulates a communication
network model and associated assumptions to satisfy these growth conditions.

Remark 1. In our previous work [25], we also included asynchronous gradient updates in (3.3). The
agents are therefore allowed to update their local variable not at every time step n > 0. This may be
included here using the associated assumptions from [25]. Our previous work, considers (3.3) for a
restrictive network model with independent communication (see Section 5.4 for further details). This
work resolves this issue, but we use synchronous gradient updates to avoid notational overload.



Algorithm 1: Local algorithm at agent ¢ € V
0

1 Initialize local optimization variable estimate x
2 Initialize local belief vector XZO ;
3 for all time steps n do

4 Obtain network sample ™ ;
1 .
5 el Tl — a(n) Ve, f(XP,€7)
6 Update i-th component of Xi" to new x?Jrl with appended timestamp n 4 1 ;
7 Run local communciation protocol to exchange in ;
s end

4. Asymptotic convergence of Algorithm 1

In this section, we will show the asymptotic convergence of Algorithm 1. Specifically, we show that
the iterations in (3.3) converge to a neighbourhood of a local stationary point of (3.1). The main part
of the proof is to show that the gradient errors

el =V F(al M g eny g R, € 4.1

due to Aol vanish asymptotically. This error captures the difference of the gradient descent step some
agent ¢ would take given its local believe vector compared to the true global state.

To show that the gradient errors vanish, we require that the Aol variables 7;;(n) satisfy an asymp-
totic growth conditions. Observe that the gradient errors depend on the Aol variables and the step size
sequence a(n), since a(n) determines how much successive steps of iteration (3.3) differ. If the step
size sequence gets smaller quick enough relative to some maximal potential growth of the Aol vari-
ables, we expect e’ to decay to zero. This is because even significantly outdated information stays
relevant, if the steps taken during that time were comparably small. The convergence of Algorithm 1
will then follow from the convergence of (3.3) when one considers no Aol, i.e. the case 7;;(n) = 0.

The following assumption formalize the required trade of between the choice of the step size se-
quence and the required network quality.

Assumption 1. 1. There exists p € [1,2) and a non-negative integer-valued random variable 7,
such that 7 stochastically dominates (Definition 1) all 7;;(n) for all 4, € V and all n € Ny with

E [7P] < oc.
2. The step-size sequence {a(n)}nen, satisfies:
o0 o0
i) 3 a(n)=o0, 3 a(n)? <oo.
n=0 n=0
1
(i) a(n) e O(n »)withpasin 1.

Assumption 1.1 requires that the network quality is good enough, such that the tail distribution of
the Aol variables 7;;(n) decays rapidly enough, such that at least a dominating random variable with
finite mean exists. This assumption contributes a significant weakening of the traditional assumptions
required for convergence in the present setting. The traditional assumptions formulated in [6], required
at least a dominating random variable with finite p-th moment for p > 1. In this work, we show for
the first time that actually p = 1 is sufficient to achieve asymptotic convergence. We show that under
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Assumption 1.1 the growth of each 7;;(n) can not exceed any fraction of n after some potentially large
time-step. We formulate this in Lemma 1.

Assumption 1.1(i) is standard in the stochastic approximation literature. Assumption 1.1(ii) requires
that we choose the step size depending on the network quality. For example, if only the worst network
quality can be verified, i.e. that there is only a dominating variable with finite mean, then we have
to choose a(n) € O( %) In addition to the aforementioned weakening of assumptions, we also do
not require that the step-size sequence is eventually monotonically decreasing and we only require

a(n) € O(n_%) instead of a(n) € o(n_%). Both conditions were traditionally assumed.

We will now present additional assumptions associated with the objective function f in (3.1) and the
iterations in (3.3). After that we show the convergence of Algorithm 1. In Section 5 we will then present
verifiable network conditions to ensure that Assumption 1.1 holds. We will also see that it is easy to
formulate very restrictive network conditions, such that the growth of the Aol variables behave very
well. For example, one can show that all moments of the Aol variables are bounded under the standard
assumptions in the distributed optimization literature (see Section 5.4). That is, Assumption 1.1 would
be satisfied for all p > 1.

In addition to Assumption 1, we require the following assumptions.

Assumption 2. 1. V. f is continuous and locally Lipschitz continuous in the z-coordinate, where
the associated constant may depend on .
2. E[Vaf]=V:E[f].
3. ¢ is an S-valued random variable, where S is a one-point compactificable space.

Assumption 3. Foralli € V, we have sup |[|z]'|| < oo a.s.
n&Ng

Assumption 4. Almost surely, lim sup||A\"||< A for some fixed A > 0.
n—oo

We refer to [25] for detailed discussion on the verifiability of Assumptions 2 to 4.

Recall the gradient errors due to the Aol variables in (4.1). Next, we will show that these gradient
errors vanish asymptotically. We start with an asymptotic grow property for the Aol variables under
Assumption 1.1.

Lemma 1. Under Assumption 1.1, we have for every € € (0,1) and for all i, j € V that
s 1
Z P (Tij(n) > anE) < 0. (4.2)
n=0

Proof. Fix e € (0,1). By Assumption 1 there is a non-negative integer-valued random variable 7, such
that

]P’(Tij(n) >En%) <P (F>gn%> (4.3)

for all n € Ny and E [7P] < co. Hence, we have

ZP(Tij(n)>5n%) < Z]P’(?>gn%) (4.4)
n=0 n=0



_Z Z <T>€np) 4.5)

m=0neN (m)
<> Y PEe>m)= ZW )P (T >m), (4.6)
m=0neN (m)
where the sets N (m) are defined as
N(m):={neNy:m< env <m+1}={neNy:mP/er <n < (m+1)P/er} 4.7

1
for every m € Ny. We use these sets to consider all en? in every interval [m,m -+ 1). The second in-
equality then follows from the monotonicity of the cumulative distribution function (CDF) by definition
of the sets V' (m). Since |N (m)| < eip ((m+1)P — mP), we have therefore shown that

oo

ZP(TU >Enzl’>gEipZO((n+1)p—np)P(?>n)—gipIE[?p]<oo. (4.8)

The last equality follows from Proposition 1, since 7T is a non-negative integer-valued random variable.
O

We are now ready to prove that the gradient errors due to Aol vanish asymptotically.

Lemma 2. Under Assumptions 1 to 3, we have that hm He"||—

Proof. By Assumption 3, we have that 2™ € B,.(0) for some sample path dependent radius 0 < R <
0o. Then, [25, Lemma 1] shows that V. F" is locally Lipschitz continuous with a constant independent
of £&. Hence, V F is globally Lipschitz continuous with a constant L when restricted to B z(0). Using
the triangular inequality, the established Lipschitz continuity of V. F' and Assumption 3, we have that

n—1 n—1
lefl<ZY . Y et -aPi<ed " Y a(m), 4.9)

JEV m=n—1;(n) JEV m=n—1;;(n)
for a sample path dependent constant C' > 0. We will now show that
n—1
lim > am)| =0, (4.10)

n—0
m=n—7;;(n)

o , _—
which will imply that nlgréo llef||= 0.

1
By Assumption 1, a(n) € O(n" P ). Hence, there are constants ¢ > 0 and IV € N, such that

1
a(n) <en » foralln > N. (4.11)
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Also by Assumption 1, there is some 7 that stochastically dominates all 7;;(n), with [E [7P] < co. Now
fix e € (0,1). By Lemma 1 we have that

Z P <Tij(n) > En%> < 00. (4.12)

n=0
1
It now follows from the Borel-Cantelli Lemma that [P (Tij (n) >en? i.o. ) = 0. Hence, there is sample

path dependent N (¢) € N, such that

1

Tij(n) <env Vn> N(e). (4.13)
Equations (4.11) and (4.13) therefore yield that

n—1 n—1

Y am)<e Y mF (4.14)

m=n—1;;(n) m:n—en%

1 1
for all n with n > N () and n — en? > N. Finally, using the monotonicity of n~ P, we have

n—1
_1 1 11 19,1 € (1,2),
Z m P <enp(n—enr) p=¢(l—ene 1) P—){Ee pe(l,2) (4.15)
n— 00 —= p= 1.
1 1—¢
m=n—enP
Hence,
n—1 ce
limsu a(m) | < 4.16
n—)oop Z ( ) “1-¢ ( )
m=n—1;;(n)

and (4.10) follows, since the choice of ¢ is arbitrary. ([l

In [25, Theorem 1] we proved the convergence of Algorithm 1 for 7;;(n) = 0 for all n € Ny. The
following theorem is now an immediate consequence of this result and Lemma 2.

Theorem 1. Under Assumptions I to 4, we have that Algorithm 1 converges almost surely to a \-
neighbourhood of the set of stationary points of F, where X is the almost sure bound of the additive
errors according to Assumption 4.

5. A new set of network conditions for distributed optimization

In the previous section, we presented a convergence proof for Algorithm 1 under the network assump-
tion Assumption 1.1. This assumption directly requires that some p-th moment of all Aol variables
is bounded. However, the distribution of all Aol variables will typically be the consequence of direct
agent to agent communication. We are therefore interest in more concrete conditions on the network
and the agent communication that imply the required Aol moment conditions. To achieve this, this
section introduces a network model and associated assumptions to verify Assumption 1.1.
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5.1. Network model

Recall that Algorithm 1 requires that the agents exchange their local variables 7' over a network. The
network and an associated communication protocol should allow that local variables z’ can frequently
spread across the network and reach every agent. We will now introduce a network model were the
agents try to exchange their local belief vectors X ;'. The agents therefore try to share their latest
available version of all other agents local variable with other agents. This might potentially flood the
network with data, however, there well known protocols to reduce the number of possibly redundant
transmissions [17].
We assume a time-varying network (Definition 5)

{(V7gn)}n€N07 (51)

which is a sequence of directed graphs. Each agent is in one-to-one correspondence with one node in
the graph. For every time step n € Ny, an edge (i, j) € E™ represents the event that agent ¢ successfully
exchanges its local believe vector in during time slot n with agent 5. We denote this event by AZ
Therefore, the sequence of directed graphs and the sequences of events {A%}nENo are in one to one
correspondence: An edge (i,7) € £™ if and only if the event A% occurs. An edge therefore does not
represent the possibility for communication, but the actual event of communication.

One may add additional complexity to the model, e.g. using a graph that represents the possibility
for communication. Additionally, the model may be extended to scenarios where multiple successive
events A% need to occur to guarantee the exchange of a single realization of a believe vector X ;' This

might be necessary if the dimension of X ;' is very large and/or the network bandwidth is small.

Note that although we defined the events A7 for all (i,§) € V x V, some of those events might
never occur over the whole time horizon. We will especially do not require that all agents communicate
directly! However, at least some of the events A7 should occur “frequently” enough such that the time-
varying network satisfies certain connectivity properties. This will be formulated in Section 5.2 with
Assumption 5.

The formulation of the time-varying communication network using the edge events AZ- has several
advantages. The model allows for an underlying time-varying graph that may be the consequence of
an network scheduling algorithm or the physical dynamics of the agents themselves. Each event A7
can be represented as a multistage process. For example, (i) the availability of a channel, (ii) the use
of an access protocol given the availability of a channel, (iii) the success of the transmission given the
successful channel access. In general, the event-based formulation appears to be very convenient for
analysis.

In the next two subsection, we will formulate our assumptions for the time-varying network
{(V.€")}nen, using the events A’

5.2. Stochastic strong connectedness
The following assumption formalizes our required network connectivity property.

Assumption 5 (Network connectivity assumption). We assume that the time-varying network is
(¢, k)-stochastically strongly connected (SSC) (Definition 6) for some € € (0,1) and some x € Ng.
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Using the events A%, a (e, k)-SSC network requires there exists a strongly connected graph (V, &),
such that for all n € Ng and for all (i, j) € £, we have

n+k
P ( U A;;) > e, (5.2)
k=n

A (g, k)-SSC network therefore requires that there are some pairs of agents (4, j) € £ that can com-
municate directly at least ones in every time-interval of the form [n,n + k] with positive probability
. Notice that SSC does not require direct communication between every pair of agents. The only
agents that do communicate are those given in the set £. A SSC network reflects our intuition of a non-
degenerate communication network. Some agents can “frequently” exchange information with positive
probability and information can spread across the network since £ is strongly connected.

Note that a network that is SSC does not imply guaranteed transmissions periodically. We will see
shortly that SSC is significantly weaker that plain guaranteed periodic communication. With stochastic
strong connectivity we can not draw any conclusions about the dependency of events in the network. On
the other hand, assuming guaranteed periodic communication does imply a strong form of dependency
decay as shown in Section 5.4. Recall that our objective is to verify Assumption 1.1. However, using
SSC alone is not sufficient to even guarantee the existence of a dominating random variable as required
in Assumption 1.1. The next subsection therefore formulates dependency decay conditions using strong
mixing (Definition 2).

5.3. Network dependency decay

Recall that our time-varying network is given by a sequence of directed graphs {(V,£")},en,. The
sequence is in one-to-one correspondences with events AZ- that represent the presence of an edge
at time n. We will now formulate a dependency decay assumption based on the notion of strongly
mixing processes. We can then show that the Aol variables 7;;(n) associated with a (&, x)-SSC network
satisfies specific moment conditions depending on the assumed rate at which dependency decays in the
network.

Assumption 6 (Dependency decay assumption). We assume that the time-varying network is such
that there is some 77 > 0 such that each process ]].Un+7] n_ 18 p-strongly mixing (Definition 3) for some
k=n ‘1ij

pell,2).

With this assumption we do not require that the dependency of subsequent events A7 does decay
at any specific rate. However, there should be an interval size > 0, such that the dependency of
subsequent union events UZ:Z A% decays sufficiently fast. Notice that Assumption 6 is a dependency

decay assumption for the network processes ]lUn+ N 4n associated with all network edges (i,7) € V.
k=n ‘Yij

However, we actually only require the assumption for those edges (¢, j) € £ in an edge set £ according
to Assumption 5. Additionally, notice that we do not require any form of independence or dependency
decay between transmissions over different edges. The reason for this is Lemma 5. The lemma will
show that the existence of a dominating random variable for the Aol variables is in a natural way a
transitive property of the network.

In this work we don’t give a recipe to verify Assumption 6. However, we will see in the next sub-
section that the standard assumptions in the distributed optimization literature all imply Assumption 6.
Another set of examples where Assumption 6 is also directly satisfied are scenarios where the network
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events A7, are driven by a geometrically ergodic Markov process [10, 8]. Of course, it can be com-
paratively difficult to verify this in practice. However, traditionally and also more recently it has been
quite common to model network fading channels by finite Markov chains [31, 4, 23, 19, 5]. We further
discuss the verifiability of Assumption 6 in Section 7.

5.4. Comparison of Assumptions 5 and 6 to assumptions in the literature

In this subsection we show that the typical network assumptions in the literature imply Assumptions 5
and 6.

First, consider the network models in [25, 3, 16, 14]. It is easy to check that network models imply
the following properties:

1. There is a strongly connected graph (), £) and some € > 0, such that P (AZ;) > ¢ foralln € Ny

and for all (i,7) € £.
2. The events A% are independent for different time-steps or different edges.

Independence is particularly unrealistic for wireless communication systems, since transmission that
occur close in time, space, frequency or code can be highly correlated. Notably, this assumptions do
not show any trade off between the choice of the step size sequence a(n) and some network related
property. Hence, there is no trade of between the growth of the Aol variables and the choice of the
step size sequence. In fact, it is easy to show that under this assumptions all moments of all 7;;(n) are
bounded, see Section 6.1 Example 1.

We can now show that the above properties imply Assumptions 5 and 6. Assumption 5 is directly
satisfied for x = 1. Define the o-algebras

flm;:a(Ag;.ugngm;i,jev). (5.3)
Then Assumption 6 holds trivially, since the independence of the events A% implies that
P(ANB)—-P(A)P(B)|=0. (5.4)

for A e ]—'é and B € 7%, foralll,n € N. Hence, the mixing coefficients a;;(n) for each process A
satisfies cv;;(n) = 0 for every n > 0.

Second, consider the time-varying network in [33, 22, 32, 28, 1, 34, 15]. The authors assume that
their network is M -strongly connected. Hence, they assume guaranteed periodic communication. As-

sumption 5 is therefore directly satisfied by choosing x = M. Then P (UZIZ Afj) =1foralln € Ng.
Assumption 6 is also directly satisfied by choosing = M. To see this, fix any n,m > 0 with m # n.

Then
n+mn m+n
P((UA%)Q(UAZ))_L (5.5)
k=n k=m

since the intersection of almost sure events is an almost sure event. Therefore,

n—+n m-+n n+n m—+n
]P’((UA%)H(U A@))—P(UA%)P(U Afj):o (5.6)
k=n k=m k=n k=m

and Assumption 6 follows.
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We have therefore shown that the network models in the literature satisfy Assumptions 5 and 6.
Moreover, Assumptions 5 and 6 are significantly weaker, since they do not require independent com-
munication or guaranteed periodic communication, but merely asymptotic independence.

6. Stochastic dominance properties of Aol for Time-Varying
Networks

In this section, we show that Assumptions 5 and 6 imply Assumption 1.1. Recall that the Aol variables
Tij (n), as defined in Section 3, are now a consequence of the network model formulated in Section 5.1.
Each agent tries to send its local believe vector X Zn (Equation (3.2)) to some other agents. A successful
transmission to some other agent j is represented by an edge (i,5) € E™ of the time-varying network
{(V,€")}nen, or equivalently by the event A7

Recall that Assumption 1.1 requires finite moment properties of a random variable that stochastically
dominates (Definition 1) all 7;;(n). The following definition will be useful to formulate our main result
and the subsequent proof.

Definition 7. 'We say an Aol variable 7;;(n) is stochastically dominated with finite p-th moment
for some p > 0, if there exists a non-negative integer-valued random variable 7 that stochastically
dominates all 7;;(n) for and all n € Ng with E [7P] < co.

The following theorem formulates the main result of this section.

Theorem 2. Let {(V,E")}pen, be a time-varying network that is (e, k)-SSC (Definition 6) with
associated strongly connected graph (V, ). If for each (i, j) € &, there is some 1 € Ny, such that the

process ]].Un+n An 1S p-strongly mixing (Definition 3) for some p > 0, then all Aol variables ;;(n) are
k=n ‘ij
stochastically dominated by a single random variable with finite p-th moment.

Stochastic dominance with finite 0-th moment corresponds to the mere existence of a dominating
random variable without any necessary moment condition. Theorem 2 shows a more general result as
it would be required for the convergence of Algorithm 1. It is shown for all p € [0, 00). The following
corollary is now immediate and requires Theorem 2 for p € [1,2).

Corollary 1. Under Assumptions 2 to 6, we have that Algorithm 1 converges almost surely to a -
neighbourhood of the set of stationary points of F, where X is the almost sure bound of the additive
errors according to Assumption 4.

Proof. Under Assumption 5 and 6, it follows from Theorem 2 that Assumption 1.1 holds for some
p € [1,2). We can then choose a step size sequence a(n) that is not summable, but square summable

1
with a(n) € O(n" ?) and therefore also satisfy Assumption 1.2. The requirements of Theorem 1 are
therefore satisfied and the statement of the corollary follows. |

The rest of this section is devoted to the proof of Theorem 2. We begin by describing a general
construction/recipe to establish the stochastic dominance properties for Aol variables of time-varying
networks. In addition, we illustrate the recipe for the scenario where the edge events A% are indepen-
dent. Afterwards, we give the proof of Theorem 2. Before proceeding, we show a preliminary property
of the Aol variables for an (e, x)-SSC network.



15

Lemma 3. Let {(V,E")}pen, be a time-varying network that is (e, k)-SSC with associated strongly
connected graph (V, ), then for all (i, j) € £ we have

P (7j(n) >m) <e, VYm,n >k, 6.1)

Proof. First, we have have P (7;;(n) > m) = 0 for m > n, since 7;;(n) < n. We therefore concentrate
onm < n.Fix (i,7) € €, i.e. i and j are agents that can communicate directly. Observe that successful
direct communication from i to j during any time interval of the form [n — m + 1, n] implies that the
Aol at time n is less than m. In other words, we have the following inclusion

{ U 4cinm<m 6.2)

l=n—m+1

Since the network is (¢, x)-SSC, we have that

n
P(rgm=m) 2P| |J Ay|ze  Va>m=M (63
l=n—m+1

The complementary event of the previous expression therefore concludes the proof of the lemma. U

6.1. A construction to establish stochastic dominance properties

We now describe a general construction to establish the stochastic dominance properties with some
finite p-th moment (Definition 7) for an Aol variable 7;;(n). The idea is to find a uniform upper bound
u : Ng — R>, such that
P (7;j(n) >m) < u(m)
for all m > N independent of n € Ny for some N € Ny and li_r>n u(m) = 0. We can now use this
m—00
bound to define the CDF of a new random variable. Since 1i_1>n u(m) = 0 there is some M € Ny, such
m—00

that u(m) <1 for all m > M > N. Now define a non-negative integer-valued random variable 7;; by
describing its CDF (more precisely its complementary CDF) as follows:

P(?ij>m):1, 0<m< M, (6.4)
P (?z‘j > m) =u(m), m > M. (6.5)

By definition 7;; stochastically dominates all 7;;(n) for all n € Ng. Moreover, if

((m +1)P = mP)u(m) < o0

m=0

for some p > 0, then it will follow from Proposition 1 that 7;; (n) is stochastically dominated with finite
p-th moment.

As the next step, we describe how we can find a function u(m) for the above construction. Consider a
(e, k)-SSC network. Let (V, £) be the strongly connected graph associated with the (e, )-SSC network
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and fix an edge (4, j) € £. Let A(m) be an increasing sequence in N, with li_r}n A(m) = oo. Now for
m—0o0

each n, m € Ny use this sequence to define time indices
ny:=n—m+ A(m), ng =ng_1+ 2A(m) (6.6)
as long as ny < n. Let L(m) be the number of constructed time indices and observe that

L(m)
P(7;j(n) >m) <P {7ij(ng) > A(m)} | . 6.7)
k=1

This follows since 7;;(n) > m implies 7;;(ny) > A(m) for all k € {1,...,L(m)} by the very con-
struction of the time indices n. In general, we can now derive u(m) as an upper bound to the right-
hand side in (6.7), which we illustrate immediately for case of independent network communication,
i.e. were the events A7 are independent. For the case of dependent network communication, this will
be formulated in Lemma 4 in the next section.

Example 1 (Independent network communication). Let (), £) be the strongly connected graph as-
sociated with a (e, )-SSC network and consider an edge (i,5) € £. Using the exemplary network
independence and Lemma 3, we have from (6.7) that

L(m)
P (rij(n) >m) < [] P (rij(nk) > A(m)) < M), (6.8)
k=1

for all m large enough such that A(m) > k. Now define
._ L(m) ~
u(m)=¢ , A(m)=+vm

and hence L(m) ~ v/m/2. The construction described above then yields a dominating random variable
7 for all 7;;(n) for all n € Ny. It is now easy to verify that

E[r] < i ((m+1)P —=mP)u(m) = i ((m+1)P —mP)e¥™? < 00
m=0 m=0

for all p > 0, since the series is a version of a weighted geometric series. We have therefore estab-
lished that with independent communication, each Aol variable 7;;(n) with (4, j) € £ is stochastically
dominated with finite p-th moment for every p > 0. This underlines how strong the assumption of
independent communication is.

6.2. Proof of Theorem 2

In the previous example, we used the independence of the edge events A% to establish a uniform upper

bound for P (7;;(n) > m) with geometric decay. Recall that A(m) was used in (6.6) to define the time
indices ny,, such that n;, — A(m) — nj_; = A(m). Now consider the case where the edge events are
not independent but merely mixing. We will see that we can then find a new upper bound to (6.7), such
that
L(m)
P(7;j(n) >m) <P m {rij(ng) >A(m)} | < M) 4 error(A(m)). (6.9)
k=1
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with an error term error(A(m)) due to the non independence.
Now, if the mixing coefficients associated with processes ]lUn+7, 4n. decay rapidly enough, we ex-
J

k=n""
pect that error(A(m)) decays sufficiently, such that the new upper bound still satisfies some summa-
bility properties and hence allows that we establish stochastic dominance properties. The following
lemma makes this intuition precise. We establishes the stochastic dominance property of order p > 0

for those network edges (4, j) that ensure that the network is (e, x)-SSC.

Lemmad. Let {(V,E")}nen, be a time-varying network that is (¢, k)-SSC (Definition 6) with asso-

ciated strongly connected graph (V. E). If for any (i, j) € & the process ]].Un+n An IS p-strongly mixing
k=n"*"ij

(Definition 3) for some p > 0 and some 1) € Ny, then 7;;(n) is stochastically dominated with finite p-th
moment (Definition 7).

Proof. Fix an edge (i,j) € £. The theme of the proof is to establish a uniform upper bound to the
complementary CDF of 7;;(n) independent of n, such that the construction from Section 6.1 yields the
required dominating random variable.

Step 1 (Reduction to 1 = 0): The p-strongly mixing property of the network guarantees mixing of
the process ]].Un+7] an for some 7 € Ng. W.lo.g. we can assume that 7 = 0. This is justified as follows.

k=n “"ij

Lets denote by TZ- (k) a new random variable that captures the time, since the last interval of the form

[mn, (m + 1)n] with at least one successful transmission from 7 to j. The case n = 0 then yields the
conclusion of the Lemma for TZ- (k), i.e. there will be random variable F?j that stochastically dominates

all 7'2.77]. (k) withE {(?Z-)p} < oo.Forany k > 0and n € {kn, (k+1)n}, wehave 7;;(n) < n(7y (k) +1).
Therefore,

P (7j(n) >m) <P (N(Tfj(k:) +1) > m) <P (77(??]- +1)> m) (6.10)

and E {777’ (FZ + 1)7’} < 0o by Minkowski’s inequality. Hence, n(7x (k) + 1) would be the required
dominating random variable for 7;;(n) and we may therefore assume 7 = 0.

Step 2 (Initial CDF bound): Fix m € Ny and recall the definition of A(m) and the associated se-
quence ny, for each n € Ny from Section 6.1. We have

L(m)
P (7ij(n) >m) <P [ [ {7j(nx) > A(m)} | . (6.7 recalled)
k=1

With a slide abuse of notation we will now refer with 7;;(n) to the age of information associated with
the direct information exchange from i to j. The age of information associated with direct information
exchange by definition stochastically dominates the actual Aol. Without this step we would technically
require a stronger mixing requirement, specifically, one for the events generated by all AZ- and not
only for the events generated by A% for the pair (i, j). Note that Lemma 3 also directly holds for this
case, since we anyway used the direct information exchange to prove it.

We will now establish an upper bound to (6.7 recalled) using that 1 A7 is p-strongly mixing. For

this, define the following sub-o-algebras generated by the events A%:

ff::o(A%Hgngs), 1 € Np, s € NgU {oo}. (6.11)



18

The important generated events are, whether the Aol variables at some time step s € Ny exceed a
threshold [ € No, i.e. whether {7;;(s) > [}. Since the event {7;;(s) > [} is generated by the events Afj
withk e {s—1+1,...,s— 1, s},we have that

{7ij(s) > 1} € F_y 41 (6.12)

For this, we required the reduction to age of information associated with direct information exchange.
It then follows by definition of the time indices n;, that

n m
{Tij(nL(m)) >A(m)}t e ]:nLL((m))—A(m)-i-l C fﬁ(m)—A(m) (6.13)
and
{Tij(nk) >A(m)} € f::_A(m)+1 - -FSLL(mFl (6.14)
forevery k € {1,...,L(m) — 1}. Hence,
L(m)—1
N {7ij(n) > A(m)} € Fg ™ (6.15)
k=1

By construction of the indices nj, we have np, () — A(m) — NL(m)—1 = A(m). The strong mixing
property of the process 1 AT therefore implys that

L(m) L(m)—1
Bl () {rigne) > Am)} | <P ({ris(npgmy) > A} ) () {risl) > Alm)}
k=1 k=1
+a(A(m)),

(6.16)

where a(n) are the mixing coefficients associated with the process 1 AT It now follows from Lemma 3
that P (755 (ng) > A(m)) < e for A(m) > k, since the network is (e, x)-SSC. Hence,

L(m) L(m)—-1
Pl () i) >Am)} | <P () {riglng) > Am)} | +a(A@m)). (617
k=1 k=1

Applying (6.16) and (6.17) successively yields:

L(m) L(m)—-1
P (ri;(n)>m) < [ P{mjtne) > Am)}) + Y. " la(A(m)) (6.18)
k=1 k=1
<cLm) L (Amm)). (6.19)

- 1—¢

for A(m) > k.

For p = 0, we can now apply the construction presented in Section 6.1 with the bound (6.19) to
obtain a dominating random variable. Here we may choose A(m) as in Example 1. For p > 0 it is now
crucial to choose A(m), such that both terms in (6.19) decay rapidly enough to obtain the required
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stochastic dominance property with finite p-th moment. However, it turns out that the bound (6.19) is
only sufficient to achieve this for all ¢ < p, due to the merely geometric decay of the first term. The
next step therefore uses (6.19) to obtain a better upper bound for (6.18).

Step 3: To improve the CDF bound for p > 0, we use that >_0°_, mP~La(m) is summable. It then
follows that for p > 1 we have

a(m) € O(m~P=1) (6.20)
and for 0 < p <1 we have
a(m) e O(m™P), (6.21)

since for this case mP~!a(m) is guaranteed to be decreasing as p — 1 < 0. Both cases show that there
is a constant ¢ and some /i > 0, such that

a(A(m)) < C(A(m)~F (6.22)
for sufficiently large m. With (6.19) it then follows that
P (r;j(n) >m) < el 4 e(A(m))F. (6.23)

for sufficiently large m. Since the first term above is exponential and the second is rational, we can find
anew > 0, such that

P (7;j(n) >m) <m™* (6.24)
for m sufficiently large. For this, one may again choose A(m) & y/m.

Step 4 - (Verifying the stochastic dominance property with finite p-th moment):
We now insert the CDF bound from step 4 in (6.18) and obtain

1
P (ri(n) >m) < Am)"HH) 4 ——a(A(m) (6.25)
for m sufficiently large. Now choose § € (0, 1), such that
1
gz -1 =zp+1 (6.26)

46

and then choose A(m) = [dm]. We choose this to guarantee the required summability property of the
first term in (6.25), since

m 1
_ > .
Lim) = 557y ) 2 35 1 (627)
for m > % Hence, we have
P (ri5(n) > m) < (6m)~ @) 1+ —L_a([5m]) 628)
for m > %
Now define

w(m) == (6m)~ P+ 4+ %a([ém])
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and apply the construction presented in Section 6.1. This yields a non-negative integer-valued random

variable 7;; that stochastically dominates 7;;(n) for all n € N. Moreover, we have E [ ] < 00, if

i (m+1)P —mP)u(m) < co. (6.29)
m=0
The first part of the series is finite, since
o0
Zl ((m +1)P — mP)(6m)~@P+D §W2m < o0, (6.30)
m=

where we used that ((m + 1)P — mP) < 2PmP~! form € N.

For the second part of the series, note that «(n) is by construction a monotonically decreasing
function from Ny to [0, %] [8]. Now extend a(n) by linear interpolation to a monotonically decreasing
function from R> to [0, %] Then for all m € Ny, we have o([dm]) < a(dm) by monotonicity. Hence
the second part is finite, since

Z m+1)P — mP)a(dm) < 2P Z mP~ta(dm)
m=1

m=1

6.31)
22p—l 0
<~ Zmp La(m) < oo
m=1

The second inequality can be shown using a similar construction as in Lemma 1. Finally, the finiteness
of the last summation follows from the assumed p-strongly mixing property.
O

We have thus established the stochastic dominance property of order p > 0 for those network edges
that ensure that the network is SSC under the p-strongly mixing condition. As the next step, we show
an elementary lemma associated with the Aol variables of a time-varying network. The lemma shows
that the existence of stochastically dominating random variables associated with the Aol variables of a
time-varying network is a transitive property.

Lemma 5. Fornodes i, j,k €V of a time-varying network suppose 7;;(n) and 7j3,(n) are stochasti-
cally dominated by T;; and T j, respectively. Then

1. There is random variable T, that stochastically dominates T;;,(n).
2. If moreover E |T [ } +E [ } < oo for some p > 0, then also E [ ] < o0.

Proof. Fixi,j,k €V and some m > 2. Now observe the following inclusion associated with events of
the three Aol variables 7;;(n), 7j5(n) and 7, (n):

{rijn = 5) < Z3 N {rr(n) < T} € {rp(n) <m, (6.32)

The inclusion states that the two events

1. The Aol is less than % for information received at node j from node ¢ at time n — %
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2. The Aol is less than % for information received at node & from node j at time n

imply the event that the Aol is less than m for information received at node k£ from node ¢ at time n.
By taking the complement of the inclusion in (6.32), we have that

P (rie(n) >m) <P ({7ijn = 5) > T U {maln) > T) (633)
<P (Tij(n - %) > %) +P (Tjk(n) > %) (6.34)
<P(?ij > %) +]P’(ij>%). (6.35)

In the last step, we used the assumption that there are random variables 7;; and 7, that stochastically
dominate 7;;(n) and 7; K (n), respectively, for all. n.
Now 75 and Tk are integer-valued, so there is some M € N such that

m

_ m _
P(ry>2) +P(m>T) <1 (6.36)
for all m > M. Define a non-negative integer-valued random variable 7;;, by defining its CDF:
P(Ti >m):=1, forall0<m <M, (6.37)

— _ m _ m .
P (T >m) =P (Tij > 5) +P (Tjk > 5) ,  otherwise. (6.38)

This proves part (a) of the lemma.
Now suppose E [?f]} +E [?? k} < oo for some p > 0. We can now write the p-th moment of 7,
using its CDF from above:

E[7] =Y ((m+1)P —mP)P (Fy, > m) (6.39)
m=0

< i ((m+1)P —mP)P (ﬂ-j > %) + i ((m+1)P —mP)P (ij > %) (6.40)

m=0 m=0
e (E [?f]} +E Hk}) < 0. (6.41)

Where the equality follows from Proposition 1, since 27;; and 27, are non-negative integer-valued
random variables. This proves part (b) of the lemma. O

Lemma 5 allows that we extend the stochastic dominance properties from Lemma 4 for node pairs
(1,7) € £ to arbitrary node pairs (i,j) € V2. We are now ready to prove Theorem 2.

Proof of Theorem 2. First, fix an arbitrary pairs of nodes (4,5) € V2. Since the network is SSC, it
follows from Lemma 4 there is a sequence of edges { (i, ik+1)}§:_11 € & forsome K > 1, withi] =14
and i = j, such that for each 7;,;, ., there is non-negative integer-valued random variable 7 ;, .,

P

that stochastically dominates all 7;,;, ., (n) for all n € No, with E |:?7:k ikﬂ} < 00. It now follows by
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induction using the transitive property of the Aol variables from Lemma 5(b), that there is a non-
negative integer-valued random variable 7;; that stochastically dominates all 7;;(n) for all n € No,

with E |7, | < oo.
It is now left to verify that there is a single dominating random variables for all pairs (i,5) € V2.
This essentially follows since we consider finitely many agents. For every m > 0, define

h(m):= > P(F;>m). (6.42)
(i,5)eV?

Since |V2| < 00, there is some M > 0, such that h(m) < 1 for all mn > M. Define a non-negative
integer-valued random variable 7 by describing its CDF as follows:

P(Fij>m):1, 0<m< M, (6.43)
P (Fij > m) = h(m), m> M. (6.44)

By construction 7 stochastically dominates all 7;;(n) for all (7, j) € V2 and for all n € Ny. Finally, we
have

E[] < ZO((m+ 1)P — mP) h(m) :( ; E[] <o, (6.45)
= i,j)EV?

. . . . .. . _p
where the equality simply follows from continuity of addition and since all E [7’ i j} are convergent.
O

7. Conclusions and future work

In this work, we presented an asymptotic convergence analysis of distributed stochastic gradient de-
scent that uses aged information. The required network assumptions have been weakened to the mere
existence of non-negative integer-valued random variable with finite first moment that stochastically
dominates all age of information random variables variables. This assumption can be satisfied with the
new network Assumptions 5 and 6. These assumptions are significantly weaker then the common net-
work assumptions in the literature. We hope that our assumptions penalize future work in distributed
optimization under less restrictive network assumptions. Notably, instead of periodic or independent
communication, we merely require asymptotically independent communication formulated using o-
mixing with the minimal requirement that ) "2 ; a(n) < oo.

It would be interesting to see, whether summability properties of a-mixing coefficients indeed hold
for representative physical wireless communication system. This might be possible when the underly-
ing physical system has a mixing property in an ergodic sense. For example, hyperbolic systems are
common models to describe electro magnetic wave propagation and it was shown in [2] that hyperbolic
systems admit a strong mixing property in an ergodic sense.

To apply Assumption 6 in practice, it would be most desirable if the a-mixing coefficients (or an
upper bound) for the network processes ]lUZfZ Az, could be estimated from data. Unfortunately, there

are only a handful of methods that estimate or approximate the mixing coefficients from data. One
method that uses an approximation method based on histograms was presented in [20]. However, this
method suffers from high complexity. Very recently, a new method was presented in [13]. Most notably,
the work presents a hypothesis test to decide, whether the sum of the alpha mixing coefficients is
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below an upper bound. With this, it is therefore now possible to verify with high confidence, whether
Assumption 6 holds for p = 1 using data.
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