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THE B-B-G TRANSFER PRINCIPLE FOR SIGNATURE FOUR

P.L. ROBINSON

Abstract. We show how the elliptic function dn2 of Shen leads to the signature four transfer

principle of Berndt, Bhargava and Garvan.

Berndt, Bhargava and Garvan in [1995] established a Transfer Principle by which to pass
from the classical theory of elliptic functions to the Ramanujan theory of elliptic functions
in signature four. The essence of their transfer principle is contained in a pair of identities
that relate the ‘classical’ hypergeometric function F2 = F ( 12 , 12 ; 1; ●) to the ‘signature four’

hypergeometric function F4 = F ( 14 , 34 ; 1; ●): explicitly, if 0 < x < 1 then

√
1 + xF4(x2) = F2(2x/(1 + x))

and √
1 + xF4(1 − x2) = √2F2((1 − x)/(1 + x)).

These identities are derived in [1995] from hypergeometric identities recorded in the second
notebook of Ramanujan: the first is an identity of Kummer, while the second also involves an
identity due to Gauss.

Shen in [2014] revealed an actual elliptic function that naturally resides in signature four:
his function dn2 involves incomplete integrals of the hypergeometric function F ( 1

4
, 3
4
; 1
2
; ●); its

construction is motivated by the way in which the classical Jacobian elliptic functions may be
developed from F ( 1

2
, 1
2
; 1
2
; ●). Among the results in [2014] are identifications of the fundamental

periods of dn2 in terms of the hypergeometric function F4; these identifications are established
by explicit integral calculations. Also included in [2014] are formulae for dn2 and its companion
functions cn2 (which is elliptic) and sn2 (which is not) in terms of the classical Jacobian functions
dn, cn and sn to a related modulus; these formulae are established with the aid of theta
functions.

In this paper, we reconsider the elliptic function dn2 of Shen and thereby forge a new route
to the signature four transfer principle of Berndt, Bhargava and Garvan. Our reconsideration of
dn2 takes place entirely within the realm of elliptic functions, without the use of theta functions
as intermediaries. The title of our paper notwithstanding, our primary aim is not to offer a new
proof of the transfer principle: after all, the original proof by manipulation of hypergeometric
functions is arguably more direct than a proof based on elliptic functions; rather, it is to reaffirm
the status of dn2 as a natural elliptic function within the signature four theory.

The organization of this paper is as follows. In Section 1 we introduce the Shen elliptic
function dn2 of modulus κ and identify its coperiodic Weierstrass function pκ in terms of its
invariants. In Section 2 we identify the fundamental periods of dn2 and pκ in terms of the
signature four hypergeometric function F4. In Section 3 we identify these fundamental periods
in terms of the classical hypergeometric function F2. Finally, in Section 4 we compare these two
identifications of the periods, deducing the pair of identities that we displayed in our opening
paragraph; these identities then yield the relationship between the signature four base q4 and
the classical base q on which rests the Berndt-Bhargava-Garvan transfer principle.
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1. The elliptic function dn2

Fix κ ∈ (0,1) as modulus, with corresponding (acute) modular angle α ∈ (0, 1
2
π) defined by

sinα = κ and with complementary modulus λ ∈ (0,1) defined by λ = (1 − κ2)1/2. The rule

f(T ) = ∫ T

0

F ( 1
4
, 3
4
; 1
2
;κ2 sin2 t)dt

defines a strictly increasing bijection f ∶ R → R. We write φ ∶ R → R for its inverse: thus, if
u ∈ R then

u = ∫ φ(u)

0

F ( 1
4
, 3
4
; 1
2
;κ2 sin2 t)dt.

A subsidiary angular function with range [−α,α] is then defined as the composite

ψ = arcsin(κ sinφ).
Now, the function

dκ = cosψ ∶ R→ R

has range [cosα,1] = [λ,1] and satisfies the following initial value problem.

Theorem 1. The function dκ has initial value dκ(0) = 1 and satisfies the differential equation

(d′κ)2 = 2(1 − dκ)(d2κ − λ2).
Proof. The initial value is clear: φ(0) = 0 so that ψ(0) = 0 and therefore d(0) = 1; here and
below, we drop the subscript κ when convenient. From d = cosψ follows d′ = −(sinψ)ψ′; from
sinψ = κ sinφ follows (cosψ)ψ′ = κ(cosφ)φ′; and from f ○ φ = id follows

φ′ = 1

f ′ ○ φ =
1

F ( 1
4
, 3
4
; 1
2
;κ2 sin2 φ) =

1

F ( 1
4
, 3
4
; 1
2
; sin2 ψ) =

cosψ

cos 1

2
ψ

on account of the standard hypergeometric identity

F ( 1
4
, 3
4
; 1
2
; sin2ψ) = cos 1

2
ψ

cosψ

for which we refer to item (11) on page 101 in Volume 1 of the compendious BatemanManuscript
Project [1953]. Thus

d′ = − sinψ (κ cosφ
cosψ

) cosψ

cos 1

2
ψ
= −2 sin 1

2
ψ (κ cosφ)

and so

(d′)2 = 4 sin2 1

2
ψ (κ2 − sin2ψ) = 2(1 − cosψ) (κ2 − 1 + cos2ψ).

�

The solution to this initial value problem is readily identifiable in Weierstrassian terms.

Theorem 2. The function dκ ∶ R → R satisfies

(1 − dκ)( 13 + pκ) = 1

2
κ2

where pκ = ℘(●; g2, g3) is the Weierstrass function with invariants

g2 = λ2 + 1

3
and g3 = 1

3
λ2 − 1

27
.

Proof. Either verify that the function

p = − 1

3
+ 1

2
κ2

1 − d
has a pole at 0 and satisfies the differential equation

(p′)2 = 4p3 − (λ2 + 1

3
)p − ( 1

3
λ2 − 1

27
)
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or apply the argument that is to be found on page 453 in the classic treatise [1927] of Whittaker
and Watson. �

Thus, dκ is the restriction to R of an elliptic function: this is the elliptic function dn2 of
Shen, given by

dn2 = 1 −
1

2
κ2

1

3
+ pκ .

The elliptic function dn2 and the Weierstrass function pκ are evidently coperiodic. We shall
write (2ωκ,2ω

′
κ) for their shared fundamental pair of periods such that ωκ > 0 and −iω′κ > 0. In

the next two sections, we shall develop hypergeometric expressions for these periods. To close
the present section, it is convenient to record the midpoint values of the Weiersstrass function
pκ: in decreasing order, these zeros of the cubic

4e3 − (λ2 + 1

3
)e − ( 1

3
λ2 − 1

27
)

are readily checked to be
e1 = pκ(ωκ) = 1

6
+ 1

2
λ

e2 = pκ(ωκ + ω′κ) = 1

6
− 1

2
λ

e3 = pκ(ω′κ) = − 1

3
.

2. Fundamental periods in terms of F4

The very definition of dn2 as an extension of dκ provides immediate access to the real half-
period ωκ of dn2 and pκ.

Theorem 3. ωκ = 1

2
π F ( 1

4
, 3
4
; 1;κ2).

Proof. With

I = ∫
1

2
π

0

F ( 1
4
, 3
4
; 1
2
;κ2 sin2 t)dt

it may be verified by integration that

φ(u + 2I) = φ(u) + π
so that

ψ(u + 2I) = −ψ(u)
and

d(u + 2I) = cosψ(u + 2I) = cosψ(u) = d(u).
This shows that dn2 has 2I as a period, which is easily seen to be least positive. Finally,
expansion of the hypergeometric integrand and termwise integration show that

∫
1

2
π

0

F ( 1
4
, 3
4
; 1
2
;κ2 sin2 t)dt = 1

2
π F ( 1

4
, 3
4
; 1;κ2).

�

Access to the imaginary half-period ω′κ of dn2 and pκ is facilitated by investigating the
relationship between the primary Weierstrass function

pκ = ℘(●;ωκ, ω
′
κ) = ℘(●; g2, g3)

and the auxiliary Weierstrass function

qκ = ℘(●;ωκ,
1

2
ω′κ) = ℘(●;h2, h3)

that results when its imaginary period is halved. Here, the invariants h2 and h3 of qκ are related
to the invariants g2 and g3 of pκ by

h2 = −4 g2 + 60pκ(ω′κ)2
h3 = 8 g3 + 56pκ(ω′κ)3.
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This is a quite general consequence of the halving of a Weierstrassian period, for the proof of
which we refer to Section 9.8 of [1989].

Theorem 4. ω′κ = i√2 1

2
π F ( 1

4
, 3
4
; 1; 1 − κ2).

Proof. When the invariants of pκ as displayed in Theorem 2 and the subsequent evaluation
pκ(ω′κ) = −1/3 are taken into account, we find that qκ has invariants

h2 = 4

3
+ 4κ2 = (i√2)4(κ2 + 1

3
)

h3 = 8

27
− 8

3
κ2 = (i√2)6( 1

3
κ2 − 1

27
).

By a further consultation of Theorem 2 (but for the complementary modulus) in conjunction
with the homogeneity relation for ℘ functions, we deduce that qκ is related to the Weierstrass
function pλ of complementary modulus according to the rule

qκ(z) = −2pλ(i√2 z).
Now on the one hand qκ has fundamental half-periods ωκ and 1

2
ω′κ, while on the other hand

pλ has fundamental half-periods ωλ and ω′λ. In light of the above rule by which qκ and pλ are
related, we see that

ω′κ = i√2ωλ.

It only remains to invoke Theorem 3 (for the complementary modulus) and recall that λ2 = 1−κ2.
�

3. Fundamental periods in terms of F2

In order to obtain equivalent expressions for ωκ and ω′κ in terms of the hypergeometric
function F ( 1

2
, 1
2
; 1; ●) we shall reformulate the Weierstrass function pκ in terms of classical

Jacobian elliptic functions.

Recall from page 505 of [1927] that if the Weierstrass function p has real midpoint values
e1 > e2 > e3 then

p(z) = e3 + e1 − e3
sn2[z(e1 − e3)1/2]

where sn = sn(●, k) is the Jacobian sine function with modulus k ∈ (0,1) given by

k2 = e2 − e3
e1 − e3

and its square sn2 has fundamental periods (2K,2iK ′) given by

K = 1

2
π F ( 1

2
, 1
2
; 1;k2) and K ′ = 1

2
πF ( 1

2
, 1
2
; 1; 1 − k2).

Accordingly, p itself has fundamental half-periods

K

(e1 − e3)1/2 and i
K ′

(e1 − e3)1/2 .
Theorem 5. The half-periods ωκ and ω′κ of dn2 and pκ are given by√

1+λ
2
ωκ = 1

2
π F ( 1

2
, 1
2
; 1; 1−λ

1+λ
)

and √
1+λ
2
ω′κ = i 12π F ( 12 , 12 ; 1; 2λ

1+λ
).

Proof. Apply to p = pκ the foregoing recollections. As noted after Theorem 2, pκ has midpoint
values

e1 = 1

6
+ 1

2
λ, e2 = 1

6
− 1

2
λ, e3 = − 1

3

so that

k2 = e2 − e3
e1 − e3 =

1 − λ
1 + λ
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and

1 − k2 = 2λ

1 + λ
while

(e1 − e3)1/2 =
√

1+λ
2
.

�

Of course, we may also use the assembled information to express the elliptic function dn2 in
terms of the classical Jacobian elliptic functions to modulus k. Thus, the relation

pκ(z) = − 1

3
+ 1

2
(1 + λ)

sn2[z ( 1
2
(1 + λ))1/2]

may be recast as

dn2(z) = 1 − (1 − λ) sn2[( 1
2
(1 + λ))1/2];

equivalently, it may be recast either in terms of the Jacobian cosine function cn as

dn2(z) = λ + (1 − λ) cn2[( 1
2
(1 + λ))1/2]

or in terms of the Jacobian ‘delta amplitude’ dn as

dn2(z) = −λ + (1 + λ)dn2[( 1
2
(1 + λ))1/2].

Incidentally, it may be checked that the Jacobian modulus k equals tan 1

2
α.

4. The transfer principle

All the pieces are in place: we are now in a position to deduce the hypergeometric identities
that opened our paper.

Theorem 6. If 0 < λ < 1 then

√
1 + λF ( 1

4
, 3
4
; 1; 1 − λ2) =√2F ( 1

2
, 1
2
; 1;

1 − λ
1 + λ)

and √
1 + λF ( 1

4
, 3
4
; 1;λ2) = F ( 1

2
, 1
2
; 1;

2λ

1 + λ) .
Proof. Direct comparison of Theorem 3 with the first formula of Theorem 5 yields

√
1 + λF ( 1

4
, 3
4
; 1;κ2) =√2F ( 1

2
, 1
2
; 1;

1 − λ
1 + λ)

while direct comparison of Theorem 4 with the second formula of Theorem 5 yields
√
1 + λF ( 1

4
, 3
4
; 1; 1 − κ2) = F ( 1

2
, 1
2
; 1;

2λ

1 + λ) .
�

As in [1995] these hypergeometric identities entail a connexion between the base q4 that
is appropriate to the signature four elliptic theory and the base q that is appropriate to the
classical elliptic theory. To be explicit, Theorem 6 implies that

F ( 1
4
, 3
4
; 1; 1 − λ2)

F ( 1
4
, 3
4
; 1;λ2) =√2 F ( 12 , 12 ; 1; 1−λ1+λ

)
F ( 1

2
, 1
2
; 1; 2λ

1+λ
)

whence

q4 (λ2) ∶= exp{ − π√2 F (
1

4
, 3
4
; 1; 1 − λ2)

F ( 1
4
, 3
4
; 1;λ2) }
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and

q ( 2λ
1+λ
) ∶= exp{ − π F ( 12 , 12 ; 1; 1 − 2λ

1+λ
))

F ( 1
2
, 1
2
; 1; 2λ

1+λ
) }

satisfy the relation

q4 (λ2) = q ( 2λ
1+λ
)2.

The signature four transfer principle now follows exactly as in [1995].
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