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On harmonic symmetries for locally conformally Kähler

manifolds

Teng Huang

Abstract

In this article, we study harmonic symmetries on the compact locally conformally Kähler man-

ifold M of dimC = n. The space of harmonic symmetries is a subspace of harmonic differential

forms which defined by the kernel of a certain Laplacian-type operator �. We observe that the spaces

ker(�) ∩ Ωl = {0} for any |l − n| ≥ 2 and ker∆∂̄ ∩ P k,n−1−k ∩ ker(iθ♯)
∼= ker(�k,n−1−k),

ker∆∂̄ ∩ P k,n−k ∼= ker(�k,n−k). Furthermore, suppose that M is a Vaisman manifold, we prove that

(i) α is (n − 1)-form in ker(�) if only if α is a transversally harmonic and transversally effective

V-foliate form; (ii) α is a (p, n− p)-form in ker(�p,n−p) if only if there are two forms β1 ∈ Sp−1,n−p

and β2 ∈ Sp,n−p−1 such that α = θ1,0 ∧ β1 + θ0,1 ∧ β2.

Keywords. LCK manifold, Vaisman manifold, harmonic symmetries, Hodge theory

1 Introduction

On a compact complex manifold, one can consider two different kinds of invariants: the topological ones

of the underlying (real) manifold and the complex ones. Among the first ones, a fundamental role is played

by de Rham cohomology, and among the second ones, we recall the Dolbeault, Bott–Chern and Aeppli

cohomologies. The dimensions of Dolbeault, Bott-Chern and Aeppli cohomologies which are bounded

from below by topological quantities, such as Betti numbers (see [1, 2]). But there are comparatively few

reverse inequalities, and these are desirable for showing that a complex manifold has non-trivial topology,

or conversely that a smooth manifold does not have a complex structure.

We denote by M a compact Hermitian manifold M , that is, M is a compact complex manifold with

compatible metric. In [24, 25], Wilson described some topological and geometric inequalities for M . They

are expressed in terms of the kernel of a certain Laplacian-type operator

� = ∆∂ +∆∂̄ +∆τ +∆τ̄ +∆λ +∆λ̄.
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This is a real operator, and the last four summands are all order zero. The kernel of this second-order self-

adjoint elliptic operator � determines a subspace of ∆d-harmonic forms that satisfies the Serre, Hodge,

and conjugation dualities, generalizing the Kähler case. Moreover, there is an induced representation of

sl(2,C) on the harmonic forms on ker(�), yielding a generalization of hard Lefschetz duality (see [24,

Theorem 3.1]). The result relies on a generalization of the Kähler identities to the Hermitian setting [5, 10].

Define the space of �-harmonic forms in degree k by letting

Hk
�
= ker(�) ∩ Ωk

where Ωk denotes the space of k-forms. We denote by hk
�

the dimension of Hk
�

. It remains to further

study what the dimensions of those subspaces tell us about a given Hermitian structure, and conversely,

to determine what are the permissible numbers for a given complex structure.

In this article, we are interested in topological and complex analytic properties of compact LCK man-

ifolds. A locally conformally Kähler (LCK) manifold is a Hermitian manifold whose metric is conformal

to a Kähler metric in some neighbourhood of every point. This definition is equivalent to the existence of a

global closed one-form θ (called the Lee form) such that the fundamental two-form ω satisfies dω = θ∧ω

(see [7, 18, 21]). These manifolds appear naturally in complex geometry. Most examples of compact non-

Kähler manifolds studied in complex geometry admit an LCK structure. An interesting example of such

manifolds is offered by the Hopf manifolds [19], which are compact and have no Kähler metric at all. In

many situations, the LCK structure becomes useful for the study of topology and complex geometry of an

LCK manifold. Throughout our article, we always say that an LCK manifold M cannot admit any Kahler

metric, that is, M is a non-Käherian manifold.

Theorem 1.1 (=Theorem 3.5 and 3.7). Let (M,J, θ) be a compact locally conformally Kähler manifold

of dimC = n. Then for any |l − n| ≥ 2, we have

Hl
�
= {0}.

Furthermore,

ker∆∂̄ ∩ P k,n−1−k ∩ ker(iθ♯) ∼= ker(�k,n−1−k),

ker∆∂̄ ∩ P k,n−k ∼= ker(�k,n−k).

If (M,J) is a compact complex manifold, then dimker(�0,0) = 1 if and only if M is Kählerian (resp.

dimker(�0,0) = 0 if and only if M is non-Kählerian) (see [24]). In [20], the author have given some

sufficient conditions for a compact LCK manifold to be Kähler. Following Theorem 3.5, we can give a

sufficient condition to such that a compact complex non-Kählerian manifold admits a Hermitian metric g

which is not an LCK metric.

Corollary 1.2. Let (M,J, g) be a compact, complex, non-Kählerian manifold of dimC = n. If there is a

constant k, |k − n| ≥ 2, such that hk
�
≥ 1, then g is not an locally conformally Kähler metric.
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Among the LCK manifolds, a distinguished class is the Vaisman manifold. The topology of compact

Vaisman manifolds is very different from that of Kähler manifolds. In [16], the authors studied harmonic

forms and Hodge decomposition on Vaisman and Sasakian manifolds. In [21], Vaisman established a

Hodge decomposition theorem of ∆d-harmonic k-form for any k ≤ n − 1. In [18], Tsukada obtained a

complex version Hodge decomposition theorem on Vaisman manifold. But none of them give a Hodge

decomposition of ∆d-harmonic n-form. Here, we study the Hodge decomposition of the forms in ker�∩
Ωk, k = n − 1, n, on Vaisman manifold. We will develop a version of Hodge theory on the Vaisman

manifold, hence we can give a Hodge decomposition of the ∆d-harmonic n-forms.

Theorem 1.3 (=Theorem 3.14 and 3.16). Let (M,J, θ) be a compact Vaisman manifold of dimC = n.

Then

ker(�p,n−1−p) ∼= Sp,n−1−p(V),

Hn
d
∼= Hn

�
∼=

n⊕
k=0

Hk,n−k

∂̄
,

where Sp,q denote the vector space of transversally harmonic and transversally effective V-foliate (p, q)-

forms. Furthermore, the following four conditions are equivalent:

(i) α ∈ ker(�p,n−p),

(ii) α ∈ ker∆∂̄ ∩ Ωp,n−p,

(iii) α ∈ ker∆d ∩ Ωp,n−p,

(iv) there are β1 ∈ Sp−1,n−p and β2 ∈ Sp,n−p−1 such that

α = θ1,0 ∧ β1 + θ0,1 ∧ β2.

2 Preliminaries

2.1 Harmonic symmetries

Throughout this section (M,J, g)will denote a compact Hermitian manifold of complex dimensionn ≥ 2,

with fundamental two-form defined by ω(X, Y ) = g(X, JY ). The space of all smooth (p, q)-forms (resp.

k-forms) on M denoted Ωp,q(M) (resp. Ωk(M). Let 〈, 〉 denote the pointwise inner product. The global

inner product is defined

(α, β) =

∫
M

〈α, β〉dV,

where dV = ωn

n!
. Another important operator is the operator L of type (1, 1) defined by

L(·) = ω ∧ ·,

and its adjoint Λ = ∗−1L∗:

〈α,Λβ〉 = 〈Lα, β〉.
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Definition 2.1. A differential k-form αk with k ≤ n is called primitive, i.e., αk ∈ P k(M), if it satisfies

the two equivalent conditions: (i) Λαk = 0; (ii) Ln−k+1αk = 0.

One can also prove the following very important result: every k-form α on M has a unique decompo-

sition of the form

α =
∑

r≥max (0,k−n)

Lrβk−2r

where all of the βj are primitive forms of a corresponding degree and we denote βj = 0 for j /∈ [0, n].

Let λ = [∂, L] = (∂ω∧·), so that λ̄ = [∂̄, L] = (∂̄ω∧·). The operator λ̄ has bidegree (1, 2) and governs

the symplectic condition: a Hermitian manifold is Kähler if and only if λ̄ = 0. In [5], Demailly derives a

set of Hermitian identities which generalize the Kähler identities. Consider the zero-order torsion operator

τ := [Λ, λ] of bidegree (1, 0). Demailly shown

[Λ, ∂̄] = −i(∂∗ + τ ∗),

[Λ, ∂] = i(∂̄∗ + τ̄ ∗),

[L, ∂̄∗] = −i(∂ + τ),

[L, ∂∗] = i(∂̄ + τ̄ )

(2.1)

with Kähler identities recovered in the case τ = 0 and

[Λ, τ ] = −2iτ̄ ∗, [L, τ̄ ] = 3λ̄,

[Λ, τ̄ ] = 2iτ ∗, [L, τ ] = 3λ,

[L, τ ∗] = −2iτ̄ , [Λ, τ̄ ∗] = −3λ̄∗,

[L, τ̄ ∗] = 2iτ, [Λ, τ ∗] = −3λ∗.

(2.2)

We also have (see [24])

[Λ, λ] = τ, [L, λ] = 0,

[Λ, λ̄] = τ̄ , [L, λ̄] = 0,

[L, λ∗] = −τ ∗, [Λ, λ∗] = 0,

[L, λ̄∗] = −τ̄ ∗, [Λ, λ̄∗] = 0.

(2.3)

For any operator δ, let ∆δ = [δ, δ∗], and let ∆p,q
δ denote the restriction to Ωp,q.

Proposition 2.2. ([24, Corollary 2.1]) For any Hermitian manifold there is an induced representation of

sl(2,C) on the space ker(∆τ +∆τ̄ +∆λ +∆λ̄).

The operator ∆τ +∆τ̄ +3∆λ +3∆λ̄ is the one that commutes directly with L and Λ on all forms (see

[25, Equation (4)]).Noting that ker(∆τ +∆τ̄ +∆λ +∆λ̄) = ker(∆τ +∆τ̄ +3∆λ +3∆λ̄). Hence, we get

[L,∆τ +∆τ̄ +∆λ +∆λ̄]|ker(∆τ+∆τ̄+∆λ+∆λ̄)
= 0,

[Λ,∆τ +∆τ̄ +∆λ +∆λ̄]|ker(∆τ+∆τ̄+∆λ+∆λ̄)
= 0.
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Lemma 2.3. For any Hermitian manifold,

ker(λ) ∩ ker(λ̄) ∩ P k ⊂ ker(∆τ +∆τ̄ +∆λ +∆λ̄) ∩ Ωk

Proof. We denote by α a primitive k-form in ker(λ) ∩ ker(λ̄). By the definition of τ, τ̄ , we have

τα = [Λ, λ]α = 0, τ̄α = [Λ, λ̄]α = 0.

Therefore,

τ ∗α = − i

2
[Λ, τ̄ ]α = 0, τ̄ ∗α =

i

2
[Λ, τ ]α = 0,

λ∗α = −1

3
[Λ, τ ∗]α = 0, λ̄∗α = −1

3
[Λ, τ̄ ∗]α = 0.

Hence, α ∈ ker(∆τ +∆τ̄ +∆λ +∆λ̄) ∩ Ωk.

Wilison considered the following positive definite self-adjoint elliptic operator of order two:

� = ∆∂ +∆∂̄ +∆τ +∆τ̄ +∆λ +∆λ̄.

Let �p,q denote the restriction to Ωp,q.

Theorem 2.4. ([24, Theorem 3.1]) Let (M,J, ω) be a compact Hermitian manifold of complex dimension

n. For any 0 ≤ k ≤ 2n, there is an orthogonal direct sum decomposition

ker(�) ∩ Ωk = ⊕p+q=k ker(�
p,q)

For all 0 ≤ p, q ≤ n, the following dualities hold:

(1) (Complex conjugation). We have equalities

ker(�p,q) = ker(�q,p).

(2) (Hodge duality). The Hodge ∗-operator induces isomorphisms

∗ : ker(�p,q) → ker(�n−q,n−p).

(3) (Serre duality). There are isomorphisms

ker(�p,q) ∼= ker(�n−p,n−q).

The operator {L,Λ, H} define a finite dimensional representation of sl(2,C) on ker(�). Moreover, for

every 0 ≤ p, q ≤ n, the maps

Ln−p−q : ker(�p,q) → ker(�n−q,n−p)

are isomorphisms.
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The next result follows from some well established facts about sl(2,C) representations.

Corollary 2.5. ([24, Corollary 3.2]) There is an orthogonal direct sum decomposition

ker(�p,q) =
⊕
j≥0

Lj(ker(�p−j,q−j))prim

where

(ker(�r,s))prim := ker(�r,s) ∩ P r,s.

Proposition 2.6. Let (M,J, ω) be a compact complex manifold of dimC = n. Then

ker(�n,0) = ker(∆∂̄) ∩ Ωn,0,

ker(�0,n) = ker(∆∂̄) ∩ Ω0,n.

Proof. We only proof the case of (n, 0)-forms. We now denote by αn,0 a (n, 0)-form in ker(∆∂̄). There-

fore, ∂̄αn,0 = 0. At first, we observe that

Λαn,0 = λαn,0 = λ̄αn,0 = 0.

Following Lemma 2.3, we have

Ωn,0 = ker(∆τ +∆τ̄ +∆λ +∆λ̄) ∩ Ωn,0.

It’s easy to see ∂αn,0 = 0. Following the first identity on (2.1), we have

∂∗αn,0 = (i[Λ, ∂̄]− τ ∗)αn,0 = 0.

Therefore,

ker(∆∂̄) ∩ Ωn,0 ⊂ ker(�n,0) ⊂ ker(∆∂̄) ∩ Ωn,0,

that is, ker(∆∂̄) ∩ Ωn,0 ∼= ker(�n,0).

2.2 Morse-Novikov cohomology

Let M be a smooth manifold and θ a real valued closed one form on M . Define dθ : Ω
k(M) →: Ωk+1(M)

as dθα = dα + θ ∧ α for α ∈ Ωp(M). Then we have a complex

. . . → Ωk−1(M)
dθ−→ Ωk(M)

dθ−→ Ωk+1(M) → . . .

whose cohomology Hk(M, θ) = Hk(Ω∗(M), dθ) is called the k-th Morse-Novikov cohomology group of

M with respect to θ. Hk(M, θ) only depends on the de Rham cohomology class of θ. This cohomology

shares many properties with the ordinary de Rham cohomology (see [4, 14, 15, 17]).

We can also define an operator d∗θ as the formal adjoint of dθ with respect to metric g. Further,

∆θ = dθd
∗
θ + d∗θdθ is the corresponding Laplacian. These operators are lower-order perturbations of

the corresponding operators in the usual Hodge-de Rham theory. We denote by Hk(M, θ) the space of

∆θ-harmonic forms. The space Hk(M, θ) is isomorphic to Hk(M, θ). Let θ♯ the dual vector field of θ

defined by g(θ♯, ·) = θ(·).
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Lemma 2.7. ([3, Lemma 4.4]) For any k-form α, we have

∗iθ♯α = (−1)k−1θ ∧ ∗α.

We denote by

Sk(M, θ) = {α ∈ Ωk(M) : ∆dα = 0, θ ∧ α = 0, θ ∧ ∗α = 0}

a subspace of Hk(M, θ) on a closed manifold. We then have the following vanishing theorem.

Theorem 2.8. Let M be a n-dimensional closed Riemannian manifold, θ a smooth 1-form in M . If α is

smooth k-form in Sk(M, θ), 0 ≤ k ≤ n, then either θ = 0 or α = 0.

Proof. We also assume that α is a non-zero ∆d-harmonic k-form, i.e., (d+ d∗)α = 0. Following Lemma

2.7, the equation θ ∧ ∗α = 0 is equivalent to iθ♯α = 0. Then we have

0 = iθ♯(θ ∧ α) = |θ|2α.

We denote by Zc(α) the complement of the zero of α. By unique continuation of the elliptic equation

(d+ d∗)α = 0, Zc(α) is either empty or dense. Therefore, the vector field θ♯ is zero along Zc(α). The set

Zc(α) is empty which is equivalent to α = 0 on M . If Zc(α) is dense, then θ♯ = 0 almost everywhere on

M . Since θ♯ is smooth, θ♯ = 0, i.e., θ = 0 on M .

3 Harmonic symmetries on locally conformally Kähler manifold

3.1 Locally conformally Kähler manifold

In this section, we first give the necessary definitions and properties of locally conformally Kähler (LCK)

manifolds.

Definition 3.1. Let (M,ω) be a complex Hermitian manifold of dimC M = n, with

dω = θ ∧ ω,

where θ is a closed 1-form. Then M is called an LCK manifold.

Therefore ω is (d−θ)-closed. The Morse–Novikov cohomology class [ω] of ω is called the Morse–Novikov

class of M (see [4, 11, 15, 17]). This notion is similar to the notion of a Kähler class of a Kähler manifold.

Lemma 3.2. Let (M,J, θ) be a compact locally conformally Kähler manifold of dimC = n, α a smooth

k-form in ker(∆τ +∆τ̄ +∆λ +∆λ̄). Then for any |k − n| ≥ 2, we have

θ ∧ α = 0, θ ∧ ∗α = 0.
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Proof. By the definitions of λ and λ̄, we obtain that

λ+ λ̄ = (∂ω + ∂̄ω) ∧ (·) = ω ∧ θ ∧ (·).

For simply, we let k ≤ n − 2. The case k ≥ n + 2 follows by the Poincare duality as the operator

∗ : Ωk → Ω2n−k commutes with ker(∆τ +∆τ̄ +∆λ +∆λ̄). Since α ∈ ker(∆τ +∆τ̄ +∆λ +∆λ̄) ∩ Ωk,

α satisfies

λα = λ̄α = 0,

Therefore, we get

ω ∧ (θ ∧ α) = 0.

We then have

Ln−k−1(θ ∧ α) = 0.

Since the map Ln−k−1 : Ωk+1 → Ω2n−k−1 is bijective for k + 1 ≤ n− 1 (see [13]), we get

θ ∧ α = 0.

For any k-form α on M , (k ≤ n− 2), there exists a k-form β such that as

∗α = Ln−kβ,

Noting that (∆τ +∆τ̄ +∆λ +∆λ̄)(∗α) = 0 and

[L,∆τ +∆τ̄ +∆λ +∆λ̄]|ker(∆τ+∆τ̄+∆λ+∆λ̄)
= 0.

Therefore, we have

0 = (∆τ +∆τ̄ +∆λ +∆λ̄)(∗α) = Ln−k(∆τ +∆τ̄ +∆λ +∆λ̄)β

Since the map Ln−k : Ωk → Ω2n−k is bijective for k ≤ n (see [13]),

(∆τ +∆τ̄ +∆λ +∆λ̄)β = 0.

By a similar way, we also have

θ ∧ β = 0.

Hence

θ ∧ ∗α = Ln−k(θ ∧ β) = 0.

Corollary 3.3. Let (M,J, θ) be a compact locally conformally Kähler manifold of dimC = n. If θ is

∆d-harmonic, then for any |k − n| ≥ 2, we have

ker(∆τ +∆τ̄ +∆λ +∆λ̄) ∩ Ωk = {0}.

In particular, if (M,J, θ) is a Vaisman manifold, i.e., ∇θ = 0, then ker(∆τ +∆τ̄ +∆λ+∆λ̄)∩Ωk = {0}.
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Proof. We denote by α a k-form in ker(∆τ +∆τ̄ +∆λ +∆λ̄) ∩Ωk. By Lemma 3.2, we have θ ∧ α = 0.

Therefore, we have

iθ♯(θ ∧ α) = α|θ|2 = 0.

By unique continuation of the elliptic equation (d + d∗)θ = 0, Zc(θ) is dense or empty. Since θ is non-

zero, Zc(θ) is dense. Therefore, the k-form α is zero along Zc(θ), i.e., α = 0 almost everywhere on M .

Since α is smooth, α = 0 all over M .

Remark 3.4. The Lee form θ is co-closed with respect to g if only if the metric g is Gauduchon, i.e.,

∂∂̄ωn−1 = 0 ([9, pp. 502]). A classical result of Gauduchon [8] states that every Hermitian metric is

conformal to a Gauduchon metric, which is unique up to rescaling when n ≥ 2.

The Hermitian metric on general LCK manifold could not always Gauduchon. But when we consider

the space Hk
�

, we can also prove the following vanishing theorem.

Theorem 3.5. Let (M,J, θ) be a compact locally conformally Kähler manifold of dimC = n. Then for

any |k − n| ≥ 2, we have

Hk
�
= {0}.

Proof. For any k-form α ∈ ker(�) on M , (|k − n| ≥ 2), following Lemma 3.2, we get

θ ∧ α = θ ∧ ∗α = 0.

Hence following Theorem 2.8, we get either θ = 0 or α = 0. Since M is non-Kählerian, there are some

points in M such that θ 6= 0. Therefore, α ≡ 0, i.e., ker(�) ∩ Ωk = {0}.

We now study the relationship between ker(∆τ +∆τ̄ +∆λ +∆λ̄) ∩ Ωn−1 and ker(∆τ +∆τ̄ +∆λ +

∆λ̄) ∩ Ωn. The following result is very important in the study of Vaisman manifold.

Proposition 3.6. Let (M,J, θ) be a compact locally conformally Kähler manifold of dimC = n. If a

(n− 1)-form α ∈ ker(∆τ +∆τ̄ +∆λ +∆λ̄), then we have

(∆τ +∆τ̄ +∆λ +∆λ̄)(θ ∧ α) = 0,

θ ∧ ∗α = 0.

Proof. In order to get (∆τ + ∆τ̄ + ∆λ + ∆λ̄)(θ ∧ α) = 0, by Lemma 2.3, we only need to prove that

Λ(θ ∧ α) = 0, λ(θ ∧ α) = λ̄(θ ∧ α) = 0. Since α ∈ ker(∆τ +∆τ̄ +∆λ +∆λ̄), we have

(λ+ λ̄)α = ω ∧ (θ ∧ α) = 0,

i.e., Λ(θ ∧ α) = 0. We also get

λ(θ ∧ α) = θ1,0 ∧ ω ∧ (θ ∧ α) = 0,

λ̄(θ ∧ α) = θ0,1 ∧ ω ∧ (θ ∧ α) = 0.
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For any (n− 1)-form α on M , there exists a (n− 1)-form β such that

∗α = Lβ.

By a similar way in Lemma 3.2, we get

(∆τ +∆τ̄ +∆λ +∆λ̄)β = 0.

We then have

λ(β) = ω ∧ θ1,0 ∧ β = 0, λ̄(β) = ω ∧ θ0,1 ∧ β = 0.

Hence

0 = (λ+ λ̄)β = ω ∧ (θ ∧ β) = θ ∧ ∗α.

The next result is in regards to the k-forms (k = n, n− 1) in ker(�).

Theorem 3.7. Let (M,J, θ) be a compact locally conformally Kähler manifold of dimC = n. We then

have

ker∆∂̄ ∩ P k,n−1−k ∩ ker(iθ♯) ∼= ker(�k,n−1−k).

ker∆∂̄ ∩ P k,n−k ∼= ker(�k,n−k).

Proof. First, we prove that

P k,n−1−k ∩ ker(iθ♯) ⊂ ker(∆τ +∆τ̄ +∆λ +∆λ̄) ∩ Ωk,n−1−k.

We denote by α a primitive (k, n− 1− k)-form. Hence we have ([13, Proposition 1.2.31])

∗α = (−1)
n(n−1)

2 (
√
−1)2k+1−n(Lα).

Since α ∈ ker(iθ♯), we get

0 = iθ♯α = ∗(θ ∧ ∗α) = ∗(θ ∧ Lα),

i.e.,

0 = θ1,0 ∧ Lα = λ(α), 0 = θ0,1 ∧ Lα = λ̄(α).

Following Lemma 2.3, we obtain that

α ∈ ker(∆τ +∆τ̄ +∆λ +∆λ̄) ∩ Ωk,n−1−k.

Noting that (see [6, Chapter VI, Corollary 6.15], [25, Equation (9)] )

∆∂ + [∂, τ ∗] = ∆∂̄ + [∂̄, τ̄ ∗].
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We also assume that α ∈ ker∆∂̄ . Then we observe that

([∂, τ ∗]α, α) = (τ ∗∂α, α) = (∂α, τα) = 0,

([∂̄, τ̄ ∗]α, α) = (τ̄ ∗∂̄α, α) = (∂̄α, τ̄α) = 0.

Combing above identities, we get

(∆∂α, α) = 0,

i.e., ∆∂α = 0. Therefore,

ker∆∂̄ ∩ P k,n−1−k ∩ ker(iθ♯) ⊂ ker(�k,n−1−k).

On the other hand, we let α ∈ ker(�k,n−1−k). Following Corollary 2.5, we get

α = α0 +
∑
j≥1

Ljαj ,

where αi is a primitive (k − i, n− 1− k + i)-form in ker(�) for all i ≥ 0. Following vanishing theorem

3.5, we get αj = 0 for all j ≥ 1. Therefore, α is primitive. Following Proposition 3.6, we also have

θ ∧ ∗α = 0. Therefore,

ker(�k,n−1−k) ⊂ ker∆∂̄ ∩ P k,n−1−k ∩ ker(iθ♯).

Hence, we get ker∆∂̄ ∩ P k,n−1−k ∩ ker(iθ♯) ∼= ker(�k,n−1−k).

Next, we consider the case of (k, n− k)-forms. We denote by α a (k, n− k)-form in ker∆∂̄ ∩P k,n−k.

Noting that Λα = 0, i.e., Lα = 0. Therefore,

λα = θ1,0 ∧ Lα = 0, λ̄α = θ0,1 ∧ Lα = 0.

Following Lemma 2.3, we also have(∆τ +∆τ̄ +∆λ +∆λ̄)α = 0. Using the identities in (2.1), we get

∂∗α = (i[Λ, ∂̄]− τ ∗)α = 0,

∂α = (i[L, ∂̄∗]− τ)α = 0.

Therefore,

ker∆∂̄ ∩ P k,n−k ⊂ ker(�k,n−k).

On the other hand, we let α ∈ ker(�k,n−k). By a similar way, we also obtain that α is primitive. Therefore,

ker(�k,n−k) ⊂ ker∆∂̄ ∩ P k,n−k.

Hence, we get ker∆∂̄ ∩ P k,n−k ∼= ker(�k,n−k).
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3.2 Vaisman manifold

Among the LCK manifolds, a distinguished class is the following.

Definition 3.8. ([21] and [22, Definition 3.7]) An LCK manifold (M,J, θ) is called Vaisman if ∇θ = 0,

where ∇ is the Levi–Civita connection of the metric g(·, ·) = ω(J ·, ·). If θ 6= 0, then after rescaling, we

may always assume that |θ| = 1.

Before proof our results, we recall the decomposition of harmonic forms on a compact Vaisman man-

ifold [18, 21]. We denote by θ♯ (resp. (Jθ)♯ the dual vector field of θ (resp. Jθ) with respect to metric g.

Let D1 (resp. D2) be the 1-dimensional distribution spanned by the Lee field θ♯ (resp. by the anti-Lee field

(Jθ)♯). We set V = D1 ⊕D2 and call it the vertical foliation. In any foliated chart the metric of M can be

expressed as

ds2 = gab̄dz
a ⊗ dz̄b + (θ − iJθ)⊗ (θ + iJθ). (3.1)

The direct sum decomposition TM = V⊕V⊥ produces a corresponding decomposition of the differential

forms on M into sums of bihomogeneous forms of type (p, q), where p is the transversal degree and q the

leaf degree. This, moreover, decomposes the exterior differentiation operator as

d = d′ + d′′ + ∂ (3.2)

where d′ has type (1, 0), d′′ has type (0, 1) and ∂ has type (2,−1). The Hodge ∗-operator of (M, g) acts

homogeneously and (3.2) implies a decomposition of the corresponding adjoint operators

δ = δ′ + δ′′ + ∂̃, (3.3)

where δ, δ′, δ′′, ∂̃ are the adjoint operator of d, d′, d′′, ∂ respectively. If ∗′ denotes the Hodge ∗ of the

transversal part of the metric g of M given by (3.1), we have

∗α = −Jθ ∧ θ ∧ ∗′α,

where α is a V-foliation form.

We also denote by ω′ := −dJθ = 2i∂θ0,1 form of transverse (Kählerian) part of the metric. For simple

set L′ = ω′ ∧ · and Λ′ = iω′ . Let us define

Sk(V) = {α ∈ Ωk(V) : ∆′α = 0, Λ′α = 0}, k ≤ n− 1

Sp,q(V) = {α ∈ Ωp,q(V) : ∆′α = 0, Λ′α = 0}, p + q ≤ n− 1,

where ∆′ = d′δ′ + δ′d′, Ωk(V) (resp. Ωp,q(V)) is the set of V-foliate k-forms (resp. (p, q)-forms) and

denote sk = dimSk(V) (resp. sp,q = dimSp,q(V)). Clearly

Sk(V) =
⊕

p+q=k

Sp,q(V).

We denote by Hp,q

∂̄
(M) the Dolbeault cohomology group of type (p, q) and put hp,q(M) = dimHp,q

∂̄
(M).
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Theorem 3.9. ([21, Theorem 4.1]) Let M be a compact Vaisman manifold of dimC = n. Then, an k-form

α of M with 0 ≤ k ≤ n− 1 is ∆d-harmonic iff

α = β + θ ∧ γ,

where β, γ are transversally harmonic and transversally effective foliate forms. In particular,

Hk(M) ∼= Sk(V)⊕ Sk−1(V), k ≤ n− 1.

It is known that on any Vaisman manifold, the following formula holds, [7, 21]

ω = θ ∧ Jθ − dJθ. (3.4)

We then have

Lemma 3.10. Let (M,J, θ) be a compact Vaisman manifold of dimC = n. If a k-form α with 0 ≤ k ≤
n− 1 is ∆d-harmonic, then

Λ(θ ∧ α) = 0.

Proof. Following Theorem 3.9, there exist two forms β, γ such that

α = β + θ ∧ γ,

where β, γ are transversally harmonic and transversally effective foliate forms. Therefore,

Λ(θ ∧ α) = Λ(θ ∧ β)

= ∗(ω ∧ ∗(θ ∧ β)

= (±) ∗ (ω ∧ Jθ ∧ ∗′β)
= (±) ∗ (dJθ ∧ Jθ ∧ ∗′β).

Noticing that β satisfies Λ′β = 0, i.e., dJθ ∧ ∗′β = 0. We then have Λ(θ ∧ α) = 0.

We now want to obtain a complex version of Theorem 3.9. As usual we let ∆∂̄ = ∂̄∗∂̄ + ∂̄∂̄∗ be the

complex Laplacian.

Theorem 3.11. ([18, Theorem 3.2]) Let (M,J, θ) be a compact Vaisman manifold of dimC = n. Then

any (p, q)-form α on M , 0 ≤ p+ q ≤ n− 1 satisfies ∆∂̄α = 0 iff

α = β + θ0,1 ∧ γ,

where β and γ are transversally harmonic and transversally effective V-foliate forms. In particular,

Hp,q

∂̄
(M) ∼= Sp,q(V)⊕ Sp,q−1(V), k ≤ n− 1.
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Theorem 3.12. ([18, Theorem 3.5]) On a compact Vaisman manifold M of dimC = n, for any 0 ≤ k ≤
2n, we have

bk(M) =
∑

p+q=k

hp,q(M).

Furthermore,

bn(M) = 2sn−1.

Proof. Following Theorem 3.9 and 3.11, we get

Hk(M) ∼=
⊕

p+q=k

Sp,q(V)⊕
⊕

p+q=k

Sp,q−1(V) ∼=
⊕
p+q=k

Hp,q

∂̄
(M).

Therefore, bk =
∑

p+q=k h
p,q for k ≤ n − 1. By Poincaré and Serre duality it is also true for k ≥ n + 1.

As for k = n, one uses the following formula for the Euler characteristic:

χ(M) =
2n∑
k=0

(−1)kbk(M) =
2n∑

p+q=0

(−1)p+qhp,q(M).

Noting that the Euler number χ(M) of compact Vaisman manifold is zero. Since bk = sk + sk−1 for

k ≤ n− 1 and bk = b2n−k, we then have

0 =

2n∑
k=0

(−1)kbk

= 2
∑

k≤n−1

(−1)kbk + (−1)nbn

= 2
∑

k≤n−1

(−1)ksk − 2
∑

k≤n−2

(−1)ksk + (−1)nbn

= (−1)n(bn − 2sn−1).

Hence we get bn = 2sn−1.

Proposition 3.13. Let (M,J, θ) be a compact Vaisman manifold of dimC = n. If a (k, n − k − 1)-form

α ∈ ker(�k,n−1−k), then

�(θ ∧ α) = 0.

In particular,

�(θ1,0 ∧ α) = 0, �(θ0,1 ∧ α) = 0.

Proof. Noting that (∆τ +∆τ̄ +∆λ +∆λ̄)α = 0. Following Proposition 3.6, we get

(∆τ +∆τ̄ +∆λ +∆λ̄)(θ ∧ α) = 0.

Hence we have

τ ∗(θ ∧ α) = τ̄ ∗(θ ∧ α) = 0,
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τ(θ ∧ α) = τ̄(θ ∧ α) = 0.

Now we begin to prove that

(∆∂ +∆∂̄)(θ ∧ α) = 0.

Noting that ∇θ = 0. Following [12, Corollary 3.6] and [23, Proposition 2.5 and Corollary 2.9], for any

α ∈ ker(�k,n−1−k) ⊂ ker(∆d), we have

∆d(θ ∧ α) = 0,

i.e., d(θ ∧ α) = d∗(θ ∧ α) = 0. Following the identities in (2.2), we have

([Λ, ∂̄]− [Λ, ∂])(θ ∧ α) = −i(∂∗ + τ ∗)(θ ∧ α)− i(∂̄∗ + τ̄ ∗)(θ ∧ α)

= −id∗(θ ∧ α) = 0.

Following Λ(θ ∧ α) = 0 (see Lemma 3.10) and the fact 0 = dθ = ∂θ0,1 + ∂̄θ1,0, ∂θ1,0 = ∂̄θ0,1 = 0, we

then have

([Λ, ∂̄]− [Λ, ∂])(θ ∧ α) = Λ((∂̄ − ∂)θ ∧ α)

= Λ((∂̄θ1,0 − ∂θ0,1) ∧ α)

= 2Λ(∂̄θ ∧ α)

= 2[Λ, ∂̄](θ ∧ α).

Therefore, we have

[Λ, ∂̄](θ ∧ α) = [Λ, ∂](θ ∧ α) = 0.

Following the identities in (2.1) and Proposition 3.6, we have

∂∗(θ ∧ α) = i([Λ, ∂̄]− τ ∗)(θ ∧ α) = 0,

∂̄∗(θ ∧ α) = −i([Λ, ∂]− τ̄ ∗)(θ ∧ α) = 0.

Next, using the identities in (2.1) again, we have

∂(θ ∧ α) = i([L, ∂̄∗]− τ)(θ ∧ α) = 0,

∂̄(θ ∧ α) = −i([L, ∂∗]− τ̄)(θ ∧ α) = 0.

Here we use the fact λ(α) = ω ∧ θ1,0 ∧ α = 0, λ̄(α) = ω ∧ θ0,1 ∧ α = 0. Hence, we have

�(θ ∧ α) = 0.

Therefore, �(θ1,0 ∧ α) = 0, �(θ0,1 ∧ α) = 0.

We now study the spaces ker(�p,n−p−1) (0 ≤ p ≤ n − 1). We prove that ker(�p,n−p−1) is actually

Sp,n−1−p(V).
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Theorem 3.14. Let (M,J, θ) be a compact Vaisman manifold of dimC = n. Then

ker(�p,n−1−p) ∼= Sp,n−1−p(V),

where Sp,q denote the vector space of transversally harmonic and transversally effective V-foliate (p, q)-

forms.

Proof. Following Theorem 3.7, we only need prove that

ker∆∂̄ ∩ P p,n−1−p ∩ ker(iθ♯) ∼= Sp,n−1−p(V).

We denote by α an V-foliate transversally (p, n− 1− p)-form in Sp,n−p−1. Noting that Λ′α = 0, i.e.,

0 = dJθ ∧ ∗′α,

and iθ♯α = 0. Since ω = θ ∧ Jθ − dJθ, we get

Λα = − ∗−1 L ∗ α
= − ∗−1 (ω ∧ ∗′α ∧ θ ∧ Jθ)

= − ∗−1 (dJθ ∧ ∗′α ∧ θ ∧ Jθ) = 0.

Therefore, Sp,n−1−p(V) ⊂ ker∆∂̄ ∩ P p,n−1−p ∩ ker(iθ♯).

On the other hand, we denote by α a (p, n− 1− p)-form in ker(�p,n−1−p). Following Theorem 3.11,

we obtain that

α = β + θ0,1 ∧ γ,

where β, γ are transversally effective V-foliation forms. Following Proposition 3.6, we have

0 = iθ♯α = |θ0,1|2γ =
1

2
γ,

i.e., γ = 0. Therefore, α ∈ Sp,n−p−1.

Corollary 3.15. ([18, Corollay 3.4]) On a compact Vaisman manifold (M,J, θ), there exists the isomor-

phism

Hn,0

∂̄
(M) ∼= Hn−1,0

∂̄
(M)

whereHp,q

∂̄
(M) is the Dolbeault cohomology group of type (p, q). Furthermore,

Hn,0

∂̄
(M) ∼= Sn,0(V) ∼= Hn−1,0

∂̄
(M) ∼= Sn−1,0(V).

We begin to study the spaces ker(�p,n−p) (0 ≤ p ≤ n).

Theorem 3.16. Let (M,J, θ) be a compact Vaisman manifold of dimC = n. Then we have

hp,n−p
�

= sp,n−p−1 + sp−1,n−p

where sk = dimSk (resp. sp,q = dimSp,q). Furthermore,

ker∆d ∩ Ωn ∼= ker(�) ∩ Ωn,

ker(�k,n−k) ∼= ker∆∂̄ ∩ Ωk,n−k.
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Proof. Let α1 be a non-zero (p, n − p − 1)-form in Sp,n−p−1 and α2 a non-zero (p − 1, n − p)-form

in Sp−1,n−p . Following Proposition 3.13, θ1,0 ∧ α1 and θ0,1 ∧ α2 are two non-zero differential forms in

ker(�p,q). Therefore,

hp,n−p
�

≥ sp,n−p−1 + sp−1,n−p.

It’s easy to see ker(�) ∩ Ωn ⊂ ker∆d ∩ Ωn. Following Theorem 3.12, we then have

bn = 2sn−1 ≥
n∑

p=0

hp,n−p
�

.

Therefore,

2sn−1 ≥
n∑

p=0

sp,n−p−1 +

n∑
p=0

sp−1,n−p = 2sn−1.

Hence, all inequalities must be equalities. We obtain that

hp,n−p
�

= sp,n−p−1 + sp−1,n−p,

i.e., if α ∈ ker(�p,n−p), then there are β1 ∈ Sp−1,n−p and β2 ∈ Sp,n−p−1 such that

α = θ1,0 ∧ β1 + θ0,1 ∧ β2,

Following ker(�) ∩ Ωn = ⊕0≤k≤n ker(�
k,n−k) and bn = 2sn−1 =

∑n
k=0 h

k,n−k
�

, we then have

ker∆d ∩ Ωn ∼= ker(�) ∩ Ωn,

Following Theorem 3.12, we get

bn =
n∑

k=0

hk,n−k =
n∑

k=0

hk,n−k
�

= hn
�
.

We then have

hk,n−k = hk,n−k
�

,

i.e.,

ker(�k,n−k) ∼= ker∆∂̄ ∩ Ωk,n−k.

Corollary 3.17. Let (M,J, θ) be a compact Vaisman manifold of dimC = n ≥ 2.

(1) If the Betti number bn = 0, then for any 0 ≤ k ≤ 2n, we have

Hk
�
= {0}.

(2) If the Betti number bn = 2, then

Hn,0

∂̄
(M) = Hn−1,0

∂̄
(M) = {0}.
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Proof. If bn = 0, then

Hn
�
= Hn−1

�
= 0.

If bn = 2, then following Corollary 3.15 and Theorem 3.12, we have

2hn−1,0 ≤ 2sn−1 = bn.

Therefore, hn−1,0(M) ≤ 1. When hn−1,0(M) = 1, we denote by α a non-zero (n − 1, 0)-form in

ker(�n−1,0). Following Theorem 3.14, α ∈ Sn−1,0(V). Therefore, θ1,0 ∧ α and θ0,1 ∧ α are not zero.

Then by Proposition 3.13, we get θ1,0 ∧ α ∈ ker(�n,0), θ0,1 ∧ α ∈ ker(�n−1,1). Therefore, we get

hn,0
�

= hn−1,0
�

= 1, hn−1,1
�

≥ hn−1,0
�

= 1.

Therefore,

bn =
∑

p+q=n

hp,q
�

≥ 2hn,0
�

+ 2hn−1,1
�

≥ 4.

This contradicts the fact that bn = 2. Hence hn−1,0(M) = 0.

Remark 3.18. For larger number bn, we cannot prove that sn−1,0 must be zero. For example, when n = 3,

b3 = 4, i.e., s2 = h1,1
�

+ 2h2,0
�

= 2, we get

b3 = 2h3,0
�

+ 2h2,1
�

≥ 4h2,0
�
.

Therefore, h2,0
�

= 0 or 1. There are two cases as follows:

(i) h1,1
�

= 2, h0,2
�

= h2,0
�

= 0, h2,1
�

= h1,2
�

= 2 and h0,3
�

= h3,0
�

= 0;

(ii)h1,1
�

= 0, h0,2
�

= h2,0
�

= 1, h2,1
�

= h1,2
�

= 1 and h0,3
�

= h3,0
�

= 1.
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