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Abstract

We provide a classification result on nearly free arrangements of lines in the complex

projective plane with nodes and triple points.

Keywords 14N20, 52C35, 32S22

Mathematics Subject Classification (2020) nearly free curves, line arrangements

1 Introduction

In the recent years there is a great interest on line arrangements in the complex projective
plane that are free. This is due to the reason that the celebrated Terao’s conjecture predicts
that the freeness of complex line arrangements in the projective plane is determined by the
combinatorics. In the context of a potential counterexample to Terao’s conjecture, Dimca and
Sticlaru in [4] defined a new class of line arrangements that is called nearly free. Roughly
speaking, if Terao’s conjecture fails, then it is expected that we have two combinatorially
equivalent line arrangements, one is free and the second is nearly free. Here our aim is to
understand nearly free complex line arrangement that are nearly free, and they have only
nodes and triple intersection points. This setting is motivated by a very recent paper by Dimca
and Pokora [6] where the authors study free conic-line arrangement with nodes, tacnodes, and
ordinary triple points. Based on their ideas, we perform our classification procedure and we
obtain the following result.

Main Theorem. Let L ⊂ P2
C
be an arrangement of d lines with only nodes and triple inter-

section points. Suppose that L is nearly free, then d ∈ {4, 5, 6, 7, 8}.

Here is the structure of the paper. In Section 2, we recall basics on nearly free reduced
plane curves in the plane. In Section 3, we provide some combinatorial constraints on the
number of lines of nearly free line arrangements with nodes and triple points. In Section 4,
using deformation arguments applied on free line arrangements with nodes and triple points,
we perform a classification procedure that will eventually lead to Main Theorem.

2 Introduction to nearly free curves

Let C be a reduced curve P2
C

of degree d given by f ∈ S := C[x, y, z]. We denote by Jf

the Jacobian ideal generated by the partials derivatives ∂xf, ∂yf, ∂zf . Moreover, we denote by
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r := mdr(f) the minimal degree of a relation among the partial derivatives, i.e., the minimal
degree r of a triple (a, b, c) ∈ S3

r such that

a · ∂xf + b · ∂yf + c · ∂zf = 0.

We denote by m = 〈x, y, z〉 the irrelevant ideal. Consider the graded S-module N(f) = If/Jf ,
where If is the saturation of Jf with respect to m = 〈x, y, z〉.

Definition 2.1. We say that a reduced plane curve C is nearly free if N(f) 6= 0 and for every
k one has dimN(f)k 6 1.

To complete the picture, we need to define free curves.

Definition 2.2. We say that a reduced plane curve C is free if N(f) = 0.

In order to study the nearly freeness of a reduced plane curve C : f = 0, f ∈ Sd, Dimca
and Sticlaru provided a homological criterion on the Milnor algebra M(f) := S/Jf .

Theorem 2.3 (Dimca-Sticlaru). If C is a nearly free curve of degree d given by f ∈ S, then
the minimal free resolution of the Milnor algebra M(f) has the following form:

0 → S(−b− 2(d− 1)) → S(−d1 − (d− 1)) ⊕ S(−d2 − (d− 1)) ⊕ S(−d3 − (d− 1))

→ S3(−d + 1) → S → M(f) → 0

for some integers d1, d2, d3, b such that d1 + d2 = d, d2 = d3, and b = d2 − d + 2. In that case,

the pair (d1, d2) is called the set of exponents of C.

Example 2.4. Let us consider the rational cuspidal curve C : y2z = x3. It is known that
C is a nearly free curve. We can compute the minimal free resolution of M(f) which has the
following form:

0 → S(−5) → S(−4)2 ⊕ S(−3) → S(−2)3 → S → M(f) → 0.

It means that the exponents are (1, 2).

From now on we stick to line arrangements in P2
C
. In order to study their nearly freeness,

we will use [3, Theorem 1.3] which turns out to be a vital technical tool.

Theorem 2.5 (Dimca). Let L ⊂ P2
C
be an arrangement of d lines and let f = 0 be its defining

equation. Denote by r := mdr(f). Assume that r 6 d/2, then L is nearly free if and only if

r2 − r(d− 1) + (d− 1)2 = µ(L) + 1, (1)

where µ(L) is the total Milnor number of L, i.e.,

µ(L) =
∑

p∈Sing(L)

(multp − 1)2.

Example 2.6. Let us consider the line arrangement A ⊂ P2
C

defined by the following equation

Q(x, y, z) = (x2 + xy + y2)(y3 − z3)(z3 − x3).

This arrangement consists of 8 lines and delivers 4 nodes and 8 triple intersection points. Using
Singular [2] we can compute mdr(Q) which is equal to 4. Since r 6 d/2 = 4, we can use the
above criterion, namely

37 = 42 − 4 · 7 + 72 = µ(A) + 1 = 4 + 4 · 8 + 1,

so A is nearly free.
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3 Nearly free arrangements of line arrangements with nodes and triple points

In order to provide a lower bound on the number of lines of nearly free line arrangements
with nodes and triple points, we recall the following result by Dimca and Pokora [6, Proposition
4.7] which is adjusted to our purposes.

Proposition 3.1. Let C : f = 0 be an arrangement of d lines in P2
C
such that it has only

nodes and triple intersection points. Then one has

mdr(f) >
2

3
d− 2.

If C : f = 0 is a nearly free arrangement of d lines with nodes and triple intersection points
with the exponents (d1, d2), d1 6 d2, then mdr(f) = d1, and since

2d1 6 d1 + d2 = d

we obtain that mdr(f) 6 d/2. Combining it with the above proposition, we arrive at

2

3
d− 2 6 mdr(f) 6 d/2.

It gives us the following result.

Proposition 3.2. If A ⊂ P2
C
is a nearly free arrangement of d lines with nodes and triple

intersection points, then d 6 12.

Based on the above proposition, our goal is the following.

Problem 3.3. Classify all weak combinatorics of line arrangements with nodes and triple
points in P2

C
which are nearly free.

Here by the weak combinatorics, for an arrangement of lines L, we mean the vector (d; t2, t3),
where d is the number of lines, t2 is the number of nodes, and t3 is the number of triple points.
Sometimes we will write ti(L) with i ∈ {2, 3} in order to emphasize the underlying arrangement
of lines L. The first step towards the classification is the following proposition.

Proposition 3.4. Let L ⊂ P2
C
be a nearly free arrangement of d lines with nodes and triple

intersection points. Then

t3 >
1

4

(
d2 − 4d− 1

)
. (2)

Proof. If L is nearly free with r = mdr(f), where f ∈ Cd[x, y, z] is the defining equation, then
by Theorem 2.5 one has

r2 − r(d− 1) + (d− 1)2 = µ(L) + 1.

Let us recall that we have the following combinatorial count

(
d

2

)
=

d(d− 1)

2
= t2 + 3t3.

Since µ(C) = t2 + 4t3 =
(
d

2

)
+ t3, we obtain

r2 − r(d− 1) + (d− 1)2 = r2 − r(d− 1) + d2 − 2d + 1 =

(
d

2

)
+ t3 + 1.
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After simple manipulations, we arrive at

r2 − r(d− 1) +
d2 − 3d− 2t3

2
= 0.

The above equation can have integer roots if △r = (d − 1)2 − 2d2 + 6d + 4t3 > 0. This leads
us to

t3 >
1

4

(
d2 − 4d− 1

)
,

which complete the proof.

In the next step, let us recall the following bound on the number of triple points for line
arrangements which is due to Schönheim [9]. Define

U3(d) :=

⌊⌊
d− 1

2

⌋
·
d

3

⌋
− ε(d),

where ε(d) = 1 if d = 5 mod(6) and ε(d) = 0 otherwise. Then

t3 6 U3(d). (3)

If L is a nearly free arrangement with only nodes and triple intersection points, then

1

4

(
d2 − 4d− 1

)
6 t3 6 U3(d). (4)

Observe that for d ∈ {12, 11, 10} the chain of inequalities in (4) leads us to a contradiction.

Corollary 3.5. Let L ⊂ P2
C
be a nearly free arrangement of d lines with only nodes and triple

intersection points. Then

d 6 9.

In the next chapter, we are going to indicate those values of d ∈ {4, 5, 6, 7, 8, 9} for which
there exists a line arrangement with nodes and triple points that is nearly free. In order to do
so, we are going to use some tricks regarding deletion and deformation-type arguments.

4 Classification

One of the tools that will help us is the following deformation type result which has a general
meaning, and that is the reason why we formulate it for all reduced plane curves. Before we
formulate it, let us present the following definition.

Definition 4.1. Let C : f = 0 be a reduced curve in P
2
C

of degree d. For r = mdr(f) we define
the number

η(C) = r2 − r(d− 1) + (d− 1)2.

Moreover, we define the total Tjurina number of C by

τ(C) :=
∑

p∈Sing(C)

τp,

where τp denotes the (local) Tjurina number of C at the singular point p.
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Remark 4.2. Observe that if C is an arrangement of d lines in P
2
C
, then

µ(C) = τ(C),

and it follows from the fact that all the singular points for line arrangements are quasi-

homogeneous.

Proposition 4.3. Let C : f = 0 be a free reduced plane curve of degree d having only nodes and

n3 > 1 ordinary triple points. Let C ′ be a reduced curve obtained by the following deformation

performed on C:

(⋆): a triple intersection point p is deformed into three nodes.

Denote by f ′ = 0 the defining equation of C ′. Assume that η(C) = η(C ′) and mdr(f ′) 6 d/2,
then C ′ is nearly free.

Proof. If C is free, then by [3, Corollary 1.2] we have

η(C) = r2 − r(d− 1) + (d− 1)2 = τ(C) = n2 + 4n3.

Observe that
τ(C ′) = (n2 + 3) + 4(n3 − 1) = n2 + 4n3 − 1,

so τ(C ′) + 1 = τ(C). Since mdr(f ′) 6 d/2, then in the light of [3, Theorem 1.3] C ′ is nearly
free, and it finishes the proof.

Let us explain this idea in detail by the forthcoming example.

Example 4.4. Consider A1(6) arrangement defined by the equation

f(x, y, z) = xyz(x− y) · (y − z) · (x− z).

It is well-known that t2(A1(6)) = 3, t3(A1(6)) = 4, mdr(f) = 2, and η(A1(6)) = 19. Now
we consider the following deformation of A1(6), denoted here by A6, given by the following
equation

f ′(x, y, z) = xyz(y − z) · (x− z) ·

(
x−

1

2
y

)
.

It has t2(A6) = 6 and t3(A6) = 3, mdr(f ′) = 3, and η(A6) = 19.
Observe that A6 is nearly free, namely

η(A6) = 19 = t2(A6) + 4t3(A6) + 1 = µ(A6) + 1 = µ(A1(6)),

which completes our justification.

In this way, we have constructed a nearly free arrangement of d = 6 lines. Now we are
going to use results from [7] in order to construct examples of nearly free arrangement of lines
using our deformation argument, and at the end the deletion procedure.

d = 4: It is known that the maximal number of triple points for 4 lines is equal to 1. Moreover,
this arrangement consisting of t3 = 1, t2 = 3, and d = 4 is free since it is a supersolv-
able line arrangement. In this situation, as it turns out, we can apply our deformation
argument above and conclude that an arrangement of d = 4 lines and 6 nodes is nearly
free.
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d = 5: It is also known that the maximal number of triple points for 5 lines is equal to 2.
Moreover, an arrangement with d = 5, t3 = 2, and t2 is supersolvable, and thus it is free
arrangement. Again, we can perform our deformation argument at one triple point, we
obtain in that way an arrangement with d = 5, t3 = 1, and t2 = 7, and this arrangement
is nearly free.

d = 6: This case is covered by Example 4.4.

d = 7: We know that over the complex numbers the maximal number of triple points for 7 lines
is equal to 6. Consider the arrangement

Q(x, y, z) = z · (x2 − z2) · (y2 − z2) · (y2 − x2).

We can check, using Singular, that the arrangement A defined by Q is free with the
exponent (3, 3). Now we can deform arrangement A at one of the triple intersection
points. Consider the following deformation

G(x, y, z) = z · (y2 − z2) · (x2 − z2) · (y + x) · (2y − x + 2z).

The arrangement A
′ defined by G delivers t3 = 5 and t2 = 6. Using Proposition 4.3,

we can conclude that indeed A
′ is nearly free. We can check this also directly, since

mdr(G) = 3, we have

r2 − 6 · r + 36 = 9 − 18 + 36 = µ(A′) + 1 = 6 + 4 · 5 + 1 = 27.

d = 8: This case is covered by Example 2.6. However, we want to explain a bit how this ar-
rangements can be derived. Recall that the dual Hesse arrangement H of d = 9 lines and
t3 = 12 is given by the following defining equation.

Q(x, y, z) = (x3 − y3) · (y3 − z3) · (z3 − x3).

Now we are going to remove one line. Since the picture is completely symmetric, we
remove a line ℓ given by x− y = 0. Then

Q̃(x, y, z) = Q(x, y, z)/(x− y) = (x2 + xy + y2) · (y3 − z3) · (z3 − x3),

so we arrive at the situation of Example 2.6. The procedure above is called in the
literature as the deletion procedure. It is well-known that the above arrangement is
nothing else than Mac Lane arrangement of 8 lines, and it realizes the maximal number
of triple points among line arrangements with 8 lines, according to [7].

The last case boils down to decide whether d = 9 can occur, and it has a different flavour
comparing with the previous cases. Using our bound (2) we see that for d = 9 our nearly
free arrangement should have t3 > 11 triple points. If t3 = 12, then this is the dual Hesse
arrangement which is unique up to a projective equivalence, and the dual Hesse arrangement is
free. Due to this reason, our problem reduces to decide whether there exists and arrangement
of d = 9 lines with t3 = 11 and t2 = 3. In order to approach this problem, we use database
described in [8]. It turns out that there exists the only one matorid of d = 9 lines and 11
triple points. However, this matroid cannot be realized as a line arrangement over any field
due to method explained in [1, Section 4] - in fact in this case there is failure of Dress-Wentzl’s
valuation criterion. This observation finishes our classification procedure. Based on that, we
are ready to formulate our main result.



7

Theorem 4.5. Let L ⊂ P
2
C
be an arrangement of d lines with nodes and triple intersection

points that is nearly free. Then d ∈ {4, 5, 6, 7, 8}.

Now our aim is to find all weak combinatorics C = (d; t2, t3) with d ∈ {4, 5, 6, 7, 8} such that
C can be geometrically realized over the complex numbers as an arrangement of d lines with
prescribed t2 and t3 such that C is nearly free. We can use a classification result that comes
from [8] and Proposition 3.4.

d = 4: We should have t3 > 0, and the only possibility to a have nearly free and not free
arrangement is (4; 6, 0).

d = 5: We should have t3 > 1, and the only possibility to have a nearly free and not free
arrangement is (5; 7, 1).

d = 6: We should have t3 > 3, and the only possibility to have a nearly free and not free
arrangement is (6; 6, 3).

d = 7: We should have t3 > 5, and the only possibility to have a nearly free and not free
arrangement is (7; 6, 5).

d = 8: We should have t3 > 7 and it turns out that we have two possibilities, namely (8; 4, 8)
or (8; 7, 7). We need to decide whether an arrangement with the weak combinatorics
C = (8; 7, 7) is nearly free – of course such an arrangement can be constructed over the
real numbers. If such an arrangement would be nearly free, then by Theorem 2.5 the
following polynomial must have integer roots

r2 − 7r + 49 = r2 − r(d− 1) + (d− 1)2 = µ(C) + 1 = t2 + 4t3 + 1 = 7 + 4 · 7 + 1 = 36.

Of course equation r2−7r+13 = 0 does not have integer roots, so the weak combinatorics
(8; 7, 7) does not rise to a nearly free arrangement.

Based on the above considerations, there are exactly 5 weak combinatorics (d; t2, t3) lead-
ing to nearly free arrangements of d lines with t2 double and t3 triple intersection
points.
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