
ar
X

iv
:2

20
2.

01
62

5v
1 

 [
m

at
h.

ST
] 

 3
 F

eb
 2

02
2

Efficient learning of hidden state LTI state space
models of unknown order
BOUALEM DJEHICHE1,* and OTHMANE MAZHAR1,†

1Department of Mathematics, KTH Royal Institute of Technology, Stockholm, Sweden.

E-mail: *
boualem@kth.se; †

othmane@kth.se

The aim of this paper is to address two related estimation problems arising in the setup of hidden state linear time
invariant (LTI) state space systems when the dimension of the hidden state is unknown. Namely, the estimation of
any finite number of the system’s Markov parameters and the estimation of a minimal realization for the system,
both from the partial observation of a single trajectory. For both problems, we provide statistical guarantees in the
form of various estimation error upper bounds, rank recovery conditions, and sample complexity estimates.

Specifically, we first show that the low rank solution of the Hankel penalized least square estimator satisfies
an estimation error in Sp-norms for p ∈ [1,2] that captures the effect of the system order better than the existing
operator norm upper bound for the simple least square. We then provide a stability analysis for an estimation
procedure based on a variant of the Ho-Kalman algorithm that improves both the dependence on the dimension
and the least singular value of the Hankel matrix of the Markov parameters. Finally, we propose an estimation
algorithm for the minimal realization that uses both the Hankel penalized least square estimator and the Ho-
Kalman based estimation procedure and guarantees with high probability that we recover the correct order of
the system and satisfies a new fast rate in the S2-norm with a polynomial reduction in the dependence on the
dimension and other parameters of the problem.

MSC2020 subject classifications: Primary 62J07; 62M05; 62M10; 62M15; secondary 60E15; 62C20; 62F10
Keywords: Hiden State LTI State Space model; System Identification; Markov parameters; Subspace methods;
Sample complexity; System Order recovery

1. Introduction

Many control design and synthesis techniques rely on an accurate description of the system as a state
space model. Deriving such accurate description is an important problem in system identification with
far-reaching applications in many areas including time series analysis [24], economics [42], robotics
[22] and aeronautics [3], to name a few. While in some cases it is possible to derive such models due to
the simple structure of the underlying phenomena involved in the dynamical evolution [28, 12], there
are many instances where such an approach is intractable because the system is too complex or some
of the involved phenomena are not well understood. In those cases, one adopts a so-called black-box
approach and learns the system from the input/output data generated in an experimental setting with
little to no assumptions on the real system.

In recent years, there has been an increased interest in providing non-asymptotic statistical guar-
antees in the form of estimation error upper bounds and sample complexity estimates for data-driven
estimation procedures for state space models [53, 10, 52, 18, 40, 38]. While there is a plethora of
estimation procedures for learning state space models most of which are well understood in the asymp-
tomatic regime derived e.g. in [28, 11, 4, 49], modern estimation setups present additional challenges
that are not taken into account in an asymptomatic study. For example, in estimation based solution
to the linear reinforcement learning problem [27] one would aim to obtain a highly accurate estimate
of the dynamical system as fast as possible before moving to the control part or alternate between es-
timation and control in such a way to strike a trade-off between the exploration and the exploitation
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part. In these cases, asymptotic results are of limited use; the more accurate measure of estimation per-
formance would be through the non-asymptotic estimation error and the sample complexity. Beyond
the reinforcement learning use, non-asymptotic statistical guarantees are also used in conjunction with
robust control techniques [6, 46], in control design using the Markov parameters [41, 19], and as theo-
retical guidelines for practical heuristics such as bootstrapping to establish high-probability confidence
intervals [13]. Several authors provided such estimates for observed LTI state space models, and the re-
sults are essentially optimal in the sense that upper and lower bounds for both the estimation error and
sample complexity match up to logarithmic terms and unknown multiplicative constants [40]. How-
ever, the situation is not as clear-cut for Hidden state LTI state space models. In a realistic setup, these
systems present the additional challenge of not knowing the dimension of the state. In the absence of
precise estimation lower bounds, the estimation upper bounds presented in the literature so far do not
capture well the effect of the system dimension and dynamic on the non-asymptotic estimation error
and sample complexity incurred by the studied estimation algorithms.

1.1. Problem statement and preliminaries

The present study aims to provide computationally effective estimation procedures satisfying sharp
non-asymptotic estimation error bounds and sample complexity estimates when used for learning the
parameters of hidden state LTI state space models of unknown order from the partial observation of a
single trajectory of the system. We then have to deal with two ambiguities:

• The hidden dimension of the parameters is not well defined from an input/output standpoint.
• The hidden state LTI state space model parameters’ are defined only up to a similarity transform.

In this section, we make these two claims more precise, introduce some necessary preliminaries from
realization theory and provide a precise statement for the aim of the study.

To this end, we consider the following formulation for LTI state space models.
{

xi+1 =A0xi +B0ui +wi,

yi =C0xi + vi,
(1.1)

where xi ∈Rd0 is the hidden state variable of unknown dimension d0 and ui ∈Rr are iid multivariate
normal sequences N (0, σ2uIr). They excite the system to generate the output sequence yi ∈ Rp. wi

respectively vi are the iid multivariate normal state noise sequence N (0, σ2wId0) and the output noise
sequence N (0, σ2vIp), respectively. These centred Gaussian random vectors can be replaced by centred
subGausian centred random vectors of appropriateψ2 norm upper bounds and all the results remain the
same. The linear dynamic is then described by the parameters (A0,B0,C0) with A0 ∈Md0×d0(R),
B0 ∈Md0×r(R), and C0 ∈Mp×d0(R). If we eliminate the state variable xi, we obtain the so-called
input/output (I/O) description of the system:

yn =

n−1
∑

i=0

C0A
n−1−i
0 B0ui +

n−1
∑

i=10

C0A
n−1−i
0 wi + vn

=
t−1
∑

l=t−2T+1

C0A
t−1−l
0 Bul +

t−2T
∑

l=0

C0A
t−1−l
0 B0ul +

t−1
∑

l=0

C0A
t−1−l
0 wl + vt

:= g0Xt + ḡ0X̄t + hWt + vt, (1.2)
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where, N̄ :=N − 2T +1,

Xl := [u∗l−1, u
∗
l−2, . . . , u

∗
l−2T+1]

∗ ∈R(2T−1)r

X̄l := [u∗l−2T , u
∗
l−2T−1, . . . , u

∗
0,0, . . . ,0]

∗ ∈R
N̄r

Wl := [w∗l−1,w
∗
l−2, . . . ,w

∗
0,0, . . . ,0]

∗ ∈RNd0 ,

(1.3)

and

g0 := [C0B0,C0A0B0, . . . ,C0A
2T−2
0 B0] ∈Mp×(2T−1)r(R)

ḡ0 := [C0A
2T−1
0 B0,C0A

2T
0 B0, . . . ,C0A

N−1
0 B0] ∈Mp×N̄r(R)

h := [C0,C0A0, . . . ,C0A
N−1
0 ] ∈Mp×Nd0(R).

(1.4)

Since we want to estimate the parameter g0, the part ḡ0X̄t+hWt+vt will play the role of a disturbance
that we will refer to as the noise part. To obtain a successful estimator of g0, this part should not grow
arbitrarily large. To this end, we impose an assumption on the growth of the powers of the estimated
matrix in terms of its spectral radius that we recall in the next definition.

Definition 1.1. The spectral radius of a matrix A is defined as ρ(A) := minλ∈SP(A) |λ|, where

SP (A) is the spectrum (the set of all eigenvalues) of A.

Assumption 1.1. We assume that the system (1.1) is stable in the sense that the spectral radius ρ(A0)
is strictly less than 1.

By applying the Jordan decomposition to the matrix A, we readily see that there exists a positive
constant ψA depending only on A such that for all k ∈N we have

|Ak|S∞
6 ψAρ(A

k). (1.5)

The system identification problem in this setup would be to estimate the parameters (A0,B0,C0) given
that we observe a single realization of (Xi, yi)

N
i=2T while we do not have access to the sequence (xi)i

and in particular we do not know the dimension d0. From (1.2) we notice that the sequence (yi)i is
related to (ui)i in a causal fashion only through the factors (CAiB)i, commonly referred to as the
Markov parameters associated with the system (A0,B0,C0).

We note that for any similarity transform S, the parameters (A0,B0,C0) and their transforms
(SA0S

−1, SB0,C0S
−1) give the same values for the Markov parameter vector g0. This makes the

problem of learning the parameters (A0,B0,C0) from observations up to time N of a single trajectory
(ui, yi)i not well defined. One can only learn a representative of the equivalence class defined by the
parameters (SA0S

−1, SB0,C0S
−1) for all similarity transforms S. This also makes the dimension d0

not well defined as one can always replace the system (1.1) by the larger system






















[

xi+1

zi+1

]

=

[

A0

][

xi

zi

]

+

[

B0

]

ui +wi,

yi =
[

C0

]

[

xi

zi

]

+ vi.

Nonetheless, from the Realization Theory of linear systems, we know a representative of the equiva-
lence class for (A0,B0,C0) of minimal dimension exists.
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Definition 1.2. We refer to a representative of the equivalence class of minimal dimension as a mini-

mal realization, and we refer to the dimension of the minimal realization as the system order.

The system order coincides with the McMillan degree [30, 31] defined as

δ(A0,B0,C0) := rank(Hg∗0),

where H : Mp×(2T−1)r(R) −→MTp×Tr(R) is the T order Hankel operator on g0 defined, for any
g = [g1, . . . , g2T−1] ∈Mp×(2T−1)r(R), by

Hg∗ =













g1 g2 g3 gT
g2 g3 gT+1
g3 gT+2

gT gT+1 gT+2 g2T−1













,

and where T is greater than the dimension of the matrixA1 of some particular realization (A1,B1,C1)
which is not necessarily minimal. For more on Hankel operators, their properties and the role of the
McMillan degree as a complexity measure for LTI models, we refer to [7, 34, 30, 31]. We also note that
the McMillan degree is independent of the realization since it is defined with respect to the Markov
parameters.

Hence, we deal with the ambiguity in the definition of the system dimension by adopting the follow-
ing

Assumption 1.2. We assume that the realization (A0,B0,C0) is minimal in the sense that d0 =
δ(A0,B0,C0).

This assumption can be made without loss of generality since any hidden state LTI state space
system has a minimal realization. We also define the T -order controllabilty matrix C and the T -order
observability matrix O for the realization (A0,B0,C0) by

C =
[

B0 A0B0 · · · AT−1
0 B0

]

and O =











C0

C0A0
...

C0A
T−1
0











(1.6)

and recall that the system (A0,B0,C0) is a minimal realization if and only if rank(C) = rank(O) = d0
and in that case, for all T > d0, we have rank(Hg∗0) = d0. When this occurs we say that the pair (A,B)
is controllable and the pair (C,A) is observable. Therefore, we impose the following

Assumption 1.3. We assume that T > d0.

As mentioned above, this assumption is necessary and sufficient for the Hankel matrix of the Markov
parameters to capture the dimension of the minimal realization. Moreover, this assumption is even
more relevant when we estimate a Hidden state LTI state space model of unknown order while given a
pessimistic upper bound T on d0, which is the high dimension estimation set up in this context.

Since a minimal realization is again defined up to a similarity transform, we introduce here the con-
cept of a balanced minimal realization which is a particular minimal realization that one can compute,
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given the Markov parameters. The procedure of deriving a minimal realization from the description of
the Markov parameters is known as the Ho-Kalman algorithm. Suppose that we are given the Markov
parameter vector g0 and noting that Hg∗0 = OC, the Ho-Kalman algorithm starts from the SVD de-
composition of the Hankel matrix of the Markov parameters and constructs the particular minimal
realization given in the following

Definition 1.3. Assume that rank(Hg∗0) = d0 and T > d0 + 1. Then a minimal balanced minimal

realization (Ā, B̄, C̄) is defined through the following Ho-Kalman algorithm:

• Define the SVD decomposition of the Hankel matrix of the Markov parameters by

Hg∗0 = U0Σ0V
∗
0 .

• Take

Ō = U0Σ
1/2
0 and C̄ =Σ

1/2
0 V ∗0 .

• Define the minimal balanced realization as

Ā=
(

Ō1:r(T−1),1:d0
)†
Ōr+1:rT,1:d0 , B̄ = Ō1:d0,1:r, and C̄ = Ō1:p,1:d0 .

In this definition, M † refers to the left pseudo inverse of a full column rank matrix M and Ma:b,c:d
refers to the sub-matrix of M composed of rows a to b and columns c to d.

We note that there are multiple variants of the Ho-Kalman algorithm described in the previous defi-
nition, but the main idea for the construction is the same for all of them.

We note as well that Ō1:r(T−1),1:d0 has full rank since it is equal to the observability matrix up to a
similarity transform. Hence, we have

sd0(Ō1:r(T−1),1:d0)> 0,

where sk(M) refers to the kth singular value of the matrix M and the singular values are taken in
a decreasing order. Starting from the observation that Hg∗0 = OC one can check that there exists a
similarity transform S such that Ā= SA0S

−1, B̄ = SB0, and C̄ =C0S
−1. Thus (Ā, B̄, C̄) is indeed

a minimal realization and belongs to the equivalence class of M= (A0,B0,C0).

Thus, our aim is two folds:

• to provide an estimation procedure that given the data generated from the observation of
a single trajectory (Xi, yi)

N
i=2T up to time N outputs estimates of the Markov parameters

ĝ = [ĝ1, · · · , ĝ2T−2] such that the following loss function

LH
p (ĝ, g0) = |Hĝ∗ −Hg∗0|Sp

is small with high probability.
• to provide an estimate M̂= (Â, B̂, Ĉ) for the systemM0 = (A0,B0,C0) of the same dimension
d0 as some minimal realization such that the following loss function with respect to the minimal
balanced realisation M̄= (Ā, B̄, C̄)

LMp (M̂,M̄) := inf
S: det(S)6=0

|S−1ÂS − Ā|Sp + |S−1B̂ − B̄|Sp + |ĈS − C̄|Sp

is also small with high probability. Up to a multiplicative constant, this is the same as saying that
the loss function L(M̂,M0) is small.
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Here, |M |Sp
= (tr(M∗M)p/2)1/p, 16 p <∞, |M |S∞

= max
|x|261

|Mx|2 and |x|22 =
∑n

i=1 |xi|2.

Frequently used notation

Before we review the literature related to our problem and the main contributions of the present paper,
we recall some frequently used notations.

We denote by (Ω,F ,P) the underlying probability space and by E the corresponding expectation
operator.

Here and throughout the paper c denote a positive constant whose exact value is not important for the
derivation and might change from one step to another. x. y is a shorthand for ‘there exists a positive
constant c such that x6 cy’, and x≃ y means that x. y and y . x. The minimum (maximum) of two
real numbers x and y is denoted as min(x, y) = x∧ y (max(x, y) = x∨ y).

Whenever possible, our results are provided with explicit constants to give an idea of their order.
The numerical values of these constants are useful in practice but are not optimal and can be improved.

1.2. Related literature

A common estimation approach in the Hidden state LTI state space setup is the two-step approach
commonly referred to as a subspace method [49, 50, 21]. In the first step of this approach, one learns
the Markov parameters with a good enough precision, since unlike the true parameters (A0,B0,C0) the
Markov parameters are well defined, and in the second step, one uses the learned Markov parameters
to provide an estimate close to a representative of the equivalence class of the true parameters. The
first step is usually carried out with a regression-type estimator and the second step is carried out via
some variant of the celebrated Ho-Kalman algorithm, which relies on identifying a possible realization
from the output of an SVD decomposition. The popularity of the subspace approach is because it is
computationally tractable, unlike the maximum likelihood approach or the predictive error method,
which both results in a non-convex optimization problem [28]. Several results appeared recently in the
machine learning community studying non-asymptotic properties of variants of the subspace method
under various assumptions on the estimation setup. The literature on the estimation of the parameters
of LTI state space models is very rich; early works in the topic date back to the nineties where [14, 35,
51, 25] provided asymptotic results. A complete overview of this vast literature falls beyond the format
and the scope of the present paper. Therefore, we only mention and discuss here some recent results
[33, 39, 9, 43] that provide non-asymptotic statistical guarantees for variants of the subspace method
and thus are close in spirit to our work.

Remark 1.1. We took some freedom to omit the contribution of lower order terms for some of these

results. Instead, we refer to the original work for the exact statement.
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For ease of notation, we set

y :=











y∗2T
y∗2T+1

...
y∗N











, X :=











X∗2T
X∗2T+1

...
X∗N











, X̄ :=











X̄∗2T
X̄∗2T+1

...
X̄∗N











,

W :=











W ∗2T
W ∗2T+1

...
W ∗N











, ε=











v∗2T
v∗2T+1

...
v∗N











.

(1.7)

Thus, we can write the input/output representation (1.2) for the y vector more succinctly as follows:

y =Xg∗0 + X̄ḡ∗0 +Wh∗ + ε.

• The context of known dimension d0. While this context is simpler, results in this setup are infor-
mative about what can be expected if d0 is unknown. Oymak and Ozay [33] consider a subspace
approach in this context and show that the least square estimator defined as ĝls := (X†y)∗ can
effectively learn the first T Hankel parameters in the sense that with high probability and for
values of N such that

N >N0 = cT q0 log
2(Tq0) log

2(TN) with q0 = r+ p+ d0,

it holds that [33, Theorem 3.1]

|ĝls − g0|S∞
6 (σv + σe + |h|H∞

log(TN))

√

cT q0 log
2(Tq0)

N
,

where σe accounts for the variance of xt−T . Under the same condition it was shown that a
version of the Ho-Kalman algorithm successfully learns, up to a similarity transform, a repre-
sentation of the true parameter on the same event for N > N0

s2d0
(Hg0)

with the guarantee of [33,

Theorem 5.3]

LM2 (M̂,M̄).
(σv + σe + |h|H∞

log(TN)) |Hg0|S∞
q0

√

T log2(Tq0)

s2d0(Hg0)
√
N

.

• The context of unknown dimension d0. Sarkar et al. [39] adopt a model selection approach to
choose a realization of order d̂ that is good enough. Their learning algorithm proceed in three
stages:

1. Hankel matrix estimation: the algorithm starts by solving, for all d ∈ D(N) = {T | N >

Tr2 log3(Nr/δ)}, a least square problem to get an estimated Hankel matrix of 2T + 1
parameter ĤT .

2. Order selection: the algorithm chooses a model of size d̂ according to the rule

d̂= d̃∧ log(N/δ),
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with α(h) =
√

hp+h2r+log(N/δ)
N , where

d̃ := inf{d ∈D(N); |Ĥd − Ĥl|S∞
6 c(α(d) +α(l)) ∀l> d, l ∈D(N)}.

3. Parameter estimation: the algorithm uses a variant of the Ho-Kalman algorithm to get a
realization (Â, B̂, Ĉ) of dimension d̂ from Ĥ

d̂
.

Their results [39, Theorem 5.1 and Proposition 5.1] imply that, for all T ∈D(N) and

N > c(r2T log2(T ) log2(r/δ) + T log2(T )),

the estimation step outputs an estimate for the Hankel matrix of the parameters satisfying

|ĤT −Hg∗0|S∞
6 c

√

pT 2 + rT + T log(1/δ)

N
. (1.8)

They also show [39, Theorem 5.3] that a variant of the Ho-Kalman applied to the selected model
d̂ successfully learns the best d̂ approximation to the minimal realization after observingN >N∗
sample and we have with probability at least 1− δ the following

LM∞ (M̂,M̄
d̂
) 6 εΓ(Ĥ, ε) +

εd̂
√

s
d̂
(Ĥ)

∧
√

εd̂ +
ε

√

s
d̂
(Ĥ)

∧ √
ε, (1.9)

with ε= c

√

rd̂+ pd̂2 + d̂ log(N/δ)

N
, N∗ <∞, and Γ(Ĥ, ε)<∞.

Here M̄
d̂

is the model resulting from the use of the Ho-Kalman algorithm on the truncated SVD

of Hg∗0 to the first d̂ singular values.
• The context of unknown dimension d0 while allowing the partial observation of N paths
(

(uji , y
j
i )

2T−1
i=1

)N

j=1
of length 2T − 1 without process noise: This setup is different from ours as

it allows multiple independent realizations and assumes that wi = 0 which is the main source of
difficulty in our setup, nonetheless the approaches used in this context in [9, 43] are closer to our
approach as they relay on restricted or penalized least square estimators to estimate the Markov
parameters. Indeed, [9] analyzes the performance of the following estimator ĝrls in the problem
of robust recovery of a superposition of distinct complex exponential functions from few random
Gaussian projections.

ĝrls ∈ argming |Hg∗|S1

s.t. |XKg∗− y|2 6 δ,

with K = diag(
√
1, · · · ,

√
T ,

√
T − 1, · · · ,

√
1). This problem is indeed equivalent to the esti-

mation problem of single input single output LTI state space models from multiple trajectories
with weighting K for the input without process noise. They show that, with probability at least
1− e−cN for N & d0 log

2(T ) + ε, the following holds

|Kg∗0 −Kĝ∗rls|2 6 c
δ

ε
.
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Inspired by this result, Sun et al. [43] use the following nuclear norm penalized least square
estimator ĝpls for the multiple input single output case

ĝpls ∈ argmin
g

|XK−1g∗ − y|2 + λ|HK−1g∗|S1
, (1.10)

and show that with high probability, for a choice of λ= Tσz
σu

√ r
N log(T ),

LH∞(ĝpls, g0).







σz
σu

√

rT 2

N log(T ), N > d20 ∧ T,
σz
σu

√

d0rT 2

N log(T ), d0 6N 6 d20 ∧ T.
(1.11)

1.3. Main contributions

As mentioned in Section 1.1, we consider the parametric estimation task in the setup of LTI state
space model (1.1) from the observation of a single trajectory when neither the state is observed nor the
system’s order is known. In what follows, we present our contributions.

Remark 1.2. While some of the results presented above are provided in terms of the norm | · |S∞
,

ours are derived for the norm | · |Sp
with p ∈ [1,2]. Whenever it is the case, we use the norm domination

relation relation | · |Sp
6 r1/p| · |S∞

for the sake of comparison, where r is the appropriate dimension.

From the related literature we see that up to logarithmic terms all the upper bounds are of the

form P (d0, T, s
−1
d0

(Ō+), s−1d0
(Hg∗0),N

−1) where P is some polynomial function of these variable. All

throughout, we compare different results in the asymptotic regime where N → ∞, d→ ∞, T → ∞,

sd0(Hg
∗
0)→ 0, and sd0(Ō+)→ 0 while the upper bound still converge to 0.

In Section 2.3, we provide non-asymptotic estimation error upper-bounds and sample complexity for
the Hankel penalized regression estimator given by any particular solution of the convex optimization
problem

ĝ ∈ arg min
g∈Mp×(2T−1)r(R)

1

N̄
|y−Xg∗|2S2

+ λ|Hg∗|S1
. (1.12)

For this estimator we provide in Theorem 2.3 estimation guarantees and sample complexity for differ-
ent dimension sensitive loss functions. In particular, we show with probability at least 1− δ and for N̄
large enough, that the p-loss function LH

p (ĝ, g0), for p ∈ (0,1), satisfies

LH
p (ĝ, g0). d

1/p
0 T

√

p+ r+ log(T/δ)

N̄
.

The available upper bounds for these loss functions are derived in the case p=∞ for the least square
estimator when the dimension d0 is known; see for instance [39, Theorem 5.1]. Since the solution of
the least square estimator is not low rank, the estimate (1.8) implies

|Ĥd −Hg∗0|Sp
. T 1/p

√

pT 2 + rT + T log(1/δ)

N̄

with a suboptimal factor T 1/p which is the best one would hope for from a non-low rank estimation
procedure. In the same fashion, our result is an improvement of the result (1.11) with unknown order,
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while observing multiple trajectories. We finally show in Proposition 2.1 how we can recover the
system order efficiently using a truncated SVD procedure if a lower bound on sd0(Ō1:r(T−1),1:d0) is
known. We refer to the discussion after Theorem 2.3 for more on this issue.

In Section 2.4 we provide a robustness analysis in the norm | · |S2
of an estimation procedure for the

parameters based on a variant of the Ho-Kalman algorithm. In Theorem 2.4 we show that under some
stability conditions, it is possible to recover the parameters if we reduce the error term |Ĥďξ

−Hg∗0|S2

since

LM2 (M̂,M̄).

∣

∣Ā
∣

∣

S∞

|Ĥďξ
−Hg∗0|S2

sd0(Ō+)s
1/2
d0

(Hg∗0)
.

This is an improvement of [45, Theorem 4] which gives

LM2 (M̂,M̄).
d0
∣

∣Hg∗0
∣

∣

1/2
S∞

|Ĥďξ
−Hg∗0|S∞

s2d0(Ō+)s
1/2
d0

(Hg∗0)
.

and of [43, Theorem 5.2] which yields

LM2 (M̂,M̄).
d
1/2
0

∣

∣Hg∗0
∣

∣

S∞

|Ĥďξ
−Hg∗0|S∞

s2d0(Hg
∗
0)

.

We refer to the discussions after Theorem 2.4 for more on this.
In Section 2.5 we provide non-asymptotic estimation guarantees for Algorithm 1 introduced in Sec-

tion 2.1. The algorithm yields the estimates M̂ = (Â, B̂, Ĉ) for the minimal balanced realisation
M̄ = (Ā, B̄, C̄) with probability 1 − δ of the same dimension as a minimal realization d0 after ob-
serving

N̄ > cd0TN0 ∨ T0 log
1

δ
∨ φ2d0T

2
0

ξ2

(

N0 ∨ log
1

δ

)

∨ φd
1/2
0 T0 log(T0)

ξ

(

N0 ∨ log
1

δ

)

such that

LM2 (M̂,M̄).
φ|Ā|S∞

d
3/2
0

s2d0(Ō+)





√

N0

N
∨ log(d0)N0

N
∨

√

log 1
δ

N
∨ log(d0) log

1
δ

N



 .

As mentioned in Section 1.2, to the best of our knowledge, the only available result in our setup is
(1.9) obtained by Sarkar et al. [39, Theorem 5.3]. If we disregard the spectral properties of Hĝ∗ and
multiply by d̂1/2 to account for the difference of norms, the dominant term in that expression is

√

√

√

√

rd̂4 + pd̂5 + d̂4 log(N/δ)

s
d̂
(Ĥ)N

.

Hence, our result improves the bound (1.9) since it provides an upper bound in terms of the actual
dimension d0 and not the estimated dimension d̂. Also, it reduces the dependence on the dimension by
as much as d0.
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Algorithm 1 Truncated Hankel Penalized Regression with Ho-Kalman State-Space Realization.

1: Compute:Â, B̂, Ĉ
2: Input: (Xi, yi)

N
i=2T0

, λ0, ξ

3: Procedure: Hankel penalized regression
4: ĝ ∈ arg min

g∈Mp×(2T0−1)r(R)

1
N |y−Xg∗|2S2

+ λ0|Hg∗|S1

5: Return: Hĝ∗

6: y← 1
7: Compute:Â, B̂, Ĉ
8: Input: (Xi, yi)

N
i=2T0

, λ0, ξ

9: Procedure: Hankel penalized regression
10: ĝ ∈ arg min

g∈Mp×(2T0−1)r(R)

1
N |y−Xg∗|2S2

+ λ0|Hg∗|S1

11: Return: Hĝ∗

12: Procedure: Order estimation

13: ďξ =
rank(Hĝ∗)

∑

i=1
1{si(Hĝ∗)> 2ξ}

14: Return: ďξ
15: Procedure: Reduced order Hankel penalized regression
16: ĝξ ∈ arg min

g∈Mp×(2ďξ+1)r(R)

1
N |y−Xg∗|2S2

+ λ1|Hg∗|S1

17: Return: Hĝ∗ξ
18: Procedure: Reduced order Ho-Kalman Algorithm

19: ÛξΣ̂ξV̂
∗
ξ = SVD(Ĥďξ

) and Ĥďξ
=

ďξ+1
∑

i=1
si(Hĝ∗ξ )1{si(Hĝ∗ξ ) > 2ξ}ûiv̂∗i

20: Ô = ÛξΣ̂
1/2
ξ and Ĉ = Σ̂

1/2
ξ V ∗

ξ

21: Â=
(

Ô1:r(T−1),1:dξ

)†
Ôr+1:rT,1:dξ

, B̂ = Ô1:dξ,1:r
, and Ĉ = Ô1:p,1:dξ

.

22: Return: Â, B̂, Ĉ

2. Main results

2.1. Algorithmic details

We start first by describing our Learning Algorithm 1. The algorithm starts with the ’Hankel penalized
regression’ step. In this step, it computes a penalized least square estimate for the first 2T0− 1 Markov
parameters by solving the optimization problem

ĝ ∈ arg min
g∈M(p×(2T0−1)r)(R)

1

N̄
|y−Xg∗|2S2

+ λ0|Hg∗|S1
. (2.1)

The least square part is the fitting term that ensures fidelity to the data; the penalty part ensures the
simplicity of the chosen model. As described in the introduction, a good measure of the model’s com-
plexity for hidden state LTI state space models is the rank of the corresponding Hankel operator since
it agrees with the system order as given in Definition 1.2. The penalty term using the nuclear norm of
the Hankel operator ensures that the solution to the optimization problem described in (2.1) has a low
Hankel rank as it is the convex relaxation of the rank function. Thus, we would expect that via a good
choice of the free parameter λ we obtain a good enough, yet simple, model in the sense that it is close
to Hg∗0 with |Hĝ∗ −Hg∗0|S2

being small and has rank(Hĝ∗) small enough.
The second step of our learning algorithm is ’Order estimation’ in which we compute an estimate

ďε of the true dimension. If in the last step we have made the error |Hĝ∗ −Hg∗0|S2
small compared
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to sd0(Hg
∗
0), the smallest singular value of Hg∗0, on the one hand, for 16 i6 d0 the singular values

si(Hĝ
∗) will be close to the singular values si(Hg∗0) and on the other hand the singular values si(Hĝ∗)

for i > d0 will be small so that they are well separated from the others. Thus, via an appropriate choice
of ξ, we can successfully ensure that ďξ = d0 with high probability.

The third step, ’Reduced order Hankel penalized regression’, is similar to the first step except that it
aims at estimating the first 2ďξ + 1 Markov parameters instead of the 2T − 1 parameters. For this, it
solves the following Hankel penalized regression problem:

ĝξ ∈ arg min
g∈Mp×(2ďξ+1)r(R)

1

N̄
|y−Xg∗|2S2

+ λ1|Hg∗|S1
. (2.2)

This is done to obtain a more accurate estimate on these first 2ďξ + 1 Markov parameters, since they
are the only parameters needed for our estimation procedure based on the Ho-Kalman algorithm to get
an accurate estimate for the minimal balanced minimal realization (Ā, B̄, C̄).

The last part of our learning algorithm, ’Reduced order Ho-Kalman Algorithm’, uses the previous
estimate ĝξ. It starts with a truncated SVD of the Hankel matrix of the estimated 2ďε + 1 Markov

parameters from the previous part. Doing this ensures that the rank of the truncation result Ĥdε is
the same as the order of the minimal realization with high probability and that the truncation is close
enough to the true model in the sense that |Ĥďε

−Hg∗0|S2
is small. This means that the eigenvalues

and eigenvectors of both Ĥďε
andHg∗0 are close to each other. Then, it proceeds with getting estimates

Â, B̂, Ĉ using the Ho-Kalman Algorithm steps described in Definition 1.3.
Crucial to the success of our algorithm 1 are the three choices of the free parameters: T0 and λ0 in

the step ’Hankel penalized regression’ and ξ in the step ’Order estimation’. In section 2.5 we provide
values for these free parameters to ensure the high probability of success of Algorithm 1 in both the
order recovery task and the estimation task. We also discuss how reasonable the assumption of knowing
each of these parameters is and provide the value for the internal variableλ1 necessary for the ’Reduced
order Hankel penalized regression’ step. In the next section, we provide the probabilistic estimates
instrumental to those choices.

2.2. Probabilistic results

We first show that the covariance matrix of the covariates

Xl := [u∗l−1, u
∗
l−2, . . . , u

∗
l−2T+1]

∗ ∈R
(2T−1)r

generated along the path of the input of the LTI state space model (1.1) concentrate around the identity
matrix. This is the main content of the following theorem, which is an extension of [17, Thoerem 3.4]
to the multidimensional case. Its proof is given in Appendix A.

Theorem 2.1. IfX1, . . . ,XN are the time shifted covariates of an LTI hidden state space model (1.1)
where the components (ui)i are independent centred standardized multivariate Gaussian N (0, σ2uIr)
or subGaussian centred random vectors of subGaussian components having the same ψ2 norm upper

bound of σu, X is given by (1.7). Then, with probability at least 1− exp(−t) for t> 1, it holds that

∣

∣

∣

∣

1

N̄
X∗X − σ2uI(2T−1)r

∣

∣

∣

∣

S∞

6 cσ2u

(

√

TN1

N̄
+
TN1

N̄
+

√

tT

N̄
+
tT

N̄

)

, (2.3)
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with N1 = log(T ) + r. Under the same conditions, for δ ∈ (0, e−1), with probability 1 − δ and for

values of N such that

N̄ > c

(

TN1 ∨ T log
1

δ

)

,

we have, for all g ∈Mp×(2T−1)r(R),

σ2u
2
|g|2S2

6
1

N̄
|Xg∗|2S2

6
3σ2u
2

|g|2S2
.

Concentration results for matrices with independent covariates are obtained in [2] where it is shown
that with high probability the following holds

∣

∣

∣

∣

∣

N−1
∑

i=1

xix
∗
i − σ2uIT

∣

∣

∣

∣

∣

S∞

. σ2u

(

T

N
+

√

T

N
+
d

N
t+

√

d

N
t1/2

)

.

Our result, as a multidimensional extension of [17, Theorem 3.4], shows that a similar result holds
for block Toplitz matrices up to the N1 = log(T ) + r factor appearing in (2.3). Comparing with the
matrix of the covariates of the hidden dynamical system (1.1), it is shown in [16, Proposition 2.1] that
a re-scaled version of it does concentrate around the identity if the eigenvalues of the matrixA0 are not
on the unit circle, but would fail otherwise.

Before stating the second important probabilistic estimate, we introduce the operatorH†
∗
: M(2T−1)r×p(R)→

MTp×Tr(R) defined, for any h= [h∗1, . . . , h
∗
2T−1]

∗ ∈M(2T−1)r×p(R), by

H†
∗
h=















h1
1
2h2

1
3g3

1
T hT

1
2h2

1
3h3

1
T−1hT+1

1
3h3

1
T−2hT+2

1
T hT

1
T−1gT+1

1
T−2hT+2 h2T−1















. (2.4)

It is easy to check that 〈h, g∗〉= 〈H†∗h,Hg∗〉 so that the operator H†∗ is the adjoint of the pseudo-
inverse of H .

We also introduce the H∞ norm for an infinite sequence of matrices ϕ= [ϕ0, ϕ1, . . . ] given by

|ϕ|H∞
:= sup

x∈[0 1]
|
∞
∑

j=0

ϕje
i2πx|S∞

.

This norm relates to the notion of system norm used in control theory and turns out to be the right mea-
sure of how the hidden dynamic impacts the estimation error through the variance. The next theorem
supports this claim by providing a control over the noise level induced by the term ḡ0X̄t + hWt + vt
given in (1.2).

Theorem 2.2. Assume the random matrices X , X̄ , W , and ε as defined in (1.7) are generated by

running the LTI hidden state space model (1.1) under either Gaussian or subGaussian noise condition.
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Define g, ĝ, h as in (1.2). Then, with probability at least 1− exp (−t) for t> 1, the following bounds

for different parts of the noise term hold:

|H†∗X∗X̄ḡ|S∞
. σ2u|ḡ|H∞

(

√

N0

N̄
+
N0 log(T )

N̄
+

√

t

N̄
+

log(T )t

N̄

)

. (2.5)

with N0 = log(T ) + p+ r.

|H†∗X∗Wh|S∞
. σuσw|h|H∞

(

√

N2

N̄
+
N2 log(T )

N̄
+

√

t

N̄
+

log(T )t

N̄

)

. (2.6)

with N2 = log(T ) + p

|H†∗X∗ε|S∞
. σ2v

(

√

N2

N̄
+
N2 log(T )

N̄
+

√

t

N̄
+

log(T )t

N̄

)

. (2.7)

2.3. Estimation guarantees for the Hankel penalized regression

This section is devoted to the analysis of the performance of the Hankel penalized regression estimator
given by (1.12). This estimator plays a central role in Algorithm 1 since it is used twice. The first time
it uses covariates of length 2T0 − 1 in (2.1) to provide a sparse estimate for estimating the true order
of the system, and the second time in (2.2) where it uses 2ďξ +1 covariates to provide a more accurate
estimator. To analyze the performance of this estimator, we first state a corollary to Theorem 2.2.

Corollary 2.1. Under the same condition of Theorem 2.2, for δ ∈ (0 e−1), there exist an absolute

positive constant c > 0 such that for λ taken as

λ := cφσ2u





√

N0

N
∨ log(T )N0

N
∨

√

log 1
δ√

N
∨ log(T ) log 1

δ

N



 , (2.8)

with φ= |ḡ|H∞
+ σw

σu
|h|H∞

+ 1, we have, with probability at least 1− δ, the following upper bound:

λ>
3

N̄

(

|H†∗X∗X̄ḡ|S∞
+ |H†∗X∗Wh|S∞

+ |H†∗X∗ε|S∞

)

. (2.9)

The following theorem provides various estimation bounds and the sample complexity for the Han-
kel penalized regression estimator of the Markov parameters for the | · |Sp-norms with p ∈ (0 1).

Theorem 2.3. Let (X2T , y2T ), . . . , (XN , yN ) be the input and output values of the LTI hidden state

space model (1.1) under Gaussian or subGaussian assumption for the different noise vectors. Assume

that (X,y) is given by (1.7) and the estimator ĝ given by (1.12). Define ∆g = ĝ − g0, where g0 is the

sequence of Markov parameters defined in (1.4). Under Assumptions 1.1 and 1.3, for the values of N̄
such that

N̄ > c

(

TN1 ∨ T log
1

δ

)

(2.10)

and the values of λ given by (2.8), with probability at least 1− 2δ, for δ ∈ (0 e−1/2), the estimator ĝ
satisfies the following error bounds:
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• Slow and fast rates for the prediction error of the Markov parameters:

1√
N̄

|X∆g∗|S2
6

5
√
3d

1/2
0 T 1/2λ

6σu
∧ d1/40 λ1/2|Hg∗0|

1/2
S2

. (2.11)

• Slow and fast rates for the estimation error of the Markov parameters:

|∆g|S2
6

5
√
3d

1/2
0 T 1/2λ

6σ2u
∧
√
2d

1/4
0 λ1/2

σu
|Hg∗0|

1/2
S2

. (2.12)

• Fast rate for the Hankel estimation spectral loss:

LH
2 (ĝ, g0)6

5
√
2

3σ2u
d
1/2
0 λT. (2.13)

• Fast rate for the Hankel estimation p-loss, p ∈ [1,2]:

LH
p (ĝ, g0)6

20d
1/p
0 λT

σ2u
. (2.14)

• Sample complexity for the spectral loss: for all ǫ > 0 to obtain LH
2 (ĝ, g0)6 ǫ we need

N̄ &
φ2d0T

2N0

ǫ2
∨ φd

1/2
0 TN0 log(T )

ǫ
∨ φ2d0T

2 log 1
δ

ǫ2
∨ φd

1/2
0 T log(T ) log 1

δ

ǫ
. (2.15)

Remark 2.1. Upon inspection of the proof we notice that the result would still hold without neither

Assumptions 1.1 nor 1.3. However, while all the rates hold without assumption 1.1, this assumption is

necessary for these rate to converge to 0 when we observe more samples. Similarly, in the absence of

Assumption 1.3 all the rates given in the theorem hold after replacing d0 by T . Still, having d0 < T
means that we are estimating less Markov parameter than necessary to be able to recover a minimal

realization as was explained in Section 1.1.

The proof of Theorem 2.3 relies on the analysis of the first-order optimality condition. This ap-
proach appeared first in [23] and in the case of matrix regression in [26] to provide oracle inequalities
in the context of low-rank matrix completion. The same argument can be combined with alternative
approaches, including the analysis of the zero-order optimality condition suggested in [5]. These are
some of the approaches used for high dimension estimation problems. Indeed, we can cast the problem
of estimating the Hankel matrix of a hidden state LTI state space model of unknown order as a high
dimension matrix regression problem where we want to estimate a low rank Hankel matrix since the
rank of the T Hankel matrix of the Markov parameters is the dimension of the minimal realization d0
as long as T > d0.

Existing results in the literature such as [33, Theorem 3.1] are provided for the least square estimator
in terms of the | · |S∞

-norm while the dimension is known. They do not extend to the case of | · |Sp
-

norm with p ∈ (0 1) since, while | · |S∞
-norm is dimension free, the least square estimator is oblivious

to the rank of the estimate. Indeed, the solution of the least square estimator is not expected to be low
rank and thus by simple norm domination [33, Theorem 3.1] implies,

|Hĝ∗ls −Hg∗0|S2
.

√

T 3q0 log
2(Tq0)

N̄
.
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This bound misses the correct dimension scaling by a polynomial factor of T 1/2 for the | · |S2
-norm.

On the other hand, Theorem 5.1 in [39] implies that

|Ĥd −Hg∗0|S2
.

√

pT 3 + rT 2 + T 2 log(1/δ)

N̄

which also misses the correct dimension scaling by a factor of (T/d0)1/2. For a non-low rank estimator
this is the expected order as it estimates prT 2 unknowns with a variance that scales like T times the
variance of ḡ0X̄t+hWt+vt. We also note that the estimator Ĥd does not preserve the Hankel structure
of the matrix Hg∗0 . A low rank estimate reduces the number of the unknowns to (p+ r)d0T , which is
consistent with our result which, after keeping only the main dimension terms, reads

LH
2 (ĝ, g0).

√

(p+ r+ log(T/δ))d0T 2

N
.

In [43, Theorem 1] the authors study the problem of recovering the Markov parameter, while the
dimension d0 is unknown, but from the partial observation of multiple trajectories of the system and
assuming that wi = 0 in (1.1). To this end, they propose a penalized least square estimator for the
Markov parameters as given in (1.10). While they successfully manage to control the error in the
| · |S∞

-norm, since they penalize with the transformation of the Hankel matrix |HK−1g∗|S1
, there is

no reason to believe that the solution will give a low rank Hankel matrix. Their result (1.11) in the
| · |S2

-norm implies that with high probability and after observing enough data we have

LH2 (ĝ, g0).







σz
σu

√

rT 3

N log(T ) N > d20 ∧ T,
σz
σu

√

d0rT 3

N log(T ) d0 6N 6 d20 ∧ T,

which again does not capture well the effect of the dimension. Moreover, in this case, it also misses the
effect of the dynamic captured in our case by the term φ= |ḡ|H∞

+ σw
σu

|h|H∞
+ 1. This is due to the

fact that in their setup, we stop every realization after 2T − 1 observation and suppose all trajectories
are independent.

Proof. Set

Γ := |H†∗X∗X̄ḡ∗|S∞
+ |H†∗X∗Wh∗|S∞

+ |H†∗X∗ε|S∞
.

We start by using Corollary 2.1 and Theorem 2.1 to define an event of probability 1 − 2δ where we
have both

λ>
3Γ

N̄
(2.16)

and, for all g ∈Mp×(2T−1)r ,

σ2u
2
|g|2S2

6
1

N̄
|Xg∗|2S2

6
3σ2u
2

|g|2S2
(2.17)

for values of N such that

N̄ > c

(

TN1 ∨ T log
1

δ

)

.
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Since ĝ solves the optimization problem (1.12), by Fermat’s rule 0 ∈ ∂Critλ(ĝ), the subdifferential
set of the criterion function. Also, by Fenchel-Rockafellar theorem (see e.g. [36]), there exists v ∈
∂|Hĝ∗|S1

such that,

2

N̄
X∗(Xĝ∗− y) + λv = 0.

Using the fact that y =Xg∗0 + X̄ḡ∗0 +Wh∗0 + ε and multiplying by ∆g = ĝλ − g0 gives

|X∆g∗|2S2
=
λN̄

2
〈−∆g∗, v〉+

〈

X∗(X̄ḡ∗0 +Wh∗0 + ε),∆g
〉

.

By the definition of the sub-gradient we have, for all g ∈Mp×(2T−1)r,

|Hg∗|S1
> |Hĝ∗|S1

+ 〈−∆g∗, v〉 .

Hölder’s inequality yields

|X∆g∗|2S2
6
〈

X∗(X̄ḡ∗ +Wh∗ + ε),∆g∗
〉

+
λN̄

2
(|Hg∗0|S1

− |Hĝ∗|S1
)

6 Γ|H∆g∗|S1
+
λN̄

2
(|Hg∗0|S1

− |Hĝ∗)|S1
(2.18)

6 (Γ +
λN̄

2
)|Hg∗0|S1

+ (Γ− λN̄

2
)|Hĝ∗)|S1

.

Since by (2.16) we have λ> 2Γ
N̄

, then it holds that

1

N̄
|Xĝ∗−Xg∗0|2S2

6λ|Hg∗0|S1
6 λ
√

rank(Hg∗0)|Hg∗0|S2

which proves the slow rate in (2.11). The slow rate in (2.12) is implied by inequality (2.11), since we
are in an event where the inequality (2.17) holds.

For a matrix M with a singular value decomposition M = UΣV ∗ define the projection operators
P⊥U := I − UU∗, P⊥V := I − V ∗V , P⊥M (N) := P⊥U NP

⊥
V , and P⊥M := I − P⊥M . Since we have a

decomposable penalty [8], we have

|Hĝ∗|S1
= |Hg∗0 +H∆g∗|S1

,

= |Hg∗0 +P⊥Hg∗0
(H∆g∗) +PHg∗0

(H∆g∗0)|S1
,

> |Hg∗0 +P⊥Hg∗(H∆g∗)|S1
− |PHg∗0

(H∆g∗)|S1
,

= |Hg∗0|S1
+ |P⊥Hg∗0

(H∆g∗)|S1
− |PHg∗0

(H∆g∗)|S1
,

from which, together with (2.18), we obtain

|X∆g∗|2S2
6 Γ|H∆g∗|S1

+
λN̄

2
(|PHg0(H∆g∗)|S1

− |P⊥Hg∗0
(H∆g∗)|S1

)

= Γ(|PHg0(H∆g∗)|S1
+ |P⊥Hg∗0

(H∆g∗)|S1
) +

λN̄

2
(|PHg∗0

(H∆g∗)|S1
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− |P⊥Hg∗0
(H∆g∗)|S1

)

= (Γ− λN̄

2
)|P⊥Hg∗0

(H∆g∗)|S1
+ (Γ+

λN̄

2
)|PHg∗0

(H∆g∗)|S1
.

Again, by the particular choice of λ> 3Γ
N̄

, we have

06 |X∆g∗|2S2
6
λ

6
N̄(5|PHg∗0

(H∆g∗)|S1
− |P⊥Hg∗0

(H∆g∗)|S1
). (2.19)

Now, by the following rank inequality

rank(PHg∗0
(H∆g∗0)) = rank(PHg∗0

(Hĝ∗) +Hg∗0)6 2 rank(Hg∗0).

and the fact that we are on an event such that

σ2u
2
|∆g∗|2S2

6
1

N̄
|X∆g∗|2S2

6
3σ2u
2

|∆g∗|2S2
,

we have

σ2u
2T

|H∆g∗|2S2
6
σ2u
2
|∆g∗|2S2

6
1

N̄
|X∆g∗|2S2

6
5λ

6

√

rank(PHg∗0
(H∆g∗)|PHg∗0

(H∆g∗)|S2

6
5
√
2λ

6
d
1/2
0 |H∆g∗|S2

6
5
√
2λ

6
(d0T )

1/2|∆g∗|S2

6
5
√
3λ

6
(d0T )

1/2

√

1
¯̄N

|X∆g∗|S2

σu
.

This implies the fast rates in (2.11), (2.12), and (2.13). Also, since ĝ satisfies (2.19), we have

5|PHg∗0
(H∆g∗)|S1

6 |P⊥Hg∗0
(H∆g∗)|S1

. (2.20)

This gives

|H∆g∗|S1
6 |PHg∗0

(H∆g∗)|S1
+ |P⊥Hg∗0

(H∆g∗)|S1

6 6|PHg∗0
(H∆g∗)|S1

6 6
√
2d

1/2
0 |H∆g∗|S2

6
20d

1/2
0 λT

σ2u
.

But, |H∆g∗0|Sp =

(

d
∑

i=1
s
p
i

)1/p

= |s|p where s is the vector of singular values. Therefore, by the norm

interpolation identity |s|p 6 (|s|1)2/p−1(|s|2)2−2/p for p ∈ [0,1], we finally obtain

|H∆g∗|Sp 6 (|H∆g∗|S1
)2/p−1(|H∆g∗|S2

)2−2/p 6
20d

1/p
0 λT

σ2u
.
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Remark 2.2. The condition (2.10) on the sample size is likely to be sub-optimal. One expects that

the factor T should be replaced by d0. The factor T comes from the use of the concentration result

of Theorem 2.1. While this Theorem gives the right rate for the input covariates’ concentration, the

result is stronger than needed. Indeed, Theorem 2.1 provides us with an event in which for all g ∈
Mp×(2T−1)r(R) we have

σ2u
2
|g|2S2

6
1

N̄
|Xg∗|2S2

6
3σ2u
2

|g|2S2
, (2.21)

while the proof needs such a control only on the set defined by the cone condition (2.20).

Open Problem 2.1. Show that for all g ∈Mp×(2T−1)r(R) such that |g|S2
6 1 and (2.20) hold then

∣

∣

∣

∣

1

N̄
|Xg∗|2S2

− σ2u|g∗|2S2

∣

∣

∣

∣

. σ2u

√

d0
N̄
,

up to logarithmic terms and lower order terms.

While the condition (2.10) on N̄ is likely to be suboptimal, we note that it is still less restrictive than
the sample complexity (2.15) which will play a major role in the analysis of Algorithm 1. As we shall
see below, for this reason, the condition (2.10) will not affect the upcoming results on the estimation
of the parameters (Ā, B̄, C̄).

In the following proposition we show that the SVD decomposition of the Hankel matrix obtained
from the Makov parameters estimate ĝ given in (1.12) can be used to recover the system’s order d0,
if given a lower bound on the smallest singular value of the true Hankel matrix of Markov parameters
Hg∗0 . We also show that the fast rate for the spectral loss in (2.13) implies a fast rate for the truncation
of the SVD decomposition.

To this end, we consider the SVD decomposition of the Hankel matrix of the estimated parameter

ĝ given by Hĝ∗ =
rank(Hĝ∗)
∑

i=1
ŝiûiv̂

∗
i and define the truncation dimension ďξ and the truncated SVD

matrix Ĥďξ
of the estimated Hankel matrix as:

ďξ :=

rank(Hĝ∗)
∑

i=1

1{ŝi > 2ξ} and Ĥďξ
:=

rank(Hĝ∗)
∑

i=1

1{ŝi > 2ξ}ûiv̂∗i . (2.22)

Proposition 2.1. Assume the same conditions on (X2T , y2T ), . . . , (XN , yN ) as in Theorem 2.3 and

suppose that

sd0(Hg
∗
0)> 3ξ

for some ξ > 0. Then, there exists an absolute positive constant c such that for the values of N̄ given

by

N̄ > cd0TN0 ∨ T log
1

δ
∨ φ2d0T

2

ξ2

(

N0 ∨ log
1

δ

)

∨ φd
1/2
0 T log(T )

ξ

(

N0 ∨ log
1

δ

)

, (2.23)

the dimension ďξ and then estimate Ĥďξ
defined in (2.22), satisfy with probability at least 1− 2δ the

following.
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• Exact rank recovery:

ďξ = d0. (2.24)

• Lower bound over the least singular value of the truncated estimate:

sďξ
(Hĝ)> 2ξ. (2.25)

• Lower bound over the singular values after the truncated threshold:

for all d ∈ Jďξ + 1, rank(Hĝ∗)K, ŝi 6





rank(Hĝ∗)
∑

i=d0+1

ŝ2i





1/2

6 ξ. (2.26)

• Fast rate for the truncated estimate on the 2-loss:

|Ĥďξ
−Hg∗0|S2

6
10

√
2

3σ2u
d
1/2
0 λT. (2.27)

Proof. By the obtained sample complexity (2.15) it follows that the condition on N̄ in (2.23) implies
that, for a large enough absolute constant c,

5
√
2

3σ2u
d
1/2
0 λT 6 ξ

on the same event defined in Theorem 2.3. Therefore, in view the same Theorem and Weyl’s inequality,
with the same probability of at least 1− 2δ, we also have

|sd(Hĝ∗)− sd(Hg
∗
0)|6 |H∆g∗|S∞

6 |H∆g∗|S2
6

5
√
2

3σ2u
d
1/2
0 λT 6 ξ.

Now, if we assume that rank(Hĝ∗) < d0, then smin(Hg
∗) = sd0(Hg

∗
0) and sd0(Hĝ

∗) = 0. Thus,
again by Weyl’s inequality, we have

smin(Hg
∗
0) = |sd0(Hg∗0)− sd0(Hĝ

∗)|6 |s1(H∆g∗)|

6 |H∆g∗|S2
6

5
√
2

3σ2u
d
1/2
0 λT 6 ξ,

which contradicts the assumption

smin(Hg)> 3ξ.

Therefore, d0 > rank(Hĝ). This also means that

|sd0(Hg)− sd0(Hĝ)|6 ξ and sd0(Hĝ)> 2ξ. (2.28)

Since we now know that d̂> d0, we consider the following decomposition for the SVD representation

Ĥ= Ĥd0 + Ĥd̄ =

d0
∑

i=1

ŝiûiv̂
∗
i +

rank(Hĝ)
∑

i=d0+1

ŝiûiv̂
∗
i =

[

Ud Ud̄

]

[

Σd
Σd̄

][

V ∗d
V ∗
d̄

]

.
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Now, as the truncated SVD decomposition to rank d0 solves the optimization problem:

Ĥd̄ ∈ arg min
H: rank(H)6d

|Ĥ −H |S2
,

we obtain

|Ĥd̄|S2
= min

H: rank(H)6d
|Ĥ −H |S2

6 |H∆g∗|S2
. (2.29)

In particular,

for all d ∈ Jd0 + 1, rank(Hĝ∗)K ŝi 6





rank(Hĝ∗)
∑

i=d0+1

ŝ2i





1/2

6 ξ.

This inequality together with (2.28) yield the following result on rank recovery:

ďξ =

rank(Hĝ∗)
∑

i=1

1{ŝi > 2ξ}= d.

It also yields (2.26) as well.
Now, since we have

|Ĥd −Hg∗0|S2
= |Hĝ−Hg∗0 − Ĥd̄|S2

6 |H∆g|S2
+ |Ĥd̄|S2

6 2|H∆g∗|S2
6

10
√
2

3σ2u
d
1/2
0 λT,

in view of (2.29), we also have the fast rate for the SVD estimate in (2.27).

2.4. Error control for the Ho-Kalman algorithm estimates

This section provides stability results in the Hilbert-Schmidt norm for a version of an estimation pro-
cedure based on a variant of the Ho-Kalman algorithm. The variant of the Ho-Kalman algorithm in
question is the one that obtains a minimal balanced realization starting from the SVD decomposition
of the Hankel matrix of T Markov parameters, for T > d0 + 1. Indeed, the Ho-Kalman algorithm
computes, up to a similarity transform, the observability and controllability matrices are respectively

Ō= U0Σ
1/2
0 and C̄ =Σ

1/2
0 V ∗0 , (2.30)

and the minimal balanced realization (see Definition 1.3) defined by

Ā :=
(

Ō1:r(T−1),1:d0
)†

Ōr+1:rT,1:d0 , B̄ := Ō1:d0,1:r, C̄ := Ō1:p,1:d0 .

Assuming that we have obtained an estimate ĤT of the Hankel matrix of order T with a rank
that is higher than the dimension d0 and of the dimension ďξ such that the Hilbert-Schmidt error

|ĤT −Hg∗0|S2
is small.

The Ho-Kalman based estimation algorithm we introduce here yields an estimate of the minimal
balanced realization by mimicking the Ho-Kalman algorithm described above. It starts from a truncated
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SVD decomposition Ĥďξ
= ÛξΣ̂ξV̂

∗
ξ of the matrix ĤT to the smaller estimated dimension ďξ and

constructs estimates of both the observability and controllablity matrices

Ô := ÛξΣ̂
1/2
ξ , Ĉ := Σ̂

1/2
ξ V̂ ∗ξ .

Thereafter, it provides an estimated minimal balanced realization as

Â=
(

Ô1:r(T−1),1:dξ

)†
Ôr+1:rT,1:dξ , B̂ := Ô1:dξ,1:r, Ĉ := Ô1:p,1:dξ .

The next theorem provides error bounds for these estimates under the assumption that we have ďξ = d0,

Theorem 2.4. Suppose that ďξ = d0. Set

Ō1:r(T−1),1:d0 = Ō+. (2.31)

If the following stability assumption holds

|ĤT −Hg∗0|S∞
∧ |ĤT −Hg∗0|S2

6

(√
2− 1

)1/2
sd0(Ō+)s

1/2
d0

(Hg∗0)

2
√
2

, (2.32)

then, there exists an orthonormal matrix R such that the following holds.

• The error on the observability and controllability matrices is controlled by the error on the

truncation:

|Ô − ŌR|2S2
+ |Ĉd −R∗C̄|2S2

6
2√
2− 1

|Ĥďξ
−Hg∗0|2S2

sd0(Hg
∗
0)

.

• The error on the C and B matrices is controlled by the error on the truncation:

|Ĉ − C̄R|2S2
+ |B̂ −R∗B̄|2S2

6
2√
2− 1

|Ĥďξ
−Hg∗0|2S2

sd0(Hg
∗
0)

.

• The error on the A matrix is controlled by the error on the truncation:

|Â−R∗ĀR|S2
6

23/2
(

1+
∣

∣Ā
∣

∣

S∞

)

(√
2− 1

)1/2
sd0(Ō+)s

1/2
d0

(Hg∗0)
|Ĥďξ

−Hg∗0|S2
.

This result provides a robustness analysis of the variant of a Ho-Kalman algorithm based estimation
procedure described at the start of this section. The result is described in term of the | · |S2

-norm and
shows that, under the stability condition (2.32), it is possible to recover up to an orthonormal matrix R
the minimal balanced realization defined in 1.3 since we can bound the loss function LM2 (M̂,M̄) in
term of |Ĥďξ

−Hg∗0|S2
as follows.

LM2 (M̂,M̄)6
23/2

(

1+
∣

∣Ā
∣

∣

S∞

)

(√
2− 1

)1/2
sd0(Ō+)s

1/2
d0

(Hg∗0)
|Ĥďξ

−Hg∗0|S2
.
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In the next section we will use a slightly weaker version of this result to provide LM2 guarantees

for Algorithm 1, namely we replace sd0(Ō+) with s
1/2
d0

(Hg∗0) both in the robustness condition
(2.32) and in the error control of various estimates. This can be done since as argued in the proof

sd0(Ō+)6 s
1/2
d0

(Hg∗0) and it is done so to only assume the knowledge of a lower bound s1/2d0
(Ō+).

Otherwise we could work with the original statement by assuming the knowledge of a lower bound

on sd0(Ō+)s
1/2
d0

(Hg∗0). The condition (2.32) is stated with |ĤT −Hg∗0|S∞
∧ |ĤT −Hg∗0|S2

which

is always equal to |ĤT −Hg∗0|S∞
, it is done this way simply since sometimes it is easier to have a

control over |ĤT −Hg∗0|S2
as it is the case for the Hankel penalized regression estimator in Theorem

2.3 .
The version of the Ho-Kalman based estimator studied here is the one studied in [45, Theorem 4].

Their guarantees suggested that

LM2 (M̂,M̄)6 c
d0
∣

∣Hg∗0
∣

∣

1/2
S∞

|Ĥďξ
−Hg∗0|S2

s2d0(Ō+)s
1/2
d0

(Hg∗0)
.

Our result improves it by replacing the factor s−2d0
(Ō+)s

−1/2
d0

(Hg∗0) with the smaller factor s−1d0
(Ō+)s

−1/2
d0

(Hg∗0)
in the regime sd0(Hg

∗
0)→ 0 and sd0(Ō+)→ 0 which was introduced in remark 1.2 and removing the

d0 factor. Another estimator based on the Ho-Kalman algorithm is considered in [43, Theorem 5.2]
where it is shown that

LM2 (M̂,M̄)6 c
d
1/2
0

∣

∣Hg∗0
∣

∣

S∞

|Ĥďξ
−Hg∗0|S∞

s2d0(Hg
∗
0)

.

Here, we improve the factor
d
1/2
0 |Hg∗0 |S∞

s2d0
(Hg∗0 )

|Hĝ∗−Hg∗0|S∞
by

|Ā|
S∞

|Ĥďξ
−Hg∗0 |S2

sd0(Ō+)s
1/2
d0

(Hg∗0)
since sd0(Ō+) and

s
1/2
d0

(Hg∗0) are usually comparable, as we shall see later in (2.41) where we have that s1/2d0
(Hg∗0) ≥

sd0(Ō+)≥ 1√
2
s
1/2
d0

(Hg∗0).

Proof. We start by noting that

|Ĥďξ
−Hg∗0|S∞

6 |ĤT − Ĥďξ
|S∞

+ |ĤT −Hg∗0|S∞
.

Since, by assumption, we have ďξ = d0 and the truncated SVD also minimizes the operator norm cost,
we have

|ĤT − Ĥďξ
|S∞

= min
rank(H)6ďξ

|ĤT −H |S∞
6 |ĤT −Hg∗0|S∞

.

Since Ō+ is a sub-matrix of Ō, we have

sd0(Ō+)6 sd0(Ō)6 s
1/2
d0

(Hg∗T ), (2.33)

where the second inequality follows from the construction in (2.30). Therefore, the condition (2.32)
implies

|Ĥďξ
−Hg∗0|S∞

6 2|ĤT −Hg∗0|S∞
6 2|ĤT −Hg∗0|S2

6
sd0(Hg

∗
0)

2
. (2.34)
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The result for the error on both the observability and controllability matrices will be derived as a direct
consequence of the following lemma taken from [48]. A similar approach was used by [43] to analyze
the performance of another variant of the Ho-Kalman algorithm.

Lemma 2.1 (Lemma 5.14 in [48]). Let M1, M2 ∈Mn1×n2(R) be two rank r matrices with SVD

decompositions M1 = U1Σ1V
∗
1 and M2 = U2Σ2V

∗
2 . If |M2 −M1|S∞

6
sr(M1)

2 then there is an

orthonormal matrix R such that:

|U1Σ
1/2
1 −U2Σ

1/2
2 R|2S2

+ |V1Σ1/2
1 −R∗V1Σ

1/2
1 |2S2

6
2|M2 −M1|2S2

(
√
2− 1)sr(M1)

.

Since both Ĥďξ
and Hg∗0 are of rank d0, we can use this lemma together with (2.34) to guarantee

on the same event that there exist a matrix R such that RR∗ = Id and

|Ô − ŌR|2S2
+ |Ĉ −R∗C̄|2S2

= |ÛξΣ̂
1/2
ξ −U0Σ

1/2
0 R|2S2

+ |V̂ ∗ξ Σ̂
1/2
ξ −R∗V ∗0 Σ

1/2
0 |2S2

6
2√
2− 1

|Ĥďξ
−Hg∗0|2S2

sd0(Hg
∗
0)

.

Since, C̄ and B̄ are submatrices of O and C respectively, the last inequality implies

|Ĉ − C̄R|2S2
+ |B̂ −R∗B̄|2S2

6
2√
2− 1

|Ĥďξ
−Hg∗0|2S2

sd0(Hg
∗
0)

.

To derive the estimation error bound for the matrix Ā, we recall the following notation (introduced in
(2.31)),

Ôr+1:rT,1:d0 := Ô−, Ō1:r(T−1),1:d0 := Ō+, Ōr+1:rT,1:d0 := Ō−.

We note that

|Â−R∗ĀR|S2
=

∣

∣

∣

∣

(

Ô+
)†

Ô− −R∗ĀR
∣

∣

∣

∣

S2

=

∣

∣

∣

∣

(

Ô+
)†

Ô− −
(

Ô+
)†

Ô+R∗ĀR
∣

∣

∣

∣

S2

6

∣

∣

∣

∣

(

Ô+
)†
∣

∣

∣

∣

S∞

∣

∣

∣Ô− − Ô+R∗ĀR
∣

∣

∣

S2

6
1

sd0(Ô+)

(

∣

∣

∣Ô− − Ō+RR∗ĀR
∣

∣

∣

S2

+
∣

∣

∣Ō+RR∗ĀR− Ô+R∗ĀR
∣

∣

∣

S2

)

6
1

sd0(Ô+)

(

∣

∣

∣Ô− − Ō−R
∣

∣

∣

S2

+
∣

∣

∣Ō+R− Ô+
∣

∣

∣

S2

∣

∣Ā
∣

∣

S∞

)

6

(

2√
2− 1

)1/2

(

1 +
∣

∣Ā
∣

∣

S∞

)

sd0(Ô+)

|Ĥďξ
−Hg∗0|S2

s
1/2
d0

(Hg∗0)
, (2.35)

where in the last inequality we used the fact that both Ô−−Ō−R and Ô+−Ō+R are submatrices of
Ô − ŌR. By Weyl’s inequality we have

|sd0(Ô+)− sd0(Ō+)|= |sd0(Ô+)− sd0(Ō+R)|6 |Ô+ − Ō+R|S∞
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6 |Ô − ŌR|S∞
6 |Ô − ŌR|S2

6

(

2√
2− 1

)1/2 |Ĥďξ
−Hg∗0|S2

s
1/2
d0

(Hg∗0)
.

Again, noting that

|Ĥďξ
−Hg∗0|S2

6 |ĤT − Ĥďξ
|S2

+ |ĤT −Hg∗0|S2

and since the truncated SVD minimizes the Hilbert-Schmidt norm cost, we obtain

|ĤT − Ĥďξ
|S2

= min
rank(H)6ďξ

|ĤT −H |S2
6 |ĤT −Hg∗0|S2

.

Therefore,

|Ĥďξ
−Hg∗0|S2

6 2|ĤT −Hg∗0|S2
(2.36)

and

|sd0(Ô+)− sd0(Ō+)|6
(

2√
2− 1

)1/2 |Ĥďξ
−Hg∗0|S2

s
1/2
d0

(Hg∗0)
.

In view of the condition
|ĤT−Hg∗0 |S2

s
1/2
d0

(Hg∗0 )
6

(
√
2−1)1/2sd0(Ō

+)

2
√
2

in (2.32), we have

sd0(Ô+)> sd0(Ō+)−
(

2√
2− 1

)1/2 |Ĥďξ
−Hg∗0|S2

s
1/2
d0

(Hg∗0)

> sd0(Ō+)− sd0(Ō+)

2
=
sd0(Ō+)

2
,

which together with (2.35) yields

|Â−R∗ĀR|S2
6

23/2
(

1+
∣

∣Ā
∣

∣

S∞

)

(√
2− 1

)1/2
sd0(Ō+)s

1/2
d0

(Hg∗0)
|Ĥďξ

−Hg∗0|S2
.

2.5. Non-asymptotic guarantees for Algorithm 1

Now we are ready to derive non-asymptotic results for the complete estimation procedure described
in Algorithm 1. The algorithm starts with the data obtained from the partial observation of a single
trajectory (Xi, yi)

N
i=2T of the system and aims to obtain a possible realization (Â, B̂, Ĉ). To this end,

we require the inputs T0, λ0, and ξ to satisfy the following conditions:

1. T0 > d0+1, a known strict upper bound for the system order which can be taken reasonably large
at the expense of an additional cost in terms of the sample complexity (2.15), as it directly relates
to the dimension of the unknowns in the Hankel penalized regression part of the algorithm.
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2. λ0 ≃ λ as defined in (2.1). This choice requires the additional knowledge of an upper bound
for φσ2u as defined in Corollary 2.1. An upper bound on φ is obtained from an upper bound on
the system’s H∞-norm and an upper bound on the variances of the involved random variables.
As argued in [39], the knowledge of an upper bound on the system H∞-norm is a plausible
assumption. It was also shown in [47] that such upper bound could be efficiently estimated.

3. s2d0(Ō
+) > 5ξ. This choice is made to establish a detection threshold. The assumption on the

knowledge of such a threshold is also common in the literature when studying threshold based
estimator for high dimension regression problems, see [32, Corollary 2], [54, Equation (8)] or
[29, Assumption 3].

Remark 2.3. Since we want to provide an estimate up to a similarity transform of a minimal real-

ization, as explained in Section 1.1, the fact that a realisation is minimal is equivalent to the order

T Observability (resp Controllability) matrix being full column (resp row) rank. This implies that the

two requirements, T > d0 and sd0(O)> 0 should be satisfied. Hence, the conditions T0 > d0 + 1 and

s2d0(Ō
+)> 5ξ strengthen those requirements to a level that permits the estimation and rank detection.

The condition λ0 ≃ λ relates to how the system’s dynamic affects the estimation error, through the

variance term φ in (2.13). Assuming the knowledge of an upper bound on it is again strengthening this

requirement to a level that permits the estimation and rank detection.

Obtaining an adaptive, entirely data-driven estimation procedure without those three additional

inputs falls beyond the scope of the current paper and is left as an interesting extension for future

work.

Denote g0,T = [CB,CAB, · · · ,CAT−1B] so that Hg∗0,T ∈ MrT×pT . Since s1/2d0
(Hg∗0,d0+1) >

sd0(Ō)> sd0(Ō+), then our choice of s2d0(Ō
+)> 5ξ also implies

sd0(Ō+)s
1/2
d0

(Hg∗0,T )> 3ξ and

(√
2− 1

)1/2
sd0(Ō+)s

1/2
d0

(Hg∗0)

2
√
2

> ξ. (2.37)

According to Theorem 2.3 with the choices of inputs above and for

N̄ > c

(

TN1 ∨ T log
1

δ

)

when λ0 is taken as

λ0 = cφσ2u





√

N0

N
∨ log(T0)N0

N
∨

√

log 1
δ√

N
∨ log(T0) log

1
δ

N



 ,

the Hankel penalized estimator ĝ defined in (2.1) satisfies on an event B of probability P(B)> 1− 2δ
a fast rate for the Hankel estimation spectral loss

LH
2 (ĝ0, g0)6

5
√
2

3σ2u
d
1/2
0 λ0T0,

for some absolute fixed positive constant c and φ as defined in Corollary 2.1. By equation (2.37) the
above choice of ξ implies sd0(Hg

∗
0,T0

)> 3ξ, Thus Proposition 2.1 means that on the same event, once
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we have

N̄ > N̄0 = cd0TN0 ∨ T0 log 1
δ ∨

φ2d0T 2
0

ξ2

(

N0 ∨ log 1
δ

)

∨φd
1/2
0 T0 log(T0)

ξ

(

N0 ∨ log 1
δ

)

,

we can ensure exact rank recovery for Algorithm 1 in the sense that ďξ defined by ďξ =
rank(Hĝ∗)
∑

i=1
1{ŝi >

2ξ} satisfies ďξ = d0. Hence, the event B is included in the event {ďξ = d0}.
In a similar fashion, using the Hankel penalized regression estimator in (2.2) with T1 = d0 + 1 to

get an estimate for the Hankel matrix of the Markov parameters, then on a event A of probability
P(A)> 1− 2δ and for

N̄ > c(d0 + 1)N1 ∨ (d0 +1) log
1

δ
,

we have a fast rate for the new Hankel estimation spectral loss:

LH
2 (ĝ1, g0)6

5
√
2

3σ2u
d
1/2
0 λ1(d0 + 1)

with

λ1 = cφ





√

N0

N
∨ log(d0 + 1)N0

N
∨

√

log 1
δ√

N
∨ log(d0 + 1) log 1

δ

N



 .

This estimated matrix is then used in the Ho-Kalman based estimation procedure to obtain estimates
for the system parameters (Â, B̂, Ĉ). As long as ďξ = d0, Theorem 2.4 guarantees that for values of N̄
such that

|Ĥd0+1 −Hg∗0,d0+1|S2
6

(√
2− 1

)1/2
sd0(Ō+)s

1/2
d0

(Hg∗0)

2
√
2

, (2.38)

there exists an orthonormal matrix R satisfying

• up to the same orthonormal transformation, a fast estimation rate for C̄ and B̄ given as

|Ĉ − C̄R|2S2
+ |B̂ −R∗B̄|2S2

6
21/2

(
√
2− 1)1/2

|Ĥďξ
−Hg∗0,d0+1|S2

sd0(Ō+)
,

• a fast estimation rate for Ā given as

|Â−R∗ĀR|S2
6

23/2
(

1+
∣

∣Ā
∣

∣

S∞

)

(√
2− 1

)1/2
s2d0(Ō+)

|Ĥďξ
−Hg∗0,d0+1|S2

.

From Proposition 2.1 equation (2.27) we have the following fast rate

|Ĥďξ
−Hg∗0,d0+1|S2

6
10

√
2

3σ2u
(d0 + 1)3/2λ1.
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From (2.37), the condition (2.38) is satisfied as long as |Ĥd0+1 −Hg∗0,d0+1|S2
6 ξ. In view of the

sample complexity given in (2.15) in Theorem 2.3, this is the case if

N̄ > N̄1 = c
φ2d30
ξ2

(

N0 ∨ log
1

δ

)

∨ φd
3/2
0 log(d0)

ξ

(

N0 ∨ log
1

δ

)

.

For Algorithm 1 to succeed we should have both the events {T1 = d0 + 1} and A occurring. For
N̄ > N̄0 ∨ N̄1 = N̄0 we obtain

P({T1 = d0 + 1} ∩A)> P({T1 = ďξ + 1} ∩ {ďξ = d0} ∩A)

= P({ďξ = d0} ∩A)> P(A∩B)
> 1− 4δ,

where in the equality we used the fact that Algorithm 1 always chooses {T1 = ďξ + 1}. In the second
inequality we use the fact that our choice N̄ > N̄0 ensures B ⊂ {ďξ = d0}, and in the third inequality
we use the fact that both P(A)> 1− 2δ and P(B)> 1− 2δ and a union bound.

We summarize the results of this discussion in the following

Theorem 2.5. Algorithm 1 succeeds with probability at least 1 − 4δ for all δ ∈ (0 e−1/4) after

observing N̄ > N̄0 samples from a single trajectory of the system (1.1) with the particular choices T0,

λ0, λ1, and ξ as described above and T1 = ďξ + 1. On the event of success we have

• Exact order recovery ďξ = d0;

• There exist an orthonormal matrixR for which the estimates forC andB satisfies fast estimation

rates given as

|Ĉ − C̄R|S2
+ |B̂ −R∗B̄|S2

6
20(d0 + 1)3/2λ1

3(
√
2− 1)1/2sd0(Ō+)σ2u

.

• For the same matrix R the estimate for A also satisfies fast estimation rate given as:

|Â−R∗ĀR|S2
6

10
(

1 + |Ā|S∞

)

(d0 + 1)3/2λ1
(√

2− 1
)1/2

s2d0(Ō+)σ2u

.

In particular, we have the following

Corollary 2.2. Under the same condition as Theorem 2.5, the same inputs for Algorithm 1and for

N̄ > N̄0, with the same probability on the even of success, the output satisfies the following.

• Fast rate for the Hankel estimation spectral loss:

LM2 (M̂,M̄)6
10
(

1 + |Ā|S∞

)

(d0 + 1)3/2λ1
(√

2− 1
)1/2

s2d0(Ō+)σ2u

.

• Sample complexity for the spectral loss: for any ǫ > 0, to obtain LH
2 (ĝ, g0)6 ǫ we need
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N̄ &
φ2(1 + |Ā|S∞

)2d30N0

s4d0(Ō+)ǫ2
∨ (1 + |Ā|S∞

)d
3/2
0 φN0 log(T )

s2d0(Ō+)ǫ

∨ φ2(1 + |Ā|S∞
)2d30 log

1
δ

s4d0(Ō+)ǫ2
∨ (1 + |Ā|S∞

)d
3/2
0 φ log(T ) log 1

δ

s2d0(Ō+)ǫ
. (2.39)

It is clear from the condition (2.32) in Theorem 2.4 that the condition N̄ > N̄0 could be improved
by using the control in term of |ĤT −Hg∗0|S∞

instead of |ĤT −Hg∗0|S2
. This can be done using the

least square estimator for which it is easier to derive estimation bounds in term of |ĤT −Hg∗0|S∞
such

as in [33, Theorem 3.1], which would have the effect of reducing N̄0 by a factor of d0 so that it scales
like T 2

0 . In the high dimension regime, T 2
0 is still a big price to pay in comparison with the sample

complexity necessary for the second stage. This suggest the following open problem where we only
change the condition on N̄ in Theorem 2.3,

Open Problem 2.2. Is there an algorithm that successfully learns a minimal realization of a Hidden

state LTI state space system with high probability after observing

N̄ &
φ2d20
ξ2

(

N0 ∨ log
1

δ

)

and satisfies the fast rate for the Hankel estimation spectral loss of Theorem 2.5 given as

LM2 (M̂,M̄)6

(

1+ |Ā|S∞

)

d
3/2
0 λ1

s2d0(Ō+)σ2u

up to logarithmic terms and lower order terms.

In [39, Theorem 5.3] the authors study the parameter estimation problem of a hidden state LTI state
space system of unknown order where the derived results are in | · |∞ norm. We have summarized their
results in the Related Literature section in the introduction. The dominant term for the error bound
(1.9) for their algorithm, after multiplying by d̂1/2 to get a bound in the | · |2 norm, is

LM2 (M̂,M̄).

√

√

√

√

rd̂4 + pd̂5 + d̂4 log(N/δ)

s
d̂
(Ĥ)N

.

Our result improves this in a few ways. First, our result is provided in terms of the actual dimension d0
and not the estimated dimension d̂. Moreover, it reduces this dependence by a factor of d0.

Regarding the burn in time N̄0, we have an explicit number of samples required for the result to
hold N̄ > N̄0, unlike in [39, Theorem 5.3] where the result hold for N̄ > N∗ with N∗ <∞ (1.9).
Moreover, upon inspection, a combination of [39, Proposition 13.4 and Proposition 13.7] shows that
N∗ depends exponentially in d̂.

Finally, the presence of Γ(Ĥ, ε) <∞ in (1.9) makes the result sensitive to all the singular values
gapes of the matrix Ĥ and not just on the location of the smallest one. Our result, on the other hand,
does not exhibit such behavior.
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For the ’Reduced order Hankel penalized regression’ part of Algorithm 1, let us consider a value
T1 = d̄0 + 1 where we take

d̄0 = ďξ ∨ η̌ with η̌ > η =
log
(

ψĀ|C̄|2S∞
/sd0(Hg0,d0)

)

2 log
(

1/ρ(Ā)
) , (2.40)

which on the even of success becomes d̄0 = d0 ∨ η̌. Applying 2.4 we obtain the same guarantees of 2.5
except that we replace d0 with d̄. In this case,

Ō+ =







C̄
...

C̄Ād̄−1







which is of rank d0, since k0 > 1. Moreover,

s2d0(Ō
+) = inf

|u|2=1

{

|Ou|2S2
− |C̄Ād̄|2S2

}

> s2d0(O)− |C̄|2S∞
|Ād̄|2S∞

= sd0(Hg0,d̄)− |C̄|2S∞
|Ād̄|2S∞

> sd0(Hg0,d0)− ψĀ|C̄|2S∞
ρ(Ā)2d̄.

In view of the choice made in (2.40), we have

s2d0(Ō
+)>

1

2
sd0(Hg0,d0). (2.41)

Thus, we have the following

Corollary 2.3. Under the same condition as Theorem 2.5, for the same inputs, except for the addi-

tional η̌, by taking T1 = d̄0+1 and sd0(Hg0,d0)> 10ξ with d̄0 defined in (2.40), Algorithm 1 succeeds

for N̄ > N̄0 ∨ N̄η with

N̄η > c
φ2η3

ξ2

(

N0 ∨ log
1

δ

)

∨ φη3/2 log(η)

ξ

(

N0 ∨ log
1

δ

)

.

Furthermore, the output M̂ satisfies with probability at least 1− 4δ the following.

• Fast rate for the Hankel estimation spectral loss:

LM2 (M̂,M̄)6
20
(

1 + |Ā|S∞

)

(d̄0 + η+ 1)3/2λ1
(√

2− 1
)1/2

sd0(Hg0,d0)σ
2
u

.

• Sample complexity for the spectral loss: for any ǫ > 0, to obtain LH
2 (ĝ, g0)6 ǫ, we need

N̄ &
φ2(1 + |Ā|S∞

)2(d0 + η)3N0

s2d0(Hg0,d0)ǫ
2

∨ (1 + |Ā|S∞
)(d0 + η)3/2φN0 log(T )

sd0(Hg0,d0)ǫ

∨ φ2(1 + |Ā|S∞
)2(d0 + η)3 log 1

δ

s2d0(Hg0,d0)ǫ
2
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∨ (1 + |Ā|S∞
)(d0 + η)3/2φ log(T ) log 1

δ

sd0(Hg0,d0)ǫ
. (2.42)
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Appendix A: Proofs of the main probabilistic results

In this appendix we gather the proofs of the main results stated in Section 2.2 namely the proofs of
Theorem 2.1 and of (2.5) of Theorem 2.2. The proofs of the other parts of Theorem 2.2 are similar
to those of (2.5) and are given in Appendix C for completeness. Their proofs use extensively generic
chaining estimates. Thus, we start by recalling few concepts from the generic chaining literature to fix
some notation and refer to [44, 20] for more on the topic. Let (A, d) be a metric space. The distance of
a point t ∈A to a subset A⊆A is defined as

d(t,A) = inf
s∈A

d(t, s).

The diameter of the set A is

∆(A) = sup
(s,t)∈A2

d(t, s),

and the covering number N(A, d, u) is the smallest number of balls in (A, d) of radius less than u
needed to cover A (i.e., whose union includes A). A ball of center c ∈A and radius r ≥ 0 with respect
to a distance d or a metric ‖·‖ will be denoted Bd(c, r) or B‖·‖(c, r), respectively.

The gamma-α functional γα(A, d) for the metric space (A, d) and its corresponding upper bound
by the Dudley chaining integral are defined as follows.

γα(A, d) := inf sup
t∈A

∞
∑

r=0

2r/αd(t,Ar).

∫ ∆(A)

0
(logN(A, d, u))1/αdu, (A.1)

where the infimum is taken over all sequences of sets (Ar)r∈N in A with |A0| = 1 and |Ar| 6 22
r

([44]). If d(x, y) = ‖x − y‖ for some norm ‖·‖ as it is usually the case, we also use the notation
γα(A,‖·‖) for γα(A, d).

A.1. Isometric Property for the covariates of the input

Proof of Theorem 2.1. The result is an extension of [17, Thoerem 3.4] to the multidimensional case,
and in the same spirit, we start the proof with a decomposition of the operator norm |X∗X −
E (X∗X)|S∞

into the sum of 3 terms. To that end, we start by defining, for k ∈ J1,2T − 1K, the
following shifted matrices:

Lk =
[

0 · · · 0 u2T−1 u2T · · · uN̄ 0 · · · 0
]∗
,

where x2T−1 is at the position r(k − 1) + 1. Then we define the matrices

L= [L1L2 . . .L2T−1] and S =X −L,

to get a decomposition X = L+ S where L and S are independent of each other and have a shifted
diagonal structure. Thus, we have

X∗X = L∗L+ S∗S + S∗L+L∗S.

Using this decomposition the operator norm of deviation of X∗X is upper bounded by

|X∗X −E (X∗X)|S∞
6 |L∗L− σ2u(N − 4T +3)I(2T−1)r |S∞

+ σ2u(2T − 2) + 2|S∗L|S∞
+ |S∗S|S∞

. (A.2)
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We thus need to derive high probability bounds for the last three terms. Below, we give the derivation
for the first term. The others are treated similarly, and the contribution of the first term dominates their
contribution.

We start by relating the operator norm of L∗L − σ2u(N − 4T + 3)I(2T−1)r to the supremum of a
multiplication process. Since the columns of L are shifted versions of each others, we have

L∗L=









L∗1L1 L∗1L2 L∗1L2T−1
L∗2L1 L∗1L1 L∗1L2T−2

L∗2T−1L1 L
∗
2T−2L1 L∗1L1









.

Define the block Toeplitz operator T : lRr(Z) → lRr(Z) by the infinite diagonals of block matrices
given

T0 = L∗1L1 − σ2u(N − 4T + 3)Ir, Tl = L∗1Ll+1, and T−l = T ∗l for l ∈ J1,2T − 2K.

The corresponding multiplication polynomial defined for x ∈ [0,1] is given by

p(x) =

2T−2
∑

l=−2T+2

Tle2iπlx.

Since L∗L− σ2u(N − 4T +3)I(2T−1)r is a submatrix of T , we have

|L∗L− σ2u(N − 4T + 3)I(2T−1)r |S∞
6 |T |2→2 = sup

x∈[0,1]
|p(x)|S∞

, (A.3)

where | · |2→2 stands for the operator norm. The last supremum can also be expressed as

sup
x∈[0 1]

sup
|v|2=1
|w|2=1

∣

∣

∣

N̄
∑

j=2T−1
(〈uj , v〉〈uj ,w〉 − σ2u〈v,w〉)

+

2T−2
∑

l=1

N̄
∑

j=2T−1+l

〈uj , v〉〈uj−l,w〉e2iπlx

+

2T−2
∑

l=1

N̄
∑

j=2T−1+l

〈uj−l, v〉〈uj ,w〉e−2iπlx
∣

∣

∣.

Consider the block Toeplitz matrix H∈M(N−4T+3)r×(N−4T+3)r(R) with block constant diagonals
made of matrices Hl ∈Mr×r(R) with (j, k) entries

Hl(x, v,w) = e2iπlxvw∗1{l ∈ J0,2T − 2K} and Hl(x, v,w) =H−l(x, v,w)∗ for l < 0.

Taking u= [u∗2T−1, · · · , u∗N−2T−1]∗ we obtain

|L∗L− σ2u(N − 4T + 3)I(2T−1)r |S∞
6 sup

x∈[0,1]
|p(x)|S∞

= sup
x∈[0 1]

sup
|v|2=1
|w|2=1

|〈u,H(x, v,w)u〉|.
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This defines a second order chaos process ξx,v,w = 〈u,H(x, v,w)u〉. We control its deviation using
the Hanson-Wright inequality [37] to get, for all t > 0 with probability at least 1− 2e−ct,

|χx1,v1,w1 −χx2,v2,w2 |6
√
td2((x1, v1,w1), (x2, v2,w2))

+td∞((x1, v1,w1), (x2, v2,w2)),

where

d∞((x1, v1,w1), (x2, v2,w2)) := |H(x1, v1,w1)−H(x2, v2,w2)|S∞

and

d2((x1, v1,w1), (x2, v2,w2)) := |H(x1, v1,w1)−H(x2, v2,w2)|S2
.

The generic chaining result in [44, Theorem 2.2.23] and [15, Theorem 3.5] provides us with the
following bound for the supremum of such mixed tail process for t> 1:

P

(

sup
x∈[0,1]

|p(x)|> cσ2u

(

E +
√
tV + tU

)

)

6 2 exp(−u), (A.4)

where

E = γ2([0,1]× S
r−1
2 × S

r−1
2 , d2) + γ1([0,1]× S

r−1
2 × S

r−1
2 , d∞),

V =∆2([0,1]× S
r−1
2 × S

r−1
2 , d2), U =∆∞([0,1]× S

r−1
2 × S

r−1
2 , d∞).

To conclude the proof, it suffices to estimate these three terms. We start with few inequalities to simplify
the involved the norm distances

d∞((x1, v1,w1), (x2, v2,w2)) := |H(x1, v1,w1)−H(x2, v2,w2)|S∞

6 2 sup
y∈[0 1]

∣

∣

∣

∣

∣

2T−2
∑

l=1

e2iπl(x1+y)u1v
∗
1 − e2iπl(x2+y)u2v

∗
2

∣

∣

∣

∣

∣

S∞

+ |u1v∗1 − u2v
∗
2|S∞

6 2 sup
y∈[0 1]

∣

∣

∣

∣

∣

2T−2
∑

l=1

e2iπl(x1+y) − e2iπl(x2+y)

∣

∣

∣

∣

∣

+ (4T − 3) |u1v∗1 − u2v
∗
2 |S∞

. T 2 |x1 − x2|+ T |u1 − u2|2 + T |v1 − v2|2 ,

where we used Proposition B.1 and the Liptchitz property of the complex exponential in the last step.
Similarly, we have

d2((x1, v1,w1), (x2, v2,w2)) := |H(x1, v1,w1)−H(x2, v2,w2)|S2

6
√
N − 4T + 3



2

(

2T−2
∑

l=1

∣

∣

∣e2iπlx1u1v
∗
1 − e2iπlx2u2v

∗
2

∣

∣

∣

2

S2

)1/2

+ |u1v∗1 − u2v
∗
2 |S2





6
√
N − 4T + 3



2

∣

∣

∣

∣

∣

2T−2
∑

l=1

(e2iπlx1 − e2iπlx2)2

∣

∣

∣

∣

∣

1/2

+ (2
√
T − 1+ 1) |u1v∗1 − u2v

∗
2|S2




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.
√
N − 4T + 3

(

T 3/2 |x1 − x2|+ T 1/2 |u1 − u2|2 + T 1/2 |v1 − v2|2
)

.

The radii U and V become

U . T and V .
√

(N − 4T + 3)T. (A.5)

The γ1 functional is evaluated as

γ1([0,1]× S
r−1
2 × S

r−1
2 , d∞). γ1([0,1], T

2 |·|) + γ1(S
r−1
2 , T |·|2) (A.6)

∫ T

0
lnN([0,1], T 2| · |, u)du+

∫ T

0
lnN(Sr−12 , T | · |2, u)du (A.7)

=

∫ T

0
ln
T 2

u
du+

∫ T

0
ln

(

T

u

)r

du≃ T (ln(T ) + r). (A.8)

Similarly, we can evaluate the γ2 functional to get

γ2([0,1]× S
r−1
2 × S

r−1
2 , d2).

√

T (N − 4T + 3)(ln(T ) + r), (A.9)

Putting this last result together with (A.5), (A.8), (A.9) and (A.4) gives with probability at least 1−e−t
for t> 1:

|L∗L− σ2u(N − 4T + 3)I(2T−1)r |S∞
. σ2u

(

T (ln(T ) + r)

+
√

T (N − 4T + 3)(ln(T ) + r) +
√

T (N − 4T + 3)
√
t+ T t

)

.

We can bound the second and third term in (A.2) by modifying the argument in [17, Thoerem 3.4] the
same way we did here for the first term. This give us with probability at least 1− e−t, for all t> 1,

|S∗S|S∞
. σ2u

(

T (ln(T ) + r) + T t
)

(A.10)

and

|L∗S|S∞
. σ2u

(

T (ln(T ) + r) + T t
)

.

A straightforward union bound implies that with probability at least 1− e−t, for all t> 1, we have

|X∗X −E (X∗X)|S∞
. σ2u

(

T (ln(T ) + r) +
√

T (N − 4T +3)(ln(T ) + r)

+
√

(N − 4T + 3)Tt1/2 + T t
)

σ2u

)

.

This last expression directly gives the claimed result in the theorem after normalization.

Proof of (2.5) in Theorem 2.2. Define the permuted index

l̄=

{

l− 2T if T +16 l6 2T − 1,

l otherwise.
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and

x= [u∗0, u
∗
1, . . . , u

∗
N−2, u

∗
N−1]

∗ ∈R
Nr

Ul = [u2T−l, u2T+1−l, . . . , uN−l] ∈Mr×N̄ (R).

In view of the definition of H†
∗

in (2.4) we have

H†
∗

X∗X̄ḡ∗ =











(U1X̄ḡ
∗)∗ 1

2 (U2X̄ḡ
∗)∗ . . . 1

T (UT X̄ḡ
∗)∗

1
2 (U2X̄ḡ

∗)∗ 1
3 (U3X̄ḡ

∗)∗ . . . 1
T−1 (UT+1X̄ḡ

∗)∗

...
...

...
...

1
T (UT X̄ḡ

∗)∗ 1
T−1 (UT+1X̄ḡ

∗)∗ . . . (U2T−1X̄ḡ∗)∗











.

So we want to find a high probability bound on the operator norm of the matrixH†
∗

X∗X̄ḡ. Define the
infinite block Hankel operator H : l2(N)→ l2(N) by the Mp×r(R) blocks

Hi,j =

{

1/|l̄|(UlX̄ḡ)
∗ for (i, j) ∈N2, and 16 |i− j|= l6 2T − 1,

0 otherwise.

Then

|H†∗X∗X̄ḡ∗|S∞
6 |H|2→2

where | · |2→2 stands for the operator norm from l2(Z) to l2(Z). The corresponding multiplication
polynomial defined for u ∈ [0,1] is given by

p(u) =
2T−1
∑

l=1

1

|l̄|UlX̄ḡ
∗ exp(i2πl̄u).

where we have used a permuted Fourier basis by the mapping l→ l̄. Thus, using Proposition B.2, we
obtain

|H†∗X∗X̄ḡ∗|S∞
6 sup

u∈[0 1]
|p(u)|S∞

= sup
u∈[0, 1]

∣

∣

∣

∣

∣

2T−1
∑

l=1

ei2πl̄u

|l̄| UlX̄ḡ
∗
∣

∣

∣

∣

∣

S∞

= sup
u∈[0 1]

sup
|v|2=1
|w|2=1

∣

∣

∣

∣

∣

〈

2T−1
∑

l=1

ei2πl̄u

|l̄| UlX̄ḡ
∗, vw∗

〉∣

∣

∣

∣

∣

= sup
u∈[0 1]

sup
|v|2=1
|w|2=1

∣

∣

∣

∣

∣

〈

X̄ḡ∗,
2T−1
∑

l=1

ei2πl̄u

|l̄| U∗l vw
∗
〉∣

∣

∣

∣

∣

.

Define, for l ∈ [0 N − 2T ], the vectors Gl ∈Mp×rN (R) as

Gl = [C0A
2T−1+l
0 B0,C0A

2T+l
0 B0, . . . ,C0A

2T−1
0 B0,0, . . . ,0],
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and for u ∈ [0 1] the matrix valued functions wu,v,w,l ∈Mr×p(C) by wu,v,w,l =
exp(i2πl̄u)
|l̄| vw∗ for

l ∈ [1 2T − 1] and the matrix valued functions Wu,v,w,l ∈Mp×Nr(C) by

Wu,v,w,k =
[

0 w∗u,v,w,2T−1 w
∗
u,v,w,2T−2 · · · w∗u,v,w,1

]

,

with the 1st zero a the kth-position. Define G as G = [G∗0, . . . ,G
∗
N−2T ]

∗ and Wu,v,w as Wu,v,w =
[W ∗u,v,w,1, . . . ,W

∗
u,v,w,N−2T−1]

∗ satisfying

〈

X̄ḡ∗,
2T−1
∑

l=1

ei2πl̄u

|l̄| U∗l vw
∗
〉

=
〈

Wu,v,wx,Gx
〉

.

This gives

|H†∗X∗X̄ḡ|S∞
6 sup

u∈[0 1]
sup
|v|2=1
|w|2=1

|
〈

G∗Wu,v,wx,x
〉

|

which is the supremum of a second order chaos process defined by

χu,v,w =
〈

G∗Wu,v,wx,x
〉

.

To control the increment of the process we use Hanson Wright inequality [37] which yields

P

(

|χu,v,w −E(χu,v,w)|> c
(√

t|G∗Wu,v,w|S2
+ t|G∗Wu,v,w|S∞

))

6 2 exp(−ct).

Since E(χu,v,w) = 0, we obtain a mixed tail process with probability 1− e−t

|χu1,v1,w1 −χu2,v2,w2 |6 c
(√

t|G∗
(

Wu1,v1,w1 −Wu2,v2,w2)
)

|S2

+t|G∗
(

Wu1,v1,w1 −Wu2,v2,w2)
)

|S∞

)

6 c|G|S∞

(√
t|Wu1,v1,w1 −Wu2,v2,w2 |S2

+t|Wu1,v1,w1 −Wu2,v2,w2 |S∞

)

.

(A.11)

Consider the pseudo-distances d2 and d∞ defined on [0,1]× S
r−1
2 × S

p−1
2 by

d2((u1, v1,w1), (u2, v2,w2)) = |Wu1,v1,w1 −Wu2,v2,w2 |S2

d∞((u1, v1,w1), (u2, v2,w2)) = |Wu1,v1,w1 −Wu2,v2,w2 |S∞
.

The generic chaining result proved independently in [44, Theorem 2.2.23] and [15, Theorem 3.5]
provides the following bound for the supremum of such mixed tail process for t> 1:

P






sup

(u,v,w)∈[0,1]×Sr−1×S
p−1
2

2

|χu,v,w|>Cσ2u|G|S∞

(

E +
√
t∆S2

+ t∆S∞

)






6 2 exp(−t), (A.12)
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where

E = γ2([0,1]× S
r−1
2 × S

p−1
2 , d2) + γ1([0,1]× S

r−1
2 × S

p−1
2 , d∞),

∆S2
= sup

(u1,v1,w1),(u2,v2,w2)∈[0,1]×Sr−1
2 ×Sp−1

2

d2((u1, v1,w1), (u2, v2,w2)),

∆S∞
= sup

(u1,v1,w1),(u2,v2,w2)∈[0,1]×Sr−1
2 ×Sp−1

2

d∞((u1, v1,w1), (u2, v2,w2)).

To conclude the proof, it suffices to estimate these four terms. We start with the terms which involves
the distance d∞. An estimate of d∞ is obtained by seeingWu,v,w as a sub-matrix of an infinite Toeplitz
matrix W̃u,v,w defined by,

W̃u,v,w =
[

116j−k+162T−1(w
∗
u,v,w)j−k+1

]

(j,k)∈Z2

and the corresponding multiplication polynomial is

qu,v,w(z) =

2T−1
∑

l=1

exp(i2πl̄(u+ z))

|l̄| vw∗.

The diameter ∆S∞
becomes

∆S∞
6 2 sup

u∈[0 1]
sup
|v|2=1
|w|2=1

|W̃u,v,w|2→2 = 2 sup
u∈[0 1]
z∈[0 1]

sup
|v|2=1
|w|2=1

|q(z)|S2

= 2 sup
u∈[0 1]
z∈[0 1]

∣

∣

∣

∣

∣

2T−1
∑

l=1

exp(i2πl̄(u+ z))

|l̄|

∣

∣

∣

∣

∣

6

T−1
∑

l=1

2

|l̄| . log(T ).

Using the fact that the complex exponential is Lipschitz, we have

d∞((u1, v1,w2), (u1, v1,w2))6

T−1
∑

l=1

1

|l̄| |v1w
∗
1 − v2w

∗
2|S2

+

∣

∣

∣

∣

∣

T−1
∑

l=1

1

|l̄| (e
i2πl(u1−z) − ei2πl(u2−z))

∣

∣

∣

∣

∣

. log(T )|v1 − v2|2 + log(T )|w1 −w2|2 + T |u1 − u2|.

The γ1 functional is evaluated as

γ1([0,1]× S
r−1
2 × S

p−1
2 , dS∞

)6 γ1([0,1], T | · |) + γ1(S
r−1
2 , log(T )| · |2)

+ γ1(S
p−1
2 , log(T )| · |2)

.

∫ ∆S∞

0
logN([0,1], T | · |, u)du+

∫ ∆S∞

0
logN(Sr−12 , log(T )| · |2, u)du

+

∫ ∆S∞

0
logN(Sp−12 , log(T )| · |2, u)du
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.

∫ log(T )

0
log

(

T

u

)

du+

∫ log(T )

0
log

(

log(T )

u

)r

du+

∫ log(T )

0
log

(

log(T )

u

)p

du

6 log2 (T )−
∫ logT

0
log(u)du+ (p+ r)

(

log(T ) log log(T )−
∫ logT

0
log(u)du

)

6 log2(T ) + (p+ r) log(T ).

We now turn to the terms involving the pseudo-distance |Wu1,v1,w1 −Wu2,v2,w2 |S2
. Again the com-

plex exponential is -Lipschitz, we have

dS2
((u1, v1,w1), (u2, v2,w2))

6
√

N̄





(

2T−1
∑

l=1

1

l̄2
|v1w∗1 − v2w

∗
2 |2S2

)1/2

+

(

2T−1
∑

l=1

1

l̄2
| exp(i2πlu1)− exp(i2πlu2)|2

)1/2




.
√

N̄
(

|v1 − v2|2 + |w1 −w2|2 +
√
T |u1 − u2|

)

.

The radius ∆S2
satisfies

∆S2
= 2 sup

u∈[0 1]
|Wu|S2

≃
√

N̄.

The γ2 functional satisfies

γ2([0,1]× S
r−1
2 × S

p−1
2 , d2)6 γ2([0,1],

√

N̄T | · |)

+ γ2(S
r−1
2 ,

√

N̄ | · |2) + γ2(S
p−1
2 ,

√

N̄ | · |2)

.

∫ ∆S2

0

(

logN([0,1],
√

N̄T | · |, u)
)1/2

du+

∫ ∆S2

0

(

logN(Sr−12 ,
√

N̄ | · |2, u)
)1/2

du

+

∫ ∆S2

0

(

logN(S
p−1
2 ,

√

N̄ | · |2, u)
)1/2

du

=

∫

√
N̄

0

(

log

√
N̄T

u

)1/2

du+

∫

√
N̄

0

(

log

(

3
√
N̄

u

)r)1/2

du+

∫

√
N̄

0

(

log

(

3
√
N̄

u

)p)1/2

du

=
√

N̄T

∫ ∞
√

log(T )
t2 exp(−t2/2)dt+6

√

N̄r

∫ ∞
√
log 3

t2 exp(−t2/2)dt

+6

√

N̄p

∫ ∞
√
log 3

t2 exp(−t2/2)dt

.
√

N̄T

(

√

log(T )√
T

+
1√

T
√

log(T )

)

+
√

N̄(p+ r).
√

N̄ log(T ) +
√

N̄(p+ r),

where in the last step we did and integration by parts and used [1, Formula 7.1.13].
Putting these estimates together enables us to bound the supremum of the stochastic polynomialχu,v,w
with high probability as expressed in A.12. This in turn implies that with probability at least 1 −
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exp(−t), for t> 1,

1

N̄
|H†∗X∗X̄ḡ|S∞

. σ2u|G|S∞

(

√

log(T ) + p+ r

N̄

+
log2(T ) + (p+ r) log(T )

N̄
+

√

t

N̄
+

log(T )t

N̄

)

.

Appendix B: Deterministic estimates

In this Appendix we provide the proofs of some deterministic inequalities that are needed especially in
Appendix A.

Proposition B.1. For (v1,w1) and (v2,w2) in S
r−1
2 × S

p−1
2 the following norm inequality holds:

|v1w∗1 − v2w
∗
2|S∞

6 |v1 − v2|2 + |w1 −w2|2.

Proof. Take (v1,w1) and (v2,w2) both in S
r−1
2 × S

p−1
2 and note that

|v1w∗1 − v2w
∗
2|2S∞

= sup
a∈Sp−1

2

|v1 〈w1, a〉 − v2 〈w2, a〉 |22

= sup
a∈Sp−1

2

|v1|22 〈w1, a〉2 + |v2|22 〈w2, a〉2 − 2 〈v1, v2〉 〈w1, a〉 〈w2, a〉

= sup
a∈Sp−1

2

〈w1, a〉2 + 〈w2, a〉2 + (|v1 − v2|22 − 2) 〈w1, a〉 〈w2, a〉

= sup
a∈Sp−1

2

〈w1 −w2, a〉2 + |v1 − v2|22 〈w1, a〉 〈w2, a〉

6 sup
a∈Sp−1

2

〈w1 −w2, a〉2 + |v1 − v2|22

6 |v1 − v2|22 + |w1 −w2|22.

Taking the square root we obtain

|v1w∗1 − v2w
∗
2|S∞

6 (|v1 − v2|22 + |w1 −w2|22)1/2 6 |v1 − v2|2 + |w1 −w2|2.

Proposition B.2. Let H be the infinite bloc Toeplitz matrix made of 2T − 1 diagolals blocs of the

matices hl ∈Mp×r(R) with l ∈ J1,2T − 1K, then its operator norm |H|2→2 is upper bounded by

|H|2→2 6 sup
t∈[0,1]





∣

∣

∣

∣

∣

2T−1
∑

l=1

exp(i2πlt)hl

∣

∣

∣

∣

∣

S∞



 .
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Proof. Define the linear operators Φ : l2(Z)→ L2(R
p) and Ψ : l2(Z)→ L2(R

r) such that Φ(u)(t) =
2T−1
∑

l=1
ul exp(i2πlt) and Ψ(v)(t) =

+∞
∑

l=−∞
vl exp(i2πlt). Both are isometries since

|Φ(u)|L2(Rp) =





1
∫

0

∣

∣

∣

∣

∣

2T−1
∑

l=1

ul exp (i2πlt)

∣

∣

∣

∣

∣

2

2

dt





1/2

=





2T−1
∑

l=1

2T−1
∑

l′=1

1
∫

0

exp(i2πlt) exp(−i2πl′t)dt 〈ul, ul′〉





1/2

=

(

2T−1
∑

l=1

〈ul, ul〉
)1/2

= |u|22.

Ψ is the usual trigonometric isometry. Thus, for |u|2 = 1 we have

|Hu|2 = |ΦHΨ−1Ψu|L2(Rp) = |(ΦHΨ−1)(
2T−1
∑

l=1

ul exp (i2πlt))|L2(Rp)

=





1
∫

0

∣

∣

∣

∣

∣

2T−1
∑

l=1

(ΦHΨ−1)(ul) exp(i2πlt)

∣

∣

∣

∣

∣

2

2

dt





1/2

= sup
|w|2=1





1
∫

0

∣

∣

∣

∣

∣

2T−1
∑

l=1

2T−1
∑

l′=1

〈

h∗l′w,ul
〉

exp(i2πlt) exp(i2πl′t)

∣

∣

∣

∣

∣

2

dt





1/2

= sup
|w|2=1





1
∫

0

∣

∣

∣

∣

∣

〈

2T−1
∑

l=1

exp(i2πlt)ul,
2T−1
∑

l′=1

exp(i2πl′t)h∗l′w

〉∣

∣

∣

∣

∣

2

dt





1/2

6 sup
|w|2=1





1
∫

0

∣

∣

∣

∣

∣

2T−1
∑

l=1

exp(i2πlt)ul

∣

∣

∣

∣

∣

2

2

∣

∣

∣

∣

∣

2T−1
∑

l′=1

exp(i2πl′t)h∗l′w

∣

∣

∣

∣

∣

2

2

dt





1/2

6 sup
t∈[0,1]

∣

∣

∣

∣

∣

2T−1
∑

l=1

exp(i2πlt)hl

∣

∣

∣

∣

∣

S∞





1
∫

0

∣

∣

∣

∣

∣

2T−1
∑

l=1

exp (i2πlt)ul

∣

∣

∣

∣

∣

2

2

dt





1/2

= sup
t∈[0,1]





∣

∣

∣

∣

∣

2T−1
∑

l=1

exp(i2πlt)hl

∣

∣

∣

∣

∣

2



 |u|2,
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whence, the desired result

|H|2→2 6 sup
t∈[0,1]





∣

∣

∣

∣

∣

2T−1
∑

l=1

exp(i2πlt)hl

∣

∣

∣

∣

∣

S∞



 .

Appendix C: Proofs of the remaining results in Theorem 2.2

Proof of (2.6) Theorem 2.2. The proof is similar to the proof of (2.5). The difference is thatX andW
are independent and involve different sets of random variables. Recall the definition of the permuted
index:

l̄=

{

l− 2T if T +16 l6 2T − 1,

l otherwise.

Define

x= [u∗0, . . . , u
∗
N−2, u

∗
N−1]

∗ ∈R
rN

y = [w∗0, . . . ,w
∗
N−1]

∗ ∈R
d0N

z = [x∗, y∗]∗ ∈R
(d0+r)N

Ul = [u2T−l, u2T+1−l, . . . , uN−l] ∈Mp×N̄ (R).

From the definition of H†
∗

in 2.4 we have

H†
∗

X∗Wh∗ =











(U1Wh∗)∗ 1
2 (U2Wh∗)∗ . . . 1

T (UTWh∗)∗
1
2 (U2Wh∗)∗ 1

3 (U3Wh)∗ . . . 1
T−1 (UT+1Wh∗)∗

...
...

...
...

1
T (UTWh∗)∗ 1

T−1 (UT+1Wh∗)∗ . . . (U2T−1Wh∗)∗











.

Define the infinite block Hankel operator H : l2(N)→ l2(N) by the Mp×r(R) blocks

Hi,j =

{

1/|l̄|(UlWh∗)∗ for (i, j) ∈N
2 and 16 |i− j|= l6 2T − 1,

0 otherwise.

Then,

|H†∗X∗Wh∗|S∞
6 sup

u∈[0, 1]

∣

∣

∣

∣

∣

2T−1
∑

l=1

ei2πl̄u

|l̄| UlWh∗
∣

∣

∣

∣

∣

S∞

= sup
u∈[0 1]

sup
|v|2=1
|w|2=1

∣

∣

∣

∣

∣

〈

Wh∗,
2T−1
∑

l=1

ei2πl̄u

|l̄| U∗l vw
∗
〉∣

∣

∣

∣

∣

.
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Define, for l ∈ [0 N − 2T ], the vectors Gl ∈Mp×d0N (R) as

Gl = [C0A
2T−1+l
0 ,C0A

2T+l
0 , . . . ,C0,0, . . . ,0],

and for u ∈ [0 1] the matrix valued functions wu,v,w,l ∈Mr×p(C) by wu,v,w,l =
exp(i2πl̄u)
|l̄| vw∗ for

l ∈ [1 2T − 1] and the matrix valued functions Wu,v,w,l ∈Mp×Nr(C) by

Wu,v,w,k =
[

0 w∗u,v,w,2T−1 w
∗
u,v,w,2T−2 · · · w∗u,v,w,1

]

,

with the 1st zero a the kth-position. Define G as G = [G∗0, . . . ,G
∗
N−2T ]

∗ and Wu,v,w as Wu,v,w =
[W ∗u,v,w,1, . . . ,W

∗
u,v,w,N−2T−1]

∗ satisfying

〈

X̄ḡ∗,
2T−1
∑

l=1

ei2πl̄u

|l̄| U∗l vw
∗
〉

=
〈

Wu,v,wx,Gy
〉

.

This gives

|H†∗X∗Wh|S∞
6 sup

u∈[0, 1]
sup

v∈Sp−1
2

∣

∣

∣

∣

〈[

Wu,v,w
]

z,

[

H
]

z

〉∣

∣

∣

∣

,

which is the supremum of a second order chaos process defined as follows

χu,v,w =

〈[

H∗Wu,v,w

]

z, , z

〉

.

To control the increment of the process we use Hanson Wright inequality which gives us for t > 0.

P

(

|χu,v,w −E(χu,v,w)|> σuσw

(√
t|H∗Wu,v,w|S2

+ t|H∗Wu,v,w|S∞

))

6 2 exp(−ct).

Since E(χu,v,w) = 0 we obtain a mixed tail process with probability 1− e−t

|χu1,v1,w1 −χu2,v2,w2 |6 σuσw|H |S∞

(√
t|Wu1,v1,w1 −Wu2,v2,w2 |S2

+t|Wu1,v1,w1 −Wu2,v2,w2 |S∞

)

.

The rest of the proof is carried out similar to the proof of (2.5) to obtain the following bound that holds
with probability at least 1− exp(−t), for t> 1.

|H†∗X∗Wh|S∞
. σuσw|H |S∞

(
√

log(T ) + p

N
+

log2(T ) + p log(T )

N
+

√

t

N
+

log(T )t

N

)

.

Proof of (2.7) Theorem 2.2. Again we follow similar steps to the proof of (2.5). We take the following
definitions

x= [u∗0, . . . , u
∗
N−2, u

∗
N−1]

∗ ∈R
rN

ε= [v∗2T , . . . , v
∗
N ]∗ ∈R

pN̄
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y = [x∗, ε∗]∗ ∈R
rN+pN̄

Ul = [u2T−l, u2T+1−l, . . . , uN−l] ∈Mp×N̄ (R).

From the definition of H†
∗

in 2.4 we have

H†
∗

X∗ε=











(U1ε)
∗ 1

2 (U2ε)
∗ . . . 1

T (UT ε)
∗

1
2 (U2ε)

∗ 1
3 (U3ε)

∗ . . . 1
T−1 (UT+1ε)

∗

...
...

...
...

1
T (UT ε)

∗ 1
T−1 (UT+1ε)

∗ . . . (U2T−1ε)∗











.

Define the infinite block Hankel operator J : l2(N)→ l2(N) by the R
p blocks

Ji,j =

{

1/|l̄|(Ulε)
∗ for (i, j) ∈N2, and 16 |i− j|= l6 2T − 1,

0 otherwise.

Then

|H†∗X∗ε|S∞
6 sup

u∈[0, 1]

∣

∣

∣

∣

∣

2T−1
∑

l=1

ei2πl̄u

|l̄| Ulε

∣

∣

∣

∣

∣

S∞

= sup
u∈[0 1]

sup
|v|2=1
|w|2=1

∣

∣

∣

∣

∣

〈

ε,

2T−1
∑

l=1

ei2πl̄u

|l̄| U∗l vw
∗
〉∣

∣

∣

∣

∣

For u ∈ [0 1] define the matrix valued functions wu,v,w,l ∈Mr×p(C) by wu,v,w,l =
exp(i2πl̄u)
|l̄| vw∗

for l ∈ [1 2T − 1] and the matrix valued functions Wu,v,w,l ∈Mp×Nr(C) by

Wu,v,w,k =
[

0 w∗u,v,w,2T−1 w
∗
u,v,w,2T−2 · · · w∗u,v,w,1

]

,

with the 1st zero a the kth-position. Put them together in Wu,v,w since

Wu,v,w = [W ∗u,v,w,1, . . . ,W
∗
u,v,w,N−2T−1]

∗

which satisfy
〈

ε,

2T−1
∑

l=1

ei2πl̄u

|l̄| U∗l vw
∗
〉

=
〈

Wu,v,wx, ε
〉

.

This gives

|H†∗X∗ε|S∞
6 sup

u∈[0, 1]
sup

v∈Sp−1
2

∣

∣

∣

∣

〈[

Wu,v,w
]

z,

[

IN
]

z

〉∣

∣

∣

∣

,

which is the supremum of a second order chaos process defined as follows

χu,v,w =

〈[

Wu,v,w

]

y, , y

〉

.
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To control the increment of the process we use Hanson Wright inequality which gives us for t > 0.

P

(

|χu,v,w −E(χu,v,w)|> σv
2
(√

t|Wu,v,w|S2
+ t|Wu,v,w|S∞

))

6 2 exp(−ct).

Since E(χu,v,w) = 0 we obtain a mixed tail process with probability 1− e−t

|χu1,v1,w1 −χu2,v2,w2 |6 σ2v

(√
t|Wu1,v1,w1 −Wu2,v2,w2 |S2

+ t|Wu1,v1,w1 −Wu2,v2,w2 |S∞

)

.

The rest of the proof is carried out similarly to the proof of (2.5) to obtain the following bound that
holds with probability at least 1− exp (−t) for t> 1:

|H†∗X∗ε|S∞
. σ2v

(
√

log(T ) + p

N
+

log2(T ) + p log(T )

N
+

√

t

N
+

log(T )t

N

)

.
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