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LIMIT OF BERGMAN KERNELS ON A TOWER OF COVERINGS

OF COMPACT KÄHLER MANIFOLDS

SUNGMIN YOO AND JIHUN YUM

Abstract. We prove the convergence of the Bergman kernels and the L2-Hodge num-
bers on a tower of Galois coverings {Xj} of a compact Kähler manifold X converging

to an infinite Galois (not necessarily universal) covering X̃ . We also show that, as an
application, sections of canonical line bundle KXj

for sufficiently large j give rise to
an immersion into some projective space, if so do sections of K

X̃
.

1. Introduction

Let {Xj} be a tower of Galois coverings of a complex manifold X converging to an

infinite Galois covering X̃ of X . A tower of coverings is said to be Bergman stable
if the pull-back of the Bergman kernels of Xj converges locally uniformly to that of

X̃ as j → ∞. A famous theorem by Kazhdan [9] states that a tower of coverings of
compact Riemann surfaces with genus g ≥ 2 converging to the universal covering is
Bergman stable (see McMullen [13] and Rhodes [15] for other proofs). We remark that
in contrast, T. Ohsawa [14] constructed an example of a tower of non-Galois coverings
which is not Bergman stable.

Recently, Baik, Shokrieh and Wu generalized Kazhdan’s theorem where X̃ is any
infinite Galois covering of a compact Riemann surface X (see Theorem A in [1]). The
purpose of this work is to prove the following generalization for higher dimensional
complex manifolds.

Theorem A (Theorem 5.4). Any tower of Galois coverings of a compact Kähler man-
ifold converging to an infinite Galois covering is Bergman stable.

Chen and Fu also proved this type of theorem when the base manifold X is possibly
non-compact under the additional assumption that both top and base manifolds satisfy
a certain type of Kähler-hyperbolicity condition (see Theorem 1.3 in [5]). They used
Donnelly-Fefferman type L2-estimates for the ∂-Laplacian. We emphasize that our
results do not require any further assumption except that the base manifold is compact
Kähler.

Instead of ∂-estimates, we will take a topological approach as in [1]. Note that
the Bergman stability is equivalent to the convergence of the L2-Hodge numbers hn,0

(2) ,

the von Neumann dimensions of the spaces of L2-harmonic (holomorphic) (n, 0)-forms,
which is called the Kazhdan equality. This fact was first observed by Kazhdan (cf. [5,9],
see also Proposition 5.3). IfX is a Riemann surface, it is enough to show the convergence
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of the L2-Betti numbers b
(2)
1 since b

(2)
1 = 2h1,0

(2) by the Hodge decomposition. In fact,

Baik, Shokrieh and Wu proved this convergence by a variant of Lück’s approximation
theorem (see Theorem 4.6 in [1]).

However, for the higher dimensional case n > 1, the convergence of the L2-Betti
numbers does not directly imply that of the L2-Hodge numbers hn,0

(2) . Using the theory

of von Neumann algebras, we prove the following general version.

Theorem B (Kazhdan’s equality for the L2-Hodge numbers). Let {Xj → X} be a
tower of Galois coverings of a compact Kähler manifold X converging to an infinite

Galois covering X̃ → X. Then, for any 0 ≤ p, q ≤ n, we have

hp,q
(2)(Xj)

(
=

hp,q(Xj)

|Gj|

)
−→ hp,q

(2)(X̃)

as j → ∞, where Gj is the group of deck transformations of the covering Xj → X, and
hp,q(Xj) is the (ordinary) Hodge number of Xj.

On the other hand, the Bergman kernel and metric are strongly related to the projec-
tivity of a manifold in the following sense: For a complex manifoldX , one can consider a
holomorphic map ιX from X into the (possibly infinite dimensional) complex projective
space P(H0

(2)(X,KX)
∗) using an orthonormal basis of the Hilbert space H0

(2)(X,KX).

The map ιX is called the Kobayashi map ( [10]), which can be regarded as a L2-version
of the Kodaira map. When ιX is an embedding, we say that KX is very ample. Then
the Bergman kernel of X is the pull-back of the Fubini-Study metric, which is a her-
mitian metric on O(1)-bundle over P(H0

(2)(X,KX)
∗), and the Bergman metric of X is

its curvature form. Now, we consider the following natural question.

Question. Assume that the canonical line bundle KX̃ of top manifold X̃ is very ample.
Is it true that the canonical line bundle KXj

is also very ample for sufficiently large j?

As an application of Theorem A, we give a partial answer to the above question as
follows.

Corollary C. Let {Xj → X} be a tower of Galois coverings of a compact Kähler

manifold X converging to an infinite Galois covering X̃ → X. Assume that ιX̃ :

X̃ → P(H0
(2)(X̃,KX̃)

∗) is a holomorphic immersion. Then there exists a positive integer

N ∈ N such that for all j ≥ N , ιXj
: Xj → P(H0(Xj, KXj

)∗) is holomorphic immersion.

In fact, S.-K. Yeung obtained some affirmative results assuming that the top manifold
X̃ is a Hermitian symmetric manifold of non-compact type, which is simply-connected;
when the base manifold X is compact he [18] proved the very ampleness of KXj

(see the
last paragraph in Section 6), and when X is non-compact he [20] proved the existence
of a holomorphic immersion Xj → P(H0(Xj, KXj

)∗).

This paper is organized as follows. In Section 2, we briefly review relevant materials
from the theory of von Neumann algebras and results on the approximation theorem
of L2-Betti numbers. In Section 3, we discuss their applications to a tower of coverings
of compact Riemannian manifolds in terms of the Schwartz kernels. In Section 4, we
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prove Theorem B using the properties of the Schwartz kernels. In Section 5, we review
the definitions of Bergman kernel and Bergman metric and establish some of their basic
properties, and prove Theorem A. Corollary C is proved in Section 6.

Acknowledgements. The authors would like to thank Professor Jun-Muk Hwang for
his suggestion of this work and valuable comments. This work was supported by the
Institute for Basic Science (IBS-R032-D1).

2. Preliminaries

In this section, we briefly review some terminologies, notations, and basics on the
theory of von Neumann algebras. For more details, we refer to [8, 12]. We also discuss
the approximation theorem of L2-Betti numbers by Lück [11] and Baik-Shokrieh-Wu [1].

2.1. Tower of coverings. Let X be a topological space (or differentiable or complex
manifold). Recall that φ : Y → X is called Galois (or normal) if the group of deck
transformations G := {f ∈ Aut(Y ) : φ ◦ f = φ} acts on φ−1(p) transitively for all
p ∈ X , and we may describe a Galois covering as a quotient map Y → Y/G.

Definition 2.1. A sequence of topological spaces (or differentiable or complex mani-
folds) {Xj}j=1 is called a tower of coverings of X if there exists a sequence of continuous
(or smooth or holomorphic, resp.) Galois covering maps {φj : Xj → X}j=1 satisfying

π1(X) ⊃ π1(X1) ⊃ π1(X2) ⊃ · · ·
such that π1(Xj) is a normal subgroup of π1(X) of finite index [π1(X) : π1(Xj)] for each
j, where π1(X) denotes the first fundamental group of X .

Definition 2.2. We say that a tower of (Galois) coverings {φj : Xj → X} converges

to an infinite Galois covering φ : X̃ → X if it satisfies
⋂

j=1

π1(Xj) = π1(X̃).

We will refer to X̃ as the top manifold and X as the base manifold.

Remark 2.3. There exists an another sequence of Galois coverings {φ̃j : X̃ → Xj} such

that φ = φj ◦ φ̃j because π1(X̃) is a normal subgroup of π1(Xj).

2.2. Hilbert G-modules and von Neumann dimension. Let G be a discrete
group. Define the Hilbert space ℓ2(G) by

ℓ2(G) :=
{
u : G → C

∣∣∣
∑

g∈G

|u(g)|2 < ∞
}
.

Then the set of indicator functions {δg}g∈G is an orthonormal basis of ℓ2(G).

Definition 2.4. Let V be a Hilbert space and let G be a discrete group.

• V is called a Hilbert G-module if it admits a left unitary action of G.
• V is called a free Hilbert G-module if it is a Hilbert G-module andG-equivariant
unitary isomorphic to ℓ2(G)⊗H for some Hilbert space H .
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• V is called a projective Hilbert G-module if it is a Hilbert G-module and admits
a unitary isometric G-equivariant embedding into a free Hilbert G-module.

Let V be a projective Hilbert G-module (embedded into some free Hilbert G-module
ℓ2(G)⊗H), and πV be the orthogonal projection from ℓ2(G)⊗H onto V .

Definition 2.5. The von Neumann dimension (or G-dimension) of V is defined by

dimG(V ) := TrG(πV ) =
∑

α∈J

〈πV (δe ⊗ uα), δe ⊗ uα〉,

where {uα}α∈J is an orthonormal basis of H and e is the identity element of G.

Remark 2.6. This is a well-defined invariant (independent of the choice of the G-
equivariant embedding). If dimC(V ) and |G| are both finite, dimG(V ) = 1

|G|
dimC(V ).

2.3. L2-Betti numbers and the approximation theorem. Let X be a free G-CW-
complex of finite type for some discrete group G.

Definition 2.7. Let (C∗(X), d∗) be the cellular chain complex of X . Define the (cellu-
lar) L2-chain complex and L2-cochain complex of X by

(C(2)
∗ (X), d(2)∗ ) := (ℓ2(G)⊗ZG C∗(X), id⊗ d∗),

(C∗
(2)(X), d∗(2)) := (HomZG(C∗(X), ℓ2(G)), d∗(2)).

The above complexes are sequences of (finitely generated) projective Hilbert G-
modules. Therefore the followings inherit the structure of projective HilbertG-modules.

Definition 2.8. The k-th reduced L2-homology and L2-cohomology of the pair (X,G)
are projective Hilbert G-modules, defined by

H
(2)
k (X ;G) := Ker d

(2)
k /Im d

(2)
k+1, Hk

(2)(X ;G) := Ker dk(2)/Im dk−1
(2) .

The k-th homological and cohomological L2-Betti number of (X,G) are defined by

b
(2)
k (X ;G) := dimGH

(2)
k (X ;G), bk(2)(X ;G) := dimGH

k
(2)(X ;G).

Remark 2.9. It is well-known that bk(2)(X ;G) = b
(2)
k (X ;G) (cf. Theorem 3.24 in [8]).

By Remark 2.6, if |G| is finite, we have

bk(2)(X ;G) = b
(2)
k (X ;G) =

1

|G|bk(X),

where bk(X) is the (ordinary) k-th Betti number of X .

Note that a Galois covering Y of a finite CW complex X is a free G-CW-complex of
finite type with the group of deck transformations G := π1(X)/π1(Y ). The following

approximation theorem was first proved by Lück when X̃ is the universal covering of
X (see Theorem 0.1 in [11]). Baik, Shokrieh and Wu generalized this to any infinite
Galois covering in the following form.
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Theorem 2.10 (cf. Theorem 4.6 in [1]). Let {Xj} be a tower of coverings of a finite

connected CW complex X converging to an infinite Galois covering X̃ → X. Then

bk(2)(X̃ ;G) = lim
j→∞

bk(2)(Xj;Gj) = lim
j→∞

bk(Xj)

|Gj|
,

where G := π1(X)/π1(X̃), Gj := π1(X)/π1(Xj), and |Gj | := [π1(X) : π1(Xj)].

3. Tower of coverings of compact Riemannian manifolds

In this section, we will explain the convergence of the trace forms of Schwartz kernels
on a tower of coverings of compact Riemannian manifolds via the convergence of L2-
Betti numbers (without using the heat kernel method).

3.1. Kazhdan’s equality for harmonic spaces. Let (X, g) be a (possibly non-
compact) Riemannian manifold. Let Ak(X) be the space of complex differential k-forms

on X , i.e., the set of smooth sections of the bundle
∧k T ∗

C
X , where T ∗

C
X := T ∗

R
X⊗C is

the complexified cotangent bundle. For any compactly supported forms u, v ∈ Ak
c (X),

define the inner product by

〈u, v〉 :=
∫

X

u ∧ ∗v =

∫

X

(u, v) dVg,

where ∗ is the Hodge star operator and dVg is the volume form of g. Denote its Hilbert
space completion by Ak

(2)(X). Then the space of L2 harmonic (complex differential)
k-forms is defined by

Hk
(2)(X) := {u ∈ Ak

(2)(X) | ∆gu = 0}
(we also use the notation Hk(X,C) without the subscript when X is compact).

Let Y → X be a Galois covering of a compact Riemannian manifold (X, g), with the
group of deck transformations G = π1(X)/π1(Y ). Since X admits a finite CW complex
structure, we can define the reduced L2-cohomology Hk

(2)(Y ;G) of (Y,G). On the other

hand, Y admits a G-invariant complete Riemannian metric g̃, induced by the metric
g of X . In [6], Dodziuk showed that Hk

(2)(Y ) also has a structure of projective Hilbert

G-module and proved the following L2-version of the Hodge-de Rham theorem.

Theorem 3.1 (cf. Theorem 1 in [6]). We have the following canonical isomorphisms
between projective Hilbert G-modules:

Hk
(2)(Y ) ≃ Hk

dR(2)(Y,C) ≃ Hk
(2)(Y ;G),

where Hk
dR(2)(Y,C) is the reduced L2-de Rham cohomology. In particular, we have

dimGHk
(2)(Y ) = dimGH

k
(2)(Y ;G).

Note that as in Remark 2.6, if Y is compact and |G| is finite, we have

dimGHk
(2)(Y ) =

dimCHk
(2)(Y )

|G| =
dimCHk(Y,C)

|G| .

Then, Theorem 3.1 and Theorem 2.10 imply Kazhdan’s equality for harmonic spaces.
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Corollary 3.2. Let {Xj} be a tower of coverings of a compact Riemannian manifold

X converging to an infinite Galois covering X̃ → X. Then

dimGHk
(2)(X̃) = lim

j→∞
dimGj

Hk
(2)(Xj) = lim

j→∞

dimCHk(Xj,C)

|Gj|
,

where G := π1(X)/π1(X̃), Gj := π1(X)/π1(Xj), and |Gj | = [π1(X) : π1(Xj)].

3.2. Convergence of the trace forms of Schwartz kernels. Let X be a Rie-
mannian manifold. Consider the orthogonal projection operator πk

X from Ak
(2)(X) onto

Hk
(2)(X). Let {eα} be orthonormal bases for Ak

(2)(X).

Definition 3.3. The Schwartz kernel form of the operator πk
X is a symmetric smooth

double form Kk
X ∈ Ak

(2)(X)⊗Ak
(2)(X) defined by for x, y ∈ X ,

Kk
X(x, y) :=

∑

α,β

〈
πk
X(eα), eβ

〉
eα(x)⊗ eβ(y).

The trace form of the Schwartz kernel trKk
X is a volume form on X defined by

trKk
X(x) =

∑

α

〈
πk
X(eα), eα

〉
eα(x) ∧ ∗eα(x).

Remark 3.4. One can easily show that the above definitions are independent of the
choice of the orthonormal basis {eα}. Moreover, the Schwartz kernel and its trace form
can be represented as:

Kk
X(x, y) =

∑

α

uα(x)⊗ uα(y) and trKk
X =

∑

α

uα ∧ ∗uα,

where {uα}α is an orthonormal basis for the Hilbert space Hk
(2)(X).

The name of the Schwartz kernel comes from the property that for all u ∈ Ak
(2)(X),

πk
X(u)(x) =

〈
u(·),Kk

X(·, x)
〉
X
=

∫

X

u(y) ∧ ∗Kk
X(y, x),

where Kk
X(y, x) =

∑
α,β

〈
πk
X(eα), eβ

〉
eβ(y) ⊗ eα(x). Moreover, for all u ∈ Hk

(2)(X) ⊂
Ak

(2)(X), we have the following reproducing property:

u(x) =

∫

X

u(y) ∧ ∗Kk
X(y, x).

Note that if X is compact, then

dimC(Hk(X)) = Tr(πk
X) :=

∑

α

〈
πk
X(eα), eα

〉
=

∫

X

trKk
X .

Consider a Galois covering φ : Y → X of a compact Riemannian manifold X with
the group of deck transformations G = π1(X)/π1(Y ). Let F be a fundamental domain,
i.e., an open subset F ⊂ Y satisfying

(1) Y =
⋃

g∈G g(F ),
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(2) g(F ) ∩ h(F ) = ∅ for all g 6= h ∈ G,
(3) F \ F has zero measure.

Note that Ak
(2)(Y ) ≃ ℓ2(G)⊗ Ak

(2)(F ) is a free Hilbert G-module by the isomorphism

u ≃
∑

g∈G

δg ⊗ g∗(u|g(F )),

where g∗(u|g(F )) is the pull-back of the restriction form u|g(F ) on g(F ) to F by the
g-action. Then Hk

(2)(Y ) is a projective Hilbert G-module (embedded into Ak
(2)(Y )) so

that

dimG(Hk
(2)(Y )) := TrG(π

k
Y ) =

∫

F

trKk
Y .

If Y is compact and |G| is finite, Remark 2.6 implies that

dimG(Hk
(2)(Y )) =

1

|G|dimC(Hk(Y )) =
1

|G|

∫

Y

trKk
Y .

Therefore, the Kazhdan equality for harmonic spaces (Corollary 3.2) implies that

Corollary 3.5. Let {φj : Xj → X} be a tower of coverings of a compact Riemannian

manifold X converging to an infinite Galois covering φ : X̃ → X. Then
∫

F̃

trKk
X̃
= lim

j→∞

∫

Fj

trKk
Xj

= lim
j→∞

1

|Gj|

∫

Xj

trKk
Xj
,

where F̃ and Fj are fundamental domains of φ : X̃ → X and φj : Xj → X, respectively.

Remark 3.6. Note that the trace form of the Schwartz kernel is invariant under G-action
so that its push-forward is well-defined. Therefore, the above corollary can be written
as ∫

X

φ∗(trKk
X̃
) = lim

j→∞

∫

X

φj∗(trKk
Xj
).

Remark 3.7. The above Corollary was proved by Cheeger and Gromov [3, 4] using the

heat kernel method when X̃ is the universal covering and Xj are (possibly non-compact)
manifolds with finite volume and bounded geometry.

3.3. Convergence of canonical forms. In [1], Baik, Shokrieh and Wu introduced
the concept of the canonical measures for Riemann surfaces (see also [16]). Similarly,
for higher dimensional Riemannian manifolds, we can define the following:

Definition 3.8. Let X be a Riemannian manifold and let {uα}α∈J be an orthonormal
basis for Hk

(2)(X). The canonical measure (of degree k) on X is defined by

µk
X(U) :=

∑

α∈J

∫

U

uα ∧ ∗uα

(
=

∫

U

trKk
X

)

for any Borel subset U ⊂ X .
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Consider a Galois covering φ : Y → X of a compact Riemannian manifold X with
the group of deck transformations G = π1(X)/π1(Y ). Since the canonical measure µk

Y

is invariant under isometries, its push-forward to X is well-defined. Denote it by µk
φ.

Then we have
µk
φ(X) = TrG(π

k
Y ) = dimG(Hk

(2)(Y )).

Moreover, if it is finite covering, then µk
φ(X) = µk

Y (Y )/|G|. Therefore, Theorem 5.3
in [1] can be generalized to higher dimensional cases in the following form.

Corollary 3.9. Let {Xj} be a tower of coverings of a compact Riemannian manifold X

converging to an infinite Galois covering X̃ → X. Then for any Borel subset U ⊂ X,

lim
j→∞

µk
φj
(U) = µk

φ(U).

4. Tower of coverings of compact Kähler manifolds

In this section, we will prove Theorem B. More precisely, for a tower of coverings of
compact Kähler manifolds, we will show the convergence of L2-Hodge numbers using
properties of the Schwartz kernels.

4.1. Schwartz kernels of Kähler manifolds. Let (X, g) be a (possibly non-compact)
Kähler manifold of dimension n. Using the decomposition T ∗

C
X = T ∗′X ⊕ T ∗′′X, we

have
Ak

(2)(X) =
⊕

p+q=k

Ap,q
(2)(X),

where Ap,q
(2)(X) is the Hibert space completion of complex differential (p, q)-forms on X ,

i.e. smooth sections of the bundle
∧p T ∗′X ⊗∧q T ∗′′X . Moreover, the densely defined

operator ∂ : Ap,q
(2)(X) → Ap,q+1

(2) (X) gives us the ∂-Laplacian operator ∆∂ := ∂∂
∗
+ ∂

∗
∂.

Then the space of L2-harmonic (p, q)-forms is defined by

Hp,q
(2)(X) := {u ∈ Ap,q

(2)(X) | ∆∂u = 0}.
Denote the projection operator by πp,q

X : Ap,q
(2)(X) → Hp,q

(2)(X). Let {eα} and {uα} be

orthonormal bases for Ap,q
(2)(X) and Hp,q

(2)(X), respectively.

Definition 4.1. The Schwartz kernel Kp,q
X of πp,q

X is defined by

Kp,q
X (x, y) :=

∑

α,β

〈πp,q
X (eα), eβ〉 eα(x)⊗ eβ(y) =

∑

α

uα(x)⊗ uα(y).

The trace form trKp,q
X of the Schwartz kernel Kp,q

X is defined by

trKp,q
X :=

∑

α

〈πp,q
X (eα), eα〉 eα ∧ ∗eα =

∑

α

uα ∧ ∗uα.

As in the case of Riemannian manifolds, the above definitions are independent of the
choice of the orthonormal basis and it satisfies that for all u ∈ Ap,q

(2)(X), we have

πp,q
X (u)(x) =

∫

X

u(y) ∧ ∗Kp,q
X (y, x).



LIMIT OF BERGMAN KERNELS ON A TOWER OF COVERINGS 9

Therefore, for all u ∈ Hp,q
(2)(X), we have the reproducing property:

u(x) =

∫

X

u(y) ∧ ∗Kp,q
X (y, x).

Remark 4.2. When p = n and q = 0, the trace form BX := trKn,0
X is independent of the

Kähler metric. This is called the (diagonal) Bergman kernel form of X .

Note that as in the case of Riemmannian manifolds, for a Galois covering Y of a com-
pact Kähler manifold X , Hp,q

(2)(Y ) is a projective Hilbert G-module which is embedded

into the free Hilbert G-module Ap,q
(2)(Y ). Thus for a fundamental domain F , we have

dimG(Hp,q
(2)(Y )) := TrG(π

p,q
Y ) =

∫

F

trKp,q
Y .

Remark 2.6 implies that if Y is compact and |G| is finite, then we have

dimG(Hp,q
(2)(Y )) =

1

|G|dimC(Hp,q(Y )) =
1

|G|

∫

Y

trKp,q
Y .

Definition 4.3. Let Y → X be a Galois covering of a compact Kähler manifold X ,
with the group of deck transformations G = π1(X)/π1(Y ). The L2-Hodge number (of
bi-degree (p, q)) for Y is defined by

hp,q
(2)(Y ) := dimG(Hp,q

(2)(Y )).

Remark 4.4. To justify the definition, note that if Y is compact, the Hodge decompo-
sition theorem implies that the Hodge number satisfies that

hp,q(Y ) := dimC(H
p,q(Y )) = dimC(Hp,q(Y )) = Tr(πp,q

Y ) =

∫

Y

trKp,q
Y .

Therefore if |G| is finite, we have hp,q
(2)(Y ) = hp,q(Y )/|G|. In fact, even for non-compact

cases we have the following G-equivariant isomorphism by the L2-Hodge decomposition
(cf. Theorem 11.27 in [12]):

Hp,q
(2) (Y ) ≃ Hp,q

(2)(Y ),

where Hp,q
(2)(Y ) is the reduced L2-Dolbeault coholmology.

4.2. Kazhdan’s equality for compact Kähler manifolds. Let X be a Kähler man-
ifold. For any open subset U ⊂ X , denote by trKp,q

U the trace form of Schwartz kernel
of the orthogonal projection πp,q

U : Ap,q
(2)(U) → Hp,q

(2)(U). Then we have the following
properties.

Proposition 4.5. Let X be a Kähler manifold and U ⊂ X be an open subset.

(a) For any open subset V ⊂ X containing U , we have∫

U

trKp,q
V ≥

∫

U

trKp,q
X .

(b) Let U1 ⊂ U2 ⊂ · · · ⊂ X be open subsets satisfying X =
⋃

m Um. Then we have

lim
m→∞

∫

U

trKp,q
Um

=

∫

U

trKp,q
X .
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Remark 4.6. For the Bergman kernel form BX := trKn,0
X , (b) follows from the well-

known theorem by Ramadanov.

Proof. This proposition was proved in the case of Riemann surfaces in Proposition 3.5
in [1] in terms of canonical measures. In fact, this can be generalized to our case using
the same proof. We briefly sketch the proof for reader’s convenience.

By using Tonelli’s theorem and Parseval’s theorem, one can prove that for any open
subsets U ⊂ V ⊂ X , ∫

U

trKp,q
V =

∑

α

〈
πp,q
V (eUα ), e

U
α

〉
,

where {eUα} is an orthonormal basis for Ap,q
(2)(U) (cf. Proposition 3.4 in [1]).

Let H′(V ) be the Hilbert subspace of Ap,q
(2)(X) consisting of L2-(p, q)-forms on X

which are harmonic on V . Then we have

(4.1)
〈
πp,q
V (eUα ), e

U
α

〉
=

〈
π′
V (e

U
α ), e

U
α

〉
,

where π′ : Ap,q
(2)(X) → H′(V ) is the orthogonal projection (see (3.4) in [1]).

Therefore, (a) follows from (4.1) and the fact that
〈
π′
V (e

U
α ), e

U
α

〉
≥

〈
πp,q
X (eUα ), e

U
α

〉
,

since Hp,q
(2)(X) ⊂ H′(V ). For (b), note that since H′(Um) is a decreasing sequence of

Hilbert subspaces converging to Hp,q
(2)(X), we have

lim
m→∞

〈
π′
Um

(eUα ), e
U
α

〉
=

〈
πp,q
X (eUα ), e

U
α

〉
,

where π′
Um

: Ap,q
(2)(X) → H′(Um) is the orthogonal projection. Then the result follows

from (4.1) (for Um instead of V ). �

Let {φj : Xj → X} be a tower of coverings of a compact Kähler manifold X con-

verging to an infinite Galois covering φ : X̃ → X . Denote their L2-Hodge numbers by

hp,q
(2)(Xj) and hp,q

(2)(X̃), respectively.

Proposition 4.7. We have the following Kazhdan type inequality:

(4.2) lim sup
j→∞

hp,q
(2)(Xj) ≤ hp,q

(2)(X̃).

Proof. Let F̃ be a fundamental domain of the covering φ : X̃ → X , and {F̃j}j=1 be an

increasing sequence of fundamental domains of the coverings {φ̃j : X̃ → Xj}j=1. Let

U1 ⊂ U2 ⊂ · · · ⊂ X̃ be a sequence of open subsets containing F̃ satisfying X̃ =
⋃

m Um.

Note that each Um is contained in all but finitely many of F̃j .
By Proposition 4.5 (a),

lim sup
j→∞

∫

F̃

trKp,q

F̃j

≤
∫

F̃

trKp,q
Um

.
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Let Fj be a fundamental domain of the covering φj : Xj → X . Then we have
∫

F̃

trKp,q

F̃j

=

∫

Fj

trKp,q
Xj

= dimGj
(Hp,q

(2)(Xj)) = hp,q
(2)(Xj).

On the other hand, Proposition 4.5 (b) implies that

lim
m→∞

∫

F̃

trKp,q
Um

=

∫

F̃

trKp,q

X̃
= dimG(Hp,q

(2)(X̃)) = hp,q
(2)(X̃).

�

Proof of Theorem B. From Theorem 2.10 and 3.1, we have

lim
j→∞

dimGj
(Hk

(2)(Xj)) = dimG(Hk
(2)(X̃)).

Now, the two decompositions

Hk
(2)(Xj) =

⊕

p+q=k

Hp,q
(2)(Xj), Hk

(2)(X̃) =
⊕

p+q=k

Hp,q
(2)(X̃),

and Remark 4.2 (iv) in [1] imply that
(4.3)∑

p+q=k

hp,q
(2)(Xj) =

∑

p+q=k

dimGj
(Hp,q

(2)(Xj)) →
∑

p+q=k

dimG(Hp,q
(2)(X̃)) =

∑

p+q=k

hp,q
(2)(X̃),

as j → ∞. Therefore, (4.3) and Proposition 4.7 yield that

lim sup
j→∞

hp,q
(2)(Xj) = hp,q

(2)(X̃).

Moreover, the elementary properties of lim inf and lim sup:

lim sup
j→∞

(aj + bj) ≤ lim sup
j→∞

(aj) + lim sup
j→∞

(bj),

lim inf
j→∞

(aj + bj) ≤ lim inf
j→∞

(aj) + lim sup
j→∞

(bj) ≤ lim sup
j→∞

(aj + bj)

imply that

lim inf
j→∞

hp,q
(2)(Xj) = hp,q

(2)(X̃) = lim sup
j→∞

hp,q
(2)(Xj),

which completes the proof.
�

5. limits of the Bergman kernels and metrics

In the previous section, we proved the convergence of L2-Hodge numbers (hp,q
(2)(Xj) :=∫

Fj
trKp,q

Xj
) on a tower of coverings {φj : Xj → X}, where Fj is a fundamental domain

of φj . In this section, we show the (local) uniform convergence of the trace forms of

Schwartz kernels (of (n, 0) type) trKn,0
Xj

, which is also called the Bergman kernel.

For a complex manifold X , let Ωn,0
(2) (X) be the space of square integrable holomorphic

(n, 0)-forms equipped with the inner product 〈f, g〉 = in
2

2−n
∫
X
f ∧ g, and the norm
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is defined by ‖f‖2 := 〈f, f〉 . Then Ωn,0
(2) (X) is a Hilbert space because it is a closed

subspace of An,0
(2) (X). The Bergman kernel on X ×X is defined by

BX(z, w) :=
∑

α=0

sα(z) ∧ sα(w),

where {sα} is an orthonormal basis for Ωn,0
(2) (X). Note that since Ω

(n,0)
(2) (X) = Hn,0

(2) (X),

BX(z, z) = trKn,0
X (see Definition 4.1).

For a holomorphic local coordinate chart (z1, · · · , zn, w1, · · · , wn) onX×X , denote by
dz = dz1∧· · ·∧dzn, dz = dz1∧· · ·∧dzn, dw = dw1∧· · ·∧dwn, and dw = dw1∧· · ·∧dwn.
Then BX(z, w) can be written on the chart as

BX(z, w) = B∗
X(z, w)dz ∧ dw,

and B∗
X(z, w) is called the Bergman kernel function. When B∗

X(z) := B∗
X(z, z) > 0, the

Bergman (pseudo-)metric on X is defined by

ds2X :=

n∑

j,k=1

∂2 logB∗
X(z)

∂zj∂zk
dzj ⊗ dzk.

Remark 5.1. (1) BX(z, w) is independent of the choice of the orthonormal basis.
(2) The Bergman kernel on the diagonal BX(z) is a biholomorphic invariant (n, n)-

form on X . Hence, for a covering φ : Y → Y/G where G ⊂ Aut(Y ), the
push-forward form φ∗BY (z) is well-defined on Y/G.

(3) For y ∈ X , fix a holomorphic local chart (w1, · · · , wn) near y. Then, by the
Riesz representation theorem, there exists By

X ∈ Ωn,0
(2) (X) such that

f ∗(y) = 〈f,By
X〉

for all f ∈ Ωn,0
(2) (X), where f(w) = f ∗(w)dw on the chart. This is called the

reproducing property. If f = By
X , then

B∗
X(y, y) = ‖By

X‖
2
,

where BX(w,w) = B∗
X(w,w)dw ∧ dw. In terms of an orthonormal basis {sα},

By
X can be written as

By
X(z) =

∑

α=0

s∗α(y)sα(z),

where sα(w) = s∗α(w)dw.
(4) For a fixed point x ∈ X , BX(x) satisfies the following extremal property:

BX(x) = max{f(x) ∧ f(x) | f ∈ Ωn,0
(2) (X), ‖f‖ = 1}.

(5) B∗
X(z, w) is holomorphic in z variables and anti-holomorphic in w variables.

Remark 5.2. (1) Although B∗
X(z) depends on a coordinate chart, ds2X is independent

of the choice of the chart.
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(2) The Bergman metric is invariant under biholomorphisms, i.e., ds2Y = F ∗ds2X for
a biholomorphic map F : Y → X . Hence, for a covering φ : Y → Y/G where
G ⊂ Aut(Y ), the push-forward metric φ∗ds

2
Y is well-defined on Y/G.

Let {φj : Xj → X} be a tower of coverings of a compact complex manifold X

converging to an infinite Galois covering φ : X̃ → X , and {φ̃j : X̃ → Xj} be a sequence

of coverings such that φ = φj ◦ φ̃j.

Proposition 5.3. Assume that

(5.1)

∫

X

φj∗BXj
(w,w) →

∫

X

φ∗BX̃(w,w).

Then

(5.2) φ̃∗
jBXj

(z, w) → BX̃(z, w) locally in C∞-topology on X̃ × X̃.

Proof. For x, y ∈ X̃ , choose two holomorphic local charts z : Ux → P (0, r) ⊂ Cn

and w : Uy → P (0, r) ⊂ Cn, where Ux, Uy are open neighborhoods of x and y in X̃ ,
respectively, and P (0, r) is the polydisc of radius r centered at 0. Then the Bergman

kernels of BX̃ and φ̃∗
jBXj

on that charts are given by

BX̃(z, w) = B∗
X̃
(z, w)dz ∧ dw,

φ̃∗
jBXj

(z, w) = (φ̃∗
jBXj

)∗(z, w)dz ∧ dw.

Since B∗
X̃
(z, w) and (φ̃∗

jBXj
)∗(z, w) are holomorphic in z and anti-holomorphic in w, we

may apply the Cauchy estimate in both variables. Then, for α, β ∈ Nn,

|∂β∂αB∗
X̃
(x, y)− ∂β∂α(φ̃∗

jBXj
)∗(x, y)|2

≤ C ′

∫

P (0,r/2)

|∂αB∗
X̃
(x, w)− ∂α(φ̃∗

jBXj
)∗(x, w)|2dwdw

≤ C

∫

P (0,r/2)

∫

P (0,r/2)

|B∗
X̃
(z, w)− (φ̃∗

jBXj
)∗(z, w)|2dzdzdwdw

≤ C

∫

P (0,r/2)

∥∥∥Bw
X̃
− Bw

F̃j

∥∥∥
2

F̃j

+
∥∥∥Bw

F̃j
− φ̃∗

jBw
Xj

∥∥∥
2

F̃j

dwdw,

where C depends only on α, β and r, F̃j is a fundamental domain of φ̃j : X̃ → Xj

satisfying Ux, Uy ⊂ F̃j (by increasing j if necessary), and Bw
F̃j

= BF̃j
(·, w) is the Bergman
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kernel of F̃j . Now, for w ∈ F̃j,
∥∥∥Bw

X̃
− Bw

F̃j

∥∥∥
2

F̃j

=
∥∥∥Bw

X̃

∥∥∥
2

F̃j

+
∥∥∥Bw

F̃j

∥∥∥
2

F̃j

− 2Re
〈
Bw
X̃
,Bw

F̃j

〉
F̃j

≤
∥∥∥Bw

X̃

∥∥∥
2

X̃
+
∥∥∥Bw

F̃j

∥∥∥
2

F̃j

− 2Re
〈
Bw
X̃
,Bw

F̃j

〉
F̃j

= B∗
X̃
(w,w) + B∗

F̃j
(w,w)− 2B∗

X̃
(w,w), (Remark 5.1 (3))

and similarly
∥∥∥Bw

F̃j
− φ̃∗

jBw
Xj

∥∥∥
2

F̃j

=
∥∥∥Bw

F̃j

∥∥∥
2

F̃j

+
∥∥∥φ̃∗

jBw
Xj

∥∥∥
2

F̃j

− 2Re
〈
Bw
F̃j
, φ̃∗

jBw
Xj

〉
F̃j

= B∗
F̃j
(w,w) + (φ̃∗

jBXj
)∗(w,w)− 2(φ̃∗

jBXj
)∗(w,w). (Remark 5.1 (3))

Here, in the last equality, we used
∥∥∥φ̃∗

jBw
Xj

∥∥∥
2

F̃j

=
∥∥∥Bw

Xj

∥∥∥
2

φ̃j(F̃j)
=

∥∥∥Bw
Xj

∥∥∥
2

Xj

. Let F̃ y be a

fundamental domain of φ : X̃ → X containing Uy. Then altogether,

|∂β∂αB∗
X̃
(x, y)− ∂β∂α(φ̃∗

jBXj
)∗(x, y)|2

≤ 2C

∫

F̃ y

(
BF̃j

(w,w)− BX̃(w,w)
)
+ C

∫

F̃ y

(
BX̃(w,w)− φ̃∗

jBXj
(w,w)

)
.

Note that all two terms on the right-hand side do not depend on the choice of initial

points x, y ∈ X̃, and converge to 0 as j → ∞ because of Proposition 4.5 (b), the assump-

tion, and the fact that
∫
F̃ y

(
BX̃(w,w)− φ̃∗

jBj(w,w)
)
=

∫
X

(
φ∗BX̃(w,w)− φj∗BXj

(w,w)
)
.

This completes the proof. �

Theorem 5.4. Let {φj : Xj → X} be a tower of coverings of a compact Kähler

manifold X converging to an infinite Galois covering {φ : X̃ → X}. Then the sequence

of Bergman kernels φ̃∗
jBXj

(z, w) converges to BX̃(z, w) locally in C∞-topology on X̃×X̃.

Moreover, with an additional condition that X̃ admits the Bergman metric, the sequence

of the Bergman metrics φ̃∗
jds

2
Xj

converges to ds2
X̃

locally in C∞-topology on X̃.

Remark 5.5. By Corollary C, ds2
X̃

> 0 implies that ds2Xj
> 0 for all j ≥ N for some

N ∈ N.

Proof. First note that, for any n-dimensional complex manifold Y , Hn,0
(2) (Y ) = Ωn,0

(2) (Y )

because ∆∂u = 0 if and only if ∂u = 0 and ∂
∗
u = 0. Hence Theorem B implies

that
∫
X
φj∗BXj

(w,w) →
∫
X
φ∗BX̃(w,w), which shows the convergence of the Bergman

kernels by Proposition 5.3. The convergence of the Bergman metrics follows from the
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local expression

∂∂ logB∗ =
∂∂B∗

B∗
− (∂B∗)(∂B∗)

(B∗)2

and the convergence of the Bergman kernels. �

6. Immersion into a projective space

Let KX be the canonical line bundle over a complex manifold X (not necessarily
compact). Let H0

(2)(X,KX) be the Hilbert space of all holomorphic L2-sections of KX ,

i.e., H0
(2)(X,KX) = Ωn,0

(2) (X), and P(H0
(2)(X,KX)

∗) be the projectivization of its dual

space H0
(2)(X,KX)

∗. Then there exists a canonical map ιX : X → P(H0
(2)(X,KX)

∗) ∼=
CP

N(N ≤ ∞) defined by x 7→ [s0(x), · · · , sN(x)], where {sα}α=0 is a basis forH
0
(2)(X,KX).

We say that KX is very ample if the map ιX is an embedding.
In this section, we consider the following immersion problem; if a canonical map

X̃ → P(H0
(2)(X̃,KX̃)

∗) is an immersion, then a canonical map Xj → P(H0(Xj, KXj
)∗)

is also an immersion for sufficiently large j. Note that whether a canonical map is
an immersion or not, as well as very ampleness, is independent of the choice of the
basis, hence one may assume {sα}α=0 is an orthonormal basis. To show that ιX is an
immersion, we need to show KX is base-point free (i.e., for all x ∈ X there exists a
holomorphic section s ∈ H0

(2)(X,KX) such that s(x) 6= 0), and dιX is injective. The

following two lemmas are based on Kobayashi (see Theorem 8.1 and 8.2 in [10]).

Lemma 6.1. KX is base-point free if and only if the Bergman kernel BX(x, x) > 0 for
all x ∈ X.

Proof. It easily follows from the fact BX(x, x) =
∑N

α=0 sα(x)sα(x). �

Lemma 6.2. Assume KX is base-point free and {sα}α=0 is an orthonormal basis. Then
dιX is injective if and only if X admits the Bergman metric (i.e., ds2X =

√
−1∂∂ logB∗

X >
0).

Proof. For x ∈ X and a non-zero vector V ∈ T 1,0
x (X), we first choose an orthonormal

basis {sα}α=0 such that s0(x) 6= 0, sα(x) = 0 for all α ≥ 1, and V s1(x) 6= 0, V sα(x) = 0
for all α ≥ 2. This is possible because the linear functionals S : H0

(2)(X,KX) → C

and S ′ : Ker(S) → C given by f 7→ f(x) and f 7→ V f(x), respectively, are continuous.
Then

ds2X(V, V ) =
(|V s0(x)|2 + |V s1(x)|2) |s0(x)|2 −

(
s0(x)V s0(x)

)(
V s0(x)s0(x)

)

|s0(x)|4

=
|V s1(x)|2
|s0(x)|2

.

Hence, ds2X(V, V ) > 0 if and only if V s1(x) 6= 0. On the other hand, for ιX = ( s1
s0
, s2
s0
, · · · )

with the same special orthonormal basis {sα}α=0 as above,

dιX(V ) =

(
V s1(x)

s0(x)
, 0, 0, · · ·

)
.
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Hence, dιX(V ) 6= 0 if and only if V s1(x) 6= 0. �

Remark 6.3. There is also a criterion for the separation of points (i.e., for all x, y ∈ X
there exists a holomorphic section s ∈ Γ(2)(X,KX) such that s(x) = 0 and s(y) 6= 0) in
terms of the Bergman kernel. In [2], E. Calabi gave necessary and sufficient conditions
for the isometric embeddings of complex manifolds in terms of the so-called diastasis
function D. In case of the Bergman metric, the diastasis function is given by

DX(x, y) = log
B∗
X(x, x)B∗

X(y, y)

|B∗
X(x, y)|2

.

X. Wang [17] showed that KX separates points if and only if DX(x, y) > 0 for x 6=
y ∈ X , provided that B∗

X(x, y) 6= 0, which is one of Calabi’s conditions for isometric
embeddings.

Proof of Corollary C. By Lemma 6.1 and 6.2, since a canonical map X̃ → P(H0
(2)(X̃,KX̃)

∗)

is an immersion, φ∗BX̃(x, x) > 0 and φ∗ds
2
X̃

> 0 on X . Now, since X is compact, the

convergence of the Bergman kernels (Theorem 5.4) implies that there exists N ∈ N such
that φj∗BXj

(x, x) > 0 and φj∗ds
2
Xj

> 0 on X for all j ≥ N . Therefore, we conclude

that there exists an immersion Xj → P(H0(Xj , KXj
)∗) for all j ≥ N by applying the

above two lemmas again. �

Since we have a good criterion for the separation of points (Remark 6.3) and the
convergence of the off-diagonal Bergman kernels (Theorem 5.4), it seems that, by using
the same argument as above, one can prove the following statement; ifKX̃ is very ample,
then KXj

is also very ample for sufficiently large j. However, the above argument fails
because we cannot push forward BXj

(x, y) (hence DXj
(x, y)) to the base manifold X ,

which is compact. On the other hand, S.-K. Yeung [18] showed that KXj
is also very

ample for sufficiently large j under the assumption that either the top manifold X̃ is a
Hermitian symmetric manifold of non-compact type or the base manifold X is a Kähler
manifold with negatively pinched sectional curvature. In both cases, there is no L2-

harmonic forms on the universal covering X̃ except for L2-holomorphic n-forms which
form an infinite-dimensional vector space. He ( [19], [21]) used the above fact crucially
together with the heat kernel estimates based on Donnelly’s results ( [7]).
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