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Abstract. We introduce a notion of curvature on finite, combinatorial graphs.

It can be easily computed by solving a linear system of equations. We show

that graphs with curvature bounded below by K > 0 have diameter bounded
by diam(G) ≤ 2/K (a Bonnet-Myers theorem), that diam(G) = 2/K implies

that G has constant curvature (a Cheng theorem) and that there is a spectral

gap λ1 ≥ K/(2n) (a Lichnerowicz theorem). It is computed for several families
of graphs and often coincides with Ollivier curvature or Lin-Lu-Yau curvature.

The von Neumann minimax theorem features prominently in the proofs.

1. Introduction

1.1. Introduction. The notion of curvature is one of the cornerstones of differen-
tial geometry and geometric analysis. Starting with the work of Bakry-Émery [2]
there has been substantial interest in defining curvature in more abstract spaces
and on graphs. While there are purely combinatorial definitions [17, 32, 36], many

of these notions are inspired by the behavior of the Laplacian (Bakry-Émery curva-
ture [2] or Forman curvature [14]) or the behavior of optimal transport (Lott-Villani
[24], Sturm [33]), for example Ollivier-Ricci curvature [27, 28, 29] and the Lin-Lu-
Yau curvature [21] (both are defined on edges instead of vertices). This is an active
field of research, we do not aim to give a complete overview here and instead refer
to [1, 3, 4, 5, 12, 18, 19, 23, 25, 30] and references therein.

1.2. Definition. We define a potential-theoretic notion of curvature by looking for
a signed measure µ defined on the vertices of the graph such that

∀v ∈ V
∑
w∈V

d(v, w)µ(w) = |V |.

Given µ, we will interpret µ(v) as the curvature of the graph in the vertex v ∈ V .

Figure 1. Vertices colored by curvature (red if positive, blue if negative).
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An example of what positively and negatively curved regions look like is given in
Fig. 1. We start by noting that this curvature is very easy to compute: if G is a
graph on n = |V | vertices, then any such equilibrium measure µ corresponds to a
vector of weights w = (µ(v1), µ(v2), . . . , µ(vn)) ∈ Rn solving the linear system

Dw = n · 1, where D = (d(vi, vj))
n
i,j=1

is the distance matrix and 1 ∈ Rn is the vector containing all 1’s. Finding the cur-
vature vector w therefore only requires solving a linear system of equations. There
are two natural questions: does the linear system have a solution and is it unique?
As it turns out, uniqueness is not much of an issue: if a graph has nonnegative
curvature, meaning there exists w ∈ Rn

≥0 such that Dw = n · 1, then the total

curvature ‖w‖`1 is an invariant. If there are multiple solutions, a canonical choice
is one maximizing the lower curvature bound K = mini wi. Albeit seemingly very
rare (see §2.5), there are graphs for which Dw = n · 1 has no solution: for these we
can consider the Moore-Penrose pseudoinverse w = D† (n · 1) (which always exists).
This case is dealt with in §2.5 where a generalized Bonnet-Myers theorem and a
generalized Lichnerowicz theorem for this setting is established. The definition was
discovered coincidentally while considering unrelated problems in potential theory.∑

w∈V
d(v, w)µ(w) = |V |

can be interpreted as an equilibrium measure: µ is a signed measure which is acting
proportional to the distance and we ask for the measure to be such that the left-
hand side (which can be interpreted as an effective force) is in equilibrium. The
purpose of our paper is to point out that this definition has a large number of
desirable and interesting properties.

(1) There are no additional parameters that one needs to tune.
(2) It satisfies a Bonnet-Myers theorem (Theorem 1), a Cheng Theorem (also

Theorem 1) and a Lichnerowicz Theorem (Theorem 3). These three The-
orems are sometimes considered minimal requirements for a notion of cur-
vature to be reasonable. Moreover, it satisfies a reverse Bonnet-Myers
Inequality (Theorem 2) and, strongest of all, a Minimax Theorem (Theo-
rem 4) which is stronger than all previous results. Indeed, we will derive
all previous results as a consequence of Theorem 4.

(3) This notion of curvature tends to lead to very similar (and often exactly
the same) answers as the Ollivier [28] curvature or the Lin-Lu-Yau [21]
curvature (see §1.3). It is not presently clear why that is the case.

(4) It is much easier to compute than curvatures based on Optimal Transport,
it only requires the solution of a linear system of equations. It is also easier
to compute in closed form for explicit families of graphs (see §1.3).

(5) The linear system of equations Dµ = |V | seems to have a solution in vir-
tually all cases (in the sense that exceptions, for which a substitute theory
(Theorem 5) is presented, are exceedingly rare). This is a perhaps unex-
pected phenomenon and interesting in its own right, see §2.5 and [31].

(6) Finally, in contrast to other curvatures, the cycle graph Cn has constant
curvature K = n/

⌊
n2/4

⌋
, inversely proportional to diameter, which is the

natural scaling one would expect from continuous considerations.
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1.3. Examples. We start by discussing some examples (see Fig. 2). What is some-
what remarkable is that even though our definition is quite different from Ollivier
curvature and Lin-Lu-Yau curvature (both of which are defined on edges instead of
vertices), we get similar or even identical results in many cases.

K(Kn) = n
n−1 K(Cn) = n

bn2/4c K(Qn) = 2
n

K(CPn) = 1 K(Jn,k) = n
k(n−k) K(Qn

(2)) = 4
n

Figure 2. Graphs with constant curvature K: complete graphs
Kn, cycle graphs Cn, hypercube graphs Qn, cocktail party graphs
CPn, Johnson graphs Jn,k and demi-cube graphs Qn

(2).

We start with two facts that are sometimes helpful in the computation of curvature.
The first one is that positive curvature stays preserved under cartesian products.

Proposition 1. If G,H are two graphs with nonnegative curvature, then the prod-
uct graph G×H also has nonnegative curvature. If G,H have constant curvature
K1 and K2, then G×H has constant curvature K where K satisfies

1

K
=

1

K1
+

1

K2
.

As for the second observation, recall that a graph is vertex-transitive if, for any two
vertices v1, v2 ∈ G, there exists an automorphism φ : G→ G such that φ(v1) = v2.
Vertex-transitive graphs always admit a constant (positive) curvature.

Proposition 2 (Vertex-transitive graphs have constant curvature). If G is vertex-
transitive, then it has constant curvature K > 0 and for any v ∈ V

K =

(
1

n

n∑
i=1

d(v, vi)

)−1
.

Any arbitrary graph G with constant curvature has K = 1/( 1
n2

∑n
i,j=1 d(vi, vj)).
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Complete graph Kn. The complete graph Kn has constant curvature

K =
n

n− 1
.

This agrees with the Lin-Lu-Yau curvature [21] which also assigns constant curva-
ture n/(n − 1) to Kn. It is easy to see that for any connected graph G and any
Dw = n · 1 with mini wi = K ≥ 0, we have K ≤ n/(n − 1) with equality if and
only if G = Kn is the complete graph. In particular, we always have mini wi ≤ 2.

Cycle graph Cn. The cycle graph Cn is also relatively simple: the sum over each
row of D is constant and for any vertex vi ∈ V∑

j∈V
d(vi, vj) =

{∑bn/2c
k=1 2k if k is odd

n
2 +

∑n/2−1
k=1 2k if k is even

=

⌊
n2

4

⌋
.

This implies that the cycle graph Cn has constant curvature

K =
n

bn2/4c
= (1 + o(1)) · 4

n
.

In contrast, both the Olivier-Ricci curvature and the Lin-Lu-Yau curvature assign
curvature 0 to Cn for n ≥ 6 (see also [6, 10, 11, 22]).

Path graph Pn. The trivial algebraic fact
n

n− 1
(i− 1) +

n

n− 1
(n− i) = n

can be interpreted as saying that the path graph Pn on n vertices has curvature 0
except in the two endpoints where it has curvature n/(n− 1). The Ollivier curva-
ture of a graph is 0 on each edge while the Lin-Lu-Yau curvature is 1 on the two
edges adjacent to the two endpoints and vanishes everywhere else.

Hypercube graph Qn. The hypercube graph Qn with V = {0, 1}n and edges
between any two vertices with Hamming distance 1 has constant curvature

K =
2

n

which follows from Proposition 2 and
n∑

k=0

(
n

k

)
k =

n

2
· 2n.

Alternatively, this would also follow from Proposition 1 and K(Q2) = 2. This
matches the Lin-Lu-Yau curvature [21] which also assigns constant curvature 2/n
to Qn. It is also close to the Ollivier curvature which is 2/(n + 1) (for choice of
laziness parameter p = 1/(n+ 1), we refer to Ollivier-Villani [30]).

Cocktail Party graph CPn. The cocktail party graph CPn on 2n vertices is
defined as follows: the 2n vertices are split into n pairs of 2 and each vertex is con-
nected to each other vertex except the one it is paired to. For any v ∈ V , we have
1
2n

∑2n
i=1 d(v, vi) = 2n implying that CPn has constant curvature 1 which coincides

with the Ollivier-Ricci curvature.
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Johnson graph Jn,k. The Johnson graph Jn,k is constructed as follows: the
vertices are given by all k−element subsets of an n−element set. Two vertices are
connected by an edge if the corresponding subsets have k− 1 elements in common.
It therefore has

(
n
k

)
vertices and diameter min(k, n−k). The graphs Jn,k and Jn,n−k

are isomorphic, we can thus assume k ≤ n/2. The distance between two vertices
U,W (identified with their subsets) in Jn,k is d(U,W ) = k−|U ∩W |. The Johnson
graph is vertex-transitive. We can thus consider the vertex U = {1, 2, . . . , k} ⊂
{1, 2, 3, . . . , n} and count the number of subsets W with |U ∩W | = `. A moment’s
consideration shows that

# {W ⊆ {1, 2, . . . , n} : |U ∩W | = k − `} =

(
k

`

)(
n− k
`

)
.

Therefore ∑
W⊂{1,2,...,n}

d(U,W ) =

k∑
`=0

`

(
k

`

)(
n− k
`

)
=

(n− k)k

n

(
n

k

)
from which, with Proposition 1, we deduce K = n/((n−k)k). This again coincides
with the Ollivier curvature (see [12] for the computation).

Demi-cubes Qn
(2). Qn

(2) is obtained by connecting bitstrings of length n if they

have Hamming distance 2. This leads to two isomorphic connected components of
which we pick one. This graph on 2n−1 vertices is vertex-transitive and

bn/2c∑
k=0

k

(
n

2k

)
=
n

4
2n−1.

Proposition 2 implies K = 4/n which coincides with Ollivier curvature (see [12]).
Other examples where the curvature reflects combinatorial structure of a graph in
an interesting way are shown in Fig. 4.

2. Main Results

2.1. An Invariant. Several of our results will feature the quantity ‖w‖`1 where
Dw = n · 1. Since the linear system of equations may have multiple solutions, we
start with a basic proposition for graphs admitting nonnegative curvature.

Proposition 3 (Invariance of total curvature). Let G be a connected graph and
suppose Dw1 = n · 1 = Dw2 for two vectors w1, w2 ∈ Rn

≥0. Then ‖w1‖`1 = ‖w2‖`1 .

The quantity ‖w‖`1 , the sum over all curvatures, plays a role in many of our re-
sults. Proposition 3 guarantees that the results do not depend on which solution
of Dw = n · 1 (should multiple exist) one chooses. There is an interesting subtlety
to Proposition 3: it appears as if it should have a simple proof via linear algebra.
After all, if two different w1, w2 ∈ Rn

≥0 with Dw1 = n · 1 = Dw2 exist, then their

difference is in the nullspace w1−w2 ∈ ker(D) and if the nullspace of D is orthogo-
nal to the constant vector (1, 1, . . . , 1), we have the desired result. This, however, is
not always the case: there are graphs G (see Fig. 5) for which the nullspace of the
associated distance matrix D may not have this property. However, in those cases
Dw = n ·1 will not have a solution w ∈ Rn

≥0. Conversely, Proposition 3 guarantees
that if Dw = n · 1 has a solution in w ∈ Rn

≥0, then the nullspace will either be
empty or orthogonal to the constant vector.
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2.2. Discrete Bonnet-Myers theorem. The classical Bonnet-Myers theorem
[26] states that if (M, g) is a complete, connected n−dimensional manifold with
Ricci curvature bounded below by 1/r2, then diam(M) ≤ πr: a manifold with uni-
formly positive curvature cannot be too large. Cheng [7] later proved that equality
can only happen in the case of constant sectional curvature. The same type of
result holds for our notion of curvature on graphs.

Theorem 1 (Discrete Bonnet-Myers). Let G be a connected graph. If Dw = n · 1
has curvature bounded from below by K = mini wi ≥ 0, then

diam(G) ≤ 2n

‖w‖`1
≤ 2

K
.

If diam(G) ·K = 2, then G has constant curvature.

This result is sharp: examples are given by even cycles C2n, the hypercube graphs
Qn or the Johnson graph J2n,n. Indeed, there are many examples for which
diam(G) = 2/K, some are shown in Fig 3. Theorem 1 matches the discrete Bonnet-
Myers Theorem that has been established for Ollivier-Ricci curvature [6, 21, 28].

Figure 3. Examples of graphs for which Theorem 1 is sharp and
K · diam(G) = 2 (all have constant curvature).

We also obtain a result in the other direction: if a graph is nonnegatively curved
and the diameter is small, then this forces the total curvature to be large.

Theorem 2 (Reverse Bonnet-Myers). Let G be a graph with nonnegative curvature,
i.e. there exists Dw = n · 1 with mini wi ≥ 0. Then

‖w‖`1 ≥
n2

n− 1

1

diam(G)

with equality if and only if G = Kn.

We note a particular consequence of Theorem 1 and Theorem 2: if G has constant
curvature K > 0, then the curvature is inversely proportional to the diameter and

1

K
≤ diam(G) ≤ 2

K
.
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2.3. Discrete Lichnerowicz Theorem. The classic Lichnerowicz Theorem [20]
states that if an n−dimensional manifold has Ricci curvature bounded below by
K > 0, then the first eigenvalue of the Laplacian satisfies λ1 ≥ n/(n − 1)K. A
natural analogue of the first eigenfunction on a graph is the smallest nontrivial
eigenvalue of the Laplacian matrix L = D−A which can be defined as the minimum
of a quadratic form over all functions with mean value 0 or, equivalently,

λ1(G) = inf
f:V →R∑

v∈V f(v)=0

∑
(u,v)∈E (f(u)− f(v))2∑

v∈V f(v)2
.

Theorem 3 (Discrete Lichnerowicz). Let G be a connected graph. If Dw = n · 1
has curvature bounded from below K = mini wi > 0, then

λ1 ≥
‖w‖`1
2n2

≥ K

2n
.

The result is sharp up to constants: if we take the cycle graph Cn, then

λ1 = 4 sin
(π
n

)2
∼ 4π2

n2
while

K

2n
=

1

2 bn2/4c
= (1 + o(1)) · 2

n2
.

We note that the Lichnerowicz scaling for other notions of curvature (say, Ollivier
curvature or Lin-Lu-Yau curvature) ends up being different since, in that case,
λ1 ≥ K. As the cycle graph shows, this is clearly not possible here. However, the
cycle graph does play a somewhat distinguished role: a result of Lin-Lu-Yau [22]
(see also [10, 11]) implies that if a finite graph with girth at least 5 and n > 20
vertices has vanishing Lin-Lu-Yau curvature, thenG = Cn. It follows from Theorem
2 that if a graph on n vertices is nonnegatively curved mini wi ≥ 0, then maxi wi ≥
1/ diam(G) ≥ 1/n. It seems conceivable that the sharp bound for this estimate
might actually be maxi wi ≥ n/

⌊
n2/4

⌋
with equality if and only if G = Cn.

2.4. Total Curvature Minimax. Let G be nonnegatively curved, i.e. assume
Dw = n · 1 has a solution with mini wi ≥ 0. Then G has the following interesting
balancing property: for any (weighted) collection of vertices, there always exists
another vertex a ∈ V such that the average distance between a and our collection
of vertices is not too large. Moreover, there also exists a vertex b ∈ V such that the
average distance between the collection and b is not too small. This is the strongest
Theorem in this paper: it is then used to prove all previous results.

Theorem 4 (Minimax Theorem). Let G be nonnegatively curved with total curva-
ture ‖w‖`1 . Then, for any probability measure ν on V , there are a, b ∈ V with

min
a∈V

∑
v∈V

d(a, v)ν(v) ≤ n

‖w‖`1
≤ max

b∈V

∑
v∈V

d(b, v)ν(v).

We emphasize that n/‖w‖`1 is an invariant of the graph and completely independent
of the measure ν. Note also that, in particular, if G has constant curvature K, then
the result implies the existence of a, b ∈ V with∑

v∈V
d(a, v)ν(v) ≤ 1

K
≤
∑
v∈V

d(b, v)ν(v).

n/‖w‖`1 is the unique number with this property: if ν = w/‖w‖`1 , both inequalities
are sharp. This is a consequence of the von Neumann Minimax Theorem.



8

To the best of our knowledge, this kind of property has not been considered for
any of the other notions of curvature. Given the delicate nature of the statement,
one would perhaps not expect it to hold in general but it could be interesting to
understand whether approximate versions for other types of curvature hold true.
In the context of connected, bounded metric spaces, such results date back to
a 1964 paper of Gross [13] who showed that there exists a number α > 0 (the
‘rendezvous number of the metric space’) such that for any (weighted) collection
of points in the space there always exists another point at average distance exactly
α. We refer to the survey of Cleary & Morris [9]. Gross’ theorem, which originally
appeared in Advances in Game Theory, makes use of a 1952 result of Glicksberg [15]
which ‘implies the minimax theorem for continuous games with continuous payoff
as well as the existence of Nash equilibrium points’. In light of this, it is perhaps
less surprising that the von Neumann Minimax theorem [35] would appear. The
existence of such an α for finite metric spaces was also shown by Thomassen [34].

2.5. Inverting the Linear System. The equation Dw = n · 1 need not always
have a solution, however, this seems to be exceedingly rare. In a search of all 9059
graphs with 2 ≤ n ≤ 500 vertices that are implemented in Mathematica, there are
five examples where the linear system does not have a solution (listed in Table 1).

Graph #V #E D†(n · 1) ⊆ D(D†(n · 1)) ⊆
K1,1,1,4 7 15 [0.65, 0.99] [5.25, 7.875]

K1,1,1,1,3 7 18 [0.85, 1.15] [6, 8]

Quartic−(11, 18) 11 22 [0.16, 1.05] [10.32, 11.40]

Cubic−(14, 52) 14 21 [−1.09, 2.22] [13.02, 14.97]

Knight−(7, 7) 49 120 [−10.93, 2.75] [46.42, 52.22]

Table 1. Five exceptional graphs: Dv = n · 1 does not have a solution.

In such cases, the Moore-Penrose pseudo-inverse w = D†(n · 1) is a natural re-
placement: recall that the pseudo-inverse is the vector z minimizing ‖Dz−n ·1‖`2 .
If there is more than one such vector, then it is defined as the one with smallest
`2−norm which is then uniquely determined. For the five exceptional cases the
linear system can almost be solved: the vector D(D†(n · 1)) is nearly constant.

Theorem 5 (Discrete Bonnet-Myers and Lichnerowicz II). Let G be a connected
graph and let w ∈ Rn

>0 be arbitrary. Then, for K = mini wi > 0, we have

diam(G) ≤ ‖Dw‖`
∞

n

8

K
and

λ1 ≥
1

8‖Dw‖`∞
K.

In the case where Dw = n · 1 has a solution, we have ‖Dw‖`∞ = n and recover
the bounds diam(G) ≤ 8/K and λ1 ≥ K/(8n) which are optimal up to constants.
Theorem 5 can be applied to the first three of the five exceptional graphs in Table 1.
At this point one could wonder how many exceptional graphs there are: for which
graphs does Dw = n · 1 not have a solution? While such graphs exist, they seem
to be rather rare and their relative proportion seems to decrease as the number of
vertices increases: taking thousands of Erdős-Renyi graphs, one can find examples
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with n = 10 vertices but, using random sampling, the proportion of such examples
seems to rapidly decrease as n increases. Moreover, in all the examples we found
that for w = D†(n ·1) all the entries of Dw are approximately constant in the sense
that they all are in the [0.7n, 1.3n] range. This seems like an interesting question
in its own right: is there a reason why Dw = n · 1 seems to almost always have
a solution? Is there a reason why exceptional graphs are rare? Is there exists a
constant 0 < c < 1 such that for all graphs D(D†(n · 1)) ⊂ [cn, c−1n]?

Figure 4. Examples of nonnegatively curved graphs with positive
curvature concentrated in a few isolated vertices (red) while most
vertices have curvature 0 (black). Top: CrossingNumberGraph6C,
Thomassen 34 and the Pentagonal Icositetrahedral Graph, Bot-
tom: Sierpinski and Thomassen 105.

We have since investigated the phenomenon in subsequent work [31]. There, the
following sufficient criterion for the existence of a solution Dw = 1 was given.

Proposition ([31]). Suppose D ∈ Rn×n
≥0 has eigenvalues λ1 > 0 ≥ λ2 ≥ · · · ≥ λn

and eigenvector Av = λ1v. If

1−
〈
v,

1√
n

〉2

<
|λ2|

λ1 − λ2
,

then Dx = 1 has a solution.

The applicability of this Proposition depends on two things: how often a graph
distance matrix D has such a spectral structure and how often the inequality is
satisfied. It seems that the spectral structure is fairly common but not so common
as to explain the overall solvability of Dx = 1 (it is only a sufficient criterion).
However, in what is somewhat remarkable, the inequality tends to be satisfied
quite frequently. This leads to a related phenomenon which we describe as follows.
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Phenomenon. Let G = (V,E) be a connected, bounded graph,
let D ∈ Rn×n be its distance matrix and let v ∈ Rn

≥0 denote the

eigenvector corresponding to the largest eigenvalue of D (which,
by Perron-Frobenius, can be taken to have non-negative entries).
Then this eigenvector is ‘nearly constant’ in the sense that

cG =
〈v,1〉

‖v‖`2 · ‖1‖`2

tends to be very close to 1.

By Cauchy-Schwarz, we have cG ≤ 1. The main result of [31] ensures that, for

general distance matrices in metric spaces, cG ≥ 1/
√

2. It seems that for most
graphs, the constant is much close to 1. Indeed, it is not easy to find examples
where cG ≤ 0.95, we refer to [31] for details. In summary, it seems that the
solvability of Dw = 1 is connected to a number of interesting phenomena which, at
present, are poorly understood and suggest interesting avenues for further research.

3. Proofs

We first establish Proposition 1 (in §3.1) and Proposition 2 (in §3.2). These two
arguments are elementary and self-contained. §3.3 is concerned with the proof of
Theorem 4 (the Minimax Theorem) which is perhaps the most substantial result in
the paper and will be used to prove most subsequent results. §3.4 then uses Theorem
4 to prove Theorem 1 (Bonnet-Myers) and Theorem 2 (Reverse Bonnet-Myers). §3.5
establishes Proposition 3, the invariance of total curvature for positively-curved
graphs, this argument will also be a consequence of Theorem 4. §3.6 proves the
Lichnerowicz inequality (Theorem 3) which follows quickly from Theorem 1 and a
standard spectral estimate (whose short proof is included for the convenience of
the reader). Finally, §3.7 establishes, by a completely independent combinatorial
argument that is unrelated to any prior arguments, Theorem 5.

3.1. Proof of Proposition 1.

Proof. Let G be a graph with curvature bounded from below by K1 ≥ 0, meaning
there exists w1 ∈ Rn1

≥0 with Dw1 = n1 and K1 = mini(w1)i, and let H be another
graph with curvature bounded from below by K2 ≥ 0, meaning there exists w2 ∈
Rn2

≥0 with Dw2 = n2 and K2 = mini(w2)i. Our goal is to show that G × H
has curvature bounded from below by 0. We will consider the product measure
µ = w1 × w2. Then, for any (g1, h1) ∈ V (G×H), the expression

X =
∑

(g2,h2)∈V (G×H)

d((g1, h1), (g2, h2))µ((g2, h2))

can be simplified to

X =
∑

(g2,h2)∈V (G×H)

d((g1, h1), (g2, h2))w1(g2)w2(h2)

=
∑

(g2,h2)∈V (G×H)

(d(g1, g2) + d(h1, h2))w1(g2)w2(h2).
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At this point, the sum factors into two sums and

X =
∑

(g2,h2)∈V (G×H)

d(g1, g2)w1(g2)w2(h2)

+
∑

(g2,h2)∈V (G×H)

d(h1, h2)w1(g2)w2(h2) = ‖w2‖`1 · n1 + ‖w1‖`1 · n2

which is a positive constant independently of (g1, h1) ∈ G × H. This means that
the rescaled measure

w =
n1n2

‖w2‖`1 · n1 + ‖w1‖`1 · n2
(w1 × w2)

=

(
‖w1‖`1
n1

+
‖w2‖`1
n2

)−1
(w1 × w2)

satisfies DG×Hw = n1n2 = |V (G × H)| and thus is an admissible nonnegative
curvature on G×H. Moreover,

minw =

(
‖w1‖`1
n1

+
‖w2‖`1
n2

)−1
K1K2 ≥ 0.

If G and H have constant curvature K1 and K2 then

K = minw = (K1 +K2)
−1
K1K2

and thus
1

K
=

1

K1
+

1

K2
.

�

We note the following immediate consequence.

Corollary. If G has constant curvature K, then Gn = G × · · · × G has constant
curvature K/n.

This statement has a direct analogue for Ollivier-Ricci curvature and Lin-Lu-Yau
curvature. Indeed, the Corollary under the additional assumption of G being reg-
ular, is true verbatim for Lin-Lu-Yau curvature, see [21, Corollary 3.2].

3.2. Proof of Proposition 2.

Proof. If G is vertex-transitive, then for each u ∈ V and each k ∈ N, the size of

# {v ∈ V : d(u, v) = k} only depends on k and not on u.

This means that the rows of the distance matrix D are permutations of each other
and, in particular, that for each vertex vi ∈ V the row sum

n∑
j=1

d(vi, vj) = R is independent of i.

This shows that the graph admits a constant positive curvature with K = n/R.
Assume now that G admits constant curvature K. Then, for each 1 ≤ i ≤ n,

n∑
j=1

d(vi, vj)K = n

and the result follows by summing over i. �
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3.3. Proof of Theorem 4. Theorem 4 uses a specific implication of the von Neu-
mann Minimax Theorem which reads as follows.

Theorem (von Neumann [35]). Let A ∈ Rn×n by a symmetric matrix. There exists
a unique α ∈ R such that for all (x1, . . . , xn) ∈ Rn

≥0 satisfying x1 + · · ·+ xn = 1

min
1≤i≤n

(Ax)i ≤ α ≤ max
1≤i≤n

(Ax)i.

Since the statement deviates a little from the way the Minimax theorem is usually
phrased, we quickly deduce it from the more canonical formulation.

Proof. The way the Minimax theorem is typically phrased (for quadratic matrices)
is as follows: given an arbitrary matrix A ∈ Rn×n, we consider the space of mixed
strategies for both players

X =

{
z ∈ Rn : ∀ 1 ≤ i ≤ n : zi ≥ 0 and

n∑
i=1

zi = 1

}
= Y,

where X are the strategies that can be played by Player 1 and Y are the strategies
that can be played by Player 2. The pay-off of any given pair of strategies (x, y) ∈
X × Y is xTAy = 〈x,Ay〉. The goal of Player 1 is to maximize the pay-off while
the goal of Player 2 is to minimize the pay-off. The Minimax Theorem then states
that the game has a value α ∈ R which means that

max
x∈X

min
y∈Y
〈x,Ay〉 = α = min

y∈Y
max
x∈X
〈x,Ay〉 .

The first equation implies that there exists a strategy x∗ ∈ X such that Player 1
can always guarantee payoff at least α independently of what Player 2 is doing.
The second equation implies the existence of a strategy y∗ ∈ Y such that Player
2 can always guarantee a pay-off of at most α independently of what Player 1 is
doing. We will now consider additionally that A is symmetric.

Note that, for any given action by Player 2, a fixed y ∈ Y , it is clear how Player
1 would react: they would select the largest pay-off (which may or may not be
unique). This means that, for any fixed y ∈ Y ,

max
x∈X
〈x,Ay〉 = max

1≤i≤n
(Ay)i,

where (Ay)i denotes the i−th entry of the vector and therefore

min
y∈Y

max
x∈X
〈x,Ay〉 = min

y∈Y
max
1≤i≤n

(Ay)i.

Using the symmetry of the matrix, we can use the same logic to write

max
x∈X

min
y∈Y
〈x,Ay〉 = max

x∈X
min
y∈Y
〈Ax, y〉 = max

x∈X
min

1≤i≤n
(Ax)i.

Altogether, we arrive at

max
x∈X

min
1≤i≤n

(Ax)i = α = min
x∈X

max
1≤i≤n

(Ax)i.

It now follows that for any arbitrary linear combination of the rows z ∈ X

min
1≤i≤n

(Az)i ≤ max
x∈X

min
1≤i≤n

(Ax)i = α = min
x∈X

max
1≤i≤n

(Ax)i ≤ max
1≤i≤n

(Az)i.

�
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Proof of Theorem 4. We use the von Neumann Minimax Theorem when applied to
the distance matrix D of a graph G. Let ν be an arbitrary probability measure on
the vertices. Then the function f : V → R given by

f(u) =
∑
v∈V

d(u, v)ν(v)

can be written as a vector provided we interpret the measure as a vector ν ∈ Rn

f = Dν.

The Minimax Theorem now implies the existence of a unique number α ∈ R inde-
pendent of the measure ν such that

min
1≤i≤n

(Dν)i ≤ α ≤ max
1≤i≤n

(Dν)i.

Rewriting this in terms of distances, this merely says

min
a∈V

∑
v∈V

d(a, v)ν(v) ≤ α ≤ max
b∈V

∑
v∈V

d(b, v)ν(v).

If Dw = n · 1 for w ∈ Rn
≥0, then we consider the probability measure

ν =
w

‖w‖`1
and find that for each u ∈ V∑

v∈V
d(u, v)ν(v) =

1

‖w‖`1
∑
v∈V

d(u, v)wv =
(Dw)u
‖w‖`1

=
n

‖w‖`1
.

Since this is true for every individual vertex, it is also true for the maximum and
the minimum and we may deduce that the unique number has to satisfy

α =
n

‖w‖`1
.

�

3.4. Proof of Theorem 1 and Theorem 2.

Proof. The Bonnet-Myers and reverse Bonnet-Myers theorem now follow quickly
from Theorem 4. Suppose Dw = n · 1 and mini wi = K ≥ 0. Take two vertices
a, b ∈ V at maximal distance d(a, b) = diam(G). We apply Theorem 4 to the set of
vertices {a, b} with ν(a) = ν(b) = 1/2 and conclude that there exists c ∈ V with∑

v∈V
d(c, v)ν(v) =

1

2
(d(a, c) + d(b, c)) ≤ n

‖w‖`1
.

Using the triangle inequality, we have that

1

2
(d(a, c) + d(b, c)) ≥ 1

2
d(a, b) =

diam(G)

2
.

This implies Theorem 1. If we pick ν to be the uniform probability measure, then
Theorem 4 implies that the existence of a vertex b such that

n

‖w‖`1
≤
∑
v∈V

d(b, v)ν(v) =
1

n

∑
v∈V

d(b, v).
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Considering d(b, b) = 0, we have

1

n

∑
v∈V

d(b, v) =
1

n

∑
v∈V
v 6=b

d(b, v) ≤ 1

n

∑
v∈V
v 6=b

diam(G) =
n− 1

n
diam(G).

This implies the desired result. Equality can only happen if, for all v 6= b, we have
d(b, v) = diam(G) which then implies that G = Kn. �

3.5. Proof of Proposition 3. We note that one natural property that would imply
Proposition 3 would be if the nullspace of a distance matrix D only contained
vectors whose entries add up to 0. This, however, is not always the case (even
though exceptions seem to be exceedingly rare). Two counterexamples are shown
in Fig. 5. Proposition 3 implies that these graphs do not admit positive curvature.

Figure 5. Two graphs for which kerD has elements whose entries
do not add up to 0. Indeed, Dw = n · 1 has no solution.

Proof of Proposition 3. Let us assume there exist w1, w2 ∈ Rn
≥0 such that

Dw1 = n · 1 = Dw2.

Revisiting the proof of Theorem 4, we see that the probability measure

νi =
wi

‖wi‖`1
has the property that for each u ∈ V∑

v∈V
d(u, v)νi(v) =

1

‖wi‖`1
∑
v∈V

d(u, v)(wi)v =
n

‖wi‖`1
.

This number then corresponds to the value of α (the value of the game) in the von
Neumann Minimax Theorem which is unique. Therefore, ‖w1‖`1 = ‖w2‖`2 . �

3.6. Proof of Theorem 3.

Proof. The proof follows quickly from the standard eigenvalue estimate (see e.g.
the textbooks Chung [8] or Grigor’yan [16]).

λ1 =
∑

(u,v)∈E

(f(u)− f(v))2 ≥ 1

n

1

diam(G)
.

We quickly include the very short proof for the convenience of the reader. Let
f : V → R denote an L2−normalized function normalized to∑

v∈V
f(v) = 0
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so that f minimizes the Dirichlet energy among all L2−normalized functions

f = arg min
〈f,1〉=0
‖f‖

L2=1

∑
(u,v)∈E

(f(u)− f(v))2.

Since f is L2−normalized, we have

1 =
∑
v∈V

f(v)2 ≤
∑
v∈V
‖f‖2`∞ = n · ‖f‖2`∞

and thus ‖f‖`∞ ≥ n−1/2. Since f has mean value 0, it has to change sign somewhere
and therefore

max
v∈V

f(v)− min
w∈V

f(w) ≥ 1√
n
.

At the same time, there is a path P of length at most diam(G) from the point where
the maximum is assumed to the point where the minimum is assumed. Summing
over the path, we get

1√
n
≤

∑
(u,v)∈P

|f(u)− f(v)| ≤
√

diam(G)

 ∑
(u,v)∈P

|f(u)− f(v)|2
1/2

and therefore

λ1 =
∑

(u,v)∈E

(f(u)− f(v))2 ≥ 1

n

1

diam(G)
.

At this point, we invoke Theorem 1 and conclude that

λ1 ≥
1

n

1

diam(G)
≥ ‖w‖`

1

2n2
.

�

3.7. Proof of Theorem 5.

Proof. Suppose that w ∈ Rn
>0 is given. There exist two vertices i, j ∈ V at dis-

tance diam(G) from each other. We abbreviate the average distance between two
uniformly at random chosen vertices in the graph as

avdiam(G) =
1

n2

∑
u,v∈V

d(u, v) =
1

n2
· 〈1, D1.〉 .

The pigeonhole principle implies that there exists a vertex u ∈ V such that the
average distance between u and a uniformly at random chosen vertex v is at least
avdiam(G) and therefore

1

n

∑
v∈V

d(u, v) ≥ avdiam(G).

Then, inspecting the row of Dw corresponding to the vertex u, we see

‖Dw‖`∞ ≥
∑
v∈V

d(u, v)wv ≥ K
∑
v∈V

d(u, v) ≥ K · n · avdiam(G).

This implies

avdiam(G) ≤ ‖Dw‖`
∞

n

1

K
.

Let us now define the parameter 0 < δ < 1 via the equation

avdiam(G) = δ diam(G).
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Thus

diam(G) =
1

δ
avdiam(G) ≤ 1

δ

‖Dw‖`∞
n

1

K
Observe that this implies our desired result as soon as δ ≥ 1/8. Let now δ ≤ 1/8.
If the average diameter is a lot smaller than the diameter, then this implies the
existence of a vertex that is fairly close to most other vertices. More precisely, since

1

n

∑
u∈V

1

n

∑
v∈V

d(u, v) = avdiam(G) = δ diam(G)

there has to exist a vertex u ∈ V such that

1

n

∑
v∈V

d(u, v) ≤ δ diam(G).

For this vertex u, which will now be fixed for the rest of the proof, there must be
many vertices nearby: the set

A = {v ∈ V : d(u, v) ≤ 2δ diam(G)}

is necessarily large since

δ diam(G) ≥ 1

n

∑
v∈V

d(u, v) ≥ 1

n

∑
v∈V \A

d(u, v)

>
|V \A|
n

2δ diam(G) =
n− |A|
n

2δ diam(G)

implies that

|A| ≥ n

2
.

Let us now pick two vertices a, b ∈ V at the end-point of a longest path meaning
that d(a, b) = diam(G). Then

diam(G) = d(a, b) ≤ d(a, u) + d(u, b)

and thus there exists a vertex c ∈ {a, b} such that d(u, c) ≥ diam(G)/2. Using the
triangle inequality one more time, we see that all the vertices v ∈ A which are close
to u cannot be all that close to c and

∀ v ∈ A : d(v, c) ≥
(

1

2
− 2δ

)
diam(G).

Checking now the row of Dw that corresponds to the vertex c, we note that all the
vertices in A are pretty far away from c and

‖Dw‖`∞ ≥
∑
v∈V

d(c, v)wv ≥ K
∑
v∈V

d(c, v)

≥ K
∑
v∈A

d(c, v) ≥ K
∑
v∈A

(
1

2
− 2δ

)
diam(G)

= K|A|
(

1

2
− 2δ

)
diam(G) ≥ Kn

2

(
1

2
− 2δ

)
diam(G).

This now implies

diam(G) ≤ 2(
1
2 − 2δ

)
n

‖Dw‖`∞
K

.
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Recalling that δ ≤ 1/8, we arrive at

diam(G) ≤ ‖Dw‖`
∞

n

8

K

Revisiting the proof of Theorem 3, we deduce from this that

λ1 ≥
1

n

1

diam(G)
≥ 1

8‖Dw‖`∞
K.

�
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