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p-ADIC INTERPOLATION OF ORBITS UNDER RATIONAL

MAPS

JASON P. BELL AND XIAO ZHONG

Abstract. Let L be a field of characteristic zero, let h : P1 Ñ P1 be a
rational map defined over L, and let c P P1pLq. We show that there exists
a finitely generated subfield K of L over which both c and h are defined
along with an infinite set of inequivalent non-archimedean completions
Kp for which there exists a positive integer a “ appq with the property
that for i P t0, . . . , a ´ 1u there exists a power series giptq P Kprrtss that
converges on the closed unit disc of Kp such that han`ipcq “ gipnq for
all sufficiently large n. As a consequence we show that the dynamical
Mordell-Lang conjecture holds for split self-maps ph, gq of P1 ˆ X with
g étale.

1. Introduction

The study of dynamics of rational functions in one complex variable en-
joys a long and celebrated history, which stretches back to classical work of
Fatou, Julia and others [13, 14, 19]. In this setting, one has a field K and
a rational function f P Kpxq, which one regards as a regular self-map from
the projective line over K to itself, and one then asks questions about the
orbits of points under iteration of the map f .

A key tool in understanding the dynamics of rational maps on P1 is by
studying their periodic points (i.e., fixed points of given iterates) and their
respective basins of attraction. Given a fixed point of a map, an important
method when analyzing the behaviour of nearby points comes from analytic
uniformization techniques. In the case of p-adic maps there is an appealing
trichotomy due to Rivera-Letelier [23], which builds upon earlier work of
Herman and Yoccoz [18], which says that if p is prime, Cp is the completion
of an algebraic closure of Qp, and fpzq “ λz `

ř

iě2 aiz
i P Cprrzss is a

nonzero power series with |λ|p, |ai|p ď 1 for all i, then f has three possible
types of analytic uniformization, which are dictated by whether the map
f is indifferent, attracting, or superattracting near the fixed point z “ 0.
More precisely, Rivera-Letelier [23] shows the following trichotomy holds.

(a) (Indifferent case) If |λ|p “ 1, then for c P Cp sufficiently close to zero
there exist an integer a ą 0 and power series u0pzq, . . . , ua´1pzq that
converge on the unit disc such that fan`ipcq “ uipnq.
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(b) (Attracting case) If 0 ă |λ|p ă 1, then there is r P p0, 1q and a power

series upzq P Cprrzss that maps the closed disc Bp0, rq bijectively to
itself such that fnpzq “ upλnu´1pzqq;

(c) (Superattracting case) If λ “ 0 and then there is some m ě 2

and some upzq that bijectively maps a disc Bp0, r1q to another disc

Bp0, r2q for some r1, r2 ą 0 such that fnpzq “ uppu´1pzqqm
n

q.

Rivera-Letelier’s characterization of possible analytic uniformizations of
p-adic analytic maps has played an important role within arithmetic dy-
namics over the past fifteen years. It should be noted, however, that for
many number theoretic questions concerning orbits of self-maps, it is much
more desirable to work with maps that fall into case (a) of Rivera-Leterlier’s
trichotomy. The reason for this is that in these cases one obtains a natu-
ral p-adic interpolation of orbits of points near the fixed point and so one
can use tools from p-adic analysis to answer questions about points in the
orbit. On the other hand, case (c) only really says something about the
rate of convergence of points in the orbit to the fixed point and it can be
more difficult to glean number theoretic information from this information
in practice.

If one restricts one’s focus to a fixed prime p and looks at p-adic dynamics
then cases (b) and (c) are at times unavoidable, but if one is only interested
in the orbit of a point c in a characteristic zero field K under a rational map
f P Kpxq, then in practice one can work instead with a finitely generated
extension K0 of Q inside K over which f and c are both defined and one can
then try to find a favourable prime p and an embedding of K0 into Cp so
that case (a) of Rivera-Letelier’s trichotomy applies to the orbit of the image
of the point c. In fact, we are able to show that there are infinitely many
such primes for which one can embed K0 into Cp such that after replacing
f by a suitable iterate we can p-adically interpolate the orbit of the image
of c with a p-adic analytic map.

Theorem 1.1. Let L be a field of characteristic zero and let h : P1 Ñ P1

be a rational map defined over L and let c P P1pLq. Then there exists a
finitely generated extension K of Q over which both c and h are defined
along with an infinite set of inequivalent non-archimedean completions Kp

such that there exists a positive integer a “ appq with the property that for
i P t0, . . . , a ´ 1u there exists a power series hiptq P Kprrtss that converges
on the closed unit disc of Kp such that han`ipcq “ hipnq for all sufficiently
large n.

We in fact prove a stronger result than the one given in the statement of
Theorem 1.1 (see Remark 3.3). We also mention that related interpolation
results appear in [7, §4], which deals with the case of split self-maps of
pP1qm. Due to the more general setting considered by the authors in [7],
stronger conditions on the maps involving critical points being preperiodic
are necessarily imposed and it does not seem possible to obtain Theorem
1.1 in its full generality from these related results.

In general, we cannot expect to do better than interpolating tails of orbits
along progressions, since there are points whose orbits are preperiodic under
certain rational maps and an analytic map that is constant on an infinite set
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of the closed p-adic ball is necessarily identically constant by Strassman’s
theorem. The progressions arise in the proof of Theorem 1.1 since in order
to apply interpolation results we must first replace h by a suitable iterate ha

and replace the starting point c with hmpcq for some m ě 0. For this reason,
one cannot eliminate the dependence of the integer a on p in the statement
of Theorem 1.1.

Once one can interpolate the orbit thanpcmquně0 with an analytic map as
in the statement of Theorem 1.1, one obtains an interpolation for han`ipcmq
for b P t0, . . . , a ´ 1u by applying the rational map hb to the analytic map
interpolating thanpcmquně0.

While Rivera-Letelier’s results give a strong and very useful trichotomy
for studying the dynamics of rational maps over a p-adic field, for many
arithmetical applications it is often more desirable to have a map in which
the dynamics fall into the first two cases of Rivera-Letelier’s trichotomy,
since one can use parametrization of the orbit by an analytic map to draw
conclusions about the map (this idea was apparently first applied by Skolem
[25], and has since been use in many other works [1, 2, 3, 4, 6, 7, 8, 9, 16, 20]).
If one works over a fixed p-adic field, however, then one cannot guarantee
that the orbit is covered under the third case of Rivera-Letelier’s trichotomy.
We show that after working over a suitable finitely generated extension
K of Q, over which our point and self-map are both defined, we can find
many non-archimedean completions of K for which we obtain an analytic
interpolation of our orbit as in the statement of Theorem 1.1.

In recent years, one of the most important applications of p-adic interpo-
lation techniques has been to settle cases of the so-called dynamical Mordell-
Lang conjecture, which can be viewed as a natural dynamical analogue of
the cyclic case of the classical Mordell-Lang conjecture and was first formu-
lated in [15]. The classical Mordell-Lang conjecture was settled in a series
of works by Faltings [12], Vojta [26], and McQuillan [21].

Conjecture 1.2. (The dynamical Mordell-Lang Conjecture) Let X be a
complex quasiprojective variety and let Φ be a rational self-map of X. Given
c P X with the property that the forward orbit of c under Φ avoids the
indeterminacy locus of Φ and a Zariski closed subset Y Ď X, the set of
n P N such that Φnpcq P Y is a union of finitely many infinite arithmetic
progressions augmented by a finite set.

We note that it is possible to have an empty union of infinite arithmetic
progressions in Conjecture 1.2, in which case the orbit of c has finite inter-
section with Y ; it is also possible for the finite set to be empty.

Conjecture 1.2 is known in several cases, including when Φ is étale, when
X “ A2 and Φ is respectively an endomorphism [28] and a birational self-
map [27], and in several other cases [8, 16]. In the case when Φ is étale, the
orbit of a point has many p-adic parametrizations along progressions, and
this fact, combined with Theorem 1.1, allows us to deduce that Conjecture
1.2 holds for split maps ph, gq of P1 ˆ X with g étale.

Corollary 1.3. Let X be a complex quasiprojective variety and let g : X Ñ
X be an étale self-map of X and let h P Cpxq. If Φ “ ph, gq : P1 ˆ X Ñ
P1 ˆ X, c P P1 ˆ X, and Y Ď P1 ˆ X is a Zariski closed subset, then
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tn : Φnpcq P Y u is a finite union of infinite arithmetic progressions along
with a finite set.

The outline of this paper is as follows. In §2, we give general interpolation
results, which apply to rational maps having at least four distinct non-
superattracting fixed points. In §3, we prove Theorem 1.1 by reducing to
the case considered in §2. In §4 we prove Corollary 1.3 and in §5 we make
some concluding remarks, which show the difficulties with trying to extend
our interpolation results to higher dimensions.

2. p-Adic interpolation

In this section we prove a special case of Theorem 1.1. We let L be a field
of characteristic zero and we let hpxq P Lpxq, and we let c P L. We wish to
understand the orbit of c under the self-map h.

As it turns out, the difficult case is when hpxq has degree at least two.
Then by a result of Fatou [13, 14, 19] we know that h has at most 2degphq´2
periodic superattracting cycles (i.e., orbits of points a P L̄ with the property
that hmpaq “ a and phmq1paq “ 0) and since h has a Zariski dense set of
periodic points, some iterate of h will have at least four non-superattracting
fixed points. Then by the remarks after the statement of Theorem 1.1 show,
we may replace h by an iterate and assume that it has at least four non-
superattracting fixed points. Moreover, we can conjugate h by a suitable
fractional linear transformation and assume that 8 is fixed by h and is not
superattracting, which means that the degree of the numerator of h is one
greater than the degree of the denominator.

Throughout this section, we will thus assume that the above remarks
apply to hpxq and we write

(2.1) hpxq “ ppxq{qpxq, gcdpppxq, qpxqq “ 1, degppq “ 1 ` degpqq.

By factoring over the algebraic closure of K we then have

(2.2) ppxq “ Cpx ´ α1qa1 ¨ ¨ ¨ px ´ αsqas ,

(2.3) qpxq “ px ´ β1qb1 ¨ ¨ ¨ px ´ βtq
bt ,

(2.4) ppxq ´ xqpxq “ C 1px ´ γ1qc1 ¨ ¨ ¨ px ´ γuqcu ,

(2.5) p1pxqqpxq ´ q1pxqppxq “ C2px ´ δ1qd1 ¨ ¨ ¨ px ´ δvqdv ,

where

(2.6) T :“ tα1, . . . , αs, β1, . . . , βt, γ1, . . . , γu, δ1, . . . , δvu Ď K,

and α1, . . . , αs, β1, . . . , βt are pairwise distinct, C,C
1, C2 are nonzero, γ1, . . . , γu

are pairwise distinct, and δ1, . . . , δv are pairwise distinct.
Since hpxq has at least three non-superattracting fixed points in P1zt8u,

the number of distinct roots of ppxq´xqpxq, is at least 3, and we may assume
that γ1, γ2, γ3 are disjoint from tδ1, . . . , δvu. Since hpxq is non-constant we
also have v ą 0.

Consider the ring

(2.7) R :“ Zrc, 6´1, C˘1, pC 1q˘1, pC2q˘1,T srS´1s,
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where S is the union of the nonzero elements of T along with the set of
elements that can be expressed as a difference of two distinct elements from
T . Inverting 6 is not technically necessary, but we do this for convenience as
the p-adic arguments that we will use are slightly cleaner for primes larger
than 3.

We now give a description of the orbit of the point c under the map h as
a fraction of elements of R. We let

(2.8) A0 “ c, B0 “ 1.

Then for each n we will give coprime elements An, Bn of R with the property
that An{Bn “ hnpcq. To do this, for n ě 0, we define

(2.9) An`1 “ CpAn ´ α1Bnqa1 ¨ ¨ ¨ pAn ´ αsBnqas “ ppAn{Bnq ¨ Bdegpppxqq
n

and

(2.10) Bn`1 “ BnpAn ´ β1Bnqb1 ¨ ¨ ¨ pAn ´ βtBnqbt “ qpAn{Bnq ¨ Bdegpppxqq
n .

Observe that

“ BnAn`1 ´ AnBn`1

“ BnBn`1phpAn{Bnq ´ An{Bnq

“ BnBn`1pppAn{Bnq ´ qpAn{BnqAn{BnqqpAn{Bnq´1

“ C 1BnBn`1pAn ´ γ1Bnqc1 ¨ ¨ ¨ pAn ´ γuBnqcuB´c1´¨¨¨´cu
n B´1

n`1B
degppq
n

Since degpppxq ´ xqpxqq “ c1 ` ¨ ¨ ¨ ` cu ď degpppxqq, there is some ℓn ě 1
such that

(2.11) BnAn`1 ´ AnBn`1 “ C 1Bℓn
n pAn ´ γ1Bnqc1 ¨ ¨ ¨ pAn ´ γuBnqcu

Lemma 2.1. Adopt the notation from Equations (2.1)–(2.10). Then for
each n ě 0, the elements An and Bn generate the unit ideal in R.

Proof. We prove this by induction on n. When n “ 0 it is immediate,
since B0 “ 1. Now suppose that the result holds whenever n ď m with
m ě 1 and consider the case when n “ m ` 1. If Am`1R ` Bm`1R ‰ R,
there is a maximal ideal p that contains both Am`1 and Bm`1. Then since
C is a unit in R, we must have Am ´ αiBm P p for some i and either
Bn P p or Am ´ βjBm P p for some j. If Bm P p then we see Am “
pAm ´ αiBmq ` αiBm P p, which is impossible by our induction hypothesis.
Thus we may assume that Bm R p and Am ´ βjBm P p for some j. Since
ppxq and qpxq are coprime, tα1, . . . , αsu X tβ1, . . . , βtu is empty, and so if
Am ´ αiBm P p and An ´ βjBn P p, then pαi ´ βjqBj P p, which is again
impossible since αi´βj is a unit in R. Thus we obtain the desired result. �

We now prove a useful lemma, in which we make use of the S-unit theorem
(see [11, Theorem 6.1.3]). We recall that if K is a field of characteristic
zero and G ď K˚ is a finitely generated subgroup of the multiplicative
group, then the S-unit theorem concerns solutions pX1, . . . ,Xnq P Gn to the
equation

n
ÿ

i“1

ρiXi “ 0
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with ρ1, . . . , ρn fixed nonzero elements of K. We say that pX1, . . . ,Xnq is a
non-degenerate solution if no proper non-trivial subsum of

ř

ρiXi vanishes.
Then the S-unit theorem says that up to scaling by elements of G there are
only finitely many non-degenerate solutions pX1, . . . ,Xnq P Gn to the above
equation. We recall that a subset P of the prime spectrum of a commutative
ring is Zariski dense if the intersection of the prime ideals in P is contained
in the nil radical of the ring.

Lemma 2.2. Adopt the notation from Equations (2.1)–(2.10), and suppose
that u ě 3 and that γ1, γ2, γ3 R tδ1, . . . , δvu. If the sequence tAn{Bnu is not
eventually periodic then there is a Zariski dense set of maximal ideals P of
R such that for each p P P there is some natural number n such that the
following hold:

(1) AnBn`1 ´ BnAn`1 P p;
(2) Bn ¨ Bn`1 R p; and

(3) pp1pAn{BnqqpAn{Bnq ´ q1pAn{BnqppAn{BnqqB
degpppxqq`degpqpxqq´1
n is

not in p.

Proof. We may assume that the sequence tAn{Bnu is not eventually peri-
odic. Let P denote the set of maximal ideals p for which conditions (1)–(3)
hold. If P is not Zariski dense, then there is some nonzero f P R such that
f is in every prime in P. Then after replacing R by Rr1{f s, we may assume
that P is empty. Let U denote the group of units of R, which is a finitely
generated abelian group by Roquette’s theorem [24].

By assumption γ1, γ2, γ3 R tδ1, . . . , δvu. Suppose that An ´ γ1Bn, An ´
γ2Bn, An ´ γ3Bn are all in U for every n. Then we pick ρ1, ρ2, ρ3 P R, not
all zero, such that ρ1 ` ρ2 ` ρ3 “ γ1ρ1 ` γ2ρ2 ` γ3ρ3 “ 0. Since γ1, γ2, γ3 are
pairwise distinct, we in fact have ρ1, ρ2, ρ3 are all nonzero.

Then by construction

ρ1pAn ´ γ1Bnq ` ρ2pAn ´ γ2Bnq ` ρ3pAn ´ γ3Bnq “ 0

for every n ě 0. Since every solution to ρ1x1 ` ρ2x2 ` ρ3x3 “ 0 with
x1x2x3 ‰ 0 is necessarily non-degenerate, by the S-unit theorem there are
only finitely many solutions px1, x2, x3q in U3 up to scaling.

It follows that there must exist n and m with n ă m such that pAn ´
γ1Bnq{pAn´γ2Bnq “ pAm´γ1Bmq{pAm´γ2Bmq. In other words, φpAn{Bnq “
φpAm{Bmq, where φpxq “ px ´ γ1q{px ´ γ2q. Since φ is an automorphism of
P1, we then conclude that An{Bn “ Am{Bm and so the sequence tAi{Biu is
eventually periodic, which is a contradiction.

It follows that there is some n such that An ´ γiBn R U for some i P
t1, 2, 3u. Then An ´ γiBn ‰ 0 since otherwise, we would have An`1{Bn`1 “
An{Bn and so we conclude that there is some maximal ideal p of R such
that An ´ γiBn P p. In particular, BnAn`1 ´ AnBn`1 P p.

If Bn P p then An P p since An ´ γiBn P p, and this is impossible by
Lemma 2.1.

Now if Bn`1 P p then since

BnAn`1 ´ AnBn`1 P p

and Bn R p, we see that An`1 P p, which contradicts the conclusion of
Lemma 2.1.



7

Finally, if

p1pAn{BnqqpAn{Bnq ´ q1pAn{BnqppAn{BnqqBdegpppxqq`degpqpxqq´1
n

is in p then since Bn is not in p and since C2 is a unit, by Equation (2.11)
we must have An ´ δjBn P p for some j, and so pδj ´γiqBn is in p. But since
γi ‰ δj , we have that γi ´ δj is a unit in R by construction and since Bn is
not in p, we then see that this cannot hold. The result follows. �

We will now obtain our interpolation of the orbit of c under h by applying
a result of Poonen [22]. We need a simple lemma, which will give us the
hypotheses needed to apply Poonen’s result. We recall that if K is a field
with a non-archimedean absolute value | | and R is a subring of K then
the Tate algebra Rxx1, . . . , xdy is the subset of Rrrx1, . . . , xdss consisting of
power series that converge on the unit polydisc of Kd.

Lemma 2.3. Let o be a complete discrete valuation ring, suppose that there
is a prime π P Z with π ě 5 such that |π| ă 1 in o, and suppose that
hpxq “ ppxq{qpxq with ppxq, qpxq P orxs. Suppose further that c P o is such
that:

(1) |qpcq| “ 1;
(2) hpcq ” c pmodπ2oq; and
(3) h1pcq ” 1 pmod πoq.

Then the map fpxq :“ π´1phpc ` πxq ´ cq is in oxxy and satisfies fpxq ”
x pmod πoq for all x P o.

Proof. We have qpc ` πxq ” qpcq pmod πq and so |qpc ` πxq| “ 1 for all

x P o. It follows that hprqpc ` πxq P o for all r ě 0 and all x P o. Then

fpxq “ π´1 phpc ` πxq ´ cq

“ π´1

˜

ÿ

rě0

hprqpcqπrxr{r! ´ c

¸

“ phpcq ´ cqπ´1 ` h1pcqx `
ÿ

rě2

hprqpcq
πr´1

r!
xr.

Since π ‰ 2, 3 and since |r!|π ą π´r{pπ´1q, we see that πr´1{r! P πo for all

r ě 2, and that |hprqpcqπ
r´1

r!
| Ñ 0 as r Ñ 8 and hence fpxq P oxxy. Next,

for x P o,

fpc`πxq´x “ phpcq´cqπ´1`ph1pcq´1qx`
ÿ

rě2

hprqpcq
πr´1

r!
xr ” 0 p mod πoq,

by our assumptions and the remarks above. The result follows. �

Proposition 2.4. Adopt the notation of Equations (2.1)–(2.11). Then there
is a Zariski dense set of maximal ideals P of R with the following properties:

(i) each p P P induces a non-archimedean absolute value | |p on the field
of fractions, Kp, of the completion of the local ring Rp;

(ii) for each p P P, there is a natural number a and elements

g0pzq, . . . , ga´1pzq P oxzy
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such that for each i P t0, . . . , a ´ 1u, han`ipcq “ gipnq for all n

sufficiently large, where o is the valuation subring of Kp consisting
of elements r with |r|p ď 1.

Proof. By Lemma 2.2 there is a Zariski dense set P of maximal ideals p such
that items (1)–(3) from the statement of Lemma 2.2 hold. Since the regular
locus of SpecpRq is a dense open set, we can replace P by a dense subset
with the additional property that Rp is a regular local noetherian ring for
p P P.

Since Rp is regular, its associated graded ring
à

ně0

p
nRp{pn`1Rp

is a polynomial ring over the residue field F :“ Rp{pRp; moreover, F is a
finite field by the Nullstellensatz [10, Theorem 4.19].

Since the associated graded ring of the local ring Rp is an integral domain,
we have an absolute value | | “ | |p on Rp given by |0| “ 0 and for a nonzero,

|a| “ |F|´νpaq, where νpaq is the largest nonnegative integer r such that
a P prRp. Such an r necessarily exists by the Krull intersection theorem.

Then this absolute value extends to an absolute value on Kp, where Kp

is the field of fractions of the completion of Rp. We now let o denote the
valuation subring of Kp consisting of elements of absolute value at most 1.
Then o is a discrete valuation ring and there is a unique prime π P Z such
that |π| ă 1, since F is finite.

Let ci “ Ai{Bi P Rp for i ě 0. Then by assumption

hpcmq ” cm pmod pRpq and h1pcmq ı 0 pmod pRpq.

Moreover, by our choice of p we have that |Bn| “ 1 for all n ě m and so
cn ” cm pmod pRpq for n ě m.

It follows that there exist m1,m2 ě m with m1 ą m2 such that cm1 ”
cm2 p mod π2oq and h1pcm1 q ” 1 p mod πoq. Thus we see that after replacing

h by hm
1´m2

, we may assume that the conditions in Lemma 2.3 are satisfied
and so the map

fpxq :“ π´1phpcm2 ` πxq ´ cm2q

satisfies fpxq ” x pmod πoq. Hence by a result of Poonen [22] we have
there is a map gpx, nq P oxx, ny such that fnpxq “ gpx, nq. In particular,
hnpcm2 q “ πfnp0q ` cm2 “ πgp0, nq ` cm2 , and so we have obtained an
interpolation of the orbit of cm2 under h. Since we did this at the expense of
replacing h by an iterate and replacing our starting point c0 with a different
point in the orbit, we see that this gives the desired result, as explained in
the remarks following the statement of Theorem 1.1. �

3. Proof of Theorem 1.1

We now use the results of the preceding section to prove our main inter-
polation result.

Proof of Theorem 1.1. If h is of degree one, then h is étale and the result
follows from BGT. Similarly, if the orbit of c under of iteration of h is
preperiodic then the result holds trivially. Thus we may assume that the
orbit is infinite and that h has degree at least two. By a result of Fatou
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[13, 14, 19], there are at most 2degphq ´ 2 attracting periodic cycles, and
since the set of periodic points of h is infinite, after replacing h be an iterate,
we may assume that h has at least four non-attracting fixed points and by
enlarging K and conjugating h by a fractional linear transformation, we may
assume that 8 is fixed by h. (We note that if we can interpolate the orbit
of a point φpcq under a conjugate φ ˝ h ˝ φ´1 of h, then we can interpolate
the orbit of c under h, by applying φ´1 to our interpolating power series.)
Then by Proposition 2.4 we obtain the desired result in this case. �

We now make several remarks that are potentially useful for applications
of Theorem 1.1.

Remark 3.1. We observe that an analogous conclusion to that of Theorem
1.1 can be obtained for self-maps of curves. The reason for this is that after
replacing the map by a suitable iterate, it suffices to consider the case of a
geometrically irreducible curve. We can also pass to the normalization and
assume that our curve is smooth, and Theorem 1.1 then handles the genus
0 case. The genus one case follows from [3] and for curves of genus ě 2,
every endomorphism is an automorphism by the Riemann-Hurwitz formula
and has finite order [17, Ex. IV 2.5, IV 5.2, V 1.11], and so the result holds
trivially in this last case.

Remark 3.2. In some cases it is useful to keep track of additional geometric
data and thus to enlarge the ring R in Equation (2.7). We note that a finite
set of additional generators from the ambient field L can be added to the
ring R without affecting the arguments.

Remark 3.3. We in fact show something strictly stronger than merely
having an infinite set of pairwise distinct completions of K in Theorem 1.1.
The proofs shows that there is a finitely generated subring R of K whose
field of fractions is K that is a subring of the valuation ring for each of our
absolute values | | and the set of elements r P R such that |r| ă 1 for each
of the absolute values we construct is t0u.

4. An instance of the dynamical Mordell-Lang Conjecture

In this section, we apply Theorem 1.1 to obtain an instance of the dy-
namical Mordell-Lang conjecture for split endomorphisms of a certain form.
We make use of the results of [3], which is a precursor to the work of Poo-
nen, and uses results about embedding finitely generated rings into p-adic
rings rather than completions. Nevertheless it is straightforward to translate
these results to the framework we work with.

Proof of Corollary 1.3. We write c “ pc1, c2q P P1 ˆ X.
As in the proof of Theorem 1.1, if h has degree one, then h is étale

and we can infer the result directly from [3]. Thus we may assume that h

has degree at least 2 and by replacing Φ (and hence h) by an iterate and
possibly conjugating h by an automorphism of P1 (i.e., making a change of
variables), we may assume that h satisfies the hypotheses from §2 and in
particular we now adopt the notation from Equations (2.1)–(2.11). As the
remarks following the statement of Theorem 1.1 show, we can replace Φ by
a suitable iterate and still obtain the desired result for the original map Φ.
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It is sufficient to consider the case when X is smooth and geometrically
irreducible by the argument given in [3, Theorem 1.3]. Thus we assume that
X is a irreducible and smooth quasiprojective variety. Let ρ : X ÝÑ PMpCq
be an embedding of X into projective space. Then [3, Theorem 4.1] shows
there is a finitely generated Z-subalgebra S of C for which we obtain a model
X Ď PM

SpecpSq ofX over SpecpSq. By adding a finite set of additional elements

to S, we may assume that S is a finitely generated R-algebra, where R is as
in Equation 2.7.

Then [3, Proposition 4.3] shows that there is a dense open subset U of
SpecpSq such that there is a scheme XU that is smooth and quasiprojective
over U whose generic fibre is X such that the endomorphism g of X extends
to an unramified endomorphism gU of XU . Since U is a dense open subset
of SpecpSq, by Proposition 2.4 combined with Remark 3.2 we have some
maximal ideal p that is in U , where (i) and (ii) from Proposition 2.4 hold
for the maximal ideal p.

In particular, if we let Kp be the field of fractions of the completion of
the local ring Sp and let F denote the residue field Sp{pSp, then there is a
natural number a and elements

h0pzq, . . . , ha´1pzq P oxzy

such that for each i P t0, . . . , a ´ 1u, han`ipc1q “ hipnq for all n sufficiently
large, where o is the valuation subring of Kp.

Since Kp is the field of fractions of the completion of a finitely generated
Z-algebra with respect to a maximal ideal p, there is a unique prime ℓ such
that it is isomorphic to a topological subfield of Cℓ. Then the arguments
of [3]1 show that if we regard XpCℓq as a d-dimensional Cℓ-manifold, then
after replacing c2 by gmpc2q for some m, there is some integer b ě 1 and
analytic open neighbourhood V of gmpc2q inside XpKpq that is invariant

under gb and an analytic bijection ι : V Ñ od such that ι ˝ gbnpgmpc2qq “
pg1pnq, . . . , gdpnqq, where g1pzq, . . . , gdpzq P oxzy.

In particular, the arguments of [3, Theorem 4.1] show that if we take
e to be the least common multiple of a and b then the set of sufficiently
large positive integers in tn : Φen`ipcq P Y u can be realized as the set of
common positive integer zeros of a finite set of maps in oxzy. In particular,
by Strassman’s theorem we get that

tn : Φen`ipcq P Y u

either contains all sufficiently large natural numbers n or it is a finite set.
The result follows. �

Occasionally one can use data from canonical heights or other methods
to prove the dynamical Mordell-Lang for certain classes of endomorphisms.
Such methods do not seem to be generally applicable to the general case we
consider. As an example, consider P1 ˆE, where E is an elliptic curve, and
let Φ “ pg, r2sq, where r2s is multiplication by 2 and g is a rational map of
degree four. Then the heights of gnpaq and r2ns ¨ b for a point pa, bq P P1 ˆE

with a not preperiodic under g and b not a torsion point of E, are both

1While the arguments are done over Zp they work with any complete rank one discrete
valuation ring of mixed characteristic with finite residue field.
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asymptotic to a nonzero constant times 4n as n Ñ 8 and so there are non-
periodic curves C Ď P1 ˆ E where one cannot naively use information from
heights to rule out the orbit having infinite intersection with C.

5. Concluding remarks

We have shown that one can interpolate self-maps of curves, and it is
natural to ask whether one can obtain similar interpolation results for en-
domorphisms of higher dimensional varieties. Unfortunately, this fails even
for surfaces. As a simple example, consider the map f : A2 Ñ A2 given by
fpx, yq “ px ` 1, ypx ` 1qq. Then fnp0, 1q “ pn, n!q and so for each prime p

we have |n!|p Ñ 0 and so there is no way to interpolate the orbit of p0, 1q
under f .

A more reasonable goal is to consider simultaneous interpolation for sev-
eral rational maps h1, . . . , hm P Cpxq to obtain the case of split rational
maps from

`

P1
˘m

to itself. In this case, we do not know whether this can
be done even when m “ 2. Heuristics (see [7, §5]) suggest, however, that
one should be able to obtain the split case for rational maps under general
conditions [5, Conjecture 8.4.0.19].
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Math. 73 (1983), no. 3, 349–366.
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metric methods in dynamics. II. Astérisque No. 287 (2003), xv, 147–230.
[24] P. Roquette, Einheiten und Divisorklassen in endlich erzeugbaren Körpern. Jber.

Deutsch. Math.-Verein. 60 (1957), no. Abt., Abt. 1, 1–21.
[25] T. Skolem, Ein Verfahren zur Behandlung gewisser exponentialer Gleichungen und

diophantischer Gleichungen, Comptes Rendus Congr. Math. Scand. (Stockholm, 1934)
163–188.

[26] P. Vojta, Integral points on subvarieties of semiabelian varieties, I. Invent. Math. 126

(1996), no. 1, 133–181.
[27] J. Xie, Dynamical Mordell-Lang conjecture for birational polynomial morphisms on

A2. Math. Ann. 360 (2014), no. 1–2, 457–480.
[28] J. Xie, The dynamical Mordell-Lang conjecture for polynomial endomorphisms of the
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