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ON UPPER BOUNDS FOR THE FIRST /2-BETTI NUMBER

CARSTEN FELDKAMP AND STEFFEN KIONKE

ABSTRACT. This article presents a method for proving upper bounds
for the first £2-Betti number of groups using only the geometry of the
Cayley graph. As an application we prove that Burnside groups of large
prime exponent have vanishing first £2-Betti number.

Our approach extends to generalizations of £2-Betti numbers, that
are defined using characters. We illustrate this flexibility by generalizing
results of Thom-Peterson on g-normal subgroups to this setting.

Over the last 30 years the £2-Betti numbers have become a major tool in
the investigation of infinite groups. The purpose of this article is to explore
the first £2-Betti number of groups using only the geometry of the Cayley
graph. Our method is based on Pichot’s observation [I1l, Propositon 2] that
the first £2-Betti number can be expressed with the rate of relations in the
Cayley graph. It follows from an elementary identity (see Lemma [[T]) that
explicit cycles in the Cayley graph give rise to upper bounds for the first £2-
Betti number. Surprisingly, these elementary bounds can be used to prove
new results.

Theorem 0.1. Let p be a prime and let G be a torsion group of exponent p.
Then ng)(G) <2p-—2.

Using a theorem of Gaboriau this implies a vanishing result for the first
¢2-Betti number of Burnside groups B(m,p) of exponent p.

Corollary 0.2. Let p be a prime number. If p is sufficiently large, then
b? (B(m,p)) = 0.

On the other hand, suppose that ng)(B(m,p)) % 0 for some prime p.
Then Theorem [0.] offers a simple solution of the restricted Burnside prob-
lem for m-generated p-groups using the multiplication formula for ¢2-Betti
numbers of finite index subgroups.

Our method can neatly be adapted to character-theoretic generalizations
of the first ¢2-Betti number. We recall that every character 1 (see [8|

Def. 2.5]) of the group G, gives rise to a -Betti number b;p(G); see [§]
or Section Il The ordinary Betti numbers and the £2-Betti numbers are spe-
cial cases of this construction. However, it is difficult to calculate or bound
1-Betti numbers under general assumptions of .
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We extend Pichot’s observation to the general setting and we use our
method to generalize a result of Thom-Peterson [10, Theorem 5.6] to -
Betti numbers; see Corollary 3. Even for £2-Betti numbers our argument
contains a new proof of their result. This provides a convenient way to
bound (and sometimes calculate) 1)-Betti numbers in some generality. We
illustrate this by proving a vanishing result for certain -Betti numbers of
right-angled groups; see Theorem

In Section Ml we discuss basic results on 1-Betti numbers and we introduce
our main method. In Section [2] we apply it in the case of p-torsion groups.
Section Blis concerned with g-normality and presents applications to -Betti
numbers.

1. BETTI NUMBERS AND THE CAYLEY GRAPH
The following simple result is essential for our approach.

Lemma 1.1. Let H be a Hilbert space and let W C H be a subspace. Let
P:H — W denote the orthogonal projection onto the closure of W. Then
forallve™H ,
(Pv,v) = sup Hew,v)l7
weW <w7w>
where the supremum is taken over all non-zero elements of W (and is defined
to be 0 if W =0).

Proof. For v = 0 the assertion is obvious. We may assume that ||v|| = 1.
For all w € W, we note that

C.S.
[(w, v)? = [(Pw,v)|* = [(w, Pv)|* < [[wl*||Pv]|* = (Pv,v)]w].
If w # 0 we obtain ,
[{w, v)" < (Pu,v).
(w, w)
In particular, the proof is complete if Pv = 0.
For the converse we assume Pv # 0. Let ¢ € (0,1). Since W is dense in

W, there is w € W with ||Pv — w|| < ¢||Pv||? and we deduce

|{(w,v)| > (Pv,v) — |{w — Pv,v)| CES (Pv,v) — [Jlw — Pv|| > (1 — €){Pv,v).

In addition, we note that |w| = ||w — Pv + Pv|| < (1 + ¢)||Pv|| and so
w2 (1= e
(wy,w) ~— (1+4¢)2

The assertion follows as € can be arbitrarily close to 0. O

(Pv,v)

Let G be a group. A character of G is a function ¢: G — C of positive
type, which is constant on conjugacy classes of G and satisfies ¢(1g) = 1;
see [8, Def. 2.5]. Let Ch(G) denote the space of all characters of G. Every
character ¢ € Ch(G) gives rise to a semi-definite G-invariant inner product
{g,hYy = ¥(h~tg) on the group ring C[G]. Passing to the completion pro-
vides us with a tracial Hilbert G-bimodule ¢¥(G); see [8, Def. 2.1]. Using
the GNS construction, this provides a tracial von Neumann algebra and a
notion of dimension, which can be used to define the 1-Betti numbers b;f(G)
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of G, provided that G satisfies suitable finiteness properties. Specifically bg
is defined for all groups and bif is defined for all finitely generated groups.
For the regular character § with §(g) = 0 for all g # 1, one has £°(G) =

¢%(G) and one obtains the famous ¢2-Betti numbers b,(f)(G). The constant
character (i.e., ¥(g) = 1 for all g) gives rise to the ordinary rational Betti
numbers of G since £¥(G) = C.

Definition 1.2. Let G be a group and let ¢ € Ch(G). A subgroup K < G
is -regular, if 1|k is the regular character on K, i.e. ¥(k) = 0 for all
ke K\{1}.

Here we are mainly interested in the first Betti numbers b;p(G). It will
however be useful and instructive to initially consider the 0-th Betti number.
Let Jg denote the augmentation ideal in C[G], i.e. the set of elements w =

> geG Wgg which satisfy > o wg = 0.
Lemma 1.3. Let G be a group and let ¢ € Ch(G) be a character.

1)2
(a) bz)p(G) =1 —sup,ey, % where the supremum is taken over all non-

zero elements of Jg.

(b) If G = ;¢ Gi is a directed union of subgroups G, then lim;ey bg)(Gi) =
by (G).

(c) bg(G) < ﬁ for every -reqular subgroup K < G.

Remark 1.4. It is well-known that b (G) = & see [9, Thm. 1.35 (8)].

Proof. Let S be a generating set for G. We consider the initial segment of
the associated free resolution of C:
clc¥ 2 clg] — C.
The image of 0 is the augmentation ideal. We take the tensor product with
¢¥(G) and deduce that
by (G) = 1 — dimy (Jg).
where Jg denotes the closure of the image of the augmentation ideal in
¢¥(G). Let P: t¥(G) — Jg denote the orthogonal projection. By definition
iy (73) = (P(1), 1),
and assertion (@) follows from Lemma [[Il Let G = |JG; be a direct union
of subgroups, then Jg = |J Jg, and (b)) follows immediately from (@).

Let K < G be a t-regular subgroup. Let T'C K \ {1} be a finite subset.
Then

w=|T|-1¢g - Y ke Ja.

keT
Since K is 9-regular, the elements of K are orthonormal and we deduce
[(w, o> TP ||

(w,wyy — [TP+|T|  |T|+1

|7 1

Now (@) implies bg)(K) <l=701 = 7 Statement (@) follows by taking

T = K\ {1} if K is finite respectively letting |T'| tend to oo otherwise. [
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We would like to apply the same ideas to the first 1-Betti number bllp(G).
However, up to now we only have a definition of bif(G) for all finitely gener-
ated groups G. We also require a definition for groups which are not finitely
generated. This could be done using Liick’s generalized dimension function
(discussed in [9, §6.1, 6.2]), but this is not convenient for our purposes and
for simplicity we work with the following variation.

Definition 1.5. Let G be a group and let 1) € Ch(G). Then
b (G) = lim inf b (H)

where the limit is taken over the directed system of all finitely generated
subgroups H < G.

Remark 1.6. For a finitely generated group B?(G) = b;p(G). In general
however, l_ff(G) can be strictly larger than the properly defined value of the
first y-Betti number. It is easy to see this for the ordinary Betti numbers.
For instance, it follows from the methods developed in [5] that ((z;)icz |
CCZ'CCZ'+1CC;1 = CC?+1>, is a perfect and locally indicable group, i.e., the ordinary
rational Betti number of every finitely generated subgroup is > 1.

For the classical £2-Betti number the inequality b§2)(G) < 5&2)(6*) follows
from the argument given in the proof of [9, Theorem 7.2 (3)].

For later reference we state the following observation.

Lemma 1.7. Let G be a group and let i € Ch(G). If G = J;c; Gi is a
directed union of subgroups G;, then

v (G) < lim inf v (G)
Proof. Let € > 0. There is a finitely generated subgroup Hy < G such that
bllp (H) > Bllﬂ(G) — ¢ for all finitely generated subgroups H that contain Hj.
Since Hjy is finitely generated, there is ¢ € I such that Hy C G;. Thus for
all j > i we have l_)lf(Gj) > l_)lf(G) —€. O

Assume that G is finitely generated and that S is a finite generating set.
The Cayley graph Cay(G,S) is the directed graph with vertex set G and
edges

Eg,s ={(g9,95) | g€ G,s €5}

The edge (1, s) will be denoted by §. The Cayley graph is equipped with
a left action of G. Let C[Eg s] be the vector space with basis E¢g g and let
0: C[Eg,s] — C[G] denote the boundary map. A finite cycle in Cay(G,S)
is an element z € C[Eg, s| with 0(z) = 0. Let Zg g denote the space of finite
cycles. If ¢ € Ch(G) is a character, then the semi-definite inner product
(-,-)y extends to a G-invariant semi-definite inner product on C[Eg,g] such
that the edges {5 | s € S} are orthonormal; this means

0 if s#£t
P(h~lg) ifs=t

The following extends [I1, Prop. 2] and is our main tool.

<(g’gs)’ (h’ ht)>¢ = {
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Lemma 1.8. Let G be a group and let S be a finite generating set. Let
1 € Ch(QG) be a character. Then

(2, )
B(G) = 15| =1+ 05(G) = 3 sup —=t
SES'ZGZG’S %4 P
where the suprema are taken over all non-zero elements of Zg 5.

Proof. The finite generating set S provides us with a presentation G = F/R
of G where F' is the free group over S and R is the subgroup of relations.
We consider the initial segment of the associated free resolution of C:

cla)® 2 cla) 2 cl6] — C.
Tensoring with ¢ (G) gives
PR @) 2 (G,

The middle term is naturally isomorphic to the completion of C[Eg g] with
respect to (-,-),. The image of 0y is the closure of Zg 5. The 9-dimension

of the closure of the image of 0; is 1 — bg(G). We deduce that
bY(G) = 15| = (1 = b5 (G)) — dimy(Za.5)-
Let P: ¢¥(G)¥ — Zg s denote the orthogonal projection. By definition
dimw(ZGﬁ) = Z<P§, §>¢
ses
and the result follows from Lemma [IT] O

Remark 1.9. It seems surprising that the value on the right hand side is
independent from the chosen set of generators. This is a consequence of the
homotopy invariance of the -Betti numbers, which can be proven using the
standard argument; e.g. [7, Thm. 3.18] or [9].

2. TORSION GROUPS
In view of Remark [LG, the following result implies Theorem

Theorem 2.1. Let p be a prime. Let G be a torsion group of exponent p.
Then 5&2)(61) <2p-—2.

Proof. We may assume that G is infinite (and b(()2) = 0), otherwise b§2) (G) =

0 and there is nothing to show. By the definition of 5&2)(6*) (see Remark
[L6), we may assume that G is finitely generated.

We choose a minimal generating set S of G and denote the number of
elements by N = |S|. Since all elements of G have prime order, all pairwise
distinct elements a, b, c € S satisfy

(ac) N (ab) = {1} (1)
Suppose for a contradiction that there are three distinct elements a,b,c € S
with (ac) N (ab) # {1}, then these cyclic groups of prime order coincide and

ac = (ab)*

for some k € N, i.e., ¢ € (a,b) which contradicts the minimality of S.
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For all a € S we have N — 1 relations
(ab)?

of length 2p for all b # a in S. By condition (), the only common edge in
the Cayley graph is the first edge a from 1 to a. Summing up these cycles,
we obtain a cycle z, in Cay(G, S) with

(za,@)% _ (N —1)?

(2a:20) (N =12+ (N-1)(2p—1) 1—1—%'
We deduce from Lemma [[.§ that

(za; a>2
N-1- = N-1—-——%—

c%.:s <Zaa Za> 1+ —%):1
2p — 2

= —57 S 2p—2.
EEE

b (@)

IN

Theorem 2.2. Let p be a prime number and let G be a countable torsion
group of exponent p. If G has an infinite normal subgroup N of infinite
index, then

B (@) = 0.

Proof. By Theorem 2.1land Remark [[.6] we have bgz) (N) < 5&2) (N) <2p-—2.
By Gaboriau’s Theorem [4, Thm. 6.8], this implies bgz)(G) =0. O

Proof of Corollary [I.2. Recall that B(m,p) denotes the Burnside group of

exponent p and rank m. Since B(1,p) is finite, we have bgz)(B(l,p)) =0.

Assume m > 2. For sufficiently large p, the main result of [6] implies
that B(m,p) contains a Q-subgroup H which is isomorphic to B(oco,p). A
@-subgroup has the property that the normal closure (K >B(m’p) in B(m,p)
of any normal subgroup K < H intersects H exactly in K.

Take a projection from B(oo,p) onto B(oo,p) with an infinite kernel K.
Then the normal closure (K)5(™P) is an infinite normal subgroup of B(m, p)
of infinite index. Now Theorem implies the result. O

Remark 2.3. (1) Ivanov [6] quantifies sufficiently large as p > 1075.

(2) One can also deduce b§2)(B(m,p)) = 0 for m > 3 under the as-
sumption that B(2,p) is infinitd] using the normal subgroup N =
ker(B(m,p) — B(m — 1,p)).

Indeed, let x1, o, ..., x,, be a free generating set of B(m, p) such

that N is the normal closure of z; in B(m,p). Since (z1,z2) C

N{z3) and (x1,x9) = B(p,2) is infinite, we deduce that N is infinite.
Moreover, N has infinite index, since B(m,p)/N = B(m — 1,p).

(3) We expect that b§2)(B(m,p)) = 0 for all p, m. On the other hand, if

b§2) (B(m,p)) > 0 holds for some m and p, then this offers a simple so-
lution to the restricted Burnside problem for m-generated p-groups.

1According to Adian [2] the Burnside groups B(2,p) are infinite for all p > 100.
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More precisely, every finite index normal subgroup N < B(m,p)
satisfies

|B(m,p) : N| -6 (B(m,p)) = b (N) < 2p -2

by Theorem 2.1l and this inequality imposes an upper bound on the
index of N.

3. ¢-NORMALITY AND APPLICATIONS

Lemma 3.1. Let G = (H,a) be a group and let 1) € Ch(G) be a character.
Assume that aHa '*NH contains a 1-regular subgroup of order n € NU{oo}.
Then

3+ 2Re(¥(a))

—ib 7Y
by (G) = 0(G) < By (H) + - 2Re(¢(a))

In particular
by (G) < by (H).
forn = cc.

Proof. Without loss of generality we assume that a ¢ H. We denote the -
regular subgroup of order n in H NaHa~' by K. For a finite subset S C H,
we define Hg = (S). Since K is 1)-regular, we obtain bg(H) < bg)(G) <2
and bg(HS) < |K N Hg|™! by Remark [L9

For n = oo, let S C H be any finite subset and denote by hy, ho, ..., kg
the pairwise distinct elements of SNaSa~'NK. If n < 0o, we choose S C H
such that

SnaSa™' = K\ {1} = {hy,hs,..., s}
In both situations we define S’ = SU{a} and G’ = (S’). Lemma [L.8implies

BE) B = [9]-1-Y sup 2l
SES’ZGZG/,S/ <Z’Z>w

22 —\ 12
< \S\—i—l—l—z sup &8 sup [z a)l”
scS 2€ZHg,s <2,2>¢ 2€Zg1 g1 <Z,Z>w

o\ 12
< P (Hg)+1— sup M. (2)
ZEZG,S’ <Z,Z>¢

= 2
To obtain a lower bound for sup, . Ze o ‘%’%ﬂ , we consider the Cayley graph

Cay(G’, S") of G’ and exhibit a suitable cycle z. Each relation ah;a~!(ah;a=')~*
provides a cycle z; of length 4 in Cay(G',5"), i.e.,

zi = (1,a) +(a,ah;) — (ah;a™', ahy) — (1,ah;a™b).
~——

=a
Note that the cycles z; touch exactly four vertices, since h; # 1 and a ¢ H.
In additon, the cycles z; have no common edges, except for a. We define
z = Zle 2; to be the sum of these cycles. Since v (ah;a™t) = ¥ (h;) = 0
holds for all i < k, we deduce

k

k
(z,8)y = k(@,a)y — > ((ahia™',ah;), @)y =k — Zw(ahia_l) =k

i=1
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We note further (using again that K is ¢-regular) that for given i,j < k the
edges # a in z;, zj are orthogonal unless h; = ahja_l or ahja™t = h;. Each of
these cases occurs at most once for every i and then ((a, ah;), (1,ahja™t))y =

Y(a) and ((1,ah;a™'), (a,ah;))y = 1(a) respectively. We deduce
(2, 2)p = D (20 20y <k + k2 =k + k(v(a) +9(a))
b = i]
<k + (3 + 2Re(¢(a)))k (3)

and conclude )
<Z’ (_z>1/; 1
- 3+2Re(¢p(a)) *
(z,2)p ~ 1 4 3ERe((a)

Finally, we use this cycle in combination with inequality (2] to obtain

= 2
BAG) —B(C) < b (Hg) 41— sup 200l
2€2. g1 <Z’Z>w
1
< b(z) Hy)+1— ——rn—
1 (Hs) T S
3+ 2Re(¢(a))

(2)
Fr3+2Re(b(a)) iom 1 )
For n = oo we can make k arbitrary large. In the case n < oo we have
k =mn — 1 by construction. We note that every finitely generated subgroup
of G is contained in a group of the form G’. The result follows from Lemma
L7 and Lemma T3] (0.

If n = oo, then G contains an infinite y-regular subgroup and bg(G) =0
by Lemma [[3 [@). O

In the spirit of Popa [12] and Thom-Peterson [10] we introduce the fol-
lowing notion.

Definition 3.2. Let G be a group and let ¢ € Ch(G). A subgroup H < G
is g-1p-normal, if there is a set A C G such that G = (HUA) and HNaHa™*
contains an infinite v-regular subgroup for all a € A.

A subgroup H < G is weakly g-1)-normal, if there is an ordinal number «
and an increasing chain of subgroups Hy = H to H, = G such that | J p<Hp
is g-¢-normal in H, for all v < a.

= W(Hs) +

Based on Lemma[3.J] we obtain the following analog of [10, Theorem 5.6].
Corollary 3.3. Let G be a group and let ¢ € Ch(G). If H < G is a weakly

g-y-normal subgroup, then
b(G) < by (H).

Proof. Assume that H is g-tp-normal. Then G = (H U A) and H NaHa™!
contains an infinite ¥-regular subgroup for all a € A. If A is finite, then the
assertion follows inductively from Lemma[B.Il Assume that A is infinite. For
every finite subset B C A, we define Gp = (H U B). Then G = U4 GB
and Lemma [[.7] implies -

Y (G) < lim inf bY(Gp) < bY(H).
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The result for weakly g-i)-normal subgroups follows by transfinite induction
using Lemma [T.71 O

Corollary 3.4. Let G be a group and let p € Ch(G).

(1) If G is an HNN-eztension of H with associated subgroups A, B and
A contains an infinite -reqular subgroup, then we have Blf(G) <

b (H).

(2) If G = Ax¢ B is an amalgamated product such that C is g-ip-normal
in B. Then we have Ellp(G) < l_ff(A).

(3) If G contains an infinite normal amenable -reqular subgroup, then

bY(G) = 0.

Proof. (1): follows immediately from Lemma [3.11

(2): The assumptions imply that A is q-i»-normal in G = A *¢ B and the
assertion follows from Corollary B3l

(3): The infinite normal amenable subgroup N is g-¢-normal in G and

bV (N) =¥ (N) = 0 by [3, Thm. 0.2. 0

We illustrate the helpfulness of g-normality with an application to right-
angled groups. This notion was put forward in [I], Definition 1].

Definition 3.5 (right-angled groups). A group G is right-angled, if it is
the quotient of a right-angled Artin group Ar with a finite connected graph
I' = (Z,€) such that the image of every generator o; (i € Z) has infinite
order in G.

The image of the generating set of Ar will be called a right-angled set of
generators.

Theorem 3.6. Let G be a right-angled group and let S = {s; | i € I} be a
right-angled set of generators. If 1» € Ch(QG) is such that the cyclic subgroup

(s;) 1s WY-regular for every i € Z. Then we have blf(G) =0.

Proof. Our proof will be by induction over the number n = |Z| € N of gen-

erators. For the base of induction we note that ng) (Z) = 0. We assume
for the induction step w.l.o.g. S = {s1,52,...,8n, Sp+1} such that s, com-
mutes with s,11 and such that G’ = (s ..., s,) is a right-angled group with
ng)(G’ ) = 0. We claim that G’ is g-¢p-normal. Indeed, set H = (s,,) and
a = Sp41, A 'G'an G D H and H is v-regular by assumption. Now the
result follows from Lemma 311 O

Using this calculation and the approximation methods from [§] one can
control the growth of Betti numbers in right-angled Artin groups with re-
spect to normal chains with non-trivial intersection.

Corollary 3.7. Let Ar be a right-angled Artin group for a finite connected
graph T with generating set {o; | i € Z}. Let Ny > Ny > ... be a descending
chain of finite index normal subgroups in Ar. If the order ord, /N, (03) in
the finite factors Ar /Ny is unbounded for each generator o;, then

b1 (N,
lim 1(Nn)

——=0.
n—oo |Ap @ Ny
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Proof. Let 1, be the character of the permutation action of Ar on Ap/N,.
Since the sequence of normal subgroups is descending, the sequence v, con-
verges in Ch(Ar) to a character 1. Since each character v, is sofic and Ap
is finitely presented, it follows from [8, Theorem 3.5] that

) : b1 (NVy)
1/1 'l,bn 1 n
by (Ar) = nhm bi"(Ar) = nhm Ar N,

If the order ord ./, (0;) tends to infinity, Yn(ck) vanishes for all k& # 0
and all large n, i.e., (0;) is a 1-regular subgroup. Theorem implies that
bY(Ar) = 0 and this completes the proof. O
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