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ON UPPER BOUNDS FOR THE FIRST ℓ2-BETTI NUMBER

CARSTEN FELDKAMP AND STEFFEN KIONKE

Abstract. This article presents a method for proving upper bounds
for the first ℓ2-Betti number of groups using only the geometry of the
Cayley graph. As an application we prove that Burnside groups of large
prime exponent have vanishing first ℓ2-Betti number.

Our approach extends to generalizations of ℓ2-Betti numbers, that
are defined using characters. We illustrate this flexibility by generalizing
results of Thom-Peterson on q-normal subgroups to this setting.

Over the last 30 years the ℓ2-Betti numbers have become a major tool in
the investigation of infinite groups. The purpose of this article is to explore
the first ℓ2-Betti number of groups using only the geometry of the Cayley
graph. Our method is based on Pichot’s observation [11, Propositon 2] that
the first ℓ2-Betti number can be expressed with the rate of relations in the
Cayley graph. It follows from an elementary identity (see Lemma 1.1) that
explicit cycles in the Cayley graph give rise to upper bounds for the first ℓ2-
Betti number. Surprisingly, these elementary bounds can be used to prove
new results.

Theorem 0.1. Let p be a prime and let G be a torsion group of exponent p.

Then b
(2)
1 (G) ≤ 2p− 2.

Using a theorem of Gaboriau this implies a vanishing result for the first
ℓ2-Betti number of Burnside groups B(m, p) of exponent p.

Corollary 0.2. Let p be a prime number. If p is sufficiently large, then

b
(2)
1 (B(m, p)) = 0.

On the other hand, suppose that b
(2)
1 (B(m, p)) 6= 0 for some prime p.

Then Theorem 0.1 offers a simple solution of the restricted Burnside prob-
lem for m-generated p-groups using the multiplication formula for ℓ2-Betti
numbers of finite index subgroups.

Our method can neatly be adapted to character-theoretic generalizations
of the first ℓ2-Betti number. We recall that every character ψ (see [8,

Def. 2.5]) of the group G, gives rise to a ψ-Betti number bψ1 (G); see [8]
or Section 1. The ordinary Betti numbers and the ℓ2-Betti numbers are spe-
cial cases of this construction. However, it is difficult to calculate or bound
ψ-Betti numbers under general assumptions of ψ.
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2 C. FELDKAMP AND S. KIONKE

We extend Pichot’s observation to the general setting and we use our
method to generalize a result of Thom-Peterson [10, Theorem 5.6] to ψ-
Betti numbers; see Corollary 3.3. Even for ℓ2-Betti numbers our argument
contains a new proof of their result. This provides a convenient way to
bound (and sometimes calculate) ψ-Betti numbers in some generality. We
illustrate this by proving a vanishing result for certain ψ-Betti numbers of
right-angled groups; see Theorem 3.6.

In Section 1 we discuss basic results on ψ-Betti numbers and we introduce
our main method. In Section 2 we apply it in the case of p-torsion groups.
Section 3 is concerned with q-normality and presents applications to ψ-Betti
numbers.

1. Betti numbers and the Cayley graph

The following simple result is essential for our approach.

Lemma 1.1. Let H be a Hilbert space and let W ⊆ H be a subspace. Let
P : H → W denote the orthogonal projection onto the closure of W . Then
for all v ∈ H

〈Pv, v〉 = sup
w∈W

|〈w, v〉|2

〈w,w〉

where the supremum is taken over all non-zero elements ofW (and is defined
to be 0 if W = 0).

Proof. For v = 0 the assertion is obvious. We may assume that ‖v‖ = 1.
For all w ∈W , we note that

|〈w, v〉|2 = |〈Pw, v〉|2 = |〈w,Pv〉|2
C.S.
≤ ‖w‖2‖Pv‖2 = 〈Pv, v〉‖w‖2 .

If w 6= 0 we obtain
|〈w, v〉|2

〈w,w〉
≤ 〈Pv, v〉.

In particular, the proof is complete if Pv = 0.
For the converse we assume Pv 6= 0. Let ε ∈ (0, 1). Since W is dense in

W , there is w ∈W with ‖Pv − w‖ < ε‖Pv‖2 and we deduce

|〈w, v〉| ≥ 〈Pv, v〉 − |〈w − Pv, v〉|
C.S.
≥ 〈Pv, v〉 − ‖w − Pv‖ ≥ (1− ε)〈Pv, v〉.

In addition, we note that ‖w‖ = ‖w − Pv + Pv‖ ≤ (1 + ε)‖Pv‖ and so

|〈w, v〉|2

〈w,w〉
≥

(1− ε)2

(1 + ε)2
〈Pv, v〉

The assertion follows as ε can be arbitrarily close to 0. �

Let G be a group. A character of G is a function ψ : G → C of positive
type, which is constant on conjugacy classes of G and satisfies ψ(1G) = 1;
see [8, Def. 2.5]. Let Ch(G) denote the space of all characters of G. Every
character ψ ∈ Ch(G) gives rise to a semi-definite G-invariant inner product
〈g, h〉ψ = ψ(h−1g) on the group ring C[G]. Passing to the completion pro-

vides us with a tracial Hilbert G-bimodule ℓψ(G); see [8, Def. 2.1]. Using
the GNS construction, this provides a tracial von Neumann algebra and a

notion of dimension, which can be used to define the ψ-Betti numbers bψk (G)
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of G, provided that G satisfies suitable finiteness properties. Specifically bψ0
is defined for all groups and bψ1 is defined for all finitely generated groups.

For the regular character δ with δ(g) = 0 for all g 6= 1G, one has ℓδ(G) =

ℓ2(G) and one obtains the famous ℓ2-Betti numbers b
(2)
k (G). The constant

character (i.e., ψ(g) = 1 for all g) gives rise to the ordinary rational Betti
numbers of G since ℓψ(G) ∼= C.

Definition 1.2. Let G be a group and let ψ ∈ Ch(G). A subgroup K ≤ G
is ψ-regular, if ψ|K is the regular character on K, i.e. ψ(k) = 0 for all
k ∈ K\{1}.

Here we are mainly interested in the first Betti numbers bψ1 (G). It will
however be useful and instructive to initially consider the 0-th Betti number.
Let JG denote the augmentation ideal in C[G], i.e. the set of elements w =
∑

g∈Gwgg which satisfy
∑

g∈G wg = 0.

Lemma 1.3. Let G be a group and let ψ ∈ Ch(G) be a character.

(a) bψ0 (G) = 1− supw∈JG
〈w,1〉2

ψ

〈w,w〉ψ
where the supremum is taken over all non-

zero elements of JG.

(b) If G =
⋃

i∈I Gi is a directed union of subgroups Gi, then limi∈I b
ψ
0 (Gi) =

bψ0 (G).

(c) bψ0 (G) ≤
1

|K| for every ψ-regular subgroup K ≤ G.

Remark 1.4. It is well-known that b
(2)
0 (G) = 1

|G| ; see [9, Thm. 1.35 (8)].

Proof. Let S be a generating set for G. We consider the initial segment of
the associated free resolution of C:

C[G]S
∂1−→ C[G] −→ C.

The image of ∂1 is the augmentation ideal. We take the tensor product with
ℓψ(G) and deduce that

bψ0 (G) = 1− dimψ(JG).

where JG denotes the closure of the image of the augmentation ideal in
ℓψ(G). Let P : ℓψ(G) → JG denote the orthogonal projection. By definition

dimψ(JG) = 〈P (1), 1〉ψ

and assertion (a) follows from Lemma 1.1. Let G =
⋃
Gi be a direct union

of subgroups, then JG =
⋃
JGi and (b) follows immediately from (a).

Let K ≤ G be a ψ-regular subgroup. Let T ⊆ K \ {1} be a finite subset.
Then

w = |T | · 1G −
∑

k∈T

k ∈ JG.

Since K is ψ-regular, the elements of K are orthonormal and we deduce

|〈w, 1〉ψ |
2

〈w,w〉ψ
=

|T |2

|T |2 + |T |
=

|T |

|T |+ 1
.

Now (a) implies bψ0 (K) ≤ 1− |T |
|T |+1 = 1

|T |+1 . Statement (c) follows by taking

T = K \ {1} if K is finite respectively letting |T | tend to ∞ otherwise. �
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We would like to apply the same ideas to the first ψ-Betti number bψ1 (G).

However, up to now we only have a definition of bψ1 (G) for all finitely gener-
ated groups G. We also require a definition for groups which are not finitely
generated. This could be done using Lück’s generalized dimension function
(discussed in [9, §6.1, 6.2]), but this is not convenient for our purposes and
for simplicity we work with the following variation.

Definition 1.5. Let G be a group and let ψ ∈ Ch(G). Then

b̄ψ1 (G) := lim inf
H≤G

bψ1 (H)

where the limit is taken over the directed system of all finitely generated
subgroups H ≤ G.

Remark 1.6. For a finitely generated group b̄ψ1 (G) = bψ1 (G). In general

however, b̄ψ1 (G) can be strictly larger than the properly defined value of the
first ψ-Betti number. It is easy to see this for the ordinary Betti numbers.
For instance, it follows from the methods developed in [5] that 〈(xi)i∈Z |
xixi+1x

−1
i = x2i+1〉, is a perfect and locally indicable group, i.e., the ordinary

rational Betti number of every finitely generated subgroup is ≥ 1.

For the classical ℓ2-Betti number the inequality b
(2)
1 (G) ≤ b̄

(2)
1 (G) follows

from the argument given in the proof of [9, Theorem 7.2 (3)].

For later reference we state the following observation.

Lemma 1.7. Let G be a group and let ψ ∈ Ch(G). If G =
⋃

i∈I Gi is a
directed union of subgroups Gi, then

b̄ψ1 (G) ≤ lim inf
i∈I

b̄ψ1 (Gi)

Proof. Let ε > 0. There is a finitely generated subgroup H0 ≤ G such that

bψ1 (H) ≥ b̄ψ1 (G) − ε for all finitely generated subgroups H that contain H0.
Since H0 is finitely generated, there is i ∈ I such that H0 ⊆ Gi. Thus for

all j ≥ i we have b̄ψ1 (Gj) ≥ b̄ψ1 (G) − ε. �

Assume that G is finitely generated and that S is a finite generating set.
The Cayley graph Cay(G,S) is the directed graph with vertex set G and
edges

EG,S = {(g, gs) | g ∈ G, s ∈ S}.

The edge (1G, s) will be denoted by s̄. The Cayley graph is equipped with
a left action of G. Let C[EG,S] be the vector space with basis EG,S and let
∂ : C[EG,S] → C[G] denote the boundary map. A finite cycle in Cay(G,S)
is an element z ∈ C[EG,S] with ∂(z) = 0. Let ZG,S denote the space of finite
cycles. If ψ ∈ Ch(G) is a character, then the semi-definite inner product
〈·, ·〉ψ extends to a G-invariant semi-definite inner product on C[EG,S ] such
that the edges {s̄ | s ∈ S} are orthonormal; this means

〈(g, gs), (h, ht)〉ψ =

{

0 if s 6= t

ψ(h−1g) if s = t

The following extends [11, Prop. 2] and is our main tool.
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Lemma 1.8. Let G be a group and let S be a finite generating set. Let
ψ ∈ Ch(G) be a character. Then

bψ1 (G) = |S| − 1 + bψ0 (G)−
∑

s∈S

sup
z∈ZG,S

|〈z, s̄〉ψ|
2

〈z, z〉ψ

where the suprema are taken over all non-zero elements of ZG,S.

Proof. The finite generating set S provides us with a presentation G ∼= F/R
of G where F is the free group over S and R is the subgroup of relations.
We consider the initial segment of the associated free resolution of C:

C[G]R
∂2−→ C[G]S

∂1−→ C[G] −→ C.

Tensoring with ℓψ(G) gives

ℓψ(G)R
∂2−→ ℓψ(G)S

∂1−→ ℓψ(G).

The middle term is naturally isomorphic to the completion of C[EG,S] with
respect to 〈·, ·〉ψ . The image of ∂2 is the closure of ZG,S. The ψ-dimension

of the closure of the image of ∂1 is 1− bψ0 (G). We deduce that

bψ1 (G) = |S| − (1− bψ0 (G)) − dimψ(ZG,S).

Let P : ℓψ(G)S → ZG,S denote the orthogonal projection. By definition

dimψ(ZG,S) =
∑

s∈S

〈P s̄, s̄〉ψ

and the result follows from Lemma 1.1 �

Remark 1.9. It seems surprising that the value on the right hand side is
independent from the chosen set of generators. This is a consequence of the
homotopy invariance of the ψ-Betti numbers, which can be proven using the
standard argument; e.g. [7, Thm. 3.18] or [9].

2. Torsion groups

In view of Remark 1.6, the following result implies Theorem 0.1.

Theorem 2.1. Let p be a prime. Let G be a torsion group of exponent p.

Then b̄
(2)
1 (G) ≤ 2p− 2.

Proof. We may assume that G is infinite (and b
(2)
0 = 0), otherwise b

(2)
1 (G) =

0 and there is nothing to show. By the definition of b̄
(2)
1 (G) (see Remark

1.6), we may assume that G is finitely generated.
We choose a minimal generating set S of G and denote the number of

elements by N = |S|. Since all elements of G have prime order, all pairwise
distinct elements a, b, c ∈ S satisfy

〈ac〉 ∩ 〈ab〉 = {1} (1)

Suppose for a contradiction that there are three distinct elements a, b, c ∈ S
with 〈ac〉 ∩ 〈ab〉 6= {1}, then these cyclic groups of prime order coincide and

ac = (ab)k

for some k ∈ N, i.e., c ∈ 〈a, b〉 which contradicts the minimality of S.
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For all a ∈ S we have N − 1 relations

(ab)p

of length 2p for all b 6= a in S. By condition (1), the only common edge in
the Cayley graph is the first edge ā from 1 to a. Summing up these cycles,
we obtain a cycle za in Cay(G,S) with

〈za, ā〉
2

〈za, za〉
=

(N − 1)2

(N − 1)2 + (N − 1)(2p − 1)
=

1

1 + 2p−1
N−1

.

We deduce from Lemma 1.8 that

b
(2)
1 (G) ≤ N − 1−

∑

a∈S

〈za, ā〉
2

〈za, za〉
= N − 1−

N

1 + 2p−1
N−1

=
2p − 2

1 + 2p−1
N−1

6 2p − 2.

�

Theorem 2.2. Let p be a prime number and let G be a countable torsion
group of exponent p. If G has an infinite normal subgroup N of infinite
index, then

b
(2)
1 (G) = 0.

Proof. By Theorem 2.1 and Remark 1.6 we have b
(2)
1 (N) ≤ b̄

(2)
1 (N) ≤ 2p−2.

By Gaboriau’s Theorem [4, Thm. 6.8], this implies b
(2)
1 (G) = 0. �

Proof of Corollary 0.2. Recall that B(m, p) denotes the Burnside group of

exponent p and rank m. Since B(1, p) is finite, we have b
(2)
1 (B(1, p)) = 0.

Assume m ≥ 2. For sufficiently large p, the main result of [6] implies
that B(m, p) contains a Q-subgroup H which is isomorphic to B(∞, p). A

Q-subgroup has the property that the normal closure 〈K〉B(m,p) in B(m, p)
of any normal subgroup K E H intersects H exactly in K.

Take a projection from B(∞, p) onto B(∞, p) with an infinite kernel K.
Then the normal closure 〈K〉B(m,p) is an infinite normal subgroup of B(m, p)
of infinite index. Now Theorem 2.2 implies the result. �

Remark 2.3. (1) Ivanov [6] quantifies sufficiently large as p > 1078.

(2) One can also deduce b
(2)
1 (B(m, p)) = 0 for m ≥ 3 under the as-

sumption that B(2, p) is infinite1 using the normal subgroup N =
ker(B(m, p) → B(m− 1, p)).

Indeed, let x1, x2, . . . , xm be a free generating set of B(m, p) such
that N is the normal closure of x1 in B(m, p). Since 〈x1, x2〉 ⊆
N〈x2〉 and 〈x1, x2〉 ∼= B(p, 2) is infinite, we deduce that N is infinite.
Moreover, N has infinite index, since B(m, p)/N ∼= B(m− 1, p).

(3) We expect that b
(2)
1 (B(m, p)) = 0 for all p,m. On the other hand, if

b
(2)
1 (B(m, p)) > 0 holds for somem and p, then this offers a simple so-
lution to the restricted Burnside problem for m-generated p-groups.

1According to Adian [2] the Burnside groups B(2, p) are infinite for all p > 100.
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More precisely, every finite index normal subgroup N E B(m, p)
satisfies

|B(m, p) : N | · b
(2)
1 (B(m, p)) = b

(2)
1 (N) ≤ 2p− 2

by Theorem 2.1 and this inequality imposes an upper bound on the
index of N .

3. q-normality and applications

Lemma 3.1. Let G = 〈H, a〉 be a group and let ψ ∈ Ch(G) be a character.
Assume that aHa−1∩H contains a ψ-regular subgroup of order n ∈ N∪{∞}.
Then

b̄ψ1 (G) − bψ0 (G) 6 b̄ψ1 (H) +
3 + 2Re(ψ(a))

n+ 2 + 2Re(ψ(a))

In particular

b̄ψ1 (G) 6 b̄ψ1 (H).

for n = ∞.

Proof. Without loss of generality we assume that a 6∈ H. We denote the ψ-
regular subgroup of order n in H ∩ aHa−1 by K. For a finite subset S ⊆ H,

we define HS = 〈S〉. Since K is ψ-regular, we obtain bψ0 (H) 6 bψ0 (G) 6
1
n

and bψ0 (HS) ≤ |K ∩HS|
−1 by Remark 1.9.

For n = ∞, let S ⊆ H be any finite subset and denote by h1, h2, . . . , hk
the pairwise distinct elements of S∩aSa−1∩K. If n <∞, we choose S ⊆ H
such that

S ∩ aSa−1 = K \ {1} = {h1, h2, . . . , hk}.

In both situations we define S′ = S ∪{a} and G′ = 〈S′〉. Lemma 1.8 implies

bψ1 (G
′)− bψ0 (G

′) = |S′| − 1−
∑

s∈S′

sup
z∈ZG′,S′

|〈z, s̄〉ψ|
2

〈z, z〉ψ

≤ |S|+ 1− 1−
∑

s∈S

sup
z∈ZHS,S

|〈z, s̄〉ψ|
2

〈z, z〉ψ
− sup
z∈ZG′,S′

|〈z, ā〉ψ|
2

〈z, z〉ψ

≤ b
(2)
1 (HS) + 1− sup

z∈ZG,S′

|〈z, ā〉ψ|
2

〈z, z〉ψ
. (2)

To obtain a lower bound for supz∈ZG,S′
|〈z,ā〉ψ |

2

〈z,z〉ψ
, we consider the Cayley graph

Cay(G′, S′) ofG′ and exhibit a suitable cycle z. Each relation ahia
−1(ahia

−1)−1

provides a cycle zi of length 4 in Cay(G′, S′), i.e.,

zi = (1, a)
︸ ︷︷ ︸

=ā

+(a, ahi)− (ahia
−1, ahi)− (1, ahia

−1).

Note that the cycles zi touch exactly four vertices, since hi 6= 1 and a 6∈ H.
In additon, the cycles zi have no common edges, except for ā. We define

z =
∑k

i=1 zi to be the sum of these cycles. Since ψ(ahia
−1) = ψ(hi) = 0

holds for all i ≤ k, we deduce

〈z, ā〉ψ = k〈ā, ā〉ψ −

k∑

i=1

〈(ahia
−1, ahi), ā〉ψ = k −

k∑

i=1

ψ(ahia
−1) = k
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We note further (using again that K is ψ-regular) that for given i, j ≤ k the
edges 6= ā in zi, zj are orthogonal unless hi = ahja

−1 or ahia
−1 = hj . Each of

these cases occurs at most once for every i and then 〈(a, ahi), (1, ahja
−1)〉ψ =

ψ(a) and 〈(1, ahia
−1), (a, ahj)〉ψ = ψ(a) respectively. We deduce

〈z, z〉ψ =
∑

i,j

〈zi, zj〉ψ ≤ 4k
︸︷︷︸

i=j

+ k2 − k + k(ψ(a) + ψ(a))
︸ ︷︷ ︸

i 6=j

≤ k2 + (3 + 2Re(ψ(a)))k (3)

and conclude
〈z, ā〉2ψ
〈z, z〉ψ

≥
1

1 + 3+2Re(ψ(a))
k

.

Finally, we use this cycle in combination with inequality (2) to obtain

bψ1 (G
′)− bψ0 (G

′) 6 b
(2)
1 (HS) + 1− sup

z∈ZG,S′

|〈z, ā〉ψ|
2

〈z, z〉ψ

6 b
(2)
1 (HS) + 1−

1

1 + 3+2Re(ψ(a))
k

= b
(2)
1 (HS) +

3 + 2Re(ψ(a))

k + 3 + 2Re(ψ(a))
−→
k→∞

b
(2)
1 (HS)

For n = ∞ we can make k arbitrary large. In the case n < ∞ we have
k = n− 1 by construction. We note that every finitely generated subgroup
of G is contained in a group of the form G′. The result follows from Lemma
1.7 and Lemma 1.3 (b).

If n = ∞, then G contains an infinite ψ-regular subgroup and bψ0 (G) = 0
by Lemma 1.3 (c). �

In the spirit of Popa [12] and Thom-Peterson [10] we introduce the fol-
lowing notion.

Definition 3.2. Let G be a group and let ψ ∈ Ch(G). A subgroup H ≤ G
is q-ψ-normal, if there is a set A ⊆ G such that G = 〈H∪A〉 and H∩aHa−1

contains an infinite ψ-regular subgroup for all a ∈ A.
A subgroup H ≤ G is weakly q-ψ-normal, if there is an ordinal number α

and an increasing chain of subgroupsH0 = H toHα = G such that
⋃

β<γ Hβ

is q-ψ-normal in Hγ for all γ ≤ α.

Based on Lemma 3.1 we obtain the following analog of [10, Theorem 5.6].

Corollary 3.3. Let G be a group and let ψ ∈ Ch(G). If H ≤ G is a weakly
q-ψ-normal subgroup, then

b̄ψ1 (G) ≤ b̄ψ1 (H).

Proof. Assume that H is q-ψ-normal. Then G = 〈H ∪ A〉 and H ∩ aHa−1

contains an infinite ψ-regular subgroup for all a ∈ A. If A is finite, then the
assertion follows inductively from Lemma 3.1. Assume that A is infinite. For
every finite subset B ⊆ A, we define GB = 〈H ∪ B〉. Then G =

⋃

B⊆AGB
and Lemma 1.7 implies

b̄ψ1 (G) ≤ lim inf
B⊆A

b̄ψ1 (GB) ≤ b̄ψ1 (H).
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The result for weakly q-ψ-normal subgroups follows by transfinite induction
using Lemma 1.7. �

Corollary 3.4. Let G be a group and let ψ ∈ Ch(G).

(1) If G is an HNN-extension of H with associated subgroups A,B and

A contains an infinite ψ-regular subgroup, then we have b̄ψ1 (G) ≤

b̄ψ1 (H).
(2) If G = A∗C B is an amalgamated product such that C is q-ψ-normal

in B. Then we have b
ψ
1 (G) ≤ b̄ψ1 (A).

(3) If G contains an infinite normal amenable ψ-regular subgroup, then

bψ1 (G) = 0.

Proof. (1): follows immediately from Lemma 3.1.
(2): The assumptions imply that A is q-ψ-normal in G = A ∗C B and the

assertion follows from Corollary 3.3.
(3): The infinite normal amenable subgroup N is q-ψ-normal in G and

bψ1 (N) = b
(2)
1 (N) = 0 by [3, Thm. 0.2]. �

We illustrate the helpfulness of q-normality with an application to right-
angled groups. This notion was put forward in [1, Definition 1].

Definition 3.5 (right-angled groups). A group G is right-angled, if it is
the quotient of a right-angled Artin group AΓ with a finite connected graph
Γ = (I, E) such that the image of every generator σi (i ∈ I) has infinite
order in G.

The image of the generating set of AΓ will be called a right-angled set of
generators.

Theorem 3.6. Let G be a right-angled group and let S = {si | i ∈ I} be a
right-angled set of generators. If ψ ∈ Ch(G) is such that the cyclic subgroup

〈si〉 is ψ-regular for every i ∈ I. Then we have bψ1 (G) = 0.

Proof. Our proof will be by induction over the number n = |I| ∈ N of gen-

erators. For the base of induction we note that b
(2)
1 (Z) = 0. We assume

for the induction step w. l. o. g. S = {s1, s2, . . . , sn, sn+1} such that sn com-
mutes with sn+1 and such that G′ = 〈s1 . . . , sn〉 is a right-angled group with

b
(2)
1 (G′) = 0. We claim that G′ is q-ψ-normal. Indeed, set H = 〈sn〉 and
a = sn+1, a

−1G′a ∩ G′ ⊇ H and H is ψ-regular by assumption. Now the
result follows from Lemma 3.1. �

Using this calculation and the approximation methods from [8] one can
control the growth of Betti numbers in right-angled Artin groups with re-
spect to normal chains with non-trivial intersection.

Corollary 3.7. Let AΓ be a right-angled Artin group for a finite connected
graph Γ with generating set {σi | i ∈ I}. Let N1 D N2 D . . . be a descending
chain of finite index normal subgroups in AΓ. If the order ordAΓ/Nn(σi) in
the finite factors AΓ/Nn is unbounded for each generator σi, then

lim
n→∞

b1(Nn)

|AΓ : Nn|
= 0.
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Proof. Let ψn be the character of the permutation action of AΓ on AΓ/Nn.
Since the sequence of normal subgroups is descending, the sequence ψn con-
verges in Ch(AΓ) to a character ψ. Since each character ψn is sofic and AΓ

is finitely presented, it follows from [8, Theorem 3.5] that

bψ1 (AΓ) = lim
n→∞

bψn1 (AΓ) = lim
n→∞

b1(Nn)

|AΓ : Nn|

If the order ordAΓ/Nn(σi) tends to infinity, ψn(σ
k
i ) vanishes for all k 6= 0

and all large n, i.e., 〈σi〉 is a ψ-regular subgroup. Theorem 3.6 implies that

bψ1 (AΓ) = 0 and this completes the proof. �
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