ON UPPER BOUNDS FOR THE FIRST ℓ^2 -BETTI NUMBER

CARSTEN FELDKAMP AND STEFFEN KIONKE

Abstract. This article presents a method for proving upper bounds for the first ℓ^2 -Betti number of groups using only the geometry of the Cayley graph. As an application we prove that Burnside groups of large prime exponent have vanishing first ℓ^2 -Betti number.

Our approach extends to generalizations of ℓ^2 -Betti numbers, that are defined using characters. We illustrate this flexibility by generalizing results of Thom-Peterson on q-normal subgroups to this setting.

Over the last 30 years the ℓ^2 -Betti numbers have become a major tool in the investigation of infinite groups. The purpose of this article is to explore the first ℓ^2 -Betti number of groups using only the geometry of the Cayley graph. Our method is based on Pichot's observation [\[11,](#page-9-0) Propositon 2] that the first ℓ^2 -Betti number can be expressed with the *rate of relations* in the Cayley graph. It follows from an elementary identity (see Lemma [1.1\)](#page-1-0) that explicit cycles in the Cayley graph give rise to upper bounds for the first ℓ^2 -Betti number. Surprisingly, these elementary bounds can be used to prove new results.

Theorem 0.1. Let p be a prime and let G be a torsion group of exponent p . Then $b_1^{(2)}$ $2^{(2)}_1(G) \leq 2p-2.$

Using a theorem of Gaboriau this implies a vanishing result for the first ℓ^2 -Betti number of Burnside groups $B(m, p)$ of exponent p.

Corollary 0.2. Let p be a prime number. If p is sufficiently large, then $b_1^{(2)}$ $_1^{(2)}(B(m,p))=0.$

On the other hand, suppose that $b_1^{(2)}$ $\binom{1}{1}(B(m,p)) \neq 0$ for some prime p. Then Theorem [0.1](#page-0-0) offers a simple solution of the restricted Burnside problem for *m*-generated *p*-groups using the multiplication formula for ℓ^2 -Betti numbers of finite index subgroups.

Our method can neatly be adapted to character-theoretic generalizations of the first ℓ^2 -Betti number. We recall that every character ψ (see [\[8,](#page-9-1) Def. 2.5]) of the group G, gives rise to a ψ -Betti number b_1^{ψ} $_{1}^{\psi}(G)$; see [\[8\]](#page-9-1) or Section [1.](#page-1-1) The ordinary Betti numbers and the ℓ^2 -Betti numbers are special cases of this construction. However, it is difficult to calculate or bound ψ -Betti numbers under general assumptions of ψ .

Date: February 8, 2022.

²⁰²⁰ Mathematics Subject Classification. Primary 20F05; Secondary 20F50, 20F69. Key words and phrases. ℓ^2 -Betti number, Burnside group.

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - 441848266.

We extend Pichot's observation to the general setting and we use our method to generalize a result of Thom-Peterson [\[10,](#page-9-2) Theorem 5.6] to ψ -Betti numbers; see Corollary [3.3.](#page-7-0) Even for ℓ^2 -Betti numbers our argument contains a new proof of their result. This provides a convenient way to bound (and sometimes calculate) ψ -Betti numbers in some generality. We illustrate this by proving a vanishing result for certain ψ -Betti numbers of right-angled groups; see Theorem [3.6.](#page-8-0)

In Section [1](#page-1-1) we discuss basic results on ψ -Betti numbers and we introduce our main method. In Section [2](#page-4-0) we apply it in the case of p-torsion groups. Section [3](#page-6-0) is concerned with q-normality and presents applications to ψ -Betti numbers.

1. Betti numbers and the Cayley graph

The following simple result is essential for our approach.

Lemma 1.1. Let H be a Hilbert space and let $W \subseteq H$ be a subspace. Let $P: \mathcal{H} \to \overline{W}$ denote the orthogonal projection onto the closure of W. Then for all $v \in \mathcal{H}$

$$
\langle Pv, v \rangle = \sup_{w \in W} \frac{|\langle w, v \rangle|^2}{\langle w, w \rangle}
$$

where the supremum is taken over all non-zero elements of W (and is defined to be 0 if $W = 0$).

Proof. For $v = 0$ the assertion is obvious. We may assume that $||v|| = 1$. For all $w \in W$, we note that

$$
|\langle w, v \rangle|^2 = |\langle Pw, v \rangle|^2 = |\langle w, Pv \rangle|^2 \stackrel{C.S.}{\leq} ||w||^2 ||Pv||^2 = \langle Pv, v \rangle ||w||^2.
$$

If $w \neq 0$ we obtain

$$
\frac{|\langle w,v\rangle|^2}{\langle w,w\rangle}\leq \langle Pv,v\rangle.
$$

In particular, the proof is complete if $P v = 0$.

For the converse we assume $P v \neq 0$. Let $\varepsilon \in (0, 1)$. Since W is dense in W, there is $w \in W$ with $||P v - w|| < \varepsilon ||P v||^2$ and we deduce

$$
|\langle w, v \rangle| \ge \langle Pv, v \rangle - |\langle w - Pv, v \rangle| \stackrel{C.S.}{\ge} \langle Pv, v \rangle - \|w - Pv\| \ge (1 - \varepsilon) \langle Pv, v \rangle.
$$

In addition, we note that $||w|| = ||w - Pv + Pv|| \le (1 + \varepsilon) ||Pv||$ and so

$$
\frac{|\langle w,v\rangle|^2}{\langle w,w\rangle}\geq \frac{(1-\varepsilon)^2}{(1+\varepsilon)^2}\langle Pv,v\rangle
$$

The assertion follows as ε can be arbitrarily close to 0.

Let G be a group. A *character* of G is a function $\psi: G \to \mathbb{C}$ of positive type, which is constant on conjugacy classes of G and satisfies $\psi(1_G) = 1$; see [\[8,](#page-9-1) Def. 2.5]. Let $Ch(G)$ denote the space of all characters of G. Every character $\psi \in \text{Ch}(G)$ gives rise to a semi-definite G-invariant inner product $\langle g, h \rangle_{\psi} = \psi(h^{-1}g)$ on the group ring C[G]. Passing to the completion provides us with a tracial Hilbert G-bimodule $\ell^{\psi}(G)$; see [\[8,](#page-9-1) Def. 2.1]. Using the GNS construction, this provides a tracial von Neumann algebra and a notion of dimension, which can be used to define the ψ -Betti numbers b_k^{ψ} $_k^{\psi}(G)$

of G, provided that G satisfies suitable finiteness properties. Specifically b_0^{ψ} 0 is defined for all groups and b_1^{ψ} $\frac{\psi}{1}$ is defined for all finitely generated groups.

For the regular character δ with $\delta(g) = 0$ for all $g \neq 1_G$, one has $\ell^{\delta}(G) =$ $\ell^2(G)$ and one obtains the famous ℓ^2 -Betti numbers $b_k^{(2)}$ $k^{(2)}(G)$. The constant character (i.e., $\psi(q) = 1$ for all g) gives rise to the ordinary rational Betti numbers of G since $\ell^{\psi}(G) \cong \mathbb{C}$.

Definition 1.2. Let G be a group and let $\psi \in \text{Ch}(G)$. A subgroup $K \leq G$ is ψ -regular, if $\psi|_K$ is the regular character on K, i.e. $\psi(k) = 0$ for all $k \in K \backslash \{1\}.$

Here we are mainly interested in the first Betti numbers b_1^{ψ} $_1^{\psi}(G)$. It will however be useful and instructive to initially consider the 0-th Betti number. $\sum_{g \in G} w_g g$ which satisfy $\sum_{g \in G} w_g = 0$. Let J_G denote the augmentation ideal in $\mathbb{C}[G]$, i.e. the set of elements $w =$

Lemma 1.3. Let G be a group and let $\psi \in \text{Ch}(G)$ be a character.

- $(a) b_0^{\psi}$ $\psi_0^{\psi}(G) = 1 - \sup_{w \in J_G} \frac{\langle w,1 \rangle_{\psi}^2}{\langle w, w \rangle_{\psi}}$ where the supremum is taken over all nonzero elements of J_G .
- (b) If $G = \bigcup_{i \in I} G_i$ is a directed union of subgroups G_i , then $\lim_{i \in I} b_0^{\psi}$ $_0^{\psi}(G_i) =$ b_0^{ψ} $_0^{\psi}(G).$
- (c) b_0^{ψ} $_0^{\psi}(G)\leq \frac{1}{|K|}$ $\frac{1}{|K|}$ for every ψ -regular subgroup $K \leq G$.

Remark 1.4. It is well-known that $b_0^{(2)}$ $\mathcal{O}_0^{(2)}(G) = \frac{1}{|G|}$; see [\[9,](#page-9-3) Thm. 1.35 (8)].

Proof. Let S be a generating set for G . We consider the initial segment of the associated free resolution of C:

$$
\mathbb{C}[G]^S \xrightarrow{\partial_1} \mathbb{C}[G] \longrightarrow \mathbb{C}.
$$

The image of ∂_1 is the augmentation ideal. We take the tensor product with $\ell^{\psi}(G)$ and deduce that

$$
b_0^{\psi}(G) = 1 - \dim_{\psi}(\overline{J_G}).
$$

where J_G denotes the closure of the image of the augmentation ideal in $\ell^{\psi}(G)$. Let $P: \ell^{\psi}(G) \to \overline{J_G}$ denote the orthogonal projection. By definition

$$
\dim_{\psi}(\overline{J_G}) = \langle P(1), 1 \rangle_{\psi}
$$

and assertion [\(a\)](#page-2-0) follows from Lemma [1.1.](#page-1-0) Let $G = \bigcup G_i$ be a direct union of subgroups, then $J_G = \bigcup J_{G_i}$ and [\(b\)](#page-2-1) follows immediately from [\(a\)](#page-2-0).

Let $K \leq G$ be a ψ -regular subgroup. Let $T \subseteq K \setminus \{1\}$ be a finite subset. Then

$$
w = |T| \cdot 1_G - \sum_{k \in T} k \in J_G.
$$

Since K is ψ -regular, the elements of K are orthonormal and we deduce

$$
\frac{|\langle w, 1 \rangle_{\psi}|^2}{\langle w, w \rangle_{\psi}} = \frac{|T|^2}{|T|^2 + |T|} = \frac{|T|}{|T| + 1}.
$$

Now [\(a\)](#page-2-0) implies b_0^{ψ} $\frac{\psi}{0}(K) \leq 1 - \frac{|T|}{|T|+1} = \frac{1}{|T|+1}$. Statement [\(c\)](#page-2-2) follows by taking $T = K \setminus \{1\}$ if K is finite respectively letting |T| tend to ∞ otherwise.

We would like to apply the same ideas to the first ψ -Betti number b_1^{ψ} $_1^{\psi}(G)$. However, up to now we only have a definition of b_1^{ψ} $_1^{\psi}(G)$ for all finitely generated groups G. We also require a definition for groups which are not finitely generated. This could be done using Lück's generalized dimension function (discussed in [\[9,](#page-9-3) §6.1, 6.2]), but this is not convenient for our purposes and for simplicity we work with the following variation.

Definition 1.5. Let G be a group and let $\psi \in \text{Ch}(G)$. Then

$$
\bar{b}_1^{\psi}(G) := \liminf_{H \leq G} b_1^{\psi}(H)
$$

where the limit is taken over the directed system of all finitely generated subgroups $H \leq G$.

Remark 1.6. For a finitely generated group \bar{b}_1^{ψ} $\frac{\psi}{1}(G) = b_1^{\psi}$ $_1^{\psi}(G)$. In general however, \bar{b}_1^{ψ} $\binom{w}{1}(G)$ can be strictly larger than the properly defined value of the first ψ -Betti number. It is easy to see this for the ordinary Betti numbers. For instance, it follows from the methods developed in [\[5\]](#page-9-4) that $\langle (x_i)_{i\in\mathbb{Z}}\rangle$ $x_i x_{i+1} x_i^{-1} = x_{i+1}^2$, is a perfect and locally indicable group, i.e., the ordinary rational Betti number of every finitely generated subgroup is ≥ 1 .

For the classical ℓ^2 -Betti number the inequality $b_1^{(2)}$ $\bar{b}_1^{(2)}(G) \leq \bar{b}_1^{(2)}$ $_1^{(2)}(G)$ follows from the argument given in the proof of $[9,$ Theorem 7.2 (3)].

For later reference we state the following observation.

Lemma 1.7. Let G be a group and let $\psi \in \text{Ch}(G)$. If $G = \bigcup_{i \in I} G_i$ is a directed union of subgroups G_i , then

$$
\bar{b}_1^{\psi}(G) \le \liminf_{i \in I} \bar{b}_1^{\psi}(G_i)
$$

Proof. Let $\varepsilon > 0$. There is a finitely generated subgroup $H_0 \leq G$ such that b_1^{ψ} $j_1^{\psi}(H) \geq \bar{b}_1^{\psi}$ $\frac{\psi}{1}(G) - \varepsilon$ for all finitely generated subgroups H that contain H_0 . Since H_0 is finitely generated, there is $i \in I$ such that $H_0 \subseteq G_i$. Thus for all $j \geq i$ we have \bar{b}_1^{ψ} $\frac{\psi}{1}(G_j)\geq \bar{b}_1^{\psi}$ $\frac{\psi}{1}(G) - \varepsilon.$

Assume that G is finitely generated and that S is a finite generating set. The Cayley graph $Cay(G, S)$ is the directed graph with vertex set G and edges

$$
E_{G,S} = \{ (g, gs) \mid g \in G, s \in S \}.
$$

The edge $(1_G, s)$ will be denoted by \bar{s} . The Cayley graph is equipped with a left action of G. Let $\mathbb{C}[E_{G,S}]$ be the vector space with basis $E_{G,S}$ and let $\partial: \mathbb{C}[E_{G,S}] \to \mathbb{C}[G]$ denote the boundary map. A finite cycle in Cay (G, S) is an element $z \in \mathbb{C}[E_{G,S}]$ with $\partial(z) = 0$. Let $Z_{G,S}$ denote the space of finite cycles. If $\psi \in \text{Ch}(G)$ is a character, then the semi-definite inner product $\langle \cdot, \cdot \rangle_{\psi}$ extends to a G-invariant semi-definite inner product on $\mathbb{C}[E_{G,S}]$ such that the edges $\{\bar{s} \mid s \in S\}$ are orthonormal; this means

$$
\langle (g, gs), (h, ht) \rangle_{\psi} = \begin{cases} 0 & \text{if } s \neq t \\ \psi(h^{-1}g) & \text{if } s = t \end{cases}
$$

The following extends [\[11,](#page-9-0) Prop. 2] and is our main tool.

Lemma 1.8. Let G be a group and let S be a finite generating set. Let $\psi \in \text{Ch}(G)$ be a character. Then

$$
b_1^{\psi}(G) = |S| - 1 + b_0^{\psi}(G) - \sum_{s \in S} \sup_{z \in Z_{G,S}} \frac{|\langle z, \overline{s} \rangle_{\psi}|^2}{\langle z, z \rangle_{\psi}}
$$

where the suprema are taken over all non-zero elements of $Z_{G,S}$.

Proof. The finite generating set S provides us with a presentation $G \cong F/R$ of G where F is the free group over S and R is the subgroup of relations. We consider the initial segment of the associated free resolution of \mathbb{C} :

$$
\mathbb{C}[G]^R \xrightarrow{\partial_2} \mathbb{C}[G]^S \xrightarrow{\partial_1} \mathbb{C}[G] \longrightarrow \mathbb{C}.
$$

Tensoring with $\ell^{\psi}(G)$ gives

$$
\ell^{\psi}(G)^R \xrightarrow{\partial_2} \ell^{\psi}(G)^S \xrightarrow{\partial_1} \ell^{\psi}(G).
$$

The middle term is naturally isomorphic to the completion of $\mathbb{C}[E_{G,S}]$ with respect to $\langle \cdot, \cdot \rangle_{\psi}$. The image of ∂_2 is the closure of $Z_{G,S}$. The ψ -dimension of the closure of the image of ∂_1 is $1 - b_0^{\psi}$ $_{0}^{\psi}(G)$. We deduce that

$$
b_1^{\psi}(G) = |S| - (1 - b_0^{\psi}(G)) - \dim_{\psi}(\overline{Z_{G,S}}).
$$

Let $P: \ell^{\psi}(G)^S \to \overline{Z_{G,S}}$ denote the orthogonal projection. By definition

$$
\dim_{\psi}(\overline{Z_{G,S}}) = \sum_{s \in S} \langle P\bar{s}, \bar{s} \rangle_{\psi}
$$

and the result follows from Lemma [1.1](#page-1-0) \Box

Remark 1.9. It seems surprising that the value on the right hand side is independent from the chosen set of generators. This is a consequence of the homotopy invariance of the ψ -Betti numbers, which can be proven using the standard argument; e.g. [\[7,](#page-9-5) Thm. 3.18] or [\[9\]](#page-9-3).

2. Torsion groups

In view of Remark [1.6,](#page-3-0) the following result implies Theorem [0.1.](#page-0-0)

Theorem 2.1. Let p be a prime. Let G be a torsion group of exponent p. Then $\bar{b}_1^{(2)}$ $_1^{(2)}(G) \leq 2p-2.$

Proof. We may assume that G is infinite (and $b_0^{(2)} = 0$), otherwise $b_1^{(2)}$ $\binom{4}{1}$ (G) = 0 and there is nothing to show. By the definition of $\bar{b}_1^{(2)}$ $\binom{2}{1}(G)$ (see Remark [1.6\)](#page-3-0), we may assume that G is finitely generated.

We choose a minimal generating set S of G and denote the number of elements by $N = |S|$. Since all elements of G have prime order, all pairwise distinct elements $a, b, c \in S$ satisfy

$$
\langle ac \rangle \cap \langle ab \rangle = \{1\} \tag{1}
$$

Suppose for a contradiction that there are three distinct elements $a, b, c \in S$ with $\langle ac \rangle \cap \langle ab \rangle \neq \{1\}$, then these cyclic groups of prime order coincide and

$$
ac = (ab)^k
$$

for some $k \in \mathbb{N}$, i.e., $c \in \langle a, b \rangle$ which contradicts the minimality of S.

For all $a \in S$ we have $N-1$ relations

 $(ab)^p$

of length 2p for all $b \neq a$ in S. By condition [\(1\)](#page-4-1), the only common edge in the Cayley graph is the first edge \bar{a} from 1 to a. Summing up these cycles, we obtain a cycle z_a in $Cay(G, S)$ with

$$
\frac{\langle z_a, \bar{a} \rangle^2}{\langle z_a, z_a \rangle} = \frac{(N-1)^2}{(N-1)^2 + (N-1)(2p-1)} = \frac{1}{1 + \frac{2p-1}{N-1}}
$$

We deduce from Lemma [1.8](#page-4-2) that

$$
b_1^{(2)}(G) \le N - 1 - \sum_{a \in S} \frac{\langle z_a, \bar{a} \rangle^2}{\langle z_a, z_a \rangle} = N - 1 - \frac{N}{1 + \frac{2p-1}{N-1}}
$$

= $\frac{2p-2}{1 + \frac{2p-1}{N-1}} \le 2p - 2.$

.

 \Box

Theorem 2.2. Let p be a prime number and let G be a countable torsion group of exponent p. If G has an infinite normal subgroup N of infinite index, then

$$
b_1^{(2)}(G) = 0.
$$

Proof. By Theorem [2.1](#page-4-3) and Remark [1.6](#page-3-0) we have $b_1^{(2)}$ $\bar{b}_1^{(2)}(N) \leq \bar{b}_1^{(2)}$ $\binom{2}{1}$ (N) $\leq 2p-2$. By Gaboriau's Theorem [\[4,](#page-9-6) Thm. 6.8], this implies $b_1^{(2)}$ $_1^{(2)}(G) = 0.$

Proof of Corollary [0.2.](#page-0-1) Recall that $B(m, p)$ denotes the Burnside group of exponent p and rank m. Since $B(1, p)$ is finite, we have $b_1^{(2)}$ $_1^{(2)}(B(1,p))=0.$

Assume $m \geq 2$. For sufficiently large p, the main result of [\[6\]](#page-9-7) implies that $B(m, p)$ contains a Q-subgroup H which is isomorphic to $B(\infty, p)$. A Q-subgroup has the property that the normal closure $\langle K \rangle^{B(m,p)}$ in $B(m,p)$ of any normal subgroup $K \triangleleft H$ intersects H exactly in K.

Take a projection from $B(\infty, p)$ onto $B(\infty, p)$ with an infinite kernel K. Then the normal closure $\langle K \rangle^{B(m,p)}$ is an infinite normal subgroup of $B(m, p)$ of infinite index. Now Theorem [2.2](#page-5-0) implies the result. \Box

Remark 2.3. (1) Ivanov [\[6\]](#page-9-7) quantifies sufficiently large as $p > 10^{78}$.

(2) One can also deduce $b_1^{(2)}$ $\Lambda_1^{(2)}(B(m,p)) = 0$ for $m \geq 3$ under the assumption that $B(2, p)$ is infinite^{[1](#page-5-1)} using the normal subgroup $N =$ $\ker(B(m, p) \to B(m-1, p)).$

Indeed, let x_1, x_2, \ldots, x_m be a free generating set of $B(m, p)$ such that N is the normal closure of x_1 in $B(m, p)$. Since $\langle x_1, x_2 \rangle \subseteq$ $N\langle x_2 \rangle$ and $\langle x_1, x_2 \rangle \cong B(p, 2)$ is infinite, we deduce that N is infinite. Moreover, N has infinite index, since $B(m, p)/N \cong B(m-1, p)$.

(3) We expect that $b_1^{(2)}$ $\binom{1}{1}(B(m,p)) = 0$ for all p, m. On the other hand, if $b_1^{(2)}$ $\binom{1}{1}(B(m, p)) > 0$ holds for some m and p, then this offers a simple solution to the restricted Burnside problem for m-generated p-groups.

¹According to Adian [\[2\]](#page-9-8) the Burnside groups $B(2, p)$ are infinite for all $p > 100$.

More precisely, every finite index normal subgroup $N \leq B(m, p)$ satisfies

$$
|B(m,p):N|\cdot b_1^{(2)}(B(m,p)) = b_1^{(2)}(N) \le 2p-2
$$

by Theorem [2.1](#page-4-3) and this inequality imposes an upper bound on the index of N.

3. q-normality and applications

Lemma 3.1. Let $G = \langle H, a \rangle$ be a group and let $\psi \in \text{Ch}(G)$ be a character. Assume that $aHa^{-1}\cap H$ contains a ψ -regular subgroup of order $n \in \mathbb{N} \cup \{\infty\}.$ Then

$$
\bar{b}_1^{\psi}(G) - b_0^{\psi}(G) \le \bar{b}_1^{\psi}(H) + \frac{3 + 2\text{Re}(\psi(a))}{n + 2 + 2\text{Re}(\psi(a))}
$$

In particular

$$
\bar{b}_1^{\psi}(G) \leqslant \bar{b}_1^{\psi}(H).
$$

for $n = \infty$.

Proof. Without loss of generality we assume that $a \notin H$. We denote the ψ regular subgroup of order n in $H \cap aHa^{-1}$ by K. For a finite subset $S \subseteq H$, we define $H_S = \langle S \rangle$. Since K is ψ -regular, we obtain b_0^{ψ} $\stackrel{\psi}{_0}(H)\leqslant b_0^{\psi}$ $_0^{\psi}(G) \leqslant \frac{1}{n}$ and b_0^{ψ} $_{0}^{\psi}(H_S) \leq |K \cap H_S|^{-1}$ by Remark [1.9.](#page-4-4)

For $n = \infty$, let $S \subseteq H$ be any finite subset and denote by h_1, h_2, \ldots, h_k the pairwise distinct elements of $S \cap aSa^{-1} \cap K$. If $n < \infty$, we choose $S \subseteq H$ such that

$$
S \cap aSa^{-1} = K \setminus \{1\} = \{h_1, h_2, \ldots, h_k\}.
$$

In both situations we define $S' = S \cup \{a\}$ and $G' = \langle S' \rangle$. Lemma [1.8](#page-4-2) implies

$$
b_1^{\psi}(G') - b_0^{\psi}(G') = |S'| - 1 - \sum_{s \in S'} \sup_{z \in Z_{G',S'}} \frac{|\langle z, \bar{s} \rangle_{\psi}|^2}{\langle z, z \rangle_{\psi}}
$$

\n
$$
\leq |S| + 1 - 1 - \sum_{s \in S} \sup_{z \in Z_{H_S,S}} \frac{|\langle z, \bar{s} \rangle_{\psi}|^2}{\langle z, z \rangle_{\psi}} - \sup_{z \in Z_{G',S'}} \frac{|\langle z, \bar{a} \rangle_{\psi}|^2}{\langle z, z \rangle_{\psi}}
$$

\n
$$
\leq b_1^{(2)}(H_S) + 1 - \sup_{z \in Z_{G,S'}} \frac{|\langle z, \bar{a} \rangle_{\psi}|^2}{\langle z, z \rangle_{\psi}}.
$$
 (2)

To obtain a lower bound for $\sup_{z \in Z_{G,S'}} \frac{|\langle z,\bar{a} \rangle_{\psi}|^2}{\langle z,z \rangle_{\psi}}$ $\frac{\langle z, u/\psi |}{\langle z, z \rangle_{\psi}}$, we consider the Cayley graph Cay(G', S') of G' and exhibit a suitable cycle z. Each relation $ah_ia^{-1}(ah_ia^{-1})^{-1}$ provides a cycle z_i of length 4 in Cay (G', S') , i.e.,

$$
z_i = (1, a) + (a, ah_i) - (ah_i a^{-1}, ah_i) - (1, ah_i a^{-1}).
$$

Note that the cycles z_i touch exactly four vertices, since $h_i \neq 1$ and $a \notin H$. In addition, the cycles z_i have no common edges, except for \bar{a} . We define $z = \sum_{i=1}^{k} z_i$ to be the sum of these cycles. Since $\psi(ah_ia^{-1}) = \psi(h_i) = 0$ holds for all $i \leq k$, we deduce

$$
\langle z,\bar{a}\rangle_{\psi} = k\langle \bar{a},\bar{a}\rangle_{\psi} - \sum_{i=1}^{k} \langle (ah_i a^{-1}, ah_i),\bar{a}\rangle_{\psi} = k - \sum_{i=1}^{k} \psi(ah_i a^{-1}) = k
$$

We note further (using again that K is ψ -regular) that for given $i, j \leq k$ the edges $\neq \bar{a}$ in z_i, z_j are orthogonal unless $h_i = ah_ja^{-1}$ or $ah_ia^{-1} = h_j$. Each of these cases occurs at most once for every i and then $\langle (a, ah_i), (1, ah_ja^{-1}) \rangle_{\psi} =$ $\psi(a)$ and $\langle (1, ah_i a^{-1}), (a, ah_j) \rangle_{\psi} = \overline{\psi(a)}$ respectively. We deduce

$$
\langle z, z \rangle_{\psi} = \sum_{i,j} \langle z_i, z_j \rangle_{\psi} \leq \underbrace{4k}_{i=j} + \underbrace{k^2 - k + k(\psi(a) + \overline{\psi(a)})}_{i \neq j}
$$

$$
\leq k^2 + (3 + 2\text{Re}(\psi(a)))k
$$
 (3)

and conclude

$$
\frac{\langle z,\bar{a}\rangle_{\psi}^2}{\langle z,z\rangle_{\psi}} \ge \frac{1}{1 + \frac{3 + 2\text{Re}(\psi(a))}{k}}.
$$

Finally, we use this cycle in combination with inequality [\(2\)](#page-6-1) to obtain

$$
b_1^{\psi}(G') - b_0^{\psi}(G') \leq b_1^{(2)}(H_S) + 1 - \sup_{z \in Z_{G,S'}} \frac{|\langle z, \bar{a}\rangle_{\psi}|^2}{\langle z, z\rangle_{\psi}}
$$

$$
\leq b_1^{(2)}(H_S) + 1 - \frac{1}{1 + \frac{3 + 2\text{Re}(\psi(a))}{k}}
$$

$$
= b_1^{(2)}(H_S) + \frac{3 + 2\text{Re}(\psi(a))}{k + 3 + 2\text{Re}(\psi(a))} \implies b_1^{(2)}(H_S)
$$

For $n = \infty$ we can make k arbitrary large. In the case $n < \infty$ we have $k = n - 1$ by construction. We note that every finitely generated subgroup of G is contained in a group of the form G' . The result follows from Lemma [1.7](#page-3-1) and Lemma [1.3](#page-2-3) [\(b\)](#page-2-1).

If $n = \infty$, then G contains an infinite ψ -regular subgroup and b_0^{ψ} $_{0}^{\psi}(G)=0$ by Lemma 1.3 [\(c\)](#page-2-2).

In the spirit of Popa [\[12\]](#page-9-9) and Thom-Peterson [\[10\]](#page-9-2) we introduce the following notion.

Definition 3.2. Let G be a group and let $\psi \in \text{Ch}(G)$. A subgroup $H \leq G$ is q- ψ -normal, if there is a set $A \subseteq G$ such that $G = \langle H \cup A \rangle$ and $H \cap aHa^{-1}$ contains an infinite ψ -regular subgroup for all $a \in A$.

A subgroup $H \leq G$ is *weakly* q- ψ -normal, if there is an ordinal number α and an increasing chain of subgroups $H_0 = H$ to $H_\alpha = G$ such that $\bigcup_{\beta < \gamma} H_\beta$ is q- ψ -normal in H_{γ} for all $\gamma \leq \alpha$.

Based on Lemma [3.1](#page-6-2) we obtain the following analog of [\[10,](#page-9-2) Theorem 5.6].

Corollary 3.3. Let G be a group and let $\psi \in \text{Ch}(G)$. If $H \leq G$ is a weakly $q-\psi$ -normal subgroup, then

$$
\bar{b}_1^{\psi}(G) \le \bar{b}_1^{\psi}(H).
$$

Proof. Assume that H is q- ψ -normal. Then $G = \langle H \cup A \rangle$ and $H \cap aHa^{-1}$ contains an infinite ψ -regular subgroup for all $a \in A$. If A is finite, then the assertion follows inductively from Lemma [3.1.](#page-6-2) Assume that A is infinite. For every finite subset $B \subseteq A$, we define $G_B = \langle H \cup B \rangle$. Then $G = \bigcup_{B \subseteq A} G_B$ and Lemma [1.7](#page-3-1) implies

$$
\bar{b}_1^{\psi}(G) \le \liminf_{B \subseteq A} \bar{b}_1^{\psi}(G_B) \le \bar{b}_1^{\psi}(H).
$$

The result for weakly q- ψ -normal subgroups follows by transfinite induction using Lemma [1.7.](#page-3-1) \Box

Corollary 3.4. Let G be a group and let $\psi \in \text{Ch}(G)$.

- (1) If G is an HNN-extension of H with associated subgroups A, B and A contains an infinite ψ -regular subgroup, then we have \bar{b}_1^{ψ} $_1^{\psi}(G) \leq$ \bar{b}_1^{ψ} $_1^{\psi}(H)$.
- (2) If $G = A *_{C} B$ is an amalgamated product such that C is q- ψ -normal in B. Then we have \overline{b}_1^{ψ} $j_1^{\psi}(G) \leq \bar{b}_1^{\psi}$ $_{1}^{\psi}(A).$
- (3) If G contains an infinite normal amenable ψ -regular subgroup, then b_1^{ψ} $_1^{\psi}(G) = 0.$

Proof. (1): follows immediately from Lemma [3.1.](#page-6-2)

(2): The assumptions imply that A is q- ψ -normal in $G = A *_{C} B$ and the assertion follows from Corollary [3.3.](#page-7-0)

(3): The infinite normal amenable subgroup N is $q-\psi$ -normal in G and b_1^{ψ} $b_1^{\psi}(N) = b_1^{(2)}$ $_1^{(2)}(N) = 0$ by [\[3,](#page-9-10) Thm. 0.2].

We illustrate the helpfulness of q-normality with an application to rightangled groups. This notion was put forward in [\[1,](#page-9-11) Definition 1].

Definition 3.5 (right-angled groups). A group G is right-angled, if it is the quotient of a right-angled Artin group A_{Γ} with a finite connected graph $\Gamma = (\mathcal{I}, \mathcal{E})$ such that the image of every generator σ_i $(i \in \mathcal{I})$ has infinite order in G.

The image of the generating set of A_{Γ} will be called a *right-angled set of* generators.

Theorem 3.6. Let G be a right-angled group and let $S = \{s_i | i \in \mathcal{I}\}\$ be a right-angled set of generators. If $\psi \in \text{Ch}(G)$ is such that the cyclic subgroup $\langle s_i \rangle$ is ψ -regular for every $i \in \mathcal{I}$. Then we have b_1^{ψ} $_1^{\psi}(G) = 0.$

Proof. Our proof will be by induction over the number $n = |\mathcal{I}| \in \mathbb{N}$ of generators. For the base of induction we note that $b_1^{(2)}$ $j_1^{(2)}(\mathbb{Z}) = 0$. We assume for the induction step w.l.o.g. $S = \{s_1, s_2, \ldots, s_n, s_{n+1}\}\$ such that s_n commutes with s_{n+1} and such that $G' = \langle s_1 \ldots, s_n \rangle$ is a right-angled group with $b_1^{(2)}$ $1^{(2)}(G') = 0$. We claim that G' is q- ψ -normal. Indeed, set $H = \langle s_n \rangle$ and $a = s_{n+1}, a^{-1}G'a \cap G' \supseteq H$ and H is ψ -regular by assumption. Now the result follows from Lemma [3.1.](#page-6-2) \Box

Using this calculation and the approximation methods from [\[8\]](#page-9-1) one can control the growth of Betti numbers in right-angled Artin groups with respect to normal chains with non-trivial intersection.

Corollary 3.7. Let A_{Γ} be a right-angled Artin group for a finite connected graph Γ with generating set $\{\sigma_i \mid i \in \mathcal{I}\}\$. Let $N_1 \trianglerighteq N_2 \trianglerighteq \ldots$ be a descending chain of finite index normal subgroups in A_Γ. If the order $\text{ord}_{A_{\Gamma}/N_n}(\sigma_i)$ in the finite factors A_{Γ}/N_n is unbounded for each generator σ_i , then

$$
\lim_{n \to \infty} \frac{b_1(N_n)}{|A_{\Gamma} : N_n|} = 0.
$$

Proof. Let ψ_n be the character of the permutation action of A_Γ on A_Γ/N_n . Since the sequence of normal subgroups is descending, the sequence ψ_n converges in Ch(A_{Γ}) to a character ψ . Since each character ψ_n is sofic and A_{Γ} is finitely presented, it follows from [\[8,](#page-9-1) Theorem 3.5] that

$$
b_1^{\psi}(A_{\Gamma}) = \lim_{n \to \infty} b_1^{\psi_n}(A_{\Gamma}) = \lim_{n \to \infty} \frac{b_1(N_n)}{|A_{\Gamma} : N_n|}
$$

If the order $\text{ord}_{A_{\Gamma}/N_n}(\sigma_i)$ tends to infinity, $\psi_n(\sigma_i^k)$ vanishes for all $k \neq 0$ and all large n, i.e., $\langle \sigma_i \rangle$ is a ψ -regular subgroup. Theorem [3.6](#page-8-0) implies that b_1^{ψ} $_1^{\psi}(A_{\Gamma}) = 0$ and this completes the proof.

REFERENCES

- [1] M. Abert, T. Gelander, and N. Nikolov. Rank, combinatorial cost, and homology torsion growth in higher rank lattices. Duke Math. J., 166(15):2925–2964, 2017. Cited on page: [9](#page-8-1)
- [2] S. I. Adian. New estimates of odd exponents of infinite Burnside groups. Proc. Steklov Inst. Math., 289(1):33–71, 2015. Published in Russian in Tr. Mat. Inst. Steklova 289 (2015), 41–82. Cited on page: [6](#page-5-2)
- [3] J. Cheeger and M. Gromov. L_2 -cohomology and group cohomology. Topology. 25(2):189–215, 1986. Cited on page: [9](#page-8-1)
- [4] D. Gaboriau. Invariants ℓ^2 de relations d'équivalence et de groupes. Publications Mathématiques de l'IHÉS, 95:93-150, 2002. Cited on page: [6](#page-5-2)
- [5] J. Howie. On locally indicable groups. Math. Z., 180(4):445–461, 1982. Cited on page: [4](#page-3-2)
- [6] S. V. Ivanov. On subgroups of free Burnside groups of large odd exponent. volume 47, pages 299–304. 2003. Special issue in honor of Reinhold Baer (1902–1979). Cited on page: [6](#page-5-2)
- [7] H. Kammeyer. Introduction to ℓ^2 -invariants. Lecture Notes in Mathematics, 2019. Cited on page: [5](#page-4-5)
- [8] S. Kionke. Characters, L^2 -Betti numbers and an equivariant approximation theorem. Mathematische Annalen, 371:405–444, 2017. Cited on page: [1,](#page-0-2) [2,](#page-1-2) [9,](#page-8-1) [10](#page-9-12)
- [9] W. Lück. l^2 -invariants: Theory and applications to geometry and k-theory. 2002. Cited on page: [3,](#page-2-4) [4,](#page-3-2) [5](#page-4-5)
- [10] J. Peterson and A. Thom. Group cocycles and the ring of affiliated operators. Invent. Math., 185(3):561–592, 2011. Cited on page: [2,](#page-1-2) [8](#page-7-1)
- [11] M. Pichot. Semi-continuity of the first l^2 -Betti number on the space of finitely generated groups. *Comment. Math. Helv.*, $81(3):643-652$, 2006. Cited on page: [1,](#page-0-2) [4](#page-3-2)
- [12] S. Popa. Some computations of 1-cohomology groups and construction of non-orbitequivalent actions. Journal of the Institute of Mathematics of Jussieu, 5(2):309–332, 2006. Cited on page: [8](#page-7-1)

Email address: carsten.feldkamp@hhu.de

FAKULTÄT FÜR MATHEMATIK UND INFORMATIK, FERNUNIVERSITÄT IN HAGEN, 58084 Hagen, Germany

Email address: steffen.kionke@fernuni-hagen.de