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NON-UNIQUENESS TIMES FOR THE MAXIMIZER OF THE KPZ

FIXED POINT

DUNCAN DAUVERGNE

Abstract. Let ht be the KPZ fixed point started from any initial condition that guar-
antees ht has a maximum at every time t almost surely. For any fixed t, almost surely
maxht is uniquely attained. However, there are exceptional times t ∈ (0,∞) when maxht
is achieved at multiple points. Let Tk ⊂ (0,∞) denote the set of times when maxht is
achieved at exactly k points. We show that almost surely T2 has Hausdorff dimension 2/3
and is dense, T3 has Hausdorff dimension 1/3 and is dense, T4 has Hausdorff dimension
0, and there are no times when maxht is achieved at 5 or more points. This resolves two
conjectures of Corwin, Hammond, Hegde, and Matetski.

1. Introduction

The KPZ (Kardar-Parisi-Zhang) universality class is a large collection of 1-dimensional
models of random interface growth and 2-dimensional random metrics. The past twenty-
five years have seen a period of intense and fruitful research on this class, with progress
propelled by the discovery of a handful of exactly solvable models, including tasep, last
passage percolation, directed polymers in a random environment, and the KPZ equation
itself. See the books and expository articles [FS10, Qua11, Cor12, Rom15, BG16] and
references therein for background on the KPZ universality class and related areas.

Growth models in the KPZ universality class have a height function t ↦ ht, t ≥ 0, which
at every time t returns a one-dimensional interface, often simply a continuous function
from R → R. Typically, the height function is a Markov process in t started from some
initial condition h0. In [MQR21], Matetski, Quastel, and Remenik identified a limiting
continuous-time Markov process for these height functions known as the KPZ fixed

point. This object is a fundamental limit within the KPZ universality class, and height
functions of all KPZ models should converge to it. This was shown for tasep in [MQR21]
and extended to other integrable models in [NQR20, DV21b, QS20, Vir20].

The domain for the KPZ fixed point is the space of upper semicontinuous functions h ∶
R → R ∪ {−∞} such that h /≡ −∞. We write ht(y;h0) for the value of the KPZ fixed
point at time t ≥ 0 and location y ∈ R started from an initial condition h0. The KPZ
fixed point is well-defined for all times t ≥ 0 as long as the initial condition grows sub-
parabolically at ∞, see [SV21]. Its transition probabilities can be described in terms
of a Fredholm determinant, see[MQR21], or alternately through a variational problem
involving a random metric introduced in [DOV18]. Moreover, ht(y;h0) is real-valued for
all t > 0, locally Brownian in y, and Hölder-1/3− continuous in t for t > 0.

As with many scaling limits in probability, the KPZ fixed point exhibits remarkable fractal
geometry. In [CHHM21], Corwin, Hammond, Hegde, and Matetski started to investigate
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one of these fractal aspects related to an old conjecture of Johansson and the uniqueness
of fixed point maximizers.

1.1. Johansson’s conjecture and non-uniqueness times. While the construction of
the KPZ fixed point is quite recent, some of its marginals have been known for much longer.
For example, when the initial condition is a narrow wedge δ0 ∶ R → R, given by δ0(0) = 0

and δ0(x) = −∞ for all other x, then for every fixed t we have ht(y; δ0) = t
1/3A(t−2/3x)−x2/t,

where A ∶ R→ R is an Airy (or Airy2) process.

Prähofer and Spohn [PS02] first identified the Airy process as a scaling limit of the polynu-
clear growth model (PNG). Shortly afterwards, Johansson [Joh03] proved an analogous
convergence statement for a discrete version of PNG. In that paper, Johansson also made
the following conjecture.

Conjecture 1.1 (Conjecture, 1.5, [Joh03]). Almost surely, the parabolically shifted Airy
process x↦ A(x) − x2 attains its maximum at a unique point Y ∈ R.

Johansson’s interest in Conjecture 1.1 was in understanding the point-to-line geodesic
in a related KPZ model known as geometric last passage percolation. He proved that
given Conjecture 1.1, the scaling limit of the endpoint of the point-to-line geodesic in
geometric lat passage percolation is given by Y . Conjecture 1.1 was proven by Corwin
and Hammond [CH14] by showing that A is locally absolutely continuous with respect to
Brownian motion of variance 21. Alternate proofs were found by [Pim14, FQR13].

Rephrased in terms of the KPZ fixed point, Johansson’s conjecture states that h1(⋅; δ0) has
a unique argmax almost surely. The same turns out to be true for h1(⋅;h0) for any h0 as
long as h1(⋅;h0) has a maximum. This follows from an extension of the Corwin-Hammond
absolute continuity result by Sarkar and Virág [SV21], which shows that h1(⋅;h0) is locally
absolutely continuous with respect to Brownian continous for essentially any h0.

A more nuanced situation occurs when we start to vary t. Indeed, it turns out that there
is a fractal structure to the set of times when the KPZ fixed point attains its maximum at
multiple points, first investigated in [CHHM21]. To describe this more precisely, we first
restrict to the set of initial conditions h0 such that

(1) P({ht(x;h0) ∶ x ∈ R} has a maximum for all t > 0) = 1.
This is the set of initial conditions for which it makes sense to consider questions of non-
unique maxima. It is not difficult to give concrete bounds on the types of initial conditions
that satisfy (1). Indeed, Lemma 3.1 shows that the condition

limsup
∣x∣→∞

h0(x)

log2/3 ∣x∣
= −∞

implies (1), and (1) implies that h0(x) → −∞ as ∣x∣ → ∞. These bounds are not optimal
but give a good sense for the types of initial conditions we can work with.

1Here we say a Brownian motion has variance 2 if its quadratic variation on an interval [a, b] is 2(b−a).
Throughout the paper, whenever we refer to a Brownian motion (or a Bessel process) it will have variance
2, as this is the convention for KPZ limits.
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Next, for a KPZ fixed point h = h(⋅;h0) where h0 satisfies (1), let

argmaxht = {y ∈ R ∶ max
x∈R

ht(x) = ht(y)}

and for k ∈ N define sets of non-uniqueness times

(2) Tk(h0) = {t ∈ (0,∞) ∶ ∣argmaxht∣ = k}, T≥k(h0) = {t ∈ (0,∞) ∶ ∣argmaxht∣ ≥ k}.

In [CHHM21, Theorem 1.3], Corwin, Hammond, Hegde, and Matetski showed that for
one-sided initial conditions h0 satisfying a certain parabolic decay condition (Assumption
1.1 in [CHHM21]), for any b > 0 we have

(3) P(dim(T≥2(h0) ∩ [0, b]) = 2/3 ∣ T≥2(h0) ∩ [0, b] ≠ ∅) = 1 and P(T≥2(h0) ≠ ∅) > 0.
Here and throughout dimA refers to the Hausdorff dimension of a set A. They also
showed that P(T≥2(h0) ∩ [0, b] ≠ ∅) = 1 when h0 is the narrow wedge and hence that
P(dim(T≥2(h0) ∩ [0, b]) = 2/3) = 1 in this special case. The heuristics in their paper
suggested two natural conjectures regarding the behaviour of the Tk that would refine (3).
These can be loosely summarized as follows.

Conjecture 1.2 (Conjectures 1.5, 1.6, [CHHM21]). For nice enough initial conditions
h0, almost surely T≥2(h0) is dense in [0,∞), T≥5(h0) is empty, and T2(h0),T3(h0), and
T4(h0) have Hausdorff dimensions 2/3,1/3, and 0 respectively.

The main result of this paper establishes Conjecture 1.2.

Theorem 1.3. Let h(⋅;h0) be a KPZ fixed point where h0 satisfies (1). Then almost
surely, we have the following assertions:

1. For any interval I = [a, b] ⊂ (0,∞) with a < b, we have dim(T2(h0) ∩ I) = 2/3 and
dim(T3(h0) ∩ I) = 1/3.

2. dim(T4(h0)) = 0 and T≥5(h0) = ∅.
Our proof method also goes a bit further towards understanding the fractal structure of
the sets Tk(h0) by relating them to shift and scale-invariant ergodic processes, see Lemma
3.5 and Section 4.

One question left open by Theorem 1.3 is whether T4 is almost surely empty. I believe this
to be the case (as do [CHHM21], see the line following Conjecture 1.5 therein), but the
tools in this paper are not currently refined enough to handle this border case. Note that
we can show that either T4 is almost surely empty for every h0 satisfying (1), or almost
surely dense for every satisfying (1), see Proposition 4.5.

Just as Johansson’s original conjecture is connected with point-to-line geodesics, so is our
Theorem 1.3. There is a way in which the maximum of the KPZ fixed point can be written
as follows:

max
y∈R

ht(y;h0) =max
y∈R

max
x∈R

max
g∶(x,0)→(y,t)

∥g∥L + h0(x).
Here the rightmost maximum is over all paths g between spacetime points (x,0) and (y, t),
and ∥g∥L is the length of g as measured in a certain limiting random directed metric L,
the directed landscape. A function-to-line geodesic (or point-to-line if h0 is the narrow
wedge) is any g realizing the above maximum. Theorem 1.3 then describes times when
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there are function-to-line geodesics with different endpoints realizing this maximum. We
refer the reader to Section 2 and [DOV18, DV21b] for more detail on this perspective.

A broader question is to describe the set of times when there are multiple function-to-
line geodesics realizing this maximum, possibly even with the same endpoint. While this
question is not explored in this paper, I believe that almost surely for all t, any pair
of distinct function-to-line geodesics have different endpoints and so Theorem 1.3 still
describes Hausdorff dimensions in this broader setting.

1.2. Proof sketch. Unsurprisingly, the proof of Theorem 1.3 can be broken into two
distinct parts:

(i) Upper bounds on the Hausdorff dimension and size of the sets T≥k(h0) for k =

2,3,4,5.
(ii) Lower bounds on the Hausdorff dimension of the sets T≥k(h0) for k = 2,3.

When thinking about (i) and (ii), I found that some initial conditions lent themselves to
proving upper bounds and some lent themselves to proving lower bounds (and most initial
conditions resisted any clean analysis at all). Because of this, a key ingredient in the paper
is a transfer principle for going between initial conditions, based on the Brownian absolute
continuity result of [SV21].

Let us explain how the transfer principle works in a simpler setting. Let B be a Brownian
motion, let A be a set of continuous functions, and suppose that by some 0-1 law we can
show that P(B ∈ A) ∈ {0,1}. If we can then find some process Y which is absolutely
continuous with respect to Brownian motion and for which P(Y ∈ A) > 0, then P(X ∈ A) =
1 for all processes X which are absolutely continuous with respect to Brownian motion.
In the setting of the KPZ fixed point there are additional technical complications, but
nonetheless we can use [SV21] to show the following for many sets A:

(4) If P(h⋅(⋅;h0) ∈ A) > 0 from some h0, then P(h⋅(⋅;h0) ∈ A) = 1 for all h0.

We prove a version of (4) tailored to our setting in Proposition 4.5. Because of (4), to
prove our main theorems it will suffice to prove each of the statements (i) and (ii) for
exactly one choice of h0.

As is typical, the proof of the upper bound (i) is easier. In this case, we work with the
random initial condition h0 = −R, where R is a two-sided Bessel-3 process. The advantage
of this choice is that the evolution of ht(⋅;−R), t ≥ 0 is stationary in t after recentering at
the maximum, see Theorem 4.1. Because of this, the upper bound reduces to a simple
bound on a standard Bessel-3 process and a Hölder-1/3− continuity estimate for the KPZ
fixed point. Moreover, ht(⋅;−R) has scale invariance and ergodicity properties that allow
us to prove the kind of 0-1 laws that underlie the transfer principle (4).

The proof of the lower bound (ii) is much harder. Here, the correct choice is to let
h0 consist of a sum of k narrow wedges, where k = 2,3. At small time scales, ht(⋅;h0)
splits into k independent narrow wedges, which will create competing maxima that evolve
independently. The proof then boils down to estimating the transition probability from
time t to time t + s for the maximum of ht started from a single narrow wedge.

This is the sort of task for which the Fredholm determinant formula from [MQR21] is
ideally suited. However, there turns out to be a major difficulty here in that the estimate
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coming from the Fredholm determinant formula increases as a double exponential in one
parameter direction. To deal with this, we find a way of thinning out the sets T≥k(h0) to
mitigate the effect from this weak bound. It turns out that a law of the iterated logarithm
for the KPZ fixed point can be used in the thinning to just about nullify the effects of the
double exponential, see Section 6 for details.

We note that our method is quite different than the method used in [CHHM21] to prove (3).
In [CHHM21], the computations required for bounding Hausdorff dimension are tackled
fairly directly. In this paper we take a more indirect route, using the ideas discussed above
(e.g. transfer principle, finding a stationary process, set thinning) to shift difficulty away
from the final computations. One advantage of this approach is that because the final
computations are straightforward, we are able to strengthen (3) and prove Theorem 1.3
without additional work.

1.3. Some related work. This paper follows a recent line of research based around
exploiting and understanding the locally Brownian structure of the Airy process A and
the KPZ fixed point ht. For example, quantitative Brownian comparisons from [DV21a]
underlie the construction of the directed landscape [DOV18]. Many other recent results
about the KPZ fixed point, the directed landscape, and related objects, e.g. see [Ham20,
GH20, BGZ21, DZ21], have been proven with the aid of quantitative comparisons between
A and Brownian motion from [Ham22] and [CHH19]. The absolute continuity for ht from
[SV21] seems harder to quantify, but nonetheless has proved useful for showing qualitative
results, e.g. see [DSV20].

This paper and [CHHM21] are also not the first to study fractal geometry in a KPZ limit.
For example, [BGH21, BGH22] use Brownian absolute continuity results to study fractal
geometry in the directed landscape. One major difference between the problem studied
here and in [CHHM21] and those previous works is that here, we are trying to understand
what happens as the time coordinate changes. This appears to require nuance that is very
difficult to access with Brownian comparisons alone, hence the partial use of Fredholm
determinants both here and in [CHHM21].

Transferring results from one initial condition to others is also a frequently used idea in
KPZ, though not in the exact guise of (4). For example, in many models it is possible
to show that on small scales, height profiles from different initial conditions agree. This
idea underlies the patchwork quilt description of the KPZ fixed point from [Ham19] and
the papers [Pim18, BBS21, BF22] which extend bounds and geodesic properties from the
stationary Brownian initial condition to more general ones.

1.4. Brief outline of the paper. Section 2 introduces definitions and results required in
the paper. Sections 3 introduces always decaying initial conditions and provides absolute
continuity estimates that build on [SV21]. Section 4 focuses on the Bessel initial condition,
its stationarity and ergodicity properties, and how these imply a transfer principle for
Hausdorff dimension. Section 5 then proves the upper bounds required for Theorem 1.3
and Section 6 proves the lower bound, up to a technical proposition that we leave for
Section 7.
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2. Preliminaries

2.1. The KPZ fixed point and the directed landscape. The KPZ fixed point can
be described in two ways. The original description in [MQR21] is through a Fredholm
determinant formula. We will only require this formulation for the proof of one key
proposition in the paper, so we will set this description aside for now and return to it
when it is required in Section 7.

For the most part, we will understand the KPZ fixed point by appealing to a variational
formula in terms of another KPZ limit, the directed landscape. The directed landscape

is a random continuous function L ∶ R4
↑ → R, where R4

↑ ∶= {(x, s;y, t) ∈ R4 ∶ s < t}. It is best
thought of as a metric on the spacetime plane, where L(p; q) is thought of as a distance
from p = (x, s) to q = (y, t). However, it is not a true metric: it is not necessarily positive,
it is not symmetric, and it satisfies the triangle inequality backwards:

(5) L(p; q) ≤ L(p; r) +L(r; q).
For any initial condition h0, the KPZ fixed point h(⋅;h0) can be expressed using a varia-
tional problem involving L:

(6) ht(y) = sup
x∈R

h0(x) +L(x,0;y, t).
Unless otherwise stated, we always assume ht and L are related by (6).

The directed landscape is built from a random continuous function S ∶ R2 → R known as
the Airy sheet whose explicit description we do not require in this paper. The directed
landscape is the unique function (in distribution) satisfying the following almost sure
properties:

I. (Metric composition) For any s < r < t and x, y ∈ R we have

L(x, s;y, t) =max
z∈R
L(x, s; z, r) +L(z, r;y, t).

II. (Independent increments) For any disjoint intervals (si, ti), i = 1, . . . , k, the random
functions L(⋅, si; ⋅, ti) ∶ R2 → R, i = 1, . . . , k are independent.

III. (Airy sheet marginals) For any t ∈ R, s > 0 we have

s−1L(s2x, t; s2y, t + s3) d
= S(x, y),

where the equality in distribution is as a function of x and y.

Like many scaling limits, the directed landscape has many symmetries that we will use
throughout the paper, frequently without reference.

Proposition 2.1 (Lemma 10.2, [DOV18]). We have the following equalities in distribution
as random continuous functions from R4

↑ → R. Here r, z ∈ R, and q > 0.
1. KPZ scale invariance: L(x, t;y, t + s) d

= qL(q−2x, q−3t; q−2y, q−3(t + s)).
2. Time stationarity: L(x, t;y, t + s) d

= L(x, t + r;y, t + s + r).
3. Spatial stationarity: L(x, t;y, t + s) d

= L(x + z, t;y + z, t + s).
4. Skew stationarity:

L(x, t;y, t + s) d
= L(x + zt, t;y + zt + sz, t + s) + s−1[(x − y)2 − (x − y − sz)2].
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In particular, these symmetries imply that for any fixed x, s, y, t we have L(x, t;y, t + s) d
=

s1/3L(0,0; 0,1) − (x − y)2/s. The random variable L(0,0; 0,1) is a standard GUE Tracy-
Widom random variable; this goes back to [BDJ99, Joh00].

In order to more easily follow arguments in the paper, the reader should also have a good
sense of the rough shape of the directed landscape and some of its continuity properties.
Propositions 2.2 and 2.3 record estimates on how close the directed landscape and Airy
sheet are to their expected parabolic shapes. Proposition 2.4 records a continuity estimate
for L.

Proposition 2.2 (Corollary 10.7, [DOV18]). For all u = (x, t;y, t + s) ∈ R4
↑, we have

∣L(x, t;y, t + s) + (x − y)2
s

∣ ≤ Cs1/3 log4/3 (2(∥u∥2 + 2)3/2
s

) log2/3(∥u∥2 + 2).
Here C > 0 is a random constant with EaC

3/2 <∞ for some a > 1.
Proposition 2.3 (Lemma 5.3, [DSV20]). There exists a constant c > 0 such that for all
x, y ∈ R we have ∣S(x, y) + (x − y)2∣ ≤ C + c log2/3(2 + ∣x∣ + ∣y∣).
Here C > 0 is a random constant with EaC

3/2 <∞ for some a > 1.
Proposition 2.4 (Proposition 1.6, [DOV18]). Let R(x, t;y, t + s) = L(x, t;y, t + s) + (x −
y)2/s denote the stationary version of the directed landscape. Let K ⊂ R4

↑ be a compact
set. Then

∣R(u) −R(v)∣ ≤ CK (τ1/3 log2/3(τ−1 + 1) + ξ1/2 log1/2(ξ−1 + 1))
for all points u = (x, s;y, t), v = (x′, s′;y′, t′) ∈K where ξ ∶= ∥(x, y) − (x′, y′)∥2, τ ∶= ∥(s, t) −(s′, t′)∥2. Here CK > 0 is a random constant depending on K with EaC

3/2
K < ∞ for some

a > 1.
The key thing to remember from Proposition 2.4 is that L is Hölder-1/3− as we vary the
time coordinates. This estimate is crucial for understanding how the Hausdorff dimensions
in Theorem 1.3 arise.

The directed landscape also has mixing properties both as we shift in time and space and
as we rescale. We will only need a few of these properties moving forward.

Proposition 2.5. For t > 0, define Ft = σ{L(x, s;y, r) ∶ x, y ∈ R, s < r ∈ [0, t]}. Then for
any A ∈ F+0 ∶= ⋂t>0Ft, we have PA ∈ {0,1}.
Proof. Almost surely, for any (x, s;y, t) ∈ R4

↑ with 0 ≤ s, we have

L(x, s;y, t) = lim
r→0+
L(x, r;y, t)

by continuity. For r > 0, L(x, r;y, t) is independent of F+0 by the independent increment
property of L. Therefore the whole process L(⋅, s; ⋅, ⋅),0 ≤ s is independent of F+0 . On
the other hand, F+0 is contained in the σ-algebra generated by L(⋅, s; ⋅, ⋅),0 ≤ s, so F+0 is
independent of itself, yielding the result. �
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Proposition 2.6. Fix k ∈ N. For every i = 1, . . . , k and ǫ > 0, let
Ki,ǫ = {(x, s;y, t) ∈ R4

↑ ∶ s, t ∈ [0, ǫ], x, y ∈ [i − 1/4, i + 1/4]}.
We can couple k + 1 copies of the directed landscape L0,L1, . . . ,Lk so that L1, . . . ,Lk
are independent and almost surely for all small enough ǫ > 0 and i = 1, . . . , k we have
L0∣Ki,ǫ

= Li∣Ki,ǫ
.

The proof of Proposition 2.6 follows a standard, but rather tedious, approximation from
a prelimiting last passage model. We leave it to Appendix A.

We will require one more result about the KPZ fixed point. For this next theorem and
throughout the paper, for random continuous functions F,G with a common domain D

we write F ≪c G if the law of F ∣K is absolutely continuous with respect to the law of G∣K
for any compact set K ⊂ D. We will also write X ≪ Y for two random variables X,Y if
the law of X is absolutely continuous with respect to the law of Y .

Theorem 2.7 (special case of Theorem 1.2, [SV21]). Let h⋅ denote the KPZ fixed point
run from any initial condition h0 which is bounded above. Then for any t > 0, we have
ht(⋅) − ht(0) ≪c B, where B ∶ R→ R is a two-sided Brownian motion.

2.2. Absolute continuity facts.

Theorem 2.8 (Theorem 2.15, [DSV20]). Let B be a Brownian motion on [0,1], and let
T be the unique point of maximum of B. Let µ of be the law of

B(T ) −B(T + t), t ∈ [−T,1 − T ] .
Note that µ is the law of a random function defined on random interval. Let R be a
two-sided Bessel-3 process independent of T , and let ν be the law of R on the interval[−T,1 − T ]. Then µ is absolutely continuous with respect to ν.

In Theorem 2.8, we can think of continuous functions on a random closed interval I ⊂[−1,1] as continuous functions on [−1,1] by extending the functions to be constant off of
I. Equipping these extensions with the uniform norm (and identifying functions with the
same extension) makes the space of such functions a complete separable metric space.

Theorems 2.7 and 2.8 together imply that the Bessel-3 process should play a crucial role
in studying the KPZ fixed point near its maximum. We end this section with two more
facts that will be useful for going between local absolute continuity statements and global
ones.

Lemma 2.9. Let X,Y be two random variables, and suppose that Xn is a sequence of
random variables such that there exists a random N ∈ N with XN = X and such that
Xn ≪ Y for all n. Then X ≪ Y .

Proof. Consider an event A with P(X ∈ A) > 0. Then there exists n ∈ N for which
P(X ∈ A,N = n) > 0 and hence P(Xn ∈ A) > 0. Since Xn ≪ Y , P(Y ∈ A) > 0 as well. �

Lemma 2.10 (Lemma 4.3, [DSV20]). Let D ∶ Rn → R be any stochastic process, let B be
an n-dimensional Brownian motion, and suppose that D ≪c B. Then

Dǫ(t) ∶= ǫ−1D(ǫ2t)
converges in law to B as ǫ→ 0 in the uniform-on-compact topology.
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Lemma 2.10 also applies if B is replaced by a two-sided Bessel-3 process R ∶ R → R, since
R = ∥B∥2, where B is a 3-dimensional Brownian motion.

3. Always decaying initial conditions and absolute continuity

We say that an initial condition h0 ∶ R → R ∪ {−∞} is always decaying if for any fixed
t > 0, a.s. we have

(7) lim
∣x∣→∞

ht(x;h0)→ −∞.

The goal of this section is to prove a few basic properties of the KPZ fixed point run
from an always decaying initial condition, culminating in two absolute continuity results
relating always decaying initial conditions to the initial condition h0 = −R, where R is a
Bessel-3 process. As part of this effort, we show that h0 is always decaying if and only if
it satisfies (1).

Our first lemma uses basic bounds to give criteria for when initial conditions are always
decaying. We have not attempted to refine this lemma to get an optimal result.

Lemma 3.1. Let h0 ∶ R→ R ∪ {−∞} be an upper semicontinuous function.

(i) If lim
∣x∣→∞

h0(x)
log2/3(∣x∣) = −∞ then h0 is always decaying.

(ii) Suppose that lim sup∣x∣→∞ h0(x) > −∞. Then for any t > 0, a.s. we have

lim sup
∣x∣→∞

ht(x) =∞.

In particular, if h0 is always decaying, then lim
∣x∣→∞

h0(x) = −∞.

Proof. Part (i) follows immediately from the bound in Proposition 2.3 on the Airy sheet,
the fact that L has Airy sheet marginals, and the variational representation (6) for ht.

For part (ii), suppose that lim sup∣x∣→∞ h0(x) > −∞. Then there is an unbounded sequence

xn, n ∈ N and a constant c ∈ R such that h0(xn) ≥ c for all n. We have

limsup
∣x∣→∞

ht(x) ≥ lim sup
n→∞

ht(xn) ≥ c + lim sup
n→∞

L(xn,0;xn,1).
Now, the process L(x,0;x,1), x ∈ R is stationary (Proposition 2.1.3) and L(0,0; 0,1) is a
standard Tracy-Widom and hence has unbounded support. Therefore the limsup above
is ∞ if we can show that the joint distribution of L(0,0; 0,1),L(x,0;x, 1) converges as
x → ±∞ to that of two independent Tracy-Widom random variables. This follows from
the independence established in Proposition 2.5 and KPZ rescaling (Proposition 2.1.1):

(L(0,0; 0,1),L(x,0;x, 1)) d
= x1/2(L(0,0; 0, x−3/2),L(1,0; 1, x−3/2)). �

Next, we use the independent increment property of L prove two results about the KPZ
fixed point from an always decaying initial condition, including the equivalence of (7) and
(1).
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Lemma 3.2. Let h0 be an always decaying initial condition. Then for any compact interval[a, b] ⊂ (0,∞), a.s. we have

lim
∣x∣→∞

sup
t∈[a,b]

ht(x) = −∞.(8)

Proof. Suppose that the left side of (8) is at least some constant c + 1 with positive
probability. For each n ∈ N, let

Tn = inf{t ∈ [a, b] ∶ sup
x∉[−n,n]

ht(x) ≥ c + 1/2}.
Let Xn ∈ [−n,n]c be any (measurable) point such that hTn(Xn) ≥ c. Now, since each Tn is
a stopping time with respect to the filtration Ft = {L(x, s;y, r) ∶ r ≤ t}, by the independent
increment property of L, each of the random variables hb(Xn), n ∈ N satisfies

hb(Xn) ≥ hTn(Xn) +L(Xn, Tn;Xn, b) ≥ c +L(Xn, Tn;Xn, b) d
= c + (b − Tn)1/3Y,

where Y is an independent Tracy-Widom GUE random variable and we use the convention
that L(Xn, Tn;Xn, b) = 0 if Tn = b. In particular,

lim inf
n→∞

P(hb(Xn) ≥ c) > 0,
and so with positive probability hb(x) /→ −∞ as ∣x∣→∞. This is a contradiction. �

Corollary 3.3. An initial condition h0 is always decaying if and only if (1) holds.

Proof. Condition (7) implies condition (1) by Lemma 3.2. We prove the opposite implica-
tion with the contrapositive. Fix t > 0 and suppose that (7) does not hold almost surely
at t. Then by Lemma 3.1 (ii), with positive probability lim sup∣x∣→∞ h2t(x) =∞, since we
can view h2t as a KPZ fixed point at time t started from the random initial condition ht.
This contradicts (1). �

We now turn our attention to proving absolute continuity results for the KPZ fixed point.
The key point for these results is Theorem 2.7, which is applicable since Lemma 3.1(ii)
implies that always decaying initial conditions are bounded above. For y ∈ R define the
shift operator Ty on functions f ∶ R→ R by

Tyf(x) = f(x + y) − f(y).
Lemma 3.4. If h0 is an always decaying initial condition, then for any fixed t > 0, almost
surely ht = ht(⋅;h0) attains its maximum at a unique point Yt. Moreover, TYtht ≪c −R,
where R ∶ R→ R is a two-sided Bessel-3 process.

Proof. By Theorem 2.7, T0ht ≪c B, where B is a Brownian motion. Therefore almost
surely on every interval [−m,m],m ∈ N, ht attains its maximum at a unique point Y m ∈[−m,m]. Since h0 is always decaying and ht is continuous, ht must have a global maximum.
Any global argmax for ht must coincide with Y m for all large enough m. This yields the
first part of the lemma, and gives that a.s. Y m = Yt for all large enough m.

Next, for m ∈ N we define random continuous functions fm ∶ R→ R as follows. First set fm
equal to TY mht on [−m−Y m,m−Y m]. Next, define fm on (−∞,−m−Y m]∪ [m−Ym,∞)
so that the conditional law of −fm∣(−∞,−m−Y m]∪[m−Y m,∞) given fm∣[−m−Y m,m−Y m] is that
of a two-sided Bessel-3 process equal to TY mht(±m − Y m) at ±m − Y m.
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By Theorems 2.7 and 2.8, for every m ∈ N we have fm ≪ −R, where R is a two-sided
Bessel-3 process. This absolute continuity is global, not local (i.e. it is as continuous
functions from R → R). Moreover, for large enough m, on any compact set K we have
fm∣K = TYtht. Therefore by Lemma 2.9, TYtht ≪c −R. �

Next, consider an always decaying initial condition h0 and let ht be the KPZ fixed point
evolved from h0 via a directed landscape L. For t ∈ (0,∞], define the set

Yt(h0) = {(s, y) ∈ (0, t] ×R ∶ y ∈ argmax(hs(⋅;h0))}.
When t = ∞ we simply write Y(h0). This next lemma concerns the distribution of the

set Ys(TYt h̃t). Here we are using an evolved KPZ fixed point TYt h̃t(⋅;h0) as an initial
condition, and the KPZ fixed point h used in the definition of the set Ys is independent
of this initial condition.

Lemma 3.5. Let h0 be an always decaying initial condition, and let R be a two-sided
independent Bessel-3 process. For any t, s ∈ (0,∞) we have that

Y
s(TYt h̃t)≪ Ys(−R).

Proof. For ease of notation, let F = TYt h̃t. By Lemma 3.4, F ≪c −R. Next, for each n,
define a continuous function Fn ∶ R → R so that Fn∣[−n,n] = F ∣[−n,n], and the conditional
law of −Fn∣[−n,n]c given Fn∣[−n,n] is that of a two-sided Bessel-3 process whose endpoints
at ±n are chosen so that Fn is continuous. As in the proof of Lemma 3.4, Fn ≪ −R.

Next, we aim to show that for any s > 0, a.s. there exists N ∈ N for which

Ys(FN) = Ys(F ).(9)

If we can establish (9), then the result will follow from Lemma 2.9. First, observe that F

is a.s. always decaying by the definition (7) and since ht+r(⋅ +Yt;h0)− ht(Yt) d
= hr(⋅;F ) for

any r ≥ 0. Each Fn is a.s. always decaying by Lemma 3.1(i) and a standard bound on a
Bessel process (Lemma B.1). We require this for both sides of (9) to be a.s. well-defined.
To prove (9), we will show that for every ǫ > 0 we can find m ∈ N, c > 0 such that for all
large enough n ∈ N, with probability at least 1 − ǫ all of the following statements hold:

(i) For all r ∈ (0, s] and (x, y) ∈ R2 with ∣y−x∣ ≥ c log(2+ ∣x∣+ ∣y∣) we have L(x,0;y, r) <
−c < L(0,0; 0, r).

(ii) For r ∈ [0, s], we have supx∉[−m,m] hr(x;F ) < −c,
(iii) For r ∈ [0, s], we have supx∉[−m,m] hr(x;Fn) < −c.

Let us first explain why these together imply (9). Let r ∈ (0, s] and assume (i)-(iii)
hold for some sufficiently large n. First, since F (0) = 0, we have that supx∈R hr(x;F ) ≥
L(0,0; 0, r) > −c. Therefore
(10) max

x∈R
hr(x;F ) >max

x∈Ac
h(x;F ), where A = {x ∶ hr(x;F ) ≥ −c}.

By (ii), the set A = {x ∶ hr(x;F ) ≥ −c} is contained in the interval [−m,m]. Moreover,
since F ≤ 0 everywhere, condition (i) implies that at every x ∈ A we have

hr(x;F ) = sup{F (y) +L(y,0;x, r) ∶ ∣y − x∣ ≤ c log(2 + ∣x∣ + ∣y∣)}.
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Since x ∈ [−m,m], as long as n is sufficiently large given m,c this implies

(11) hr(x;F ) = sup{F (y) +L(y,0;x, r) ∶ ∣y∣ ≤ n}.
Putting together (10) and (11), we get that

(12) Ys(F ) = Ys(F ∣[−n,n]),
where we use the notation F ∣K for the function equal to F on K and −∞ elsewhere. By
analogous reasoning with (ii) in place of (iii), equation (12) also holds with Fn in place of
F . Since F ∣[−n,n] = Fn∣[−n,n], this implies (9).

We turn our attention to proving (i)-(iii). The existence of a constant c satisfying (i)
with probability 1 − ǫ/4 follows from Proposition 2.2. Given c, condition (ii) holds with
probability at least 1 − ǫ/4 for large enough m by the fact that

sup
r∈[0,s],x∉[−m,m]

hr(x;F ) d
= sup

r∈[t,t+s],x∉[−m,m]
hr(x + Yt;h0) − ht(Yt)→ −∞

a.s. as m → ∞ (Lemma 3.2). The proof of (iii) is slightly more involved. First, by a
standard bound on Bessel processes (Lemma B.1) for all n ∈ N and x ≥ n we have

Fn(x) ≤Xn − (x − n)1/4 − ∣F (n)∣1/4,
where Xn, n ∈ N is a tight sequence of random variables. Combining this bound with
Proposition 2.2, we find that there is a tight sequence of random variables Cn > 0 such
that for all x ≥ n, y ∈ R and r ∈ [0, s] we have

(13) L(x,0;y, r)+Fn(x) ≤ Cn log
2(2+ ∣y−n∣+ ∣x−n∣)−(x−y)2 +Xn−(x−n)1/4− ∣F (n)∣1/4.

Here we are able to center the logarithmic error at the point (n,n) using the spatial
stationarity of L (Proposition 2.1.3). By (13), the tightness of Xn,Cn and the fact that
F (n)→ −∞ almost surely we get that

sup
y∈R,x≥n,r∈[0,s]

L(x,0;y, r) + Fn(x)→ −∞ in probability as n→∞.

A symmetric statement holds when we take the supremum over y ∈ R, x ≤ −n. Therefore
sup
x∈R

hr(x;Fn∣[−n,n]c) < −c
for all r ∈ [0, s] with probability tending to 1 as n→∞. Moreover,

sup
x∉[−m,m]

hr(x;Fn ∣[−n,n]) = sup
x∉[−m,m]

hr(x;F ∣[−n,n]) ≤ sup
x∉[−m,m]

hr(x;F ).
This is less than −c with probability at least 1 − ǫ/4 by (ii). Combining these implies
that for all large enough n, (iii) holds with probability at least 1 − ǫ/2, and so (i)-(iii)
simultaneously hold with probability 1 − ǫ, as desired. �

4. The Bessel Initial Condition and a transfer principle

Lemma 3.5 demonstrates the importance of the negative 2-sided Bessel initial condition
−R for analyzing times where ∣argmax ht∣ > 1. In this section we study the KPZ fixed
point from this special initial condition and use this to give a precise formulation of the
transfer principle (4) in our setting.
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Theorem 4.1. Let ht = ht(⋅;−R). For any fixed t > 0, almost surely ht has a unique
argmax Yt and

(14) TYtht
d
= −R.

The main step in the proof of Theorem 4.1 is the following.

Lemma 4.2. For t > 0, let Yt = argmaxy∈RL(0,0;y, t) and let

Ft,ǫ(x) = ǫ−1 (L(0,0; ǫ2x + Yt, t) −L(0,0;Yt, t)) .
Similarly, let

Lǫ(x, s;y, t) = ǫ−1 (L(ǫ2x + Y1,1 + ǫ3s; ǫ2y + Y1,1 + ǫ3t))
denote the shifted and rescaled landscape. Then letting K = {(x, s;y, t) ∈ R4

↑ ∶ s, t ∈ [0,1]},
we have

(F1,ǫ,Lǫ∣K , F1+ǫ3,ǫ) d
→ (−R,L′∣K ,−R′)

as ǫ→ 0, where R,R′ are Bessel-3 processes, L′ is a directed landscape independent of R,
and

(15) −R′ = TỸ1
h1(⋅;−R),

where ht is driven by the noise L′∣K and Ỹ1 is the a.s. unique argmax of h1(⋅;−R). Here
the underlying topology is uniform-on-compact convergence of continuous functions from
R ×K ×R to R.

Proof. The convergence of the marginals F1,ǫ, F1+ǫ3,ǫ to Bessel processes R,R′ is immediate

from Lemma 3.4 and the comment following Lemma 2.10. Also, Lǫ∣K d
= L′∣K by shift and

scale invariance of L and F1,ǫ and Lǫ∣K are independent for all ǫ.

Putting all these observations together, we get that the collection (F1,ǫ,Lǫ∣K , F1+ǫ3,ǫ), ǫ > 0
is tight in ǫ, and any subsequential distributional limit (−R,L′∣K ,−R′), has the desired
marginal distributions for −R,L′∣K ,−R′ and has −R,L′∣K independent. To complete the
proof we just need to establish (15). We start with the version of (15) that holds in the
prelimit. Setting

(16) h1,ǫ(y) ∶=max
x∈R

F1,ǫ(x) +Lǫ(x,0;y,1),
we have F1+ǫ3,ǫ = TY1,ǫ

h1,ǫ, where Y1,ǫ is the (almost surely unique) argmax of h1,ǫ. Con-

cretely then, it suffices to show that (F1,ǫ,L1,ǫ∣K ,h1,ǫ, Y1,ǫ) d
→ (−R,L′∣K ,h1, Ỹ1), where

h1 = h1(⋅;−R) and Ỹ1 are as in the statement of the lemma. Here the topology of
convergence for h1,ǫ is the uniform-on-compact topology. Since Y1,ǫ = argmaxh1,ǫ and
Y1 = argmaxh1, we can break this convergence up into two steps:

(i) Showing (F1,ǫ,Lǫ∣K ,h1,ǫ) d
→ (−R,L′∣K ,h1).

(ii) Showing (h1,ǫ, Y1,ǫ) d
→ (h1, Ỹ1).
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For (i), for y ∈ R let Aǫ,y = argmaxx∈RF1,ǫ(x) + Lǫ(x,0;y,1). By the joint uniform-on-
compact convergence of F1,ǫ,Lǫ∣K , to prove (i) it suffices to show that the collections of
random variables

inf{x ∈ ⋃
y∈[a,b]

Aǫ,y}, sup{x ∈ ⋃
y∈[a,b]

Aǫ,y}, ǫ > 0
are tight for every compact interval [a, b]. This follows from combining the following three
observations.

(a) F1,ǫ ≤ 0 for all ǫ.

(b) ∣Lǫ(x,0;y,1) + (x − y)2∣ ≤ Cǫ + c log2/3(2 + ∣x∣ + ∣y∣) for a collection of identically
distributed random variables Cǫ, ǫ > 0 and some c > 0. This uses scale invariance
of L and Proposition 2.3.

(c) For any a < b, the collection of random variables infy∈[a,b] F1,ǫ(y), ǫ > 0 is tight in

(−∞,0] since F1,ǫ
d
→ −R, uniformly on compact sets.

We move on to (ii). By the convergence in (i), h1,ǫ
d
→ h1 where h1 is a copy of the KPZ

fixed point started from −R. The function −R is almost surely an always decaying initial
condition by Lemma 3.1 and standard Bessel properties (Lemma B.1), and hence the

argmax Ỹ1 of h1 is a.s. unique. Point (ii) will then follow if we can show that Y1,ǫ, ǫ > 0 is
tight. Define

Xs,ǫ = sup{x ∈ R ∶ F1,ǫ(x) ≥ −∣x∣1/5}, Xi,ǫ = inf{x ∈ R ∶ F1,ǫ(x) ≥ −∣x∣1/5}.
By the tail bounds in point (b) above on Lǫ, to prove that Y1,ǫ, ǫ ∈ (0,1) is tight it suffices
to show that Xs,ǫ,Xi,ǫ, ǫ ∈ (0,1) are both tight. The arguments are symmetric, so we
focus on Xs,ǫ. First, F1,1 is simply L(0,0; ⋅,1), shifted and recentered at its maximum.
Therefore by Proposition 2.3 we have

F1,1(x) < −x3/2
for all x > C for some random C > 0. Now fix δ > 0 and choose c > 0 so that P(C > c) ≤ δ/2.
Using that F1,ǫ(x) = ǫ−1F1,1(ǫ2x), on the event {C > c}, for x > cǫ−2 we have

F1,ǫ(x) ≤ −ǫ−1ǫ3x3/2 ≤ −x1/2 < −x1/5.
Hence Xs,ǫ < cǫ−2 on the event {C > c}. On the other hand, the collection of random
variables

X∗s,ǫ ∶= sup{x ∈ [−cǫ2, cǫ2] ∶ F1,ǫ(x) ≥ −∣x∣1/5}
is tight for ǫ ∈ (0,1) by the local absolute continuity of F1,1 with respect to −R (Lemma
3.4), and the bound in Lemma B.1 on the growth of Bessel processes. Therefore for some
constant c′ > 0, P(X∗s,ǫ > c′) ≤ δ/2 for all ǫ ∈ (0,1) and so

P(Xs,ǫ > c′) ≤ P(C > c) + P(X∗s,ǫ > c′) ≤ δ,
for all ǫ > 0, yielding the desired tightness. �

Proof of Theorem 4.1. The t = 1 case follows from (15) in Lemma 4.2 and the general case
follows from KPZ scale invariance of (L,−R). �

Theorem 4.1, along with scale invariance of L and R give corresponding properties of the
set Y(−R).
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Proposition 4.3. Let s > 0, and let Ys = argmaxhs(⋅;−R). Then

Y(−R) d
= Ys,Ys(−R) ∶= {(t − s,x − Ys) ∶ (t, x) ∈ Y(−R), t > s}.

Also, for q > 0 define Lq(x, s;y, t) = q−1Lq(q2x, q3s; q2y, q3t),Rq(t) = q−1R(q2t), and
Yq(−R) ∶= {(q3s, q2x) ∶ (s,x) ∈ Yq(−R)}.

Then (L,R,Y(−R)) d
= (Lq,Rq,Yq(−R)).

Proof. The first equality in distribution is immediate from Theorem 4.1 and the inde-
pendent increment property for L, which guarantees that values of L at times in [s,∞)
are independent of hs(⋅;−R). The equality in distribution (L,R) d

= (Lq,Rq) follows from
Brownian scale invariance of R and KPZ scale invariance of L, and the stronger claim

that (L,R,Y(−R)) d
= (Lq,Rq,Yq(−R)) follows since there is a measurable function f such

that Yq(−R) = f(Lq,Rq) for any q > 0. �

We also have mixing and ergodicity properties under the shifts introduced in Proposition
4.3. We will only need one such result here.

Lemma 4.4. The sequence of processes (Lq,Rq,Yq(−R)), q ∈ {2k ∶ k ∈ Z} is ergodic.

Proof. This follows from Proposition 4.3, Blumenthal’s 0-1 law for the Bessel-3 process,
and Proposition 2.5. �

Next we turn to the main object of the paper: non-uniqueness times for the KPZ fixed
point. Recalling the notation T≥k(h0) from the introduction, we have the following result.

Proposition 4.5. For every k ∈ N, there exists a constant αk ∈ [0,1] and values βk ∈{0,∞} such that for any always decaying initial condition h0, a.s. for every interval I =[a, b] ⊂ [0,∞], a < b we have

dim(T≥k(h0) ∩ I) = αk, and #(T≥k(h0) ∩ I) = βk.(17)

Here #A is the cardinality of A if A is finite, and equal to ∞ if A is infinite.

Proof. We begin by proving the proposition for the random initial condition h0 = −R and
restricting to the case when b ≠ ∞. We start with the first equality in (17). It suffices
to prove that the statement holds a.s. for every rational interval [a, b], since Hausdorff
dimension is monotone with respect to set inclusion. For any k ∈ N and b > 0, we have

(18) dim(T≥k(−R) ∩ [0, b]) = sup
q=0,1,2,...

dim(T≥k(−R) ∩ [0,2−3qb]).
By Lemma 4.4, and the fact that Hausdorff dimension is unchanged under linear dilations
of a set, the sequence dim(T≥k(−R) ∩ [0,2−3qb]), q ∈ N is ergodic. Therefore a.s.,

(19) sup
q∈N

dim(T≥k(−R) ∩ [0,2−3qb]) = αk,

where αk is the supremum of the support of the random variable dim(T≥k(−R) ∩ [0, b]).
Moreover, (19) still holds if we replace 0,1, . . . by any sequence {n0, . . . ,} for any n0 ∈ Z,
so αk is a.s. the Hausdorff dimension of dim(T≥k(−R) ∩ [0, b′]) for any b′ > 0 as well. The
result transfers to general intervals [a, b] by time stationarity of T≥k(−R), Proposition 4.3.
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We modify the above proof to establish the second equality in (17) when h0 = −R. First,
the function # is monotone with respect to set inclusion, and unchanged under linear
dilations of a set, so the proof above goes through verbatim to show that there exists
βk ∈ {0,1, . . . ,∞} such that the second equality in (17) holds with h0 = −R for any interval
I. We can rule out the possibility that βk ∉ {0,∞} since by the inequality

#(T≥k(h0) ∩ [0,1]) +#(T≥k(h0) ∩ [2,3]) ≤#(T≥k(h0) ∩ [0,3]),
we have 2βk ≤ βk.

Now consider a general initial condition h0. By the result for h0 = −R and the absolute
continuity in Lemma 3.5, a.s. (17) holds for any rational interval [a, b] with a > 0. The
result for general a, b (allowing for a = 0 or b = ∞) follows from countable stability and
monotonicity of the functions dim and #. �

Proposition 4.5 allows us to transfer information about Hausdorff dimension and set size
from one initial condition to all others. In particular, Proposition 4.5 shows that if we can
find always decaying initial conditions h,h′ such that

P(dim(T≥k(h)) ≥ α) > 0 and P(dim(T≥k(h′)) ≤ α) > 0,
then αk = α. This can be thought of as version of the transfer principle (4) tailored to
studying Hausdorff dimension.

5. The upper bound

Theorem 5.1. With notation as in Proposition 4.5, we have α2 ≤ 2/3, α3 ≤ 1/3, α4 = 0,
and β5 = 0.

To get the upper bound, we work with the stationary initial condition h0 = −R. We will
need two results:

● A Hölder continuity estimate on the KPZ fixed point started from −R, and
● A bound on the probability that a Bessel process has multiple near-minima.

We start with the Hölder continuity estimate on ht. This is similar to [CHHM21, Lemma
3.3] and is a fairly straightforward consequence of the regularity in Propositions 2.2 and
2.4.

Lemma 5.2. Let h0 be an always decaying initial condition and let b > 0. Then there
exists a random B ∈ (0,∞) such that

(20) hs(x,h0) = hs(x,h0∣[−B,B]) for all s ∈ [0,1], x ∈ [−b, b].
Here the initial condition h0∣K equals h0 on K and −∞ off K. In particular, there exists
a random constant C ∈ (0,∞) such that

∣hs(x;h0) − hr(x;−h0)∣ ≤max
∣y∣≤B
∣L(y,0;x, s) −L(y,0;x, r)∣

≤ C log2/3(2∣r − s∣−1)(r − s)1/3,
for all x ∈ [−b, b] and 1/2 ≤ s < r ≤ 1.
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Proof. Equation (20) is exactly what we showed in (11); we give proof details there. Note
that in establishing (11) we only used that the initial condition was bounded above, which
for always decaying initial conditions follows from Lemma 3.1(ii). The second display
then follows from (20) and Proposition 2.4. Here we have restricted to the region where
r, s ∈ [1/2,1] so that all the points (y,0;x, s), (y,0;x, r) lie in a common compact set. �

We now address the probability that a Bessel process has multiple near-minima.

Lemma 5.3. Fix k ∈ N and a k-tuple of disjoint closed intervals I = (I1, . . . , Ik), where
Ij = [aj, bj], ordered so that bi−1 < ai for all i ≥ 2. Set mI = min{ai − bi−1 ∶ i ∈ {2, . . . , k}}.
Let R be a two-sided Bessel-3 process and define the event

A(R,I, ǫ) = {∀i ∈ {1, . . . , k},min
x∈Ii

R(x) ≤ ǫ}.
Then for all ǫ > 0 we have PA(R,I, ǫ) ≤ (ǫ/√mI)k−1.
Proof. Let j ∈ {1, . . . , k} be chosen so that d(Ij ,0) is minimized, and let I− = (I1, . . . , Ij−1)
and I+ = (Ij+1, . . . , Ik). By construction, all intervals in I− are contained in (−∞,−mI/2]
and all intervals in I+ are contained in [mI/2,∞). Therefore since A(R,I, ǫ) ⊂ A(R,I−, ǫ)∩
A(R,I+, ǫ) and R(⋅)∣[0,∞) and R(− ⋅)∣[0,∞) are independent Bessel processes, we have that

PA(R,I, ǫ) ≤ PA(R,I−, ǫ)PA(R,I+, ǫ),
and the lemma will follow if we can show that PA(R,I−, ǫ) ≤ (ǫ/√mI)j−1 and PA(R,I+, ǫ) ≤(ǫ/√mI)k−j . The proofs of these two claims are identical, so we just focus on the latter.

Letting Li =minx∈Ii R(x), it is enough to show that for every i = j + 1, . . . , k we have

(21) P(Li < ǫ ∣ R∣[0,bi−1∨0]) ≤ ǫ/√mI .

First, by the Markov property for R, Li only depends on R∣[0,bi−1∨0] through R(ai). More-

over, Li ≥ L
′
i ∶= minx∈[ai,∞)R(x) and the distribution of L′i given R(ai) is UR(ai), where

U is an independent uniform random variable on [0,1], see [RY13, Chapter VI, Corollary
3.4]. Next, the conditional distribution of R(ai) given R∣[0,bi−1∨0] stochastically dominates
the (unconditional) distribution of R(ai − bi−1 ∨ 0). In particular, using the representation
of R as the magnitude of 3-dimensional Brownian motion of variance 2, we have

R(ai) ⪰√2ai − 2bi−1 ∨ 0
√

N2
1 +N2

2 +N2
3 ≥
√
mI

√
N2

1 +N2
2 +N2

3 .

where the notation ⪰ denotes stochastic domination given R∣[0,bi−1∨0], and the Ni are
independent standard normals. Therefore

P(Li < ǫ ∣ R∣[0,bi−1∨0]) ≤ P(U√mI

√
N2

1 +N2
2 +N2

3 ≤ ǫ),
and a computation then yields (21). �

Corollary 5.4. Let all notation be as in Lemma 5.3, and for a k-tuple I = (I1, . . . , Ik),
write I + b ∶= (I1 + b, . . . , Ik + b). Then for all ǫ, b > 0 we have

P
⎛⎝ ⋃x∈[−b,b]

A(R,I + x, ǫ)⎞⎠ ≤ (8b/mI + 2)(ǫ√2/mI)k−1.
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Proof. First, define Ĩ so that Ĩj = [aj −mI/4, bj +mI/4]. Then
⋃

x∈[−b,b]
A(R,I + x, ǫ) ⊂ ⋃

x∈[−b,b]∩mIZ/4
A(R, Ĩ + x, ǫ).

The probability of the latter union can be bounded with a union bound and Lemma 5.3,
using that mĨ =mI/2. �

Proof of Theorem 5.1. We first prove the bounds on αk for k = 2,3,4. By Proposition 4.5
it is enough to show that a.s. for each of these values of k we have

(22) dim(T≥k(−R) ∩ [2/3,1]) ≤ (4 − k)/3.
To prove this, it is enough to show that for every k-tuple of ordered disjoint closed rational
intervals I = (I1, . . . , Ik), a.s. we have

dim(Tk(−R,I) ∩ [2/3,1]) ≤ (4 − k)/3, where(23)

Tk(−R,I) ∶= {t ∈ (0,∞) ∶ ∀i = 1, . . . , k we have Y(−R) ∩ ({t} × Ii) ≠ ∅}.
Indeed, (22) follows from (23) by countable stability of Hausdorff dimension and the fact
that T≥k(−R) = ⋃I Tk(−R,I), where the union is over all ordered k-tuples of disjoint closed
rational intervals.

Fix b > 0, δ ∈ (0,1/3), and I = (I1, . . . , Ik) such that Ij ⊂ [−b, b] for all j. Let h = h(⋅;−R).
By Lemma 5.2, almost surely there exists a constant C > 0 such that

∣hs(x) − hr(x)∣ ≤ C(r − s)1/3−δ
for all x ∈ [−b, b], s < r ∈ [1/2,1]. In particular, for all small enough ǫ > 0 we have that

Tk(−R,I) ∩ [2/3,1] ⊂ ⋃
i∈ǫ3+δZ∩[1/2,1]

[i, i + ǫ3+δ]1(G(hi, I, ǫ)), where(24)

G(hi, I, ǫ) = {max
x∈Ij

hi(x) ≥max
x∈R

hi(x) − ǫ for all i = 1, . . . , k}.
Now, let

B = sup{x ≥ 0 ∶ hs(z) =max
y∈R

hs(y) for some s ∈ [1/2,1], z ∈ {−x,x}}.
By Lemma 3.2, B ∈ (0,∞) almost surely. On the event where B ≤ a, we have

(25) G(hi, I, ǫ) = A(TYi
hi, I − Yi, ǫ) ⊂ ⋃

x∈[−a,a]
A(TYi

hi, I − x, ǫ).
where the notation is as in Theorem 4.1 and Lemma 5.3. Now, by Theorem 4.1 and
Corollary 5.4, the probability of the event on the right side of (25) is bounded above by
cǫk−1 for some c > 0 depending on I, a, k. Therefore for any γ > 0 by a union bound we
have that

E( ∑
i∈ǫ3+δZ∩[1/2,1]

(ǫ3+10δ)γ1(G(hi, I, ǫ))∣B ≤ a) ≤ cǫ3γ+δγ+k−1−3−δ .(26)

For k = 2,3,4, the right side above tends to 0 with ǫ as long as γ > (4 − k)/3 + δ/3. Since
B < ∞ almost surely, by Markov’s inequality this gives that the Hausdorff dimension of
Tk(−R,I) ∩ [2/3,1] is almost surely bounded above by (4 − k)/3 + δ/3. Taking δ → 0
completes the proof.
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To show that βk = 0, by Proposition 4.5 it is enough to show that almost surely, T5(−R)∩[2/3,1] = ∅. Again, it is enough to show that T5(−R,I) ∩ [2/3,1] = ∅ a.s. for every
collection I = (I1, . . . , I5) of ordered disjoint rational intervals. The identities (24) and
(26) still hold here. Set γ = 0 in (26). Then the left hand side of (26) is bounded below by

P(T5(−R,I) ∩ [2/3,1] ≠ ∅ ∣ B ≤ a)
and the right hand side of (26) tends to 0 with ǫ for δ < 1/3. Therefore by Markov’s
inequality, T5(−R,I) ∩ [1/2,1] = ∅ a.s. �

6. The lower bound

Theorem 6.1. We have α2 ≥ 2/3 and α3 ≥ 1/3.
Unsurprisingly, the lower bound is more difficult. To achieve it, we work with superim-
posed collections of narrow wedges. Let δx be the initial condition with δx(x) = 0 and
δx(y) = −∞ for all y ≠ x, and define

(27) h2 = δ1 ∨ δ2, h3 = δ1 ∨ δ2 ∨ δ3.
In the remainder of this section we write k for either 2 or 3. For small values of t, the
process ht(⋅;hk) should have k competing maxima, given by the maxima of k independent
KPZ fixed points started from k independent narrow wedges. The next lemma makes this
intuition precise.

Lemma 6.2. We can couple KPZ fixed points ht(⋅;hk) and h1t (⋅; δ1), . . . ,hkt (⋅; δk) so that
h1t (⋅; δ1), . . . ,hkt (⋅; δk) are all independent and there exists a random T > 0 such that for
t < T we have

(28) max
x∈R

ht(x;hk) = max
i=1,...,k

max
x∈R

hit(x, δi).
Proof. First, we can couple ht,h

1
t , . . . ,h

k
t so that h1t , . . . ,h

k
t are independent and there exists

T ′ > 0 such that for t < T ′, i = 1, . . . , k, and x ∈ [i−1/4, i+1/4] we have ht(x; δi) = hit(x; δi).
This follows from the more general coupling statement in Proposition 2.6. The equation
(28) then follows from the decay bounds in Proposition 2.2, which guarantee that for all
small enough t we have

max
x∈R

ht(x;hk) = max
x∈⋃k

i=1[i−1/4,i+1/4]
ht(x; δi), max

x∈R
hit(x; δi) = max

x∈[i−1/4,i+1/4]
hit(x; δi). �

Corollary 6.3. In the setup above, define

Ak = {t ∈ (0,∞) ∶maxh1t = ⋅ ⋅ ⋅ =maxhkt },
and let γk be the supremum of the support of the random variable dim(Ak∩[1/2,1]). Then
αk ≥ γk.

Proof. This is similar to the proof of Proposition 4.5. By scale and shift invariance of L
we have that

max
x∈R

q−1hiq3t(q2x; δi) d
=max

x∈R
ht(x; δi)

for any q > 0 and i ∈ {1, . . . , k}, where the equality in distribution is as functions of t.

Therefore Ak
d
= qAk for all q > 0. Since Hausdorff dimension is unchanged under linear



20 DUNCAN DAUVERGNE

dilations, this implies that the sequence dim(Ak∩[2q,2q+1]), q ∈ Z is stationary, and ergodic
by Proposition 2.5. Therefore for every q ∈ Z, by the ergodic theorem we have that

dim(Ak ∩ [0,2q]) = sup
n∈Z∩(−∞,q−1]

dim(Ak ∩ [2n,2n+1]) = γk
almost surely. Now, in the coupling in Lemma 6.2, we have Ak ∩ [0, a] ⊂ T≥k(hk) ∩ [0, a],
for any a < T , so γk ≤ αk. �

Our remaining task is to estimate γk. For this, we just need to understand the behaviour
of the k i.i.d. functions Fi(t) = maxhit. Heuristically, each Fi should be a Hölder-1/3−
process with increments that are only weakly dependent, since we obtain Fi(t + ǫ) from
Fi(t) by metric composition of hit with an independent landscape increment. With this
heuristic it is not difficult to estimate that γ2 = 2/3 and γ3 = 1/3. To make this heuristic
precise the main technical tool we need is an estimate on the density of Fi(t + ǫ) given
hi(t). Equivalently, this amounts to estimating the density of maxh1 from a fairly general
initial condition.

Proposition 6.4. Let h0 be any initial condition bounded above by 0, and let M =M(h0) =
maxx∈[−1,1] h1(x;h0). Then the random variable M has CDF FM satisfying

FM(b) − FM(a) ≤ c(b − a) exp(ec(a−)3/2)
for all a < b. Here c > 0 is a universal constant.

The proof of Proposition 6.4 follows from an estimate on the Fredholm determinant for-
mula for FM . As our proof is both a digression from our main themes and not novel or
difficult, we leave it until Section 7.

We would like to use Proposition 6.4 along with KPZ scale invariance to estimate condi-
tional probabilities of the form

(29) P(∣max hit+s −maxhjt+s∣ ≤ ǫ for all i ≠ j ∣ ∣max hit −maxhjt ∣ ≤ ǫ for all i ≠ j)
over a wide range of s, ǫ. However, there are two obstacles to doing this. The first is that
Proposition 6.4 only gives an estimate on the maximum over [−1,1] rather than over all of
R. The second, more serious, obstacle is that the bound on the Lebesgue density F ′M(a)
grows doubly exponentially as a→ −∞2.

The workaround for dealing with these obstacles is to not to estimate (29) directly, but
rather first to thin out the set Ak and then estimate a version of (29) that corresponds to
this thinning and is more amenable to a direct application of Proposition 6.4. The crucial
miracle that allows this thinning to work is a law of the iterated logarithm for the KPZ
fixed point that comes in to cancel out the double exponential in Proposition 6.4. The
next few lemmas set up this thinning.

2The double exponential bound here seems like a crude overestimate, but I had no luck finding a method
to improve upon this. Note that it is possible (but rather technical) to show that suph0 ∶h0≤0

F ′M(a) grows

at least as a small power of log ∣a∣ as a→ −∞. Similarly, for fixed a, suph0 ∶h0≤0
F ′Mb
(a) grows at least as a

small power of log b as b→∞ if Mb =max{h1(x) ∶ x ∈ [−b, b]}.
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Lemma 6.5. Let ht(x) = L(0,0;x, t) be the KPZ fixed point started from the narrow wedge
initial condition, and let Mt = maxht. Define f ∶ [0,1] → R by f(t) = M1 −M1−t. Then
almost surely,

(30) inf
t∈(0,1/2]

f(t)(t log log(2 + t−1))1/3 > −∞.

We prepare for the proof of Lemma 6.5 with a simple bound on L.

Lemma 6.6. For an interval I = [a, b], t ∈ (0,1/2), and s ∈ (1/2,1), define
YI,s,t ∶= max

x∈I,r∈[0,t]
∣L(0,0;x, s + r) −L(0,0;x, s)∣.

Then P(Y[a,b],s,t >mt1/3 log2/3(t−1)) ≤ c(b − a + 1)e−dm3/2
for universal c, d > 0.

Proof. The distribution of YI,1,t does not change if we shift I and

Y[a,b],s,t ≤max{Y[i,i+1],s,t ∶ i ∈ {⌊a⌋, . . . , ⌊b⌋}},
so by a union bound it suffices to prove the lemma when I = [0,1]. We can then apply
Proposition 2.4 to the compact set K = {(0,0;x,1/2 + r) ∈ R4

↑ ∶ x, r ∈ [0,1]} to conclude
the result. �

Proof of Lemma 6.5. For all n ∈ N, define fn(t) =Mn
1 −Mn

1−t whereM
n
t =maxx∈[−n,n] ht(x)

First, by Lemma 3.2 all theMt, t ∈ [1/2,1] are contained in a common compact set [−N,N].
Therefore it suffices to prove that for all n ∈ N, (30) holds with fn in place of f .

Let St = argmaxx∈[−n,n] ht(x). We have fn(t) ≥ L(S1−t,1 − t;S1−t,1). Moreover, S1−t is

independent of L(⋅,1 − t; ⋅, ⋅), and so

(31) P(fn(t) ≤ −mt1/3) ≤ ce−dm3

for absolute constants c, d > 0 since L(S1−t,1−t;S1−t,1) d
= t1/3T , where T is a Tracy-Widom

GUE random variable. Next, with notation as in Lemma 6.6, for 0 < t < s ≤ 1/2 we have

min
r∈[0,t]

fn(s − r) = fn(s) − max
r∈[0,t]

(Mn
1−s+r −Mn

1−s) ≥ f(s) − Y[−n,n],1−s,t.
Therefore by (31) and Lemma 6.6, for an absolute constant c > 0 we have

P( min
r∈[0,2−k/k2]

f(2−k(1 + i/k3) − r) < −c2−k/3 log1/3(k)) < ck−5
for all k ∈ N, i ∈ {1, . . . , k3}. Applying the Borel-Cantelli lemma shows that the above
event holds for only finitely many pairs (k, i), yielding the result. �

Lemma 6.7. Let ht be the KPZ fixed point started from an always decaying initial con-
dition, and let St = sup(argmaxht) and It = inf(argmaxht). Define g ∶ [0,1] → R by
g(t) = ∣S1 − S1−t∣ ∨ ∣S1 − I1−t∣. Then almost surely, for every ǫ > 0 we have

sup
t∈(0,1/2]

g(t)
t2/3 log16+ǫ(t−1) <∞.

Note that by Lemma 3.4, for any fixed t, almost surely St = It, so we could alternately the
define g(t) with I1 instead of S1.
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Proof. First, by Lemma 3.5, it suffices to prove the result when ht is started from the
Bessel initial condition −R. Next, for the Bessel initial condition, by Theorem 4.1 we have

((St+s − St, It+s − St) ∶ s ∈ (0,∞)) d
= ((Ss, Is) ∶ s ∈ (0,∞))

for any t ∈ [0,∞). Moreover, we have the scale invariance

(32) ((Ss, Is) ∶ s ∈ (0,∞)) d
= (q−2(Sq3s, Iq3s) ∶ s ∈ (0,∞))

for any q > 0. Combining these facts gives that for any k ∈ N we have

sup
t∈[2−k ,2−k+1]

g(t)
= sup

t∈[2−k ,2−k+1]
∣(S1 − S1−2−k+1) − (S1−t − S1−2−k+1)∣ ∨ ∣(S1 − S1−2−k+1) − (I1−t − S1−2−k+1)∣

d
= sup

t∈[2−k ,2−k+1]
∣S2−k+1 − S2−k+1−t∣ ∨ ∣S2−k+1 − I2−k+1−t∣

d
= 2−2k/3 sup

t∈[1,2]
∣S2 − S2−t∣ ∨ ∣S2 − I2−t∣

≤ 2−2k/3(∣S2∣ + sup
t∈[0,1]

∣St∣ ∨ ∣It∣).
Therefore by a union bound over intervals of the form [2−k,2−k+1], the result will follow
if we can show that

(33) P(∣S2∣ + sup
t∈[0,1]

∣St∣ ∨ ∣It∣ >m) ≤ cm−1/16
for a universal c > 0. By the invariance in (32), it suffices to prove a bound of the same
form on supt∈[0,1] ∣St∣ ∨ ∣It∣. By Proposition 2.2 we have that

∣L(x,0;y, s) + (x − y)2
s

∣ ≤ C log2(2 + ∣x∣ + ∣y∣)
for all s ∈ [0,1] and a random C satisfying P(C > m) ≤ ce−dm

3/2
. Also, by a standard

bound on Bessel processes (Lemma B.2), the random variable

X = sup
x∈R

−R(x) + x1/4
satisfies P(X ≥m) ≤ cm−1/4. A computation then shows that for large enough a,

sup
t∈[0,1]

∣St∣ ∨ ∣It∣ ≥ a Ô⇒ C > a1/8 or X > a1/4/2,
from which the result follows. �

We use Lemmas 6.5 and 6.7 to thin out the set Ak. Consider the KPZ fixed point h started
from a narrow wedge initial condition δx. Let Ms, Ss, Is be defined as in Lemmas 6.5 and
6.7, and for t ∈ [1/2,1] let

L1(h, t) ∶= inf
s∈(0,t/2]

Mt −Mt−s(s log log(2 + s−1))1/3 , L2(h, t) = sup
s∈(0,t/2]

∣St − St−s∣ ∨ ∣St − It−s∣
s2/3 log17(s−1) .

For α > 0, define
Bα(h) ∶= {t ∈ [1/2,1] ∶ L1(h, t) > −α,L2(h, t) < α}.
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Rather than analyzing the set Ak directly, we will analyze the sets Ak ∩Bα,k where

Bα,k ∶= Bα(h1) ∩ ⋅ ⋅ ⋅ ∩Bα(hk).
Theorem 6.1 will then follow immediately from combining Corollary 6.3 with the following
proposition.

Proposition 6.8. For k = 2,3, all large enough α > 0 and any γ < (4 − k)/3, we have

P (dim(Ak ∩Bα,k) ≥ γ) > 0.
Here Bα,k denotes the closure of Bα,k.

We build up to Proposition 6.8 with a few lemmas. First define sets

Ak,ǫ = {t ∈ (0,∞) ∶ ∣max hit −maxhjt ∣ ≤ ǫ for all i ≠ j ∈ {1, . . . , k}}.
Lemma 6.9. Fix k ∈ N. There exist k-dependent constants c1, c2 > 0 such that for all
large enough α > 0, and all ǫ ∈ (0,1) and t ∈ [1/2,1] we have

c2ǫ
k−1 ≤ P(t ∈ Ak,ǫ ∩Bα,k) ≤ c1ǫk−1.

We will use the following simple lemma to prove Lemma 6.9.

Lemma 6.10. Let µ be a probability measure on R and let b ≥ 1 be such that µ[−b, b] ≥ 1/2.
Let k ∈ N, k ≥ 2, and let µk = µ ⊗⋯⊗ µ denote the k-fold product measure. Then for all
ǫ ∈ (0,1) we have

µk(x ∈ Rk ∶ ∣xi − xj ∣ ≤ ǫ for all i ≠ j) ≥ ǫk−1

23k−2bk−1
.

Proof. First, we have

µk(x ∈ Rk ∶ ∣xi − xj ∣ ≤ ǫ for all i ≠ j) ≥ ∑
i∈Z∩[−⌊b/ǫ⌋−1,⌊b/ǫ⌋]

(µ[iǫ, (i + 1)ǫ))k .
We can recognize the right hand side above as the kth power of an ℓk-norm on R2⌊b/ǫ⌋+2.
Hölder’s inequality then gives

∑
i∈Z∩[−⌊b/ǫ⌋−1,⌊b/ǫ⌋]

(µ[iǫ, (i + 1)ǫ))k ≥ (∑i∈Z∩[−⌊b/ǫ⌋−1,⌊b/ǫ⌋] µ[iǫ, (i + 1)ǫ))k(2⌊b/ǫ⌋ + 2)k−1
which gives the result after simplification, using that µ[−b, b] ≥ 1/2 and 2⌊b/ǫ⌋+2 ≤ 4b/ǫ. �

Proof of Lemma 6.9. We start with the simpler upper bound. For this, it is enough to
show that P(t ∈ Ak,ǫ) ≤ c1ǫk−1 for all ǫ > 0. Now, for all t, by KPZ scale invariance the

random variables maxh1t , . . . ,maxhkt are independent and equal in distribution to t1/3T ,
where T is a Tracy-Widom GUE random variable. Therefore

P(t ∈ Ak,ǫ) ≤ P(∣max h1t −maxhjt ∣ ≤ ǫ for all j = 2, . . . , k − 1)
≤max

x∈R
P(T ∈ [x − ǫt1/3, x + ǫt1/3])k−1

≤ c1ǫ
k−1,

where the final inequality uses that T has a Lebesgue density that is bounded above.
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We move on to the lower bound. Fix i ∈ {1, . . . , k}. For any fixed t ∈ [1/2,1] the processes
L1(hi, t),L2(hi, t) ∈ R are finite almost surely by Lemmas 6.5 and 6.7. This extends to
tightness of the families L1(hi, t),L2(hi, t), t ∈ [1/2,1] by KPZ scale invariance, so we can
find α0 > 0 such that

(34) P(t ∈ Bα(hi)) ≥ 1/2
for all t ∈ [1/2,1], α ≥ α0. Next, let µt,α be the conditional distribution of maxhit on the

event {t ∈ Bα(hi)}. Since maxhit
d
= t1/3T for all i, by (34) there exists a b > 0 such that for

all t ∈ [1/2,1], α ≥ α0, we have

(35) µt,α[−b, b] ≥ 1/2.
Finally, we can write

P(t ∈ Ak,ǫ ∩Bα,k) = µk
t,α(x ∈ Rn ∶ ∣xi − xj ∣ ≤ ǫ for all i ≠ j) k

∏
i=1

PBα(hi),
which is bounded below by c2ǫ

k−1 for all t ∈ [1/2,1], α ≥ α0 by (34), (35), and Lemma
6.10. �

Lemma 6.9 is the first moment bound that we will need to estimate the Hausdorff dimen-
sion of Ak ∩Bα,k. We also need a complementary second moment bound. For this bound,
it is essential that we work with Ak,ǫ ∩Bα,k rather than just Ak,ǫ.

Lemma 6.11. Fix k ∈ N and α > 0. There exists a constant c = c(α,k) > 0 such that for
all ǫ ∈ (0,1), t, t + s ∈ [1/2,1] we have

(36) P(t + s ∈ Ak,ǫ ∩Bα,k ∣ t ∈ Ak,ǫ ∩Bα,k) ≤ (ǫs−1/3)k−1 exp(c log1/2(2 + s−1)).
Proof. Fix t ∈ [1/2,1] and for every i = 1, . . . , k define the recentered KPZ fixed points

h̃is(x) ∶= hit+s(Si
t + x) −M i

t , s > 0, x ∈ R
where M i

t , S
i
t are as in Lemmas 6.5 and 6.7 for the hi. The processes h̃1, . . . , h̃k form

a collection of independent KPZ fixed points run from independent non-positive initial
conditions TS1

t
h1t , . . . , TSk

t
hkt . Now, conditionally on the event {t ∈ Ak,ǫ ∩Bα,k} the event{t + s ∈ Ak,ǫ ∩Bα,k} is contained in the event where:

(i) For all i ∈ {2, . . . , k} we have

∣max h̃1s −max h̃js∣ ≤ 2ǫ.
(ii) Let M̃ i

s, S̃
i
s be as in Lemmas 6.5, 6.7 for the h̃i. Then for all i ∈ {1, . . . , k}, we have

M̃ i
s > −α(s log log(2 + s−1))1/3 and ∣S̃i

s∣ < αs2/3 log17(s−1).
Next, the event {t ∈ Ak,ǫ ∩ Bα,k} is measurable with respect to the σ-algebra generated

by his,0 ≤ s ≤ t. Therefore by the Markov property for hi, the conditional probability in
(36) is bounded above by the maximal possible probability of (i) and (ii) both occurring,

where the maximum is taken over all independent KPZ fixed points h̃i(⋅;hi) started from
non-positive deterministic initial conditions h1, . . . , hk.
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For such a collection of KPZ fixed points h̃i(⋅;hi) and j ∈ Z, let
M̃ i

s(j) = max
x∈[s2/3j,s2/3(j+2)]

h̃is(x;hi).
Then by a union bound,

P((i) and (ii) above) ≤ ∑
j1,...,jk∈

Z∩[⌊−α log17(s−1)⌋,⌊α log17(s−1)⌋]

PA(j1, . . . , jk)
where A(j1, . . . , jk) is the set where

● ∣M̃ i
s(ji) − M̃1

s (j1)∣ ≤ 2ǫ for all i = 2, . . . , k, and
● M̃ i

s(ji) ≥ −α(s log log(2 + s−1))1/3 for all i = 1, . . . , k.

Using the independence of the h̃i(⋅;hi), KPZ scale invariance, and spatial stationarity of
L, we can bound PA(j1, . . . , jk) above by

sup
h≤0

sup
m≥−α(log log(2+s−1))1/3

P( max
x∈[−1,1]

h1(x;h) ∈ [m,m + 2ǫs−1/3])k−1 .
By Proposition 6.4, this is bounded above by

(2ǫs−1/3c exp(exp(cα3/2(log log(2 + s−1))1/2)k−1 .
A bit of simplification then gives the result. �

To put everything together and prove Proposition 6.8, we use a consequence of Frostman’s
lemma for Hausdorff dimension and a compactness argument, [SS10, Lemma 6.2].

Lemma 6.12. Let D1 ⊃D2 ⊃D3 . . . be a decreasing sequence of compact subsets of [1/2,1]
with Dn ↓ D. Let µn be a sequence of finite measures with supp(µn) = Dn and suppose
that there exists c > 0 such that

(37) µn[1/2,1] ≥ 1/c, Iγ(µn) ∶= ∫ 1

1/2
∫

1

1/2
∣t − s∣−γdµn(t)dµn(s) ≤ c

for all n. Then dim(D) ≥ γ.
Proof of Proposition 6.8. Fix k ∈ {2,3}, and α > 0 large enough so that Lemma 6.9 holds.
By continuity of the KPZ fixed point for t > 0 we have that Ak,ǫ ↓ Ak almost surely as

ǫ→ 0. Therefore Dǫ ↓ D almost surely as ǫ → 0, where Dǫ ∶= Ak,ǫ∩Bα,k and D ∶= Ak∩Bα,k.

For ǫ ∈ (0,1) define the random measure µǫ on [1/2,1] with support Dǫ by letting

µǫ(A) = 1

ǫk−1
∫
A
1(t ∈Dǫ)dt.

By the lower bound in Lemma 6.9, there exists c > 0 such that Eµǫ[1/2,1] ≥ c for all ǫ > 0.
Next, by Lemma 6.11 and the upper bound in Lemma 6.9 we have

EIγ(µǫ) = 2

ǫ2k−2
∫

1

1/2
∫

1−t

0
s−γP(t + s ∈ Dǫ ∣ t ∈ Dǫ)P(t ∈ Dǫ)dsdt

≤ 2c1 ∫
1/2

0
s−γs−(k−1)/3 exp(c log1/2(2 + s−1))ds.(38)
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The final integral is independent of ǫ and finite whenever γ < (4−k)/3. The particular case
when γ = 0 shows that E(µǫ[1/2,1])2 is uniformly bounded over ǫ ∈ (0,1). In particular,
by the lower bound on Eµǫ[1/2,1] and the Paley-Zygmund inequality, for all large enough
c > 0 we have

P(µǫ[1/2,1] > 1/c) ≥ 1/c
for all ǫ ∈ (0,1). Therefore by (38), for every γ < (4 − k)/3 there exists cγ > 0 such that

(39) P(µǫ[1/2,1] ≥ 1/cγ , Iγ(µǫ) ≤ cγ) ≥ 1/cγ .
Since P(An i.o.) ≥ lim supn→∞ PAn for any sequence of events An, with probability 1/cγ
we can find a (random) sequence ǫn → 0 such that the event in (39) holds for all ǫn, n ∈ N.
Applying Lemma 6.12 implies that dim(D) ≥ γ with probability 1/cγ > 0, as desired. �

Proof of Theorem 1.3. This is an immediate consequence of Proposition 4.5 and Theorems
5.1 and 6.1. �

7. The proof of Proposition 6.4

7.1. A Fredholm determinant formula. To prove Proposition 6.4 we will use a Fred-
holm determinant formula for the KPZ fixed point from [MQR21]. We introduce only
the minimum background that the reader will need to understand our manipulations.
The interested reader should refer to [MQR21, QM17] and references therein for more
background.

To set up the formula, let L2(R) be the space of square integrable functions f ∶ R → C.
If K is an operator on L2(R) acting through its kernel (Kf)(x) = ∫ f(y)K(x, y)dy, its
Fredholm determinant is given by

det(I +K) = 1 + ∞∑
n=1

1

n!
∫ det[K(xi, xj)]ni,j=1dx1 . . . dxn.

This Fredholm determinant is well-defined and finite if K has finite trace norm ∥K∥1 =
tr(√K∗K), where √K∗K is the unique positive square root of the operator K∗K. If∥K∥1 <∞, we say that K is trace class. We note for later use the standard estimates

∥ABC∥1 ≤ ∥A∥op∥C∥op∥B∥1 ≤ ∥A∥1∥B∥1∥C∥1,(40)

∣det(I +A) − det(I +B)∣ ≤ ∥A −B∥1e1+∥A∥1+∥B∥1 ,(41)

see the first few sections of [Sim05, Chapter 1] for the first inequality and [Sim05, Theorem
3.4] for the second one.

Now, define UC to be the set of upper semicontinuous functions f ∶ R → R ∪ {−∞} that
are not identically equal to −∞ and for all x satisfy f(x) ≤ α + γ∣x∣ for some constants
α,γ ∈ R. Let LC = {f ∶ −f ∈ UC}. For any f ∈ UC, g ∈ LC, and t > 0 there are trace class

hypo and epi operators K
hypo(f)
t and K

epi(g)
−t on L2(R) such that

(42) P(ht(y;f) ≤ g(y) for all y ∈ R) = det (I −Khypo(f)
t/2 K

epi(g)
−t/2 ) .
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Note that the product K
hypo(f)
t/2 K

epi(g)
−t/2 is trace class by (40) so the Fredholm determinant

is well-defined. The hypo and epi operators are related through the formula

(43) K
epi(−f)
−t = ρK

hypo(f)
t ρ,

where ρ is the reflection operator on L2(R) given by ρf(x) ∶= f(−x) (see [MQR21, Propo-

sition 4.4], so to describe (42) explicitly we just need to describe K
hypo(f)
t . We give a

definition of the operator K
hypo(f)
t that matches that of [CHHM21, Section 2], which

differs from the presentation in [MQR21] by a conjugation that does not affect the deter-

minant. For f ∈ UC and t > 0 the operator K
hypo(f)
t is a trace class limit of a product of

operators:

(44) K
hypo(f)
t = lim

ℓ1→−∞,ℓ2→∞
Γt(St,ℓ1)∗PHit f

ℓ1,ℓ2
St,−ℓ2Γt.

It remains to define the operators on the right side above. The operator Γt is multiplication
by the function

Γt(z) = exp(κt sgn(z)∣z∣3/2),
where κt > 0 is any sufficiently small constant. Next, for t > 0 and x ∈ R let St,x be the
integral operator with kernel St,x(z, y) = St,x(z − y), where

St,x(z) = t−1/3 exp(2x3

3t2
− zx

t
)Ai(−t1/3z + t−4/3x2),

and Ai(z) is the classical Airy function. Finally, for ℓ1 < ℓ2 and f ∈ UC we define P
Hit(f)
ℓ1,ℓ2

=

I −PNo hit(f)
ℓ1,ℓ2

, where P
No hit(f)
ℓ1,ℓ2

is an integral operator with kernel

P
No hit(f)
ℓ1,ℓ2

(u1, u2) = PB(ℓ1)=u1,B(ℓ2)=u2
(B(y) > f(y) for y ∈ [ℓ1, ℓ2]) 1√

4π(ℓ2 − ℓ1)e
−
(u2−u1)2
4(ℓ2−ℓ1) .

Here the probability above denotes the probability that a Brownian bridge (of variance
2) on the interval [ℓ1, ℓ2] starting at u1 and finishing at u2 stays above the function f .
Noting the Gaussian factor, the whole expression above can be equivalently thought of
as a transition density for Brownian motion from (u1, ℓ1) to (u2, ℓ2), killed if it goes
below f . While the limit definition (44) is somewhat abstract, if f is −∞ outside of a
compact interval [−m1,m2], the expression under the limit in (44) is the same for any
ℓ1 ≤ −m1,m2 ≤ ℓ2, see the discussion after (4.1) in [MQR21].

Now, by (42) the CDF FM (a) = det(1 −Khypo(h0)
1/2 K

epi(ga)
−1/2 ), where

ga(x) = ⎧⎪⎪⎨⎪⎪⎩
a, x ∈ [−1,1]
∞, else.

This expression for FM and some trace class estimates from [MQR21] allow us to reduce
Proposition 6.4 to the following lemma.

Lemma 7.1. There exists an absolute constant c′ > 0 such that for any a < b ∈ R we have

(45) ∥Khypo(−gb)
1/2 −Khypo(−ga)

1/2 ∥1 ≤ c′(b − a)ec′(a−)3/2 .
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Proof of Proposition 6.4 given Lemma 7.1. In [MQR21, Appendix A.1], the authors show
that there exists c > 0 such that for any h0 ≤ 0 we have

(46) ∥Khypo(h0)
1/2 ∥1 ≤ c.

Therefore by (40) and (41), for any M =M(h0) with h0 ≤ 0 we have the estimate

∣FM (b) −FM (a)∣ ≤ c∥Kepi(gb)
−1/2 −Kepi(ga)

−1/2 ∥1 exp (1 + c∥Kepi(gb)
−1/2 ∥1 + c∥Kepi(ga)

−1/2 ∥1) .
Next, by (40), the definition (43) and the fact that ∥ρ∥op = 1, we have the same inequality

with K
epi(gb)
−1/2 ,K

epi(ga)
−1/2 replaced by K

hypo(−gb)
1/2 ,K

hypo(−ga)
1/2 . Proposition 6.4 then follows

from Lemma 7.1 and the bound (46) which gives that ∥Khypo(−ga)
1/2 ∥1 ≤ c for any a ≥ 0. �

Proof of Lemma 7.1. The method here is the same as in [MQR21, Appendix A.1]. There

are only superficial differences in the required calculations. Let Oa,b ∶= K
hypo(−ga)
1/2 −

K
hypo(−gb)
1/2 . We have Oa,b = Γ1/2(S1/2,−1)∗Pa,bS1/2,−1Γ1/2 where

Pa,b = P
No hit(−gb)
−1,1 −PNo hit(−ga)

−1,1 .

Since ga, gb are constant on [−1,1], the kernel of Pa,b can be computed explicitly by the
reflection principle:

Pa,b(w,v) = 1(w ∧ v > −a) 1√
8π
(e−(w+v+2a)2/8 − e−(w+v+2b)2/8)

+ 1(w ∧ v ∈ (−b,−a]) 1√
8π
(e−(w−v)2/8 − e−(w+v+2b)2/8) .

Now, the key idea is to view Oa,b as an integral of rank one operators integrated against
the positive measure Pa,b(w,v)dwdv. Indeed, we can write out the kernel of Oa,b as:

Oa,b(t, u) = ∫ Γ1/2(t)S1/2,−1(w, t)Γ1/2(u)S1/2,−1(v,u)Pa,b(w,v)dwdv.
Let Rw,v be the operator with kernel

Rw,v(t, u) ∶= Rw(t)Rv(u), where Rw(t) = Γ(t)S1/2,−1(w, t).
We can then upper bound ∥Oa,b∥1 by an integral of the trace norms of Rw,v:

(47) ∥Oa,b∥1 ≤ ∫ ∥Rw,v∥1Pa,b(w,v)dwdv = ∫ ∥Rw∥2∥Rv∥2Pa,b(w,v)dwdv.
For the second equality we have used that Rv,w is rank one, and hence its trace norm
is simply the product of the L2(R)-norms of the functions Rv,Rw. At this point it just
remains to estimate the final integral. In the remainder of the proof the constant c > 0
depends only on κ1/2 and may change from line to line.

To bound ∥Rw∥2 we will use the standard Airy function bound Ai(z) ≤ c exp(−2
3
(z+)3/2),

see [AS72], formulas 10.4.59–10.4.60. This yields the bound

∥Rw∥22 ≤ c∫
R
exp(2 sgn(t)κ1/2∣t∣3/2 − 4(t −w) − 2

√
2

3
((t −w)+)3/2)dt.

As long as κ1/2 < √2/3, this gives the bound

∥Rw∥22 ≤ c exp(2w + c(w+)3/2).
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We can now turn to bounding the right side of (47). We first look at at the portion of the
integral where w ∧ v ∈ (−b,−a]. Using the fact that the integrand is symmetric in w and
v and making the change of variables w ↦ x = w − v, we can write

∫
w∧v∈(−b,−a)

∥Rw∥2∥Rv∥2Pa,b(w,v)dwdv = 2∫ −a

−b
∫
∞

0
∥Rx+v∥2∥Rv∥2Pa,b(x + v, v)dxdv.

Using the bound on ∥Rw∥2 and the fact that Pa,b(x + v, v) ≤ e−x
2/8 in the domain of

integration, this is bounded above by

c∫
−a

−b
∫
∞

0
exp(2x + 4v + c(v+)3/2+c((x + v)+)3/2 − x2/8)dxdv

≤ c(b − a) exp(c(a−)3/2).
To complete the proof of the lemma, it just remains to prove the same bound on the
portion of the integral where w ∧ v > −a. In this region we use that

Pa,b(w,v) ≤ c(b − a)e−(w+v+2a)2/9,
which follows from a straightforward bound on the derivative of e−(u1+u2+2a)2/8 with respect
to a. Then using the bound on ∥Rw∥2 and the change of variables x = w + a, y = v + a we
have

∫
∞

−a
∫
∞

−a
∥Rw∥2∥Rv∥2Pa,b(w,v)dwdv

≤ c(b − a)∫ ∞

0
∫
∞

0
exp (2(x + y) − 4a + c((x − a)+)3/2 + c((y − a)+)3/2 − (x + y)2/9)dxdy

≤ c(b − a) exp(c(a−)3/2),
as desired. �
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Appendix A. Proof of Proposition 2.6

For the proof of Proposition 2.6 we will need to approximate the directed landscape
with a prelimiting last passage model. We use Poisson last passage percolation to avoid
complications from working on a lattice. Let Pλ be an intensity-λ Poisson process on R2.
We say that a continuous function f ∶ [s, t] → R with f(s) = x, f(t) = y is a path from
p = (x, s) to q = (y, t).
For a path f ∶ [s, t] → R and parameters ℓ ≥ 0, λ,χ > 0 define the length

∥f∥λ,ℓ,χ = #(Pλ ∩ gf)
χ

− ℓ(t − s)
χ

,

where gf = {(f(r), r) ∶ r ∈ [s, t]} is the graph of f . Then for (p, q) ∈ R4
↑ and m > 0 define

dm,λ,ℓ,χ(p, q) =max{∥f∥λ,ℓ,χ ∶ f is a path from p to q, f is m-Lipschitz}.
We say that an m-Lipschitz path f from p to q is a dm,λ,ℓ,χ-geodesic if dm,λ,ℓ,χ(p, q) =∥f∥λ,ℓ,χ.
The case when λ =m = χ = 1 and ℓ = 0 gives us the usual definition of Poisson last passage
percolation, rotated by π/4. The introduction of parameters allows us a simple way to
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introduce rescaling into the setup without shifting the underlying space R4
↑ . We then have

the following result.

Theorem A.1 (First part of Corollary 13.12, [DV21b]). For n ∈ N, let dn ∶= dn1/3/2,4n5/3,2n,n1/3 .

Then in some coupling we have dn → L almost surely, uniformly over compact sets in R4
↑.

In the context of Theorem A.1, we can also understand what happens to geodesics in the
limit. For a path f ∶ [s, t]→ R, define its L-length

∥f∥L = inf
k∈N

inf
s=r0<r1<⋅⋅⋅<rk=t

k

∑
i=1

L(f(ri−1), ri−1;f(ri), ri).
By the triangle inequality (5), for any path f from p to q we have ∥f∥L ≤ L(p, q). We
call f an L-geodesic if ∥f∥L = L(p, q). Note that the triangle inequality (5) becomes an
equality for a triple of points on a common geodesic.

Theorem A.2 (Second part of Corollary 13.12, [DV21b]). In the coupling in Theorem
A.2, almost surely the following holds. If fn is any sequence of dn-geodesics from pn to qn
and (pn, qn) → (p, q) in R4

↑ then the graphs gfn are precompact in the Hausdorff topology
and any subsequential limit Γ of gfn is the graph of an L-geodesic from p to q.

We can use these two convergence theorems to prove Proposition 2.6.

Proof. For every n define k + 1 intensity 4n5/3-Poisson processes, Pn
0 , P

n
1 , . . . , P

n
k , coupled

so that Pn
1 , . . . , P

n
k are independent,

(48) Pn
0 ∣[i−1/3,i+1/3]×[0,1] = Pn

i ∣[i−1/3,i+1/3]×[0,1]
for all i ≥ 1, and Pn

0 is independent of Pn
1 , . . . , P

n
k outside of ⋃k

i=1[i − 1/3, i + 1/3] × [0,1].
Let dni be the versions of dn1/3/2,4n5/3,2n,n1/3 defined using the different Pn

i . Also, for every
i = 1, . . . , k and j ∈ N for a directed landscape L let

Gi,j(L) = sup{∣g(x) − i∣ ∶ g is an L-geodesic between (x, s), (y, t)
with (x, s;y, t) ∈Ki,1/j}.

Here Ki,1/j is as in the statement of Proposition 2.6. We similarly define Gi,j(dni′) for

i′ = 0, . . . , k. Now, the decay bound in Proposition 2.2 and the fact that the triangle
inequality is an equality along geodesics implies that Gi,j(L) → 1/4 almost surely as
j →∞ for all i. Also, Theorem A.2 implies that

(49) lim sup
n→∞

Gi,j(dn) ≤ Gi,j(L), and so limsup
j→∞

lim sup
n→∞

Gi,j(dn) ≤ 1/4.
almost surely for all j in the coupling from that theorem.

Now, using Theorem A.1 and (49) the random variables Gi,j(dni′), dni′(u), i ∈ {1, . . . , k}, i′ ∈{0, . . . , k}, u ∈ Q4∩R4
↑ are jointly tight. Therefore we can find a subsequence and a coupling

where all these random variables converge almost surely along that subsequence.

By Theorem A.1, in this coupling there are directed landscapes L0, . . . ,Lk such that
dni (u) → Li(u) for all u ∈ Q4 ∩ R4

↑ and all i = 0, . . . , k. The landscapes L1, . . . ,Lk are

independent. Also, by (49) there exists a random J such that for all i, i′ we have Gi,J(dni′) ≤
1/3 for all large enough n. Therefore by (48) we have dn0 = d

n
i on Ki,1/J for all i ∈ {1, . . . , k},

and so L0 = Li on Ki,1/J for all i ∈ {1, . . . , k}, as desired. �
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Appendix B. Facts about Bessel processes

Lemma B.1. Let Ra ∶ [0,∞) → [0,∞) be a Bessel-3 process with Ra(0) = a and define
the random variable

Xa ∶= inf
x≥0

Ra(x) − x1/4 −√a
Then the family of random variables Xa ∧ 0, a ≥ 0 is tight.

Proof. To prove the lemma, we will use that conditional on Ra(t), the minimum of Ra

on [t,∞) is uniform on [0,Ra(t)], see [RY13, Chapter VI, Corollary 3.4]. Combining this
with the representation of Ra as the magnitude of a 3-dimensional Brownian motion (of
variance 2) started at the point (a,0,0) gives that for fixed t ≥ 0,

(50) min
x≥t

Ra(x) d
= U
√(N1 + a)2 +N2

2 +N2
3

where U ∼ U(0,1),Ni ∼ N(0,2t) and all random variables are independent.

We first use this to show X̃0 ∶= infx≥0R0(x) − 2x1/4 ≠ −∞ almost surely. Consider the
sequence of random variables

In = min
x∈[2n,∞)

2−n/2R0(x), n = 0,1,2, . . .

By (50), this is a sequence of identically distributed non-negative random variables with
Lebesgue density bounded above. Therefore by a union bound, I ∶= infn≥1 n2In is non-zero
almost surely, and hence so is the random variable infx≥1 log

2(x)x−1/2R0(x). Noting also

that infx∈[0,1]R0(x) − 2x1/4 ≥ −2 gives that X̃0 ≠ −∞.

Now, for a ≥ 0 define

X1
a ∶= inf

x≤a2
Ra(x) − 2√a, X2

a ∶= inf
x≥a2

Ra(x) − 2x1/4
so that Xa ≥X

1
a ∧X2

a . By (50), we have minx≥0Ra(x) d
= aU , so aU − 2√a ⪯X1

a where ⪯ is
stochastic ordering. The random variables (aU −2√a)∧0, a ≥ 0 are tight, and hence so are
the random variables X1

a ∧ 0, a ≥ 0. Also, since the Bessel processes Ra are stochastically

increasing in a, the random variables X2
a ∧ 0, a ≥ 0 are tight since X2

0 = X̃0 is not −∞
almost surely. �

Lemma B.2. Let R ∶ [0,∞) → [0,∞) be a Bessel-3 process started at 0, and let X0 =

infx≥0R(x) − x1/4. Then for some c > 0 we have

P(X0 < −m) ≤ cm−1/4.
Proof. Using the notation from the previous proof, by a union bound we have

P(X0 < −m) ≤ ∞

∑
n=⌊log2 m⌋

P( min
y∈[2n,2n+1]

R0(x) − 2(n+1)/4 < 0) ≤ ∞

∑
n=⌊log2 m⌋

P(2n/2In < 2(n+1)/4).
This is bounded above by cm−1/4 since the In are identically distributed with Lebesgue
density bounded above by (50). �
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