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Abstract

In this paper, we answer an open conjecture concerning complex symmetric

matrices and truncated Toeplitz operators. We study matrix representations

of truncated Toeplitz operators with respect to orthonormal bases which are

invariant under a canonical conjugation map. In particular, we determine

necessary and sufficient conditions for when a symmetric matrix is the matrix

representation of a truncated Toeplitz operator with respect to a given conju-

gation invariant orthonormal basis. We specialise our result to the case when

the conjugation invariant orthonormal basis is a modified Clark basis. With

this specialisation, we answer an open conjecture in the negative, and show

not every unitary equivalence between a complex symmetric matrix and a

truncated Toeplitz operator arises from modified Clark basis representations.

We pose a new refined conjecture for how to realise a model theory for sym-

metric matrices through the use of truncated Toeplitz operators, and we show

this conjecture is equivalent to a specified system of polynomial equations

being satisfied.
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matrix, model space.
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1 Introduction

Since the seminal work of Sarason in 2007 [27], there has been a surge of interest in
truncated Toeplitz operators (which we will abbreviate to TTOs) [1, 2, 4–6, 15, 23,
24, 26, 28]. In parallel to this, over the past decade there has also been a growing
body of research devoted to complex symmetric operators [18] [14] [22] (definitions
of complex symmetric operators and TTOs given in Section 2). Complex symmetric
operators are a deceptively wide class of operators; normal, Volterra and rank-one
operators are all examples of complex symmetric operators. Although complex
symmetric operators have wide reaching applications in numerous fields (we refer
the reader to [16] and references thereafter for a detailed discussion of these applica-
tions), one noteworthy domain where complex symmetric operators appear naturally
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is non-Hermitian Quantum Physics. Non-Hermitian Quantum Physics does not re-
quire that the Hamiltonian be a self adjoint operator, but that the Hamiltonian is a
symmetric operator which commutes with another so called PT operator. We refer
the reader to [3, 16] for a introductory background on this topic, which emphasises
how complex symmetric operators appear in this field.

There is an emerging body of evidence to suggest that truncated Toeplitz oper-
ators serve as a model operator for complex symmetric operators. The following is
an open question in [11].

Question 1.1. Just as multiplication operators Mz : L2(X, µ) → L2(X, µ) play a
fundamental role in decomposing normal operators, can one develop a comparable
model theory for complex symmetric operators? There is some indication that
truncated Toeplitz operators may play an important role in the resolution of this
problem.

Decomposing normal operators (i.e. the Spectral Theorem) is a famous cornerstone
result of Operator Theory and a positive answer to Question 1.1 would be a signif-
icant generalisation of the Spectral Theorem to non-normal operators. However as
this field of study is still in its infancy, the above question is not yet fully under-
stood even in the finite dimensional case. In finite dimensions, complex symmetric
operators are the operators which are unitarily equivalent to a symmetric matrix.
In this regard, the following question from [17] is a finite dimensional specialisation
of Question 1.1.

Question 1.2. Is every symmetric matrix unitarily equivalent to a direct sum of
TTOs?

The question above is known to be true for 2-by-2 and 3-by-3 matrices ( [17] and [15]
respectively), rank one matrices [15] and in several other cases.

When one wants to obtain a unitary equivalence between a symmetric matrix
and a TTO, the only known constructive way to do this is to compute the matrix
representation of the TTO with respect to a conjugation-invariant orthonormal basis
(or Cθ-real basis for short). The most notable class of Cθ-real bases are the modified
Clark bases (see Section 8 in [10]). In this vein, the following question was posed in
Section 7 of the article [15], and again in Section 9 of the book [17].

Question 1.3. Suppose that M is a complex symmetric matrix. If M is unitarily
equivalent to a TTO, does there exist an inner function u, and a modified Clark
basis for the model space Ku such that M is the matrix representation of a TTO
on Ku with respect to this basis? In other words, do all such unitary equivalences
between complex symmetric matrices and TTOs arise from modified Clark basis
representations?

Regarding a model theory for symmetric operators, Questions 1.1 and 1.2 may be
viewed as an existence result, whereas Question 1.3 is a constructive question which
asks how to realise such a model theory.

The purpose of this paper is to study matrix representations of TTOs with
respect to Cθ-real bases in order to answer Question 1.3 in the negative. Then we
pose and study a new refined conjecture which hopes to model symmetric matrices
through the use of TTOs.
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In Section 2 we provide the necessary preliminary background in order to study
the matrix representations of TTOs with respect to Cθ-real bases. In particular, we
include a brief discussion on the construction of the modified Clark bases.

We split Section 3 into two subsections. In the first subsection, we show that a
given symmetric matrix is the matrix representation of a TTO on Kθ with respect
to a given Cθ-real basis if and only if a corresponding matrix has non-zero kernel.
In the second subsection we specialise the results of the first subsection, and show
a given 3-by-3 symmetric matrix is the matrix representation of a TTO on Kθ with
respect to a given modified Clark basis for Kθ if and only if the off diagonal entries
satisfy a particular linear relation. With this condition, we then answer Question
1.3 in the negative.

In Section 4 we show that every matrix representation of a TTO with respect
to some Cθ-real basis is orthogonally equivalent to the matrix representation of the
same TTO with respect to a modified Clark basis. With this realisation we can then
show that a given 3-by-3 symmetric matrix is the matrix is the matrix representation
of a TTO on a model space Kθ with respect to a Cθ-real basis for Kθ if and only if
a specified system of polynomial equations is satisfied with a real solution.

2 Preliminaries

We denote the open unit disc in the complex plane by D and the unit circle by T.
The Hardy space, H2, is the space of all analytic functions f(z) =

∑∞
n=0 anz

n on D

such that

‖f‖=

(

∞
∑

n=0

‖an‖
2

)
1
2

< ∞.

For each ζ ∈ T and f ∈ H2, we can define f(ζ) := limr→1 f(rζ) to be the radial limit
of f at ζ . It can be shown that f(ζ) exists for almost every ζ ∈ T and f(ζ) ∈ L2(T),
so with this correspondence we view H2 ⊆ L2(T). We refer the reader to [9, 21]
for a detailed background on the Hardy space. Throughout we let θ be an inner
function (i.e. a function in H2 which is unimodular on T). A famous theorem of
Beurling characterises all the forward shift invariant subspaces of H2. It states that
all nontrivial closed forward shift invariant subspaces are of the form θH2, where
θ is some inner function. The backward shift is the adjoint of the forward shift on
H2 and is given by the map f(z) 7→ f−f(0)

z
. It follows from Beurling’s Theorem

that all nontrivial closed backward shift invariant subspaces of H2 are of the form
Kθ := H2 ⊖ θH2 = H2 ∩ θzH2, where the multiplication θzH2 is understood as
functions on the unit circle. The space Kθ is referred to as a model space, and we
refer the reader to [7] for a detailed background on model spaces.

Model spaces are reproducing kernel Hilbert spaces, where the reproducing kernel
at λ ∈ D is given by

kλ(z) =
1− θ(λ)θ(z)

1− λ̄z
, (1)

(see Section 5.5 of [12]). A model space Kθ is finite dimensional if and only if θ is
a finite Blaschke product (Proposition 5.19 in [12]), and in this case the order of
θ (i.e. the number of zeros of θ in the disc) is equal to the dimension of Kθ. In
the case when θ is a finite Blaschke product, for every ζ ∈ T it can be seen that θ
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and θ′ have a nontangential limit at ζ and |θ(ζ)|= 1. By Theorem 2 in [17] this is
equivalent to every f ∈ Kθ having a nontangential limit at every ζ ∈ T, and thus
every f ∈ Kθ can be defined everywhere on T. As a result of this, when θ is a finite
Blaschke product we can consider the reproducing kernel at ζ ∈ T, which is given
by

kζ(z) =
1− θ(ζ)θ(z)

1− ζ̄z
∈ Kθ.

For vectors x, y ∈ Kθ we use the notation x ⊗ y : Kθ → Kθ to mean the map
f 7→ 〈f, y〉x

If H is a Hilbert space, then we say that C is a conjugation operator on H if the
following conditions hold:
(a) C is antilinear:

C (a1f1 + a2f2) = a1Cf1 + a2Cf2

for all a1, a2 ∈ C and f1, f2 ∈ H.
(b) C is isometric:

〈Cf, Cg〉 = 〈g, f〉 (2)

for all f, g ∈ H.
(c) C is involutive:

C2 = I. (3)

An operator F on a Hilbert space H is said to be C-symmetric if CFC = F ∗, and an
operator is complex symmetric if it is C-symmetric with respect to some conjugation
map C.

The space Kθ carries a canonical conjugation operator given by Cθf = θzf .
This model space conjugation operator is discussed at length in [10]. Furnishing an
orthonormal basis for Kθ which is invariant under Cθ turns out to be a non-trivial
task. Such a basis is called a Cθ-real basis, and Lemma 2.6 in [10] shows every model
space Kθ admits a Cθ-real basis.

Although a detailed explanation of how to construct a Cθ-real basis for a model
space is given by Section 8 in [10], we outline the approach here. In the case when
the inner function θ is a finite Blaschke product, a Cθ-real basis is given by the unit
eigenvectors of a generalised Clark operator Ut,α : Kθ → Kθ,

Ut,α = St + (α + θ(t)) (kt ⊗ Cθkt) , (4)

where t ∈ D, α ∈ T and Stf = Pθ

(

z−t
1−t̄z

f
)

for Pθ : L
2 → Kθ, the orthogonal projec-

tion. We refer to a Cθ-real basis of this form as a modified Clark basis. Explicitly
the unit eigenvectors of Ut,α are given by the formula

cbi(z) =

(

ηi
α + θ(t)

1 + θ(t)α

)
1
2

kηi
‖kηi‖

, (5)

where ηi are the points such that

θ (ηi) =
α + θ(t)

1 + θ(t)α
, (6)
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and where we take the convention that the above square root is defined by taking

δ1 = arg(ηi) ∈ [0, 2π), δ2 = arg
(

α+θ(t)

1+θ(t)α

)

∈ [0, 2π) and setting arg

(

(

ηi
α+θ(t)

1+θ(t)α

)
1
2

)

=

δ1+δ2
2

. Observe that each t ∈ D, α ∈ T will give a different corresponding modified
Clark basis. We will use the description of the modified Clark basis given by (5)
throughout.

If θ is order n, then Theorem 3.4.10 in [13] ensures that there are precisely n

distinct ηi satisfying (6) and each ηi lies on T. We remark that either choice of the
square root will give a Cθ-real basis, however our choice of square root will make
our working in later sections easier to follow.

Let θ be a finite Blaschke product. For φ ∈ L∞(T), we define the truncated
Toeplitz operator (which we have abbreviated to TTO), Aφ : Kθ → Kθ, by

Aφ(f) = Pθ(φf).

For the Blaschke product θ(z) = zn, we have Kzn = span 1, z, z2, ..., zn−1 and every
TTO on Kzn is a Toeplitz matrix, so TTOs may be viewed as generalisations of
Toeplitz matrices. Although the TTO implicitly depends on our choice of θ we will
omit this from our notation and we will often suppress the φ subscript and just write
A instead of Aφ.

Throughout we denote Tθ to be the space of all TTOs on the model space Kθ.
For A ∈ Tθ and a Cθ-real basis for Kθ given by vj where j = 1, ..., dimKθ, we denote
[A]vj to be the matrix representation of A with respect to vj . Lemma 2.7 in [10]
shows that the matrix representation of a C-symmetric operator with respect to a
C-real basis is a symmetric matrix and so as A ∈ Tθ is C-symmetric with respect
to the canonical conjugation Cθ (see Lemma 2.1 in [27]), we must have that [A]vj is
a symmetric matrix. For this reason, when we are trying to realise which matrices
are the matrix representation of a TTO with respect to a Cθ-real basis we in fact
only need to consider which symmetric matrices are the representation of a TTO
with respect to a Cθ-real basis.

3 Matrix representations of TTOs with respect

to Cθ-real bases

3.1 General Cθ-real basis

The following is a generalisation of Theorem 7.1 (b) in [27].

Lemma 3.1. Let θ be a Blaschke product of order 3, let t1, t2, t3 be distinct points

in T and λ4, λ5 distinct points in D, then

kt1 ⊗ kt1 kt2 ⊗ kt2 kt3 ⊗ kt3 kλ4 ⊗ Cθkλ4 kλ5 ⊗ Cθkλ5 (7)

is a basis for Tθ.

Proof. Theorem 5.1 in [27] shows that the specified functions are in indeed in Tθ

and Theorem 7.1(a) in [27] shows the dimension of Tθ is 5, so it suffices to show that
the functions given by (7) are linearly independent.
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We first show that any 3 distinct reproducing kernels in Kθ are linearly indepen-
dent. The well known result, which can be found as Corollary 5.18 in [12], shows
that if the zeroes of θ are given by zn (allowing for repeated zeroes) then

Kθ =

{

a0 + a1z + a2z
2

(1− z1z)(1− z2z)(1− z3z)
: a1, a2, a3 ∈ C

}

.

Thus for any three distinct points x1, x2, x3 in D ∪ T, we can define a function

f(z) :=
(z − x2)(z − x3)

(1− z1z)(1 − z2z)(1 − z3z)
∈ Kθ,

such that f(x2) = f(x3) = 0, but f(x1) 6= 0. So if for any three distinct points
x1, x2, x3 in D ∪ T we have

3
∑

i=1

µikxi
= 0,

for some constants µi, then for the f defined above we have

0 = 〈f,

3
∑

i=1

µikxi
〉 = µ1f(x1),

which implies µ1 = 0. We can repeat a similar argument to show µ2, µ3 are both 0.
So if we have complex constants α1, ..., α5 such that

3
∑

i=1

αi(kti ⊗ kti) +
5
∑

i=4

αi(kλi
⊗ Cθkλi

) = 0,

then for f ∈ Kθ such that f(t2) = f(t3) = 0 and f(t1) 6= 0, we have

0 =

(

3
∑

i=1

αi(kti ⊗ kti) +
5
∑

i=4

(αikλi
⊗ Cθkλi

)

)

(f) = α1f(t1)kt1 +
5
∑

i=4

αikλi
〈f, Cθkλi

〉.

Now linear independence of kt1 , kλ4, kλ5 guarantees α1 = 0.
A similar argument shows α2, α3 are 0 and from here the linear independence of

kλ4 ⊗ Cθkλ4 , kλ5 ⊗ Cθkλ5 ,which is shown by Theorem 7.1 in [27], ensures α4, α5 are
0. (Alternatively one can show α4, α5 are 0, by noticing that for f ∈ Kθ such that
f(λ4) = 0, f(λ5) 6= 0 we have 0 =

(
∑5

i=4(αikλi
⊗ Cθkλi

)
)

(Cθ(f)) = α5f(λ5)kλ5 , and
so α5 = 0.)

Theorem 3.2. Let θ be a Blaschke product of order 3, let v1, v2, v3 be a Cθ-real basis

for Kθ, let t1, t2, t3 be distinct points on T and λ4, λ5 be distinct points in D. Then

a symmetric matrix

S =





s1 s4 s5
s4 s2 s6
s5 s6 s3



 ,

is a matrix representation of a TTO on Kθ with respect to vj if and only if

det[c1, c2, c3, c4, c5, S̃] = 0,
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where

ci =



















v1(ti)v1(ti)

v2(ti)v2(ti)

v3(ti)v3(ti)

v1(ti)v2(ti)

v1(ti)v3(ti)

v2(ti)v3(ti)



















for i = 1, 2, 3, ci =



















v1(λi)v1(λi)

v2(λi)v2(λi)

v3(λi)v3(λi)

v1(λi)v2(λi)

v1(λi)v3(λi)

v2(λi)v3(λi)



















for i = 4, 5,

and

S̃ =

















s1
s2
s3
s4
s5
s6

















.

Remark. This theorem may easily be altered so that t1, t2, t3, λ4, λ5 may take any
values in D ∪ T. The reason we phrase the theorem so that t1, t2, t3 ∈ T and
λ4, λ5 ∈ D is because this will allow us to easily specialise the result to the case
when vj is a modified Clark basis in the next subsection.

Proof. We first compute [kti ⊗ kti ]vj for i = 1, 2, 3 and [kλi
⊗ Cθkλi

]vj for i = 4, 5.
For i = 1, 2, 3 we have

kti =
3
∑

j=1

〈kti, vj〉vj =
3
∑

j=1

vj(ti)vj,

and so

[kti ⊗ kti ]vj =



v1(ti)





v1(ti)

v2(ti)

v3(ti)



 v2(ti)





v1(ti)

v2(ti)

v3(ti)



 v3(ti)





v1(ti)

v2(ti)

v3(ti)







 .

Similarly for i = 4, 5 as each vj is Cθ-invariant using properties (2) (3) we have

〈vj, Cθkλi
〉 = vj(λi), and so

[kλi
⊗ Cθkλi

]vj =



v1(λi)





v1(λi)

v2(λi)

v3(λi)



 v2(λi)





v1(λi)

v2(λi)

v3(λi)



 v3(λi)





v1(λi)

v2(λi)

v3(λi)







 .

By the previous lemma we can say that [kti ⊗ kti ]vj for i = 1, 2, 3 [kλi
⊗ Cθkλi

]vj for
i = 4, 5 is a basis for the space of matrix representations of Tθ with respect to vj
(i.e. a basis for [Tθ]vj = {[A]vj such that A ∈ Tθ}).

So for a matrix

S =





s1 s4 s5
s4 s2 s6
s5 s6 s3



 ,
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there exists an A ∈ Tθ such that [A]vj = S if and only if there exists µ1, ..., µ5 ∈ C

such that

3
∑

i=1

µi



v1(ti)





v1(ti)

v2(ti)

v3(ti)



 v2(ti)





v1(ti)

v2(ti)

v3(ti)



 v3(ti)





v1(ti)

v2(ti)

v3(ti)







 (8)

+

5
∑

i=4

µi



v1(λi)





v1(λi)

v2(λi)

v3(λi)



 v2(λi)





v1(λi)

v2(λi)

v3(λi)



 v3(λi)





v1(λi)

v2(λi)

v3(λi)







 = S.

As noted in the previous section, each summand in the above expression must be
a symmetric matrix. So using the symmetry of the matrices, we see when considering
whether there exists µ1, ..., µ5 such that (8) holds, we in fact only need to consider
whether there are µ1, ..., µ5 such that

3
∑

i=1

µi



v1(ti)





v1(ti)

v2(ti)

v3(ti)



 v2(ti)





0

v2(ti)

v3(ti)



 v3(ti)





0
0

v3(ti)









+

5
∑

i=4

µi



v1(λi)





v1(λi)

v2(λi)

v3(λi)



 v2(λi)





0

v2(λi)

v3(λi)



 v3(λi)





0
0

v3(λi)







 =





s1 0 0
s4 s2 0
s5 s6 s3



 .

Rewriting this in terms of column vectors, we see that this is actually equivalent
to the existence of µ1, ..., µ5 ∈ C such that

∑5
i=1 µici = S̃, or equivalently (as

c1, c2, c3, c4, c5 are linearly independent)

det[c1, c2, c3, c4, c5, S̃] = 0.

The above theorem generalises to the case when θ is a Blaschke product of order
n ∈ N. To do this we define the vectorialisation map. Let Sn(C) denote the n-
by-n symmetric matrices with complex entries. The vectorialisation map, denoted

V : Sn(C) → C
n(n+1)

2 , is defined by M = (aij) 7→ V (M) where

V (M) =

































































a11
a12
...

a1n
a22
a23
...

a2n
a33
...

a3n
...
...

a(n−1)(n−1)

a(n−1)n

ann

































































.
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It is readily verified that V is an injective C-linear map, and so as dimSn(C) =

dimC
n(n+1)

2 it also follows that V is surjective and hence a linear isomorphism.

Theorem 3.3. Let θ be a Blaschke product of order n, let v1, ..., vn be a Cθ-real

basis for Kθ and let λ1, ..., λn be distinct points in D. Then a symmetric matrix

S = (sij)

is a matrix representation of a TTO on Kθ with respect to v1, ..., vn if and only if

ker[c1, c2, ...c2n−1, V (S)] 6= {0},

where cl is the vectorialisation of the symmetric matrix with i, j’th entry given by

alij = vi(λl)vj(λl).

The following proof closely resembles the proof of the previous theorem, so we only
outline the details of the proof.

Proof. Invoke Theorem 7.1 in [27] to show that [kλl
⊗Cθkλl

]v1,...,vn for l = 1, ..., 2n−1
is a basis for Tθ. It can be computed that [kλl

⊗ Cθkλl
]v1,...,vn is the n-by-n matrix

with i, j’th entry given by

alij = vi(tl)vj(tl) = alji.

Thus, there exists an A ∈ Tθ such that [A]v1,...,vn = S if and only if there exists
constants µ1, ..., µ2n−1 ∈ C such that

2n−1
∑

l=1

µl[kλl
⊗ Cθkλl

]v1,...,vn = S.

Now applying the map V and using our previous observation that V is a linear
isomorphism, we see this is equivalent to the existence of µ1, ..., µ2n−1 ∈ C such that

2n−1
∑

l=1

µlcl = V (S),

which is equivalent to

ker[c1, c2, ...c2n−1, V (S)] 6= {0}.

3.2 When the Cθ-real basis is a modified Clark basis

In this subsection we specialise the results of the previous subsection to the case
where the Cθ-real basis is a modified Clark basis

Lemma 3.4. Let θ be a finite Blaschke product and let η ∈ T. Then

‖kη‖
2=

θ′(η)η

θ(η)
= |θ′(η)|.

9



Proof.

θ(η)

η
‖kη‖

2=
θ(η)

η
lim
z→η

〈kη, kz〉 =
θ(η)

η
lim
z→η

1− θ(η)θ(z)

1− ηz
= lim

z→η

θ(z)− θ(η)

z − η
= θ′(η),

where the penultimate equality holds because |θ(η)|2= 1 = |η|2. Thus ‖kη‖
2= θ′(η)η

θ(η)
,

and by taking the modulus we deduce ‖kη‖
2= |θ′(η)||η|

|θ(η)|
= |θ′(η)|.

Theorem 3.5. Let θ be a Blaschke product of order 3 and cbi be modified Clark

basis for Kθ. Then a symmetric matrix

S =





s1 s4 s5
s4 s2 s6
s5 s6 s3



 ,

is a matrix representation of a TTO on Kθ with respect to cbi if and only if

s6 =
1

η3 − η2

(

s4

(

η1
1
2 |θ′(η1)|

1
2

η3
1
2 |θ′(η3)|

1
2

)

(η1 − η2) + s5

(

η1
1
2 |θ′(η1)|

1
2

η2
1
2 |θ′(η2)|

1
2

)

(η3 − η1)

)

, (9)

where the ηi are given by (6) and where ηj
1
2 is defined such that if arg(ηj) := γ ∈

[0, 2π), then arg(ηj
1
2 ) = γ

2
∈ [0, π).

Proof. The proof of this result involves specialising Theorem 3.2. With the same
notations as Theorem 3.2, we set vi = cbi, set ti = ηi for i = 1, 2, 3, set λ4 = 0 and
keep D ∋ λ5 := λ 6= 0 arbitrary. Then for i 6= j, as cbi(ηj) is a constant multiplied
by 〈cbi, cbj〉 = 0, we must have cbi(ηj) = 0. So [c1, c2, c3, c4, c5, S̃] simplifies to
become a matrix of the form

(

D A1

0 A2

)

,

where D is a 3-by-3 diagonal matrix with each diagonal entry non-zero, 0 is the 3-by-
3 zero matrix and A1, A2 are 3-by-3 matrices. So in this case det[c1, c2, c3, c4, c5, S̃] =
detD detA2, and so det[c1, c2, c3, c4, c5, S̃] = 0 if and only if detA2 = 0. We now
argue detA2 = 0 if and only if (9) holds.

If we write cbi = bikηi for bi ∈ C (where bi is explicitly given in (5)), then

cbi(λ) = bi〈kηi, kλ〉 = bikλ(ηi), and so we can compute A2 to be given by





x4 y4 s4
x5 y5 s5
x6 y6 s6



 ,

where

x4 = b2k0(η2)b1k0(η1), y4 = b2kλ(η2)b1kλ(η1),

x5 = b3k0(η3)b1k0(η1), y5 = b3kλ(η3)b1kλ(η1),

x6 = b3k0(η3)b2k0(η2), y6 = b3kλ(η3)b2kλ(η2).

For ease of notation we define the constant Bλ = 1 − θ(λ)θ(η1). Now noting that
as θ(η1) = θ(η2) = θ(η3), by (1) we must have k0(η1) = k0(η2) = k0(η3) = B0, and

10



similarly kλ(ηi)kλ(ηj) =
B2

λ

(1−ληi)(1−ληj)
, and so from the above we obtain

x4 =b2b1B
2
0 , y4 = b2b1

B2
λ

(1− λη2)(1− λη1)
, (10)

x5 =b3b1B
2
0 , y5 = b3b1

B2
λ

(1− λη3)(1− λη1)
, (11)

x6 =b3b2B
2
0 , y6 = b3b2

B2
λ

(1− λη3)(1− λη2)
. (12)

Expanding the determinant of A2 =





x4 y4 s4
x5 y5 s5
x6 y6 s6



 via the third column we see

detA2 = 0 is equivalent to

s6(x4y5 − y4x5) = s4(y5x6 − x5y6) + s5(x4y6 − y4x6). (13)

Using the values of x4, x5, x6, y4, y5, y6 found in (10) (11) (12) we can write

y5x6 − x5y6 = b3
2
b1b2B

2
λB

2
0

1

1− λη3

(

1

1− λη1
−

1

1− λη2

)

= b3
2
b1b2B

2
λB

2
0

1

1− λη3

(

λ(η1 − η2)

(1− λη1)(1− λη2)

)

,

x4y6 − y4x6 = b3b1b2
2
B2

λB
2
0

1

1− λη2

(

1

1− λη3
−

1

1− λη1

)

= b3b1b2
2
B2

λB
2
0

1

1− λη2

(

λ(η3 − η1)

(1− λη3)(1− λη1)

)

,

x4y5 − y4x5 = b3b1
2
b2B

2
λB

2
0

1

1− λη1

(

1

1− λη3
−

1

1− λη2

)

= b3b1
2
b2B

2
λB

2
0

1

1− λη1

(

λ(η3 − η2)

(1− λη3)(1− λη2)

)

.

At this stage we may now see that x4y5 − y4x5 6= 0, since if x4y5 − y4x5 = 0,
this would imply η3 = η2, which can never be the case as pointed out in Section 2.
Substituting the above values into (13) gives

s6 =
1

η3 − η2

(

s4

(

b3

b1

)

(η1 − η2) + s5

(

b2

b1

)

(η3 − η1)

)

. (14)

Finally as each
(

ηi
α+θ(t)

1+θ(t)α

)

∈ T, for i, j ∈ {1, 2, 3}, using the explicit description

of bi given in (5), and Lemma 3.4, we see

(

bi

bj

)

=

(

ηj
α+θ(t)

1+θ(t)α

)
1
2

‖kηj‖

(

ηi
α+θ(t)

1+θ(t)α

)
1
2
‖kηi‖

=
ηj

1
2 |θ′(ηj)|

1
2

ηi
1
2 |θ′(ηi)|

1
2

,

where ηj
1
2 is defined such that if arg(ηj) := γ ∈ [0, 2π), then arg(ηj

1
2 ) = γ

2
. So (14)

simplifies to

s6 =
1

η3 − η2

(

s4

(

η1
1
2 |θ′(η1)|

1
2

η3
1
2 |θ′(η3)|

1
2

)

(η1 − η2) + s5

(

η1
1
2 |θ′(η1)|

1
2

η2
1
2 |θ′(η2)|

1
2

)

(η3 − η1)

)

.
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Remark. The above theorem may be viewed as a 3-by-3 version of a generalisation
of Theorem 1.15 in [8]. In [8] the authors only consider the case when t = 0 in (4),
whereas our result holds for all t ∈ D. Furthermore we note that our condition for S
to be a matrix representation of a TTO with respect to cbi eliminates all variables
apart from ηi for i = 1, 2, 3.

One can make a corollary to the above theorem which provides numerous exam-
ples of matrices which show Question 1.3 to be negative.

Corollary 3.6. Consider a symmetric matrix, S, of the form

S =





a 0 1
0 b 0
1 0 c



 , S =





a 1 0
1 b 0
0 0 c



 or S =





a 0 0
0 b 1
0 1 c



 (15)

where a, b, c ∈ R. Then S is unitarily equivalent to a TTO, but is not the matrix

representation of a TTO with respect to a modified Clark basis.

Proof. In every case we have that S is a normal matrix and so is unitarily equivalent

to a TTO by Theorem 5.4 in [6]. Clearly as bi 6= 0, this means bi
bj

=

(

ηj
1
2 |θ′(ηj)|

1
2

ηi
1
2 |θ′(ηi)|

1
2

)

6= 0

for i, j = 1, 2, 3. Thus by the previous theorem S does not satisfy (9) for any choice
of distinct η1, η2, η3 ∈ T, and so S can not be the matrix representation of a TTO
with respect to a modified Clark basis.

Naturally, the above working leads us to consider another conjecture which is a
modification of Question 1.3.

Conjecture 3.1. Suppose that M is a complex symmetric matrix. If M is unitarily
equivalent to a TTO, does there exist an inner function u, and a Cθ-real basis for
the model space Ku such that M is the matrix representation of a TTO on Ku

with respect to this basis? In other words, do all such unitary equivalences between
complex symmetric matrices and TTOs arise from Cθ-real matrix representations?

We observe that if the above conjecture is true then by Proposition 4.1 (see
below) every complex symmetric matrix M which is unitarily equivalent to a TTO
is orthogonally equivalent to the matrix representation of a TTO with respect to a
modified Clark basis.

Finally we remark that, as eluded to in [17], there is also a possibility that
the matrix-valued truncated Toeplitz operator may play a role in the modelling
of complex symmetric operators. Matrix-valued truncated Toeplitz operators are
a vector-valued generalisation of the truncated Toeplitz operator and have been
studied in [19, 20, 25].

4 A geometric approach

Although function theory was used to construct one class of Cθ-real bases, the
modified Clark bases, it turns out that when we have the description of one Cθ-real
basis for a model space Kθ, we can use a purely algebraic method to generate all
Cθ-real bases for Kθ. Furthermore, one can describe the matrix representation of a
TTO with respect to given Cθ-real basis by relating this to the matrix representation
of the TTO with respect to a modified Clark basis. We show this with the following
proposition.
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Remark. The term orthogonal is typically used for a real matrix A such that AAT =
ATA = Id, however we note that orthogonal matrices are real unitary matrices.

Proposition 4.1. Let θ be of order n. Given a Cθ-real basis for Kθ, vi, and a

modified Clark basis for Kθ, cbi, there exists an orthogonal matrix Ur such that

vi = TUrei, where T : Cn → Kθ, ei 7→ cbi. Conversely, given any orthogonal Ur

and any modified Clark basis cbi, TUrei is a Cθ-real basis for Kθ.

Furthermore for vi = TUrei and A ∈ Tθ we have

[A]vi = U−1
r [A]cbi

Ur.

Proof. Given a Cθ-real basis vi, and a modified Clark basis cbi there clearly exists
constants rij such that vi = ri1cb1+ ...+ rincbn. As vi and cbi are Cθ-invariant, we
must have

ri1cb1 + ...+ rincbn = vi = Cθ(vi) = ri1cb1 + ... + rincbn,

and so for every i, j ∈ {1, ..., n} we must have rij = rij ∈ R. This establishes that
vi = TUrei, where Ur is a real matrix. To show Ur is unitary we observe that TUr

is unitary, as it sends an orthonormal basis to an orthonormal basis, and so is T , so
Ur must also be unitary.

To show the converse part of the proposition one can readily see that each
TUrei, being a real linear combination of a Cθ-real basis, is itself Cθ-invariant,
and TUre1, ..., TUren is an orthonormal basis because e1, ..., en is an orthonormal
basis and TUr is unitary. In order to prove the second statement of the proposition,
observe that

[A]vi = U−1
r T−1ATUr = U−1

r [A]cbi
Ur.

Remark. By the above proposition we may observe that if a 3-by-3 matrix M is
such that there exist an orthogonal matrix Ur with UrMU−1

r = D where D is a
diagonal matrix with entries d1, d2, d3, then M is a representation of a TTO with
respect to a Cθ-real basis. Indeed, if we consider A :=

∑3
i=1 dicbi ⊗ cbi, for some

modified Clark basis cbi then [A]cbi
= D, and so for the basis vi = TUrei we have

[A]vi = U−1
r [A]cbi

Ur = U−1
r DUr = M . With this observation we see that although

the matrices in (15) can not be a modified Clark basis representation of a TTO,
they are a matrix representation of a TTO with respect to some Cθ-real basis.

In the remainder of this section we will exploit the above proposition and show
that the problem of determining whether a given 3-by-3 symmetric matrix, M , is a
matrix representation of a TTO on some fixed model space with respect to a Cθ-real
basis can actually be rephrased purely as a geometric problem.

By Proposition 4.1 we can see that a given symmetric matrix

M =





m1 m4 m5

m4 m2 m6

m5 m6 m3



 ,

is a matrix representation of a TTO on Kθ with respect to a Cθ-real basis if and
only if for a modified Clark basis for Kθ, cbi, there exists a orthogonal matrix Ur

and a A ∈ Tθ such that
UrMUT

r = [A]cbi
. (16)

13



In fact, this is actually equivalent to the existence of a special orthogonal matrix Us

such that UsMUT
s = [A]cbi

, as if (16) holds for some orthogonal Ur with detUr = −1
then setting Us = −Ur we see UsMUT

s = [A]cbi
.

Given matrices M and S, when trying to solve a matrix equation of the form
XMXT = S forX , we may actually rephrase this equation as a problem in algebraic
geometry. In the case of (16) we have the following.

Theorem 4.2. Let θ be a Blaschke product of order 3, let cbi be a modified Clark

basis for Kθ with corresponding points on the boundary ηi given by (6). Consider

the system of polynomials with variables r1, r2, ..., r9 defined by

r21 + r24 + r27 = 1, r22 + r25 + r28 = 1, r23 + r26 + r29 = 1, (17)

r1r2 + r4r5 + r7r8 = 0, r2r3 + r5r6 + r8r9 = 0, r1r3 + r4r6 + r7r9 = 0, (18)

(η3 − η2)A6 −

(

η1
1
2 |θ′(η1)|

1
2

η3
1
2 |θ′(η3)|

1
2

)

(η1 − η2)A4 −

(

η1
1
2 |θ′(η1)|

1
2

η2
1
2 |θ′(η2)|

1
2

)

(η3 − η1)A5 = 0, (19)

where the square root is given by the same convention as in (9) and where

A6 = m1r4r7+m4r5r7+m5r6r7+m4r4r8+m2r5r8+m6r6r8+m5r4r9+m6r5r9+m3r6r9,

A4 = m1r1r4+m4r2r4+m5r3r4+m4r1r5+m2r2r5+m6r3r5+m5r1r6+m6r2r6+m3r3r6

A5 = m1r1r7+m4r2r7+m5r3r7+m4r1r8+m2r2r8+m6r3r8+m5r1r9+m6r2r9+m3r3r9.

Then

M =





m1 m4 m5

m4 m2 m6

m5 m6 m3





is a matrix representation of a TTO on Kθ with respect to a Cθ-real basis if and

only if equations (17) (18) and (19) are simultaneously satisfied with a real solution.

Proof. As shown by (16), we see that M is a matrix representation of a TTO on
Kθ with respect to a Cθ-real basis if and only if there exists orthogonal matrix




r1 r2 r3
r4 r5 r6
r7 r8 r9



 and a A ∈ Tθ such that





r1 r2 r3
r4 r5 r6
r7 r8 r9



M





r1 r2 r3
r4 r5 r6
r7 r8 r9





T

= [A]cbi
. (20)

Now equations (17) (18) being satisfied (with a real solution) are equivalent to





r1 r2 r3
r4 r5 r6
r7 r8 r9





being a orthogonal matrix. Furthermore, by multiplying out the left hand side of
(20), we see that the left hand side of (20) is a representation of a TTO on Kθ with
respect to cbi (i.e. that the condition from Theorem 3.5 is satisfied) if and only if
(19) is satisfied.
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Remark. We notice that in the above theorem the condition that M is a matrix
representation of a TTO on Kθ with respect to a Cθ-real basis is independent of our
original choice of cbi.

Remark. In the above theorem, there is a procedure to find a choice of η1, η2, η3,
which is the following. Consider the modified Clark basis for Kθ with parameters
in (6) (5) given by α = 1 and t such that θ(t) = 0. Then in order to find ηi one
must solve θ(z) =

∏3
i=1

z−λi

1−λiz
= 1, or equivalently, after multiplying both sides by

∏3
i=1 1− λiz and rearranging

z3K3 − z2K2 + zK1 −K0 = 0,

where K3 = 1+λ1λ2λ3, K2 = λ1+λ2+λ3+λ1λ2+λ1λ3+λ2λ3, K1 = λ1λ2+λ1λ3+
λ2λ3 + λ1 + λ2 + λ3, K0 = λ1λ2λ3 + 1.
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