
BIFURCATION ANALYSIS FOR AXISYMMETRIC CAPILLARY WATER WAVES
WITH VORTICITY AND SWIRL

ANDRÉ H. ERHARDT, ERIK WAHLÉN AND JÖRG WEBER

Abstract. We study steady axisymmetric water waves with general vorticity and swirl, subject to
the influence of surface tension. This can be formulated as an elliptic free boundary problem in
terms of Stokes’ stream function. A change of variables allows us to overcome the generic coordinate-
induced singularities and to cast the problem in the form “identity plus compact”, which is amenable
to Rabinowitz’ global bifurcation theorem, while no restrictions regarding the absence of stagnation
points in the flow have to be made. Within the scope of this new formulation, local and global solution
curves, bifurcating from laminar flows with a flat surface, are constructed.

1. Introduction

In the last decades, there has been a lot of progress on the two-dimensional steady water wave
problem with vorticity (see for example [9, 14, 34, 36, 37] and references therein). The corresponding
three-dimensional problem is significantly more challenging, due to the lack of a general formulation
which is amenable to methods from nonlinear functional analysis. This is related to the fact that
in two dimensions, the vorticity is a scalar field which is constant along streamlines, while in three
dimensions it is a vector field which satisfies the vorticity equation, including the vortex stretching
term. One approach to at least gain some insight is to investigate flows under under certain geometrical
assumptions to fill the gap between two-dimensional and three-dimensional flows. This is one of the
motivations for studying the axisymmetric Euler equations, which in many ways behave like the
two-dimensional equations. Indeed, for the time-dependent problem, in the swirl-free case, these
possess a global existence theory for smooth solutions similar to two-dimensional flows; see [1, 32] and
references therein (note however the recent remarkable result [15] on singularity formation of non-
smooth solutions). The steady axisymmetric problem is also of considerable physical importance, as
it can be used to model phenomena such as jets, cavitational flows, bubbles and vortex rings (see for
example [3, 7, 8, 11, 16, 17, 28, 31, 35] and references therein).

In this paper, we study axisymmetric water waves with surface tension, modelled by assuming that
the domain is bounded by a free surface on which capillary forces are acting, and that in cylindri-
cal coordinates (r, ϑ, z) the domain and flow are independent of the azimuthal variable ϑ. In the
irrotational and swirl-free setting, such waves were studied numerically by Vanden-Broeck et al. [33]
and Osborne and Forbes [29], who found similarities to two-dimensional capillary waves, including
overhanging profiles and limiting configurations with trapped bubbles at their troughs. The small-
amplitude theory is intimately connected to Rayleigh’s instability criterion for a liquid jet [30] (see
also [22, 33]), which says that a circular capillary jet is unstable to perturbations whose wavelength
exceed the circumference of the jet. Indeed, this instability criterion is satisfied precisely when the
dispersion relation for small-amplitude waves has purely imaginary solutions, while steady waves are
obtained when the solutions are real [33] (that is, for smaller wavelengths). According to Hancock
and Bush [22] a stationary form of such steady waves may be observed at the base of a jet which is
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impacting on a reservoir of the same fluid. If the reservoir is contaminated, the wave field is moved up
the jet and a so called ‘fluid pipe’ with a quiescent surface is formed at the base. We also note that
in recent years there has been increased interest in waves on jets in other physical contexts, such as
electrohydrodynamic flows [20] and ferrofluids [5, 12, 21].

In this paper, we consider liquid jets with both vorticity and swirl. A motivation for this is that a
viscous boundary layer in a pipe typically gives rise to vorticity, which may have a significant effect
on the jet flowing out of the pipe. As an idealisation, we assume that the jet extends indefinitely in
the z-direction and ignore viscosity and gravity. In the irrotational swirl-free case, the problem can be
formulated in terms of a harmonic velocity potential. In contrast, we formulate the problem in terms of
Stokes’ stream function, which satisfies a second-order semilinear elliptic equation known alternatively
in the literature as the Hicks equation, the Bragg–Hawthorne equation or the Squire–Long equation,
cf. [31]. This equation is also known from plasma physics as the Grad–Shafranov equation, cf. [10].
The first aim of the paper is to construct small-amplitude solutions using local bifurcation theory in
this more general context. In contrast to [33], this means that the bifurcation conditions are much
less explicit and that we require qualitative methods. The second aim is to construct large-amplitude
solutions using global bifurcation theory and a reformulation of the problem inspired by the recent
paper [37] on the two-dimensional gravity-capillary water wave problem with vorticity.

We now describe the plan of the paper. First in Section 2 we start by introducing the main problem
we are going to study. This means we start with the incompressible Euler equations and recall its ax-
isymmetric version. In Section 3, we discuss regularity issues and trivial solutions of the axisymmetric
incompressible Euler equations. Regarding regularity issues and in order to reformulate the problem
in a secure functional-analytic setting, we avoid coordinate-induced singularities by introducing a new
variable in terms of the Stokes stream function and view it (partly) as a function on five-dimensional
space; this trick to overcome this kind of coordinate singularities is well-known and goes back to Ni [28].
Then, we study local bifurcations in Section 4 in the spirit of the theorem by Crandall–Rabinowitz,
mainly by introducing the so-called good unknown; the main result of this section is Theorem 4.6. In
addition, in Section 5 we take a closer look at the conditions for local bifurcation. First we establish
spectral properties of the corresponding Sturm–Liouville problem of limit-point type and with bound-
ary condition dependent on the eigenvalue. After that, we investigate some specific examples in more
detail. Finally, in Section 6 we close the paper by investigating global bifurcations; see Theorem 6.2.

Since we require the radius r to be a graph of the longitudinal position z along the water surface,
our theoretical framework, in contrast to [37], does not allow for overhanging waves, and we leave it
to further research to include this possibility. This would clearly be a desirable extension in view of
the numerical results in [29, 33].

2. Description of the problem and the governing equations

We consider periodic axisymmetric capillary waves travelling at constant speed along the z axis.
The fluid is assumed to be inviscid and incompressible. In a frame moving with the wave, the flow is
therefore governed by the steady incompressible Euler equations

(u · ∇)u = −∇p,
∇ · u = 0,

x = (x, y, z)T ∈ Ω ⊆ R3(2.1)

where u = u(x) and p = p(x) denote the velocity and the pressure, respectively, and Ω is the fluid
domain. In cylindrical coordinates (r, ϑ, z), that is, x = r cosϑ, y = r sinϑ and z = z, the velocity
field u is expressed as

u = ur(r, z)er + uϑ(r, z)eϑ + uz(r, z)ez,
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where the vectors

er =
(x
r
,
y

r
, 0
)T

, eϑ =
(
−y
r
,
x

r
, 0
)T

and ez = (0, 0, 1)T

form an orthonormal basis. Note that we allow for non-zero swirl, uϑ 6= 0. From the incompressibility
and the axisymmetry of the flow it follows that we can introduce Stokes’ stream function Ψ(r, z), such
that

ur =
1

r

∂Ψ

∂z
and uz = −1

r

∂Ψ

∂r
.

Moreover, the quantity ruϑ is constant along streamlines, which we express as ruϑ = F (Ψ) where
F is an arbitrary function. The steady Euler equations are then equivalent to the Bragg–Hawthorne
equation

−∆∗Ψ = r2γ(Ψ) + F (Ψ)F ′(Ψ),

where γ is an arbitrary function and

∆∗Ψ := Ψrr −
1

r
Ψr + Ψzz

cf. [31, Chapter 3.13]. Note that the corresponding vorticity vector is given by

ω = −∂u
ϑ

∂z
er +

(
∂ur

∂z
− ∂uz

∂r

)
eϑ +

1

r

∂(ruϑ)

∂r
ez,

= −1

r
F ′(Ψ)Ψzer +

1

r
∆∗Ψeϑ +

1

r
F ′(Ψ)Ψrez.

We next consider the boundary conditions. Assume that the fluid domain is given by Ω = {(r, z) ∈
R2 : 0 < r < d + η(z)} and its boundaries by ∂ΩS = {(r, z) ∈ R2 : r = d + η(z)} (free surface)
and ∂ΩC = {(r, z) ∈ R2 : r = 0} (center line). Although the latter could be considered as part of
the domain, it is sometimes convenient to consider it as a boundary due to the appearance of inverse
powers of r in the equations. On the free surface r = d + η(z) we have the kinematic boundary
condition u · n = 0, where n = er − η′(z)ez denotes a normal vector. Expressed in terms of Ψ, this
takes the form Ψz +ηzΨr = 0 on ∂ΩS . In addition, we have the dynamic boundary condition p = −σκ
on ∂ΩS where

κ = κ[η] =
ηzz

(1 + η2
z)

3/2
− 1

(d+ η)
√

1 + η2
z

is the mean curvature of ∂ΩS and σ > 0 is the coefficient of surface tension. Using Bernoulli’s law we
can eliminate the pressure and express this as

Ψ2
r + Ψ2

z + F (Ψ)2

2r2
− σκ = Q

on ∂ΩS , where Q is the Bernoulli constant. At the center line ∂ΩC the identity Ψz = rur shows that
Ψz = 0. Summarising, we have following boundary value problem:

(2.2)

∆∗Ψ + r2γ(Ψ) + F (Ψ)F ′(Ψ) = 0 in Ω,

Ψ2
r + Ψ2

z + F (Ψ)2

2r2
− σκ = Q on ∂ΩS ,

Ψz + ηzΨr = 0 on ∂ΩS ,

Ψz = 0 on ∂ΩC ,

where F and γ are arbitrary functions of Ψ.
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3. Preliminaries

3.1. The equations. The last two boundary conditions in (2.2) mean that Ψ is constant on both
∂ΩS and ∂ΩC . We normalise Ψ such that it vanishes on ∂ΩC and assign the name m to its value on
∂ΩS . Thus, we shall deal with the equations

Ψrr −
1

r
Ψr + Ψzz = −r2γ(Ψ)− F (Ψ)F ′(Ψ) in Ω,(3.1a)

Ψ2
r + Ψ2

z + F (Ψ)2

2r2
− σκ = Q on ∂ΩS ,(3.1b)

Ψ = m on ∂ΩS ,(3.1c)
Ψ = 0 on ∂ΩC ,(3.1d)

where Q and m are constants. The fluid velocity is given by

u =
F (Ψ)

r
eϑ −∇× (Ψeϑ/r) =

Ψz

r
er +

F (Ψ)

r
eϑ −

Ψr

r
ez.(3.2)

Following a trick of Ni [28], we introduce the function ψ via

Ψ = r2ψ,(3.3)

In terms of ψ, the equations read

ψrr +
3

r
ψr + ψzz = −γ(r2ψ)− 1

r2
F (r2ψ)F ′(r2ψ) in Ω,(3.4a)

r2(ψ2
r + ψ2

z)

2
+
F (r2ψ)2

2r2
+

2mψr
r

+
2m2

r4
− σκ = Q on ∂ΩS ,(3.4b)

ψ =
m

r2
on ∂ΩS .(3.4c)

Notice that we no longer need to impose a condition on r = 0, provided ψ is continuous at r = 0, since
then (3.1d) is automatically satisfied for Ψ given by (3.3).

3.2. Regularity issues. Quite naturally, the fluid velocity u should be at least of class C1 (in Carte-
sian coordinates). Written in terms of ψ, (3.2) reads

u =
F (r2ψ)

r
eϑ −∇× (rψeϑ) = rψzer +

F (r2ψ)

r
eϑ − (2ψ + rψr)ez.(3.5)

Due to [27], u is of class C1 provided F (r2ψ)/r is of class C1 and rψ is of class C2, both viewed as
functions on {(r, z) ∈ [0,∞)× R : r ≤ d + η(z)}, and, moreover, F (r2ψ)/r, rψ, and (rψ)rr vanish at
r = 0. In view of

(rψ)r = ψ + rψr, (rψ)rr = 2ψr + rψrr,

and
(F (r2ψ)/r)r = F ′(r2ψ)(2ψ + rψr)− F (r2ψ)/r2,

it is therefore sufficient to assume

ψ ∈ C2(Ω), ψr
∣∣
r=0

= 0,(3.6)

and
F ∈ C1(R), F (0) = 0.

Furthermore, we shall need that the right-hand side of (3.4a) is in a Hölder class C0,α if ψ is C0,α.
To this end, it is sufficient that both F ′ and G(x) := F (x)/x (continuously extended to x = 0 by
G(0) := F ′(0)) are locally Lipschitz continuous in view of

1

r2
F (r2ψ) = G(r2ψ)ψ.(3.7)



BIFURCATION ANALYSIS FOR AXISYMMETRIC CAPILLARY WATER WAVES WITH VORTICITY AND SWIRL 5

Moreover, the nonlinear operator F introduced later should be of class C2. Hence, we need that γ, F ,
and F ′ are locally of class C2,1; notice that this condition on F already implies the desired property
of G as above. Also, in order to construct trivial solutions, we will need a Lipschitz property of γ and
FF ′. Overall we impose the following assumptions on γ and F :

γ ∈ C2,1
loc (R), F ∈ C3,1

loc (R), ‖γ′‖∞ <∞, ‖(FF ′)′‖∞ <∞, F (0) = 0.(3.8)

3.3. Trivial solutions. We now have a look at trivial solutions of (3.4), that is, solutions of (3.4)
independent of z. Therefore, we consider the (singular) Cauchy problem

ψrr +
3

r
ψr = −γ(r2ψ)− 1

r2
F (r2ψ)F ′(r2ψ) on (0, d],(3.9a)

ψ(0) = λ,(3.9b)
ψr(0) = 0.(3.9c)

Here, λ ∈ R is a parameter, which will later serve as the bifurcation parameter, and (3.9c) is imposed
due to (3.6). Notice that, in view of (3.5), there is a one-to-one correspondence of the parameter λ
and the velocity at the symmetry axis via u = −2λez at r = 0.

In order to solve (3.9), we rewrite (3.9), making use of (3.9a), (3.9b), and ∂rr + 3
r∂r = r−3∂r(r

3∂r),
as the integral equation

ψ(r) = λ−
∫ r

0
t−3

∫ t

0

(
s3γ(s2ψ(s)) + s(FF ′)(s2ψ(s))

)
ds dt.(3.10)

By Lipschitz continuity of γ and FF ′, it is straightforward to see that the right-hand side of (3.10)
gives rise to a contraction on C([0, ε]) if ε > 0 is small enough. Thus, (3.10) has a unique continuous
solution on such [0, ε] by Banach’s fixed point theorem. It is clear that, by virtue of (3.7) and (3.10),
this solution is of class C2 on [0, ε], and satisfies (3.9a) on (0, ε] and (3.9b), (3.9c). Now, once having
left the singular point r = 0, it is obvious that ψ can be uniquely extended to a C2-solution of (3.9a)
on (0, d], since γ and FF ′ are Lipschitz continuous. Moreover, ψ ∈ C2,1([0, d]) in view of (3.9a), (3.9c).

Finally, motivated by the flattening considered below, we define

ψλ(s) := ψ(sd), s ∈ [0, 1](3.11)

where ψ is the unique solution of (3.9) as obtained above.

3.4. Working in 5D and flattening. In the following, for a function ψ = ψ(r, z) on some Ω ⊂ R2

we denote by Iψ the function given by

Iψ(x, z) = ψ(|x|, z)
and defined on the set ΩI , which results from rotating Ω around the z-axis in R5 = {(x, z) ∈ R4×R}.
Conversely, any axially symmetric set in R5 can be written as ΩI for a suitable Ω ⊂ R2, and any
axially symmetric function ψ̃ on ΩI equals Iψ for a certain function ψ on Ω, i.e, ψ = I−1ψ̃, where
I−1 is defined on the set of axially symmetric functions. Thus, it is easy to see that ψ satisfies (3.6)
and solves (3.4a), (3.4c) if and only if Iψ ∈ C2(ΩI) and solves

∆5Iψ = −γ(|x|2Iψ)− 1

|x|2F (|x|2Iψ)F ′(|x|2Iψ) in ΩI ,(3.12a)

Iψ =
m

|x|2 on ∂ΩIS ,(3.12b)

with ∆5 denoting the Laplacian in five dimensions. Therefore, no longer a term which is singular
on the symmetry axis appears (cf. (3.7)) – this is the main motivation for working with ψ instead
of Ψ. In order to transform (3.12) into a fixed domain, we consider the flattening (x, z) 7→ (y, z) =
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(x/(d + η(z)), z) – from now on, we shall always assume that η > −d. Thus, introducing ψ̃ via
ψ̃(y, z) = Iψ(x, z), (3.12) is transformed into

Lηψ̃ = −γ((d+ η)2|y|2ψ̃)− 1

(d+ η)2|y|2 (FF ′)((d+ η)2|y|2ψ̃) in ΩI0 ,(3.13a)

ψ̃ =
m

(d+ η)2
on |y| = 1,(3.13b)

where Ω0 := [0, 1)× R and

Lηψ̃ := ψ̃zz +
1

(d+ η)2

(
ψ̃yiyi − 2(d+ η)ηzyiψ̃yiz + η2

zyiyjψ̃yiyj − ((d+ η)ηzz − 2η2
z)yiψ̃yi

)
;

here and throughout this paper, repeated indices are summed over. It is straightforward to see that
Lη is a uniformly elliptic operator, provided d + η is uniformly bounded from below by a positive
constant.

As for Bernoulli’s equation (3.4b), we do not have to take a detour and increase the dimension, since
in (3.4b) no singular term appears, at least whenever the surface does not intersect the symmetry axis.
Therefore, here we consider the flattening

H[η]−1 : Ω→ Ω0, (r, z) 7→ (s, z) = (r/(d+ η(z)), z);

we shall call H[η] the inverse map. Then, with ψ̄(s, z) = ψ(r, z), that is,

Iψ̄ = ψ̃,(3.14)

(3.4b) is transformed into

ψ̄2
s + ((d+ η)ψ̄z − ηzψ̄s)2

2
+
F ((d+ η)2ψ̄)2

2(d+ η)2
+

2mψ̄s
(d+ η)2

+
2m2

(d+ η)4
− σκ[η] = Q on s = 1.(3.15)

3.5. Reformulation. For later reasons, it is convenient to work with functions φ satisfying φ = 0 on
s = 1 instead of functions ψ̄ with variable boundary condition at s = 1. Thus, we introduce, for any
λ ∈ R, the function

φ = ψ̄ − d2

(d+ η)2
ψλ.

In terms of φ, (3.13) and (3.15), furnished with (3.14) and m = m(λ) := d2ψλ(1), read

LηIφ = −γ
(

(d+ η)2|y|2
(
Iφ+

d2

(d+ η)2
Iψλ

))
− 1

(d+ η)2|y|2 (FF ′)

(
(d+ η)2|y|2

(
Iφ+

d2

(d+ η)2
Iψλ

))
− Lη d

2Iψλ
(d+ η)2

in ΩI0 ,(3.16a)

Iφ = 0 on |y| = 1,(3.16b)

and(
φs + d2

(d+η)2
ψλs

)2
+
(

(d+ η)φz − ηz
(
φs + 2m(λ)+d2ψλs

(d+η)2

))2

2

+
F
(

(d+ η)2
(
φ+ m(λ)

(d+η)2

))2

2(d+ η)2
+

2m(λ)
(
φs + d2

(d+η)2
ψλs

)
(d+ η)2

+
2m(λ)2

(d+ η)4
− σκ[η] = Q on s = 1.

(3.17)

Henceforth, we search for solutions (λ, η, φ) of (3.16), (3.17).
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Our goal is to rewrite (3.16), (3.17) in the form “identity plus compact”, namely, as (η, φ) =
M(λ, η, φ) with M compact. Meanwhile, we shall also clarify what Q exactly is, namely, we de-
fine it as an expression in (λ, η, φ). To this end, we first fix 0 < α < 1 and introduce the Banach
space

X :=
{

(η, φ) ∈ C2,α
0,per,e(R)× C0,α

per,e(Ω0) : φ = 0 on s = 1, Iφ ∈ H1
per,e(Ω

I
0 )
}
,

equipped with the canonical norm

‖(η, φ)‖X = ‖η‖
C2,α

per (R)
+ ‖φ‖

C0,α
per (Ω0)

+ ‖Iφ‖H1
per(Ω

I
0 ).

Here, the indices “per”, “e”, and “0” denote L-periodicity (ν := 2π/L in the following), evenness (in z
with respect to z = 0), and zero average over one period.

First, for
(λ, η, φ) ∈ R× U := {(λ, η, φ) ∈ R×X : d+ η > 0 on [0, L]},

we let A(λ, η, φ) = I−1ϕ, where ϕ ∈ C2,α(ΩI0 ) is the unique solution of

Lηϕ = −Lη d
2Iψλ

(d+ η)2
− γ

(
(d+ η)2|y|2

(
Iφ+

d2

(d+ η)2
Iψλ

))
− 1

(d+ η)2|y|2 (FF ′)

(
(d+ η)2|y|2

(
Iφ+

d2

(d+ η)2
Iψλ

))
in ΩI0 ,(3.18a)

ϕ = 0 on |y| = 1;(3.18b)

here, notice that the right-hand side of (3.18a) is an element of C0,α(ΩI0 ) (cf. (3.7) and the discussion
there) and that (3.18) is invariant under rotations about the z-axis, so that ϕ has to be axially
symmetric.

Second, we rewrite (3.17) as an equation for ηzz, using A = A(λ, η, φ) instead of φ – notice that
this change does not affect the equivalence of the whole reformulation to the original equations since
clearly (3.16) is equivalent to φ = A(λ, η, φ):

ηzz = σ−1(1 + η2
z)

3/2

(
σ

(d+ η)
√

1 + η2
z

+

(
As + d2

(d+η)2
ψλs

)2
+
(

(d+ η)Az − ηz
(
As + 2m(λ)+d2ψλs

(d+η)2

))2

2

+
F
(

(d+ η)2
(
A+ m(λ)

(d+η)2

))2

2(d+ η)2
+

2m(λ)
(
As + d2

(d+η)2
ψλs

)
(d+ η)2

+
2m(λ)2

(d+ η)4
−Q

)
on s = 1. In order to apply ∂−2

z : C0,α
0,per(R)→ C2,α

0,per(R), the inverse operation to twice differentiation,
to this relation, the right-hand side needs to have zero average over one period. Therefore, we view Q
as a function of (λ, η, φ) via

Q(λ, η, φ) :=
1

〈(1 + η2
z)

3/2〉

〈
(1 + η2

z)
3/2

(
σ

(d+ η)
√

1 + η2
z

+

(
SAs + d2

(d+η)2
Sψλs

)2
+
(

(d+ η)SAz − ηz
(
SAs + 2m(λ)+d2Sψλs

(d+η)2

))2

2

+
F
(

(d+ η)2
(
SA+ m(λ)

(d+η)2

))2

2(d+ η)2
+

2m(λ)
(
SAs + d2

(d+η)2
Sψλs

)
(d+ η)2

+
2m(λ)2

(d+ η)4

)〉
.

Here and in the following, 〈f〉 denotes the average of a L-periodic function f over one period, and Sf
denotes the evaluation of a function f at s = 1.
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Putting everything together, we reformulate (3.16), (3.17) as

F(λ, η, φ) = 0(3.19)

for (λ, η, φ) ∈ R× U , where
F : R× U → X, F(λ, η, φ) = (η, φ)−M(λ, η, φ),

withM = (M1,M2),

M1(λ, η, φ) :=

∂−2
z

(
σ−1(1 + η2

z)
3/2

(
σ

(d+ η)
√

1 + η2
z

+

(
SAs + d2

(d+η)2
Sψλs

)2
+
(

(d+ η)SAz − ηz
(
SAs + 2m(λ)+d2Sψλs

(d+η)2

))2

2

+
F
(

(d+ η)2
(
SA+ m(λ)

(d+η)2

))2

2(d+ η)2
+

2m(λ)
(
SAs + d2

(d+η)2
Sψλs

)
(d+ η)2

+
2m(λ)2

(d+ η)4
−Q(λ, η, φ)

))
,

M2(λ, η, φ) := A(λ, η, φ).

Notice that F is well-defined; in particular, bothM1(λ, η, φ) andM2(λ, η, φ) are periodic and even
in z. We summarise our reformulation in the following lemma.

Lemma 3.1. A tuple (λ, η, φ) ∈ R×X satisfying η > −d solves (3.19) if and only if
(i) η and φ are of class C2,α; and
(ii) the tuple

(η, ψ) =

(
η,

(
φ+

d2

(d+ η)2
ψλ
)
◦H[η]−1

)
solves (3.4) with Ω = H[η](Ω0), Q = Q(λ, η, φ), and m = m(λ); and

(iii) ψ ∈ C2,α
per,e(Ω) and satisfies (3.6).

Proof. We only need to take care of the regularity properties and (3.6). However, to this end it is
sufficient to notice that η ∈ C2,α(R) and Iφ ∈ C2,α(ΩI0 ) provided F(λ, η, φ) = 0. Indeed, we have
Iψ ∈ C2,α(ΩI) in this case since Iψλ ∈ C2,1(ΩI0 ); in particular, ψ satisfies (3.6). �

By construction, all points of the form (λ, 0, 0) are solutions of (3.19) – they make up the curve of
trivial solutions. An inspection ofM shows the following; in particular, (3.19) has the form “identity
plus compact”.

Lemma 3.2. M and thus F is of class C2 on R× U . Moreover,M is compact on

R× Uε := {(λ, η, φ) ∈ R×X : d+ η ≥ ε on R}
for each ε > 0.

Proof. The other operations in the definition ofM being smooth, the property thatM is of class C2

follows from the property that A is of class C2; this, in turn, is guaranteed by the assumption (3.8).
Now let (λ, η, φ) ∈ R × Uε be arbitrary. In the following, the quantities C can change from line to
line, but are always shorthand for a certain expression in its arguments which remains bounded for
bounded arguments. Moreover, let R > 0 and suppose ‖(λ, η, φ)‖R×X ≤ R. Since ψλ is of class C1

with respect to λ and Lη is elliptic uniformly in η due to η + d ≥ ε, we see that

‖IA(λ, η, φ)‖
C2,α

per (ΩI
0 )
≤ C

(
R, ε−1, ‖γ′‖L∞([−C(R),C(R)]), ‖GF ′‖C0,1([−C(R),C(R)])

)
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by applying a standard Schauder estimate. This shows thatM2 is compact on R×Uε because of the
compact embedding of C2,α

per (ΩI0 ) in H1
per(Ω

I
0 ) and in C0,α

per (ΩI0 ) combined with

‖f‖
C0,α

per (Ω0)
≤ ‖If‖

C0,α
per (ΩI

0 )
, f ∈ C0,α

per (Ω0).

As forM1, we immediately find, in view of the obtained estimates for A,
‖M1(λ,w, φ)‖C3,α([0,L])

≤ C
(
R, ε−1, ‖γ′‖L∞([−C(R),C(R)]), ‖GF ′‖C0,1([−C(R),C(R)]), ‖FF ′‖L∞([−C(R),C(R)])

)
.

Hence, alsoM1 is compact on R× Uε since C3,α([0, L]) is compactly embedded in C2,α([0, L]). �

4. Local bifurcation

4.1. Computing derivatives. We now want to calculate the partial derivative F(η,φ) and, in par-
ticular, its evaluation at a trivial solution. For simplicity, we shall always write Aη for Aη(λ, η, φ)δη,
that is, the partial derivative of A with respect to η evaluated at (λ, η, φ) and applied to a direction
δη. The same applies similarly to expressions like Aφ, Lηη etc.

Linearizing the operator Lη, which only depends on η and not on φ, leads to

Lηηϕ = − 2δη

(d+ η)3

(
ϕyiyi − 2(d+ η)ηzyiϕyiz + η2

zyiyjϕyiyj − ((d+ η)ηzz − 2η2
z)yiϕyi

)
+

1

(d+ η)2

(
− 2(ηzδη + (d+ η)δηz)yiϕyiz + 2ηzδηzyiyjϕyiyj

−(ηzzδη + (d+ η)δηzz − 4ηzδηz)yiϕyi

)
.

Since formally linearizing an equation like Lϕ = f gives Lδϕ + δLϕ = δf , we see that IAη is the
unique solution of

LηIAη = −LηηIA − Lηη
d2Iψλ

(d+ η)2
+ 2Lη

d2Iψλδη
(d+ η)3

− 2γ′
(

(d+ η)2|y|2
(
Iφ+

d2

(d+ η)2
Iψλ

))
(d+ η)δη|y|2Iφ

+
2δη

(d+ η)3|y|2 (FF ′)

(
(d+ η)2|y|2

(
Iφ+

d2

(d+ η)2
Iψλ

))
− 2(FF ′)′

(
(d+ η)2|y|2

(
Iφ+

d2

(d+ η)2
Iψλ

))
δηIφ
d+ η

in ΩI0 ,

IAη = 0 on |y| = 1.

Similarly, IAφ is the unique solution of

LηIAφ = −γ′
(

(d+ η)2|y|2
(
Iφ+

d2

(d+ η)2
Iψλ

))
(d+ η)2|y|2Iδφ

− (FF ′)′
(

(d+ η)2|y|2
(
Iφ+

d2

(d+ η)2
Iψλ

))
Iδφ in ΩI0 ,

IAφ = 0 on |y| = 1.

Evaluated at a trivial solution (λ, 0, 0), we can simplify as follows:

Lηϕ = ϕzz +
1

d2
ϕyiyi ,



10 ANDRÉ H. ERHARDT, ERIK WAHLÉN, AND JÖRG WEBER

Lηηϕ = −2δη

d3
ϕyiyi −

2δηz
d

yiϕyiz −
δηzz
d
yiϕyi .

In the following, we denote

∆d := ∂zz +
∂yiyi
d2

.

Moreover, since A = 0 here, we have

∆dIAη = −LηηIψλ +
2

d
∆d(Iψλδη) +

2

d3|y|2 (FF ′)(d2|y|2Iψλ)δη

=
4(Iψλ)yiyi

d3
δη +

2Iψλ + yi(Iψλ)yi
d

δηzz +
2

d3|y|2 (FF ′)(d2|y|2Iψλ)δη in ΩI0 ,(4.1a)

IAη = 0 on |y| = 1,(4.1b)

and

∆dIAφ = −
(
d2|y|2γ′(d2|y|2Iψλ) + (FF ′)′(d2|y|2Iψλ)

)
Iδφ in ΩI0 ,(4.2a)

IAφ = 0 on |y| = 1.(4.2b)

Next, we turn to M1. After a lengthy computation we get the following results for the partial
derivatives of M1 evaluated at a trivial solution (λ, 0, 0), noticing that SAη = SAφ = 0 at such
points:

M1
η = −σ−1

(
σ

d2
+

2

d
(Sψλs )2 +

F (m(λ))2

d3
+

8m(λ)Sψλs
d3

+
8m(λ)2

d5

)
∂−2
z δη

+ σ−1

(
Sψλs +

2m(λ)

d2

)
∂−2
z PSAηs,

M1
φ = σ−1

(
Sψλs +

2m(λ)

d2

)
∂−2
z PSAφs,

where P is the projection onto the space of functions with zero average.
It will be convenient to introduce the abbreviation

c(λ) := S(2ψλ + sψλs ) = S(2ψλ + ψλs ) =
2m(λ)

d2
+ Sψλs .

Notice that −c(λ) is the z-component of the velocity at the surface of the trivial laminar flow corre-
sponding to λ in view of (3.5). With this, we can rewrite

M1
η = − 1

σd3

(
σd+ 2d2c(λ)2 + F (m(λ))2

)
∂−2
z δη + σ−1c(λ)∂−2

z PSAηs,(4.3)

M1
φ = σ−1c(λ)∂−2

z PSAφs.(4.4)

4.2. The good unknown. Before we proceed with the investigation of local bifurcation, we first intro-
duce an isomorphism, which facilitates the computations later and is sometimes called T -isomorphism
in the literature (for example, in [14, 34]). The discovery of the importance of such a new variable
(here θ) goes back to Alinhac [2], who called it the “good unknown” in a very general context, and
Lannes [26], who introduced it in the context of water wave equations.

Lemma 4.1. Let

Y :=
{
θ ∈ C0,α

per,e(Ω0) : Sθ ∈ C2,α
0,per,e(R), Iθ ∈ H1

per,e(Ω
I
0 )
}

and assume that c(λ) 6= 0. Then

T (λ) : Y → X, T (λ)θ =

(
− dSθ
c(λ)

, θ − 2ψλ + sψλs
c(λ)

Sθ
)
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is an isomorphism. Its inverse is given by

[T (λ)]−1(δη, δφ) = δφ− 2ψλ + sψλs
d

δη.

Proof. Both T (λ) and [T (λ)]−1 are well-defined, and a simple computation shows that they are inverse
to each other. �

Let us now consider a trivial solution (λ, 0, 0). In view of the T -isomorphism, we introduce

L(λ) := [F(η,φ)(λ, 0, 0)] ◦ [T (λ)] : Y → X

whenever c(λ) 6= 0. Now recall that

F(η,φ) = (δη −M1
η −M1

φ, δφ−Aη −Aφ).

For given η we denote by V = V [η] the unique solution of

∆dIV = 0 in ΩI0 , IV = η on |y| = 1.

We notice that

−2ψλ + sψλs
c(λ)

Sθ +
d

c(λ)
AηSθ +Aφ

(
2ψλ + sψλs

c(λ)
Sθ
)

= −V [Sθ].

Indeed, from

∂yiyiI(2ψλ + sψλs ) = ∂yiyi(2Iψλ + yj(Iψλ)yj ) = 2(Iψλ)yiyi + ∂yj (Iψλ)yj + ∂yi(yj(Iψλ)yiyj )

= 4(Iψλ)yiyi + yj(Iψλ)yiyiyj

= 4(Iψλ)yiyi − yi∂yi
(
d2γ(d2|y|2Iψλ) +

1

|y|2 (FF ′)(d2|y|2Iψλ)

)
= 4(Iψλ)yiyi − yi

(
d4γ′(d2|y|2Iψλ)(2yiIψλ + |y|2(Iψλ)yi)

− 2yi
|y|4 (FF ′)(d2|y|2Iψλ) +

d2

|y|2 (FF ′)′(d2|y|2Iψλ)(2yiIψλ + |y|2(Iψλ)yi)

)

= 4(Iψλ)yiyi +
2

|y|2 (FF ′)(d2|y|2Iψλ)

− d2
(
d2|y|2γ′(d2|y|2Iψλ) + (FF ′)′(d2|y|2Iψλ)

)(
2Iψλ + yi(Iψλ)yi

)
we infer that the function f := −2ψλ+sψλs

c(λ) Sθ + d
c(λ)AηSθ +Aφ

(
2ψλ+sψλs
c(λ) Sθ

)
+ V [Sθ] satisfies

∆dIf = −2Iψλ + yi(Iψλ)yi
c(λ)

Sθzz −
1

d2c(λ)

(
4(Iψλ)yiyi +

2

|y|2 (FF ′)(d2|y|2Iψλ)

−d2
(
d2|y|2γ′(d2|y|2Iψλ) + (FF ′)′(d2|y|2Iψλ)

)(
2Iψλ + yi(Iψλ)yi

))
Sθ

+
d

c(λ)

(
4(Iψλ)yiyi

d3
Sθ +

2Iψλ + yi(Iψλ)yi
d

Sθzz +
2

d3|y|2 (FF ′)(d2|y|2Iψλ)Sθ
)

−
(
d2|y|2γ′(d2|y|2Iψλ) + (FF ′)′(d2|y|2Iψλ)

) 2Iψλ + yi(Iψλ)yi
c(λ)

Sθ

= 0
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and If = 0 at |y| = 1. Thus, recalling (4.1), (4.2), (4.3), and (4.4), we can rewrite

L2(λ)θ = θ − (Aφθ + V [Sθ])(4.5)

and

L1(λ)θ = − d

c(λ)
Sθ − 1

σd2c(λ)
(σd+ 2d2c(λ)2 + F (m(λ))2)∂−2

z Sθ

+ σ−1c(λ)∂−2
z PS∂s

(
d

c(λ)
AηSθ −Aφθ +Aφ

(
2ψλ + sψλs

c(λ)
Sθ
))

= − d

c(λ)
Sθ − σ−1

(
σ

dc(λ)
+ 2c(λ) +

F (m(λ))2

d2c(λ)
+ (d2γ + FF ′)(m(λ))

)
∂−2
z Sθ

− σ−1c(λ)∂−2
z PS∂s(Aφθ + V [Sθ])(4.6)

because of

S∂s(2ψλ + sψλs ) = S(3ψλs + sψλss) = S
(

3

s
ψλs + ψλss

)
= S

(
−d2γ(d2s2ψλ)− 1

s2
(FF ′)(d2s2ψλ)

)
= −(d2γ + FF ′)(m(λ)).

Notice that, under the assumption θ ∈ C2,α
per (Ω0), L2(λ)θ is the unique solution of

∆d[IL2(λ)θ] = ∆dθ +
(
d2|y|2γ′(d2|y|2Iψλ) + (FF ′)′(d2|y|2Iψλ)

)
Iθ in ΩI0 ,(4.7a)

IL2(λ)θ = 0 on |y| = 1,(4.7b)

and L1(λ)θ is (in the set of L-periodic functions with zero average) uniquely determined by

[L1(λ)θ]zz = − d

c(λ)
Sθzz − σ−1

(
σ

dc(λ)
+ 2c(λ) +

F (m(λ))2

d2c(λ)
+ (d2γ + FF ′)(m(λ))

)
Sθ

− σ−1c(λ)PS∂s(Aφθ + V [Sθ])(4.8)

= − d

c(λ)
Sθzz − σ−1

(
σ

dc(λ)
+ 2c(λ) +

F (m(λ))2

d2c(λ)
+ (d2γ + FF ′)(m(λ))

)
Sθ

− σ−1c(λ)PS∂s(θ − L2(λ)θ).(4.9)

4.3. Kernel. We now turn to the investigation of the kernel of F(η,φ)(λ, 0, 0). Clearly, in view of the
T -isomorphism it suffices to study the kernel of L; here and in the following, we will suppress the
dependency of L on λ. From (4.5) we infer that θ ∈ C2,α(Ω0) provided Lθ = 0. Thus, combining (4.7)
and (4.9) yields

Lθ = 0 ⇐⇒ θ ∈ C2,α
per (Ω0), and

∆dIθ +
(
d2|y|2γ′(d2|y|2Iψλ) + (FF ′)′(d2|y|2Iψλ)

)
Iθ = 0, and

dSθzz
c(λ)

+ σ−1

(
σ

dc(λ)
+ 2c(λ) +

F (m(λ))2

d2c(λ)
+ (d2γ + FF ′)(m(λ))

)
Sθ + σ−1c(λ)PSθs = 0.

Let us now write θ(s, z) =
∑∞

k=0 θk(s) cos(kνz) as a Fourier series. Then we easily see that

Lθ = 0 ⇐⇒ (4.10) and ∀k ≥ 1 : (4.11),

where (
1

d2
∂yiyi + d2|y|2γ′(d2|y|2Iψλ) + (FF ′)′(d2|y|2Iψλ)

)
Iθ0 = 0,(4.10)
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noticing that θ0(1) = 0 is already included in the definition of Y , and(
1

d2
∂yiyi + d2|y|2γ′(d2|y|2Iψλ) + (FF ′)′(d2|y|2Iψλ)− (kν)2

)
Iθk = 0,(4.11a) (

σ

dc(λ)
(1− (kν)2d2) + 2c(λ) +

F (m(λ))2

d2c(λ)
+ (d2γ + FF ′)(m(λ))

)
θk(1) + c(λ)∂sθk(1) = 0.(4.11b)

For µ ∈ R, let us now introduce the function β̃ = β̃µ,λ, which is defined to be the unique solution of
the singular Cauchy problem

(
∂2
s +

3

s
∂s + d4s2γ′(d2s2ψλ) + d2(FF ′)′(d2s2ψλ) + µd2

)
β̃ = 0 on (0, 1], β̃s(0) = 0, β̃(0) = 1.

(4.12)

Indeed, this problem has a unique solution β̃ ∈ C2,α([0, 1]) by the same argument as in Section 3.3.
Henceforth, we shall assume that

β̃0,λ(1) 6= 0.(4.13)

Thus, we see that (4.10) only has the trivial solution θ0 = 0. Indeed, if θ0 solves (4.10), we have
Iθ0 ∈ C2,α(Ω0), and therefore ∂sθ0(0) = 0. Hence, θ0 is a multiple of β̃0,λ. But since necessarily
θ0(1) = 0, θ0 has to vanish identically in view of (4.13).

Let us now turn to k ≥ 1 and notice as above that ∂sθk(0) = 0 provided (4.11a). Thus, θk is a
multiple of β̃−(kν)2,λ if and only if (4.11a) holds. First suppose that β̃−(kν)2,λ(1) = 0 and that (4.11) is
satisfied. Then necessarily θk(1) = 0. Since therefore also ∂sθk(1) = 0 by virtue of (4.11b), we conclude
θk = 0. On the other hand, suppose that β̃−(kν)2,λ(1) 6= 0 and define β−(kν)2,λ := β̃−(kν)2,λ/β̃−(kν)2,λ(1).
Hence, (4.11) has a nontrivial solution θk if and only if the dispersion relation

D(−(kν)2, λ) = 0,

where

D(µ, λ) := βµ,λs (1) +
σ

dc(λ)2
(1 + µd2) + 2 +

F (m(λ))2

d2c(λ)2
+

(d2γ + FF ′)(m(λ))

c(λ)
,(4.14)

is satisfied, and in this case θk is a multiple of β−(kν)2,λ. We summarise our results concerning the
kernel:

Lemma 4.2. Given λ ∈ R with c(λ) 6= 0 and under the assumption (4.13), a function θ ∈ Y , admitting
the Fourier decomposition θ(s, z) =

∑∞
k=0 θk(s) cos(kνz), is in the kernel of L(λ) if and only if θ0 = 0

and for each k ≥ 1

(a) θk = 0, or
(b) β̃−(kν)2,λ(1) 6= 0, θk is a multiple of β̃−(kν)2,λ, and the dispersion relation

D(−(kν)2, λ) = 0

holds, with D given in (4.14).

Remark 4.3. Clearly, D(µ, λ) is at first only defined if β̃µ,λ(1) 6= 0. If this property fails to hold, we
set D(µ, λ) :=∞ in the following.
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4.4. Range. Before we proceed with the investigation of the transversality condition, we first prove
that the range of L can be written as an orthogonal complement with respect to a suitable inner
product. This will be helpful later. To this end, we introduce the inner product

〈(f1, g1), (f2, g2)〉 := 〈f ′1, f ′2〉L2([0,L]) + 〈∇dIg1,∇dIg2〉L2(Ω̃I
0 )

for f1, f2 ∈ H1
0,per(R), g1, g2 : Ω̃0 → R with Ig1, Ig2 ∈ H1

per(Ω̃
I
0 ), where Ω̃0 := [0, 1) × (0, L) is one

periodic instance of Ω0 and∇d := (∂y1/d, . . . , ∂y4/d, ∂z)
T ; in order to avoid misunderstanding, we point

out that the index “0” in H1
0,per(R) means “zero average” as before and not “zero boundary values”.

This inner product is positive definite on the space

H1
0,per(R)×

{
g : Ω̃0 → R : Ig ∈ H1

per(Ω̃
I
0 ), 〈Sg〉 = 0

}
.

Notice that
〈f ′1, f ′2〉L2([0,L]) = −〈f1, f

′′
2 〉L2([0,L])

if f2 ∈ H2
per(R) and that

〈∇dg1,∇dg2〉L2(Ω̃I
0 ) = −〈g1,∆dg2〉L2(Ω̃I

0 ) +
2π2

d2
〈Sg1,S∂sg2〉L2([0,L])

if Ig2 ∈ H2
per(Ω̃0), using that 2π2 is the surface area of the 3-sphere.

Using (4.5), (4.7), and (4.8) we now compute for smooth θ, ϑ ∈ Y〈(
2π2σ

d2c(λ)
Sθ, θ

)
,Lϑ

〉
=

2π2σ

d2c(λ)

〈
Sθ, d

c(λ)
Sϑzz + σ−1

(
σ

dc(λ)
+ 2c(λ) +

F (m(λ))2

d2c(λ)
+ (d2γ + FF ′)(m(λ))

)
Sϑ

+σ−1c(λ)PS∂s(Aφϑ+ V [Sϑ])

〉
L2([0,L])

−
〈
Iθ,∆dIϑ+

(
d2|y|2γ′(d2|y|2Iψλ) + (FF ′)′(d2|y|2Iψλ)

)
Iϑ
〉
L2(Ω̃I

0 )

+
2π2

d2
〈Sθ,S∂s(ϑ− (Aφϑ+ V [Sϑ]))〉L2([0,L])

= − 2π2σ

dc(λ)2
〈Sθz,Sϑz〉L2([0,2π]) + 〈∇dIθ,∇dIϑ〉L2(Ω̃I

0 )

+
2π2

d2c(λ)

(
σ

dc(λ)
+ 2c(λ) +

F (m(λ))2

d2c(λ)
+ (d2γ + FF ′)(m(λ))

)
〈Sθ,Sϑ〉L2([0,L])

−
〈
Iθ,
(
d2|y|2γ′(d2|y|2Iψλ) + (FF ′)′(d2|y|2Iψλ)

)
Iϑ
〉
L2(Ω̃I

0 )

making use of 〈Sθ〉 = 0. Noticing that the terms at the beginning and at the end of this computation
only involve at most first derivatives of θ and ϑ, an easy approximation argument shows that this
relation also holds for general θ, ϑ ∈ Y . Moreover, since the last expression is symmetric in θ and ϑ,
we can also go in the opposite direction with reversed roles and arrive at the symmetry property〈(

2π2σ

d2c(λ)
Sθ, θ

)
,Lϑ

〉
=

〈
Lθ,

(
2π2σ

d2c(λ)
Sϑ, ϑ

)〉
.
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Thus, the range of L is the orthogonal complement of{(
2π2σ

d2c(λ)
Sθ, θ

)
: θ ∈ kerL

}
with respect to 〈·, ·〉. Indeed, one inclusion is an immediate consequence of the symmetry property and
the other inclusion follows from the facts that we already know that L, being a compact perturbation
of the identity, is Fredholm with index zero and that L gains no additional kernel when extended to
functions θ of class H1.

4.5. Transversality condition. Assuming that the kernel is spanned by the function θ(s, z) =

β−(kν)2,λ(s) cos(kνz), we have to investigate whether Lλθ is not in the range of L, which is equiv-
alent to 〈(

2π2σ

d2c(λ)
Sθ, θ

)
,Lλθ

〉
6= 0

by the preceding considerations. Differentiating (4.5) and (4.6) with respect to λ, for general θ it holds

Lλ,1θ = −∂λ
(

d

c(λ)

)
Sθ − σ−1∂λ

(
σ

dc(λ)
+ 2c(λ) +

F (m(λ))2

d2c(λ)
+ (d2γ + FF ′)(m(λ))

)
∂−2
z Sθ

− σ−1cλ(λ)∂−2
z PS∂s(Aφθ + V [Sθ])− σ−1c(λ)∂−2

z PS∂sAφλθ
Lλ,2θ = −Aφλθ,

where Aφλθ is the unique solution of

∆d(IAφλθ) = −d2|y|2
(
d2|y|2γ′′(d2|y|2Iψλ) + (FF ′)′′(d2|y|2Iψλ)

)
∂λIψλIθ in ΩI0 ,

IAφλθ = 0 on |y| = 1.

Thus, we have〈(
2π2σ

d2c(λ)
Sθ, θ

)
,Lλθ

〉
=

2π2σ

d2c(λ)

〈
Sθ, ∂λ

(
d

c(λ)

)
Sθzz + σ−1∂λ

(
σ

dc(λ)
+ 2c(λ) +

F (m(λ))2

d2c(λ)
+ (d2γ + FF ′)(m(λ))

)
Sθ

+σ−1cλ(λ)PS∂s(Aφθ + V [Sθ]) + σ−1c(λ)PS∂sAφλθ
〉
L2([0,L])

− 〈Iθ,∆d(−IAφλθ)〉L2(Ω̃I
0 ) +

2π2

d2
〈Sθ,S∂s(−Aφλθ)〉L2([0,L])

=
2π2

d2

〈
Sθ, ∂λ

(
σd

c(λ)2

)
Sθzz + ∂λ

(
σ

dc(λ)2
+ 2 +

F (m(λ))2

d2c(λ)2
+

(d2γ + FF ′)(m(λ))

c(λ)

)
Sθ
〉
L2([0,L])

−
〈
Iθ, d2|y|2

(
d2|y|2γ′′(d2|y|2Iψλ) + (FF ′)′′(d2|y|2Iψλ)

)
∂λIψλIθ

〉
L2(Ω̃I

0 )

whenever L1θ = 0. Now let θ(s, z) = β−(kν)2,λ(s) cos(kνz) and notice that f = ∂λβ
−(kν)2,λ solves

(If)yiyi +
(
d4|y|2γ′(d2|y|2ψλ) + d2(FF ′)′(d2|y|2ψλ)− (kν)2d2

)
If

= −d4|y|2
(
d2|y|2γ′′(d2|y|2Iψλ) + (FF ′)′′(d2|y|2Iψλ)

)
Iβ−(kν)2,λ∂λIψλ in |y| < 1,

If = 0 on |y| = 1.
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Therefore,

d2

Lπ2

〈(
2π2σ

d2c(λ)
Sθ, θ

)
,Lλθ

〉
=

1

2π2

∫
|y|<1

Iβ−(kν)2,λ
(

(I∂λβ−(kν)2,λ)yiyi

+
(
d4|y|2γ′(d2|y|2ψλ) + d2(FF ′)′(d2|y|2ψλ)− (kν)2d2

)
I∂λβ−(kν)2,λ

)
dy

+ ∂λ

(
σ

dc(λ)2
(1− (kν)2d2) + 2 +

F (m(λ))2

d2c(λ)2
+

(d2γ + FF ′)(m(λ))

c(λ)

)
= ∂λβ

−(kν)2,λ
s (1) + ∂λ

(
σ

dc(λ)2
(1− (kν)2d2) + 2 +

F (m(λ))2

d2c(λ)2
+

(d2γ + FF ′)(m(λ))

c(λ)

)
after integrating by parts. Thus, we have proved:

Lemma 4.4. Given λ ∈ R with c(λ) 6= 0 and assuming that the kernel of L(λ) is one-dimensional
spanned by θ(s, z) = β−(kν)2,λ(s) cos(kνz) for some k ≥ 1, the transversality condition

Lλ(λ)θ /∈ imL(λ)

is equivalent to
Dλ(−(kν)2, λ) 6= 0,

with D given in (4.14).

4.6. Result on local bifurcation. We summarise our result of this section using the following local
bifurcation theorem by Crandall–Rabinowitz [25, Thm. I.5.1].

Theorem 4.5. Let X be a Banach space, U ⊂ R × X open, and F : U → X have the property
F(·, 0) = 0. Assume that there exists λ0 ∈ R such that F is of class C2 in an open neighbourhood of
(λ0, 0), and suppose that Fx(λ0, 0) is a Fredholm operator with index zero and one-dimensional kernel
spanned by x0 ∈ X, and that the transversality condition Fλx(λ0, 0)x0 /∈ imFx(λ0, 0) holds. Then
there exists ε > 0 and a C1-curve (−ε, ε) 3 t 7→ (λt, xt) with (λ0, x0) = (λ0, 0) and xt 6= 0 for t 6= 0,
and F(λt, xt) = 0. Moreover, all solutions of F(λ, x) = 0 in a neighbourhood of (λ0, 0) are on this
curve or are trivial. Furthermore, the curve admits the asymptotic expansion xt = tx0 + o(t).

Applied to our problem, we obtain the following result.

Theorem 4.6. Assume (4.13) and that there exists λ0 ∈ R with c(λ0) 6= 0 such that the dispersion
relation

D(−(kν)2, λ0) = 0,

with D given by (4.14), has exactly one solution k0 ∈ N and assume that the transversality condition

Dλ(−(k0ν)2, λ0) 6= 0

holds. Then there exists ε > 0 and a C1-curve (−ε, ε) 3 t 7→ (λt, ηt, φt) with (λ0, η0, φ0) = (λ0, 0, 0),
ηt 6= 0 for t 6= 0, and F(λt, ηt, φt) = 0. Moreover, all solutions of F(λ, η, φ) = 0 in a neighbourhood
of (λ0, 0, 0) are on this curve or are trivial. Furthermore, the curve admits the asymptotic expansion
(ηt, φt) = tT (λ0)θ + o(t), where

θ(s, z) = β−(k0ν)2,λ0(s) cos(k0νz),

[T (λ0)θ](x, y) =

(
− d

c(λ0)
, β−(k0ν)2,λ0(s)− 2ψλ0(s) + sψλ0s (s)

c(λ0)

)
cos(k0νz).
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Proof. It is straightforward to apply Theorem 4.5 in view of Lemmas 3.2, 4.2, and 4.4, noticing that
F(η,φ)(λ0, 0, 0) coincides with L(λ0) up to the isomorphism T (λ0). Moreover, the asymptotic expansion
tells us that η(t) 6= 0 after possibly shrinking ε. �

5. Conditions for local bifurcation

5.1. Spectral properties. In view of the defining equation (4.12) for β̃µ,λ and the dispersion relation
D(µ, λ) = 0 and writing ϕ = β̃µ,λ, we study the eigenvalue problem

−d−2s−3(s3ϕ′)′ + qλϕ = µϕ in (0, 1),(5.1a)

−g(λ)ϕ′(1)− h(λ)ϕ(1) = µϕ(1),(5.1b)

which is a singular Sturm-Liouville problem on (0, 1). Here and in the following, we denote

qλ(s) := −d2s2γ′(d2s2ψλ(s))− (FF ′)′(d2s2ψλ(s)),

g(λ) := σ−1d−1c(λ)2 > 0,

h(λ) := d−2 + σ−1d−1c(λ)
(
2c(λ) + d−2F (m(λ))2 + (d2γ + FF ′)(m(λ))

)
.

Notice that we left out the condition β̃µ,λs (0) = 0 in view of Lemma 5.2 below. We first introduce the
operators T and τ via

D(T ) = D(τ) = {ϕ ∈ L2
s3(0, 1) : ϕ, s3ϕ′ ∈ ACloc(0, 1], s−3(s3ϕ′)′ ∈ L2

s3(0, 1)}
and

Tϕ = −d−2s−3(s3ϕ′)′, τϕ = Tϕ+ qλϕ, ϕ ∈ D(τ).

We collect some important properties of T , τ , and D(T ):

Lemma 5.1. The following holds:
(i) The operators T and τ are of limit point type at 0 (and of regular type at 1).
(ii) For any ϕ, χ ∈ D(T ) we have

lim
s→0

(
s3ϕ′(s)χ(s)− ϕ(s)s3χ′(s)

)
= 0.

In particular,
lim
s→0

s3ϕ(s) = lim
s→0

s3ϕ′(s) = 0.

Proof. It is easy to see that T is of limit point type at 0, since ϕ(s) = s−2 /∈ L2
s3(0, 1) solves Tϕ = 0.

Since qλ ∈ L∞(0, 1), τ is also of limit point type at 0 according to [38, Corollary 7.4.1]. Thus, (i) is
proved. As for (ii), the first statement is an immediate consequence of T being of limit point type at
0; see [38, Lemmas 10.2.3, 10.4.1(b)]. Plugging in χ(s) = 1 and then χ(s) = s (which both belong to
D(T )) yields the second statement. �

As a consequence the following result holds; in particular, this explains why we could leave out
φ′(0) = 0 in (5.1).

Lemma 5.2. Let q, f ∈ C0,α([0, 1]) (or, equivalently, Iq, If ∈ C0,α(B1(0))) and ϕ ∈ D(T ) satisfy

Tϕ = qϕ+ f.

Then, Iϕ ∈ C2,α(B1(0)) and solves
∆4Iϕ = IqIϕ+ If.

Obviously, the converse also holds. Moreover, in this case ϕ ∈ C2,α([0, 1]) and ϕ′(0) = 0.
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Proof. Clearly, Iϕ has weak derivatives on B1(0)\{0}; in particular, ∇4Iϕ = ϕ′es a.e. First, we claim
that this also holds on B1(0). To this end, we first note that Iϕ ∈ L2(B1(0)) due to ϕ ∈ L2

s3(0, 1).
Now fix v ∈ C∞c (B1(0);R4) and let ε > 0. We have to pass to the limit ε→ 0 in the identity∫

ε≤|y|≤1
∇4Iϕ · v dy = −

∫
ε≤|y|≤1

Iϕ∇4 · v dy −
∫
|y|=ε

Iϕv · es dSy;

note that the surface integral is well-defined since ϕ ∈ ACloc(0, 1]. Passing to the limit in the volume
integrals is easy, as |∇4Iϕ · v| ≤ |ϕ′||v|, |Iϕ∇4 · v| ≤ |ϕ||∇4v|, and s3ϕ, s3ϕ′ ∈ L∞(0, 1) due to Lemma
5.1(ii). Also because of Lemma 5.1(ii) the surface integral vanishes in the limit, since its modulus can
be estimated by Cε3|ϕ(ε)|, where C > 0 only depends on ‖v‖∞.

The next step is to show that Iϕ solves ∆4Iϕ = IqIϕ + If on B1(0) in the weak sense. Clearly,
we infer from the preceding considerations that Iϕ ∈ W 1,1(B1(0)). For fixed v ∈ C∞c (B1(0)) it holds
that

−
∫
B1(0)

∇4Iϕ · ∇4v dy = −
∫ ∫ 1

0
ϕ′vss

3 ds dΩ =

∫ ∫ 1

0
(qϕ+ f)vs3 ds dΩ =

∫
B1(0)

(IqIϕ+ If)v dy,

where
∫
· · · dΩ denotes the integration with respect to the three angles in spherical coordinates of R4.

It is very important to notice that here no boundary terms at s = 0 appear although v does not have
to vanish there. This is due to the fact that lims→0 s

3ϕ′(s) = 0 (see Lemma 5.1(ii)), so the weak form

−
∫ 1

0
ϕ′w′s3 ds =

∫ 1

0
(qϕ+ f)ws3 ds

also applies for smooth functions w on [0, 1] having support at s = 0 (but not at s = 1).
Finally, we infer from elliptic regularity that Iϕ ∈ C2,α(B1(0)). Indeed, since ∆4Iϕ = IqIϕ+If ∈

L2(B1(0)), we have Iϕ ∈ H2(B1(0)) ⊂ Lp(B1(0)), 1 ≤ p < ∞. Thus, ∆4Iϕ ∈ Lp(B1(0)) and Iϕ ∈
W 2,p(B1(0)) ⊂ C0,α(B1(0)) for p large. Hence, ∆4Iϕ ∈ C0,α(B1(0)) and therefore Iϕ ∈ C2,α(B1(0)).
The remaining statements clearly hold true. �

To introduce a functional-analytic setting when also taking the boundary condition (5.1b) into
account, we let H = L2

s3(0, 1)×C. In the following, we write elements u ∈ H as u = (ϕ, b). Equipped
with the indefinite inner product

[u1, u2] = 〈d2ϕ1, ϕ2〉L2
s3
− g(λ)−1b1b2,

H becomes a Pontryagin π1-space. Furthermore, we introduce the operator K given by

D(K) = {u ∈ H : ϕ ∈ D(τ), b = ϕ(1)}
and

Ku =
(
τϕ,−g(λ)ϕ′(1)− h(λ)ϕ(1)

)
, u ∈ D(K),

which is clearly densely defined. Observe that the eigenvalues (-functions) of K are exactly the
eigenvalues (-functions) of (5.1). We have the following.

Lemma 5.3. K is self-adjoint.

Proof. We first prove that K is symmetric. To this end, for u1, u2 ∈ H, x ∈ (0, 1) let

[u1, u2]x := 〈d2ϕ1, ϕ2〉L2
s3

(x,1) − g(λ)−1b1b2.

Now if u1, u2 ∈ D(K) we have, after integrating by parts,

[Ku1, u2]x − [u1,Ku2]x = x3ϕ′1(x)ϕ2(x)− ϕ1(x)x3ϕ2
′(x).

Clearly, K is symmetric if and only if the first expression converges to 0 as x → 0 (for any u1, u2 ∈
D(K)). But the second expression converges to 0 due to Lemma 5.1(ii).
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To see that K is even self-adjoint, we first note that obviously H admits the fundamental decom-
position H = (L2

s3(0, 1) × {0})+̇({0} × C) into a positive and negative subspace. Associated to this
decomposition is the fundamental symmetry

J =

(
id 0
0 −1

)
and the Hilbert inner product 〈u1, u2〉J = [Ju1, u2] = 〈d2ϕ1, ϕ2〉L2

s3
+ g(λ)−1b1b2. The operator JK

is self-adjoint with respect to 〈·, ·〉J , since now the assumptions of [23, Theorem 1] are satisfied. In
particular, denoting the J-adjoint by an upper index 〈∗〉, we have

D(K) = D(JK) = D
(

(JK)〈∗〉
)

= D
(
K〈∗〉J 〈∗〉

)
= D

(
K〈∗〉J

)
= D(JK∗) = D(K∗),

as J 〈∗〉 = J and JK〈∗〉J = K∗ (cf. [6, Lemma VI.2.1]). Since K is already known to be symmetric,
the proof is complete. �

Now we can prove the following important result.

Proposition 5.4. The spectrum of K is purely discrete and consists of only (geometrically) simple
eigenvalues.

Proof. Following the proof of [23, Theorem 2] using the J-norm ‖u‖J =
√
〈u, u〉J , we see that the

essential spectra of K and τ coincide. Notice that the criterion [13, Theorem XIII.7.1] applied there
is purely topological and does not make use of an additional structure from an (definite or indefinite)
inner product. To see that the essential spectrum of τ is empty, we can apply a criterion of [18]; see
also [23]. Indeed, qλ is obviously bounded from below on (0, 1) and moreover

lim
s→0

qλ(s) +
1

4d2s6
(∫ 1

s σ
−3 dσ

)2

 = lim
s→0

d−2s−2(s2 − 1)−2 =∞.

Finally, it is a priori clear that each eigenvalue of K cannot have (geometric) multiplicity larger than
two; the case of multiplicity two is excluded by the fact that τ is of limit point type at 0. �

In fact, we can say more about the location of the eigenvalues of K. To this end, the following
Lemma turns out to be useful.

Lemma 5.5. For any u ∈ D(K) we have

[Ku, u] = ‖ϕ′‖2L2
s3

+

∫ 1

0
d2s3qλ|ϕ|2 ds+

h(λ)

g(λ)
|ϕ(1)|2.

Proof. The only critical point is to ensure that no boundary terms at 0 appear after an integration by
parts, which again follows from Lemma 5.1(ii). �

Proposition 5.6. K has no or exactly two nonreal eigenvalues, and in the latter case they are the
complex conjugate of each other. Moreover, the (real part of the) spectrum of K is bounded from below.

Proof. The first assertion is clear since H is a π1-space and K is self-adjoint; cf. [24]. To prove the
second statement, we use a perturbation argument. First notice that qλ does not affect the domain
of the associated operator. Now let K0 be the operator in the case γ = F = 0, which yields qλ = 0
and h(λ) > 0. By Lemma 5.5 we have [K0u, u] > 0 if u 6= 0. Thus, there exists exactly one negative
eigenvector of K0; cf. again [24]. Therefore, K0 has exactly one negative eigenvalue µ0 and its other
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eigenvalues are positive. With the same proof as in [36, Lemma 3] we conclude that for some constant
C > 0 the estimate

‖(K0 − µI)−1‖J ≤
C

|µ− µ0|
, µ ∈ (−∞, µ0),

for the resolvent holds. If γ and F are arbitrary, we define the perturbation A via D(A) = {u ∈ H :
ϕ ∈ D(T ), b = ϕ(1)} and

Au =
(
qλϕ,−σd−1c(λ)

(
d−2F (m(λ))2 + (d2γ + FF ′)(m(λ))

)
ϕ(1)

)
, u ∈ D(A).

Clearly, A is densely defined and bounded, and we have K = K0 + A. Now consider a real µ <
µ0 − C‖A‖J . Because of

K − µI =
(
I +A(K0 − µI)−1

)
(K0 − µI)

and ∥∥A(K0 − µI)−1
∥∥
J
≤ ‖A‖J ·

C

|µ− µ0|
< 1,

the resolvent operatorK−µI is invertible in view of the Neumann series. This completes the proof. �

Under a certain condition we can infer even more properties of the spectrum of K, as we see in
what follows.

Proposition 5.7. Assume that

h(λ) > ‖qλ−‖∞(5.2)

where qλ− denotes the negative part of qλ. Then the operator K has only real eigenvalues, K has
exactly one eigenvalue µ < −‖qλ−‖∞, and all its other eigenvalues satisfy µ > −‖qλ−‖∞. Moreover, all
eigenvalues are algebraically simple.

Proof. Let µ be an eigenvalue of K and u = (ϕ,ϕ(1)) an associated eigenvector. Due to Lemma 5.5
we can calculate

µ[u, u] = [Ku, u] = ‖ϕ′‖2L2
s3

+

∫ 1

0
d2s3qλ|ϕ|2 ds+

h(λ)

g(λ)
|ϕ(1)|2 ≥ −d2‖qλ−‖∞‖ϕ‖2L2

s3
+
h(λ)

g(λ)
|ϕ(1)|2

= −‖qλ−‖∞[u, u] +
h(λ)− ‖qλ−‖∞

g(λ)
|ϕ(1)|2.

By assumption and since ϕ(1) 6= 0 (otherwise, also ϕ′(1) = 0 and thus ϕ ≡ 0), it follows that

(µ+ ‖qλ−‖∞)[u, u] > 0.

Hence, u cannot be neutral and µ has to be real. Since, additionally, by [24] – noting that H is a π1-
space – there exists exactly one nonpositive eigenvector of K, the first assertion follows immediately.
The second statement is a direct consequence of the fact that all eigenvalues are real and no eigenvectors
are neutral. �

Remark 5.8. If (5.2) holds, then the assumptions of the next lemmas are satisfied. Moreover, we
will discuss (5.2) later when looking at specific examples. Physically speaking, (5.2) is satisfied if the
wave speed of the trivial solution at the surface is large compared to the angular components of the
velocity and the vorticity (which depend on λ); more precisely, if

|c(λ)| /∈ [c−, c+],

c± :=
1

4

(
dωϑ − (uϑ)2 ±

√
(dωϑ − (uϑ)2)2 + 8σd(d2‖γ′‖∞ + ‖(FF ′)′‖∞ − d−2)

)



BIFURCATION ANALYSIS FOR AXISYMMETRIC CAPILLARY WATER WAVES WITH VORTICITY AND SWIRL 21

(where the condition is regarded to be vacuous if c± are not real). In particular, if γ and FF ′ are
bounded, this condition is satisfied if “c(λ) is sufficiently large” or, provided additionally F is bounded,
if simply “|c(λ)| is sufficiently large”.

5.2. Examples. We now turn to a more detailed investigation of the conditions for local bifurcation
for specific examples of γ and F .

5.2.1. No vorticity, no swirl. As a first example, we consider the case without vorticity and swirl, that
is, γ = F = 0. By (3.10) and (3.11), the trivial solutions are given by

ψλ(s) = λ.

Thus,
c(λ) = 2λ,

that is, c(λ) 6= 0 if and only if λ 6= 0. Moreover, β̃ = β̃−(kν)2,λ solves(
∂2
s +

3

s
∂s − (kν)2d2

)
β̃ = 0 on (0, 1], β̃s(0) = 0, β̃(0) = 1.

The general solution to the ODE is given by

β̃(s) = c1
I1(kνds)

s
+ c2

K1(kνds)

s
, c1, c2 ∈ R,

where I1 and K1 are modified Bessel functions of the first and second kind. Since K1(x) → ∞ as
x→ 0, we necessarily have c2 = 0. Determining the remaining constant c1 yields

β̃−(kν)2,λ(s) =
2I1(kνds)

kνds

and

β−(kν)2,λ(s) =
I1(kνds)

sI1(kνd)
.

Therefore, using dI1/dx = I0 − I1/x (cf. [4]),

β−(kν)2,λ
s (1) = S

kνd
(
I0(kds)− I1(kνds)

kνds

)
sI1(kνd)

− I1(kνds)

s2I1(kνd)

 =
kνdI0(kνd)

I1(kνd)
− 2.

Thus, we have

D(−(kν)2, λ) =
kνdI0(kνd)

I1(kνd)
+

σ

dc(λ)2
(1− (kν)2d2).

Noticing that necessarily (kν)2d2−1 > 0 if D(−(kν)2, λ) = 0, the dispersion relation D(−(kν)2, λ) = 0
can hence be written as

σ

c(λ)2
=

kνd2I0(kνd)

((kν)2d2 − 1)I1(kνd)
.(5.3)

This dispersion relation was also obtained in [33]. Clearly, in order find solutions of (5.3), we can first
choose arbitrary ν > 0, k ∈ N with kν > 1/d and then λ such that (5.3) holds. This gives exactly
two possible choices ±λ0 for λ, which correspond to “mirrored” uniform laminar flows. It is important
to notice that, given c(λ) 6= 0, (5.3) is solved by at most one k ∈ N; consequently, the kernel of L(λ)
is one-dimensional if this relation is satisfied for some k ∈ N and is trivial if it fails to hold for all k.
Indeed, (5.3) obviously cannot hold for kνd ≤ 1; moreover, the function

g(x) :=
xI0(x)

(x2 − 1)I1(x)
, x > 1,
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is strictly monotone on (1,∞) since

g′(x) =
x(x2 − 1)(I1(x)2 − I0(x)2)− 2I0(x)I1(x)

(x2 − 1)2I1(x)2
< 0, x > 1,

as dI0/dx = I1 and I0 ≥ I1 > 0 on (0,∞); see [4].
Furthermore, it is therefore clear that the transversality condition Dλ(−(kν)2, λ) 6= 0 always holds

in view of cλ(λ) 6= 0.
Moreover, it is easy to see that (5.2) is always satisfied since here qλ = 0 and h(λ) = d−2 +

σ−1d−1c(λ)2 > 0.

5.2.2. Constant γ, no swirl. Now let us assume that γ 6= 0 is a constant and F = 0. By (3.10) and
(3.11), the trivial solutions are given by

ψλ(s) = λ− γ
∫ sd

0
t−3

∫ t

0
τ3 dτ dt = λ− γd2

8
s2.

Thus,

c(λ) = 2λ− γd2

2
(5.4)

that is, c(λ) 6= 0 if and only if λ 6= γd2

4 . Noticing that β−(kν)2,λ is the same as in the previous example
without vorticity, we moreover have

D(−(kν)2, λ) =
kνdI0(kd)

I1(kνd)
+

σ

dc(λ)2
(1− (kν)2d2) +

d2γ

c(λ)
.

In order to solve the equation D(−(kν)2, λ) = 0 for 1/c(λ), we see that necessarily

1− (kν)2d2 = 0

or

1− (kν)2d2 ≤ d4γ2I1(kνd)

4σkνI0(kνd)
;(5.5)

obviously, the first case can only occur if 1/(νd) ∈ N. We now want to reformulate the second case.
Clearly, (5.5) holds if kνd ≥ 1. Let us consider kνd < 1 further. The function

χ(x) :=
I1(x)

x(1− x2)I0(x)
, 0 < x < 1,

is positive and satisfies, using the result
x

1 +
√
x2 + 1

≤ I1(x)

I0(x)
≤ x√

x2 + 4
(5.6)

of [4],

χx(x) =
(1− x2)

(
x(1− (I1(x)/I0(x))2)− 2I1(x)/I0(x)

)
+ 2x2I1(x)/I0(x)

x2(1− x2)2

≥
(1− x2)

(
x
(

1− x2

x2+4

)
− 2x√

x2+4

)
+ 2x3

1+
√
x2+1

x2(1− x2)2
> 0, 0 < x < 1;

here, the last inequality follows from the fact that the numerator is positive at x = 1 and a nonzero
root of it, after some algebra, has to satisfy

36x8 + 116x6 − 64x4 − 489x2 − 224 = 0,
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which can obviously not hold true for x ∈ (0, 1) in view of 36 + 116 < 224. Therefore and because
of I0(0) = 1, I1(0) = 0, and I ′1(0) = 1/2, the function χ : (0, 1) → (1/2,∞) is strictly monotonically
increasing and onto. Hence, (5.5) is always satisfied if 4σd−5γ−2 ≤ 1/2. Otherwise, let x1 ∈ (0, 1)
such that χ(x1) = 4σd−5γ−2 and x0 := x1/d. Thus, we have the equivalence

1− (kν)2d2

{
<
=

}
d4γ2I1(kνd)

4σkI0(kνd)
⇐⇒ kν

{
>
=

}
x0.

To conclude, solving D(−(kν)2, λ) = 0 for c(λ) yields

c(λ) = −d
2γI1(1)

I0(1)
if kν = 1/d,(5.7)

c(λ) =
2σ((kν)2d2 − 1)

d
(
d2γ ±

√
d4γ2 + 4σkν((kν)2d2−1)I0(kνd)

I1(kνd)

) if 8σ ≤ d5γ2, kν 6= 1/d,

or if 8σ > d5γ2, kν ≥ x0, kν 6= 1/d,(5.8)

and else, D(−(kν)2, λ) cannot vanish. Next, we search for solutions of (5.7) and (5.8). First notice
that in both cases it suffices to find appropriate k and c(λ) (and not k and λ) since R 3 λ 7→ c(λ) ∈ R
is bijective. Both for the first case (for which 1/(νd) ∈ N is necessary) and for the second case, we can
easily first choose an appropriate k and then c(λ) via (5.7) or (5.8). The more interesting question is
whether there can be multiple solutions for k for fixed λ. Clearly, it suffices to focus on the second
case. To this end, let us introduce x = kνd and write (5.8) as c(λ) = b±(x) with

b±(x) =
2σ

d3γ

x2 − 1

1±
√

1 + ξ x(x2−1)I0(x)
I1(x)

,

where
ξ :=

4σ

d5γ2
.

Here, b−(1) and possibly b±(0) are to be interpreted as the limit of the above expression as x tends
to 1 or 0; the limit for x→ 1 exists since x = 1 is a simple root of both nominator and denominator,
and the limit for x → 0 also as I1(0) = 0 and I ′1(0) = 1/2. Having clarified this, we see that b± is
smooth on (x1,∞) and continuous on [x1,∞) if ξ > 1/2, smooth on (0,∞) and continuous on [0,∞)
if ξ = 1/2, and smooth on [0,∞) if ξ < 1/2. Now notice that it obviously suffices to consider γ > 0 in
the following without loss of generality.

We have

0 = (b±(x))2D(−(kν)2, λ) = b±(x)2f(x) +
σ

d
(1− x2) + d2γb±(x),(5.9)

where
f(x) :=

xI0(x)

I1(x)
.

Differentiating (5.9) with respect to x yields

b±x (2b±f + d2γ) = −(b±)2fx +
2σx

d
,(5.10)

b±xx(2b±f + d2γ) = −4b±b±x fx − 2(b±x )2f − (b±)2fxx +
2σ

d
.(5.11)

Thus, if b±x = 0 at some x > 0, then

b±xx(2b±f + d2γ) =
2σ

d
− (b±)2fxx =

2σ

d

fx − xfxx
fx

.
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Here, we notice that fx > 0 for x > 0 because of

fx(x) = x

(
1− I0(x)/I1(x)

I1(x)/I2(x)

)
≥ x

(
1− 1 +

√
x2 + 1

1 +
√
x2 + 9

)
> 0

due to [4]. Moreover,

2b±(x)f(x) + d2γ = ±d2γ

√
1 + ξ

x(x2 − 1)I0(x)

I1(x)
≷ 0.(5.12)

Furthermore, we have

fx(x)− xfxx(x) = −2x2I0(x)3

I1(x)3
+

4xI0(x)2

I1(x)2
+

2x2I0(x)

I1(x)
− 2x > 0.(5.13)

Instead of presenting a lengthy, not very instructive proof of this inequality we provide a plot of the
left-hand side (multiplied by a suitable positive function) in Figure 1 in order to convince the reader
of the validity of (5.13).

0 1 2 3 4
0

0.5

1

(fx − xfxx) · 1+x3

x3

x

Figure 1. Demonstration of the validity of (5.13).

Thus, putting everything together, b±xx ≷ 0 provided b±x = 0. In particular, b± can have at most one
critical point on (0,∞), which, if it exists, has to be a local minimum (maximum). Since moreover
b± tends to ±∞ as x → ∞ by (5.6), we conclude that the monotonicity properties of b± can be
characterised by its behaviour near 0 if ξ ≤ 1/2 or near x1 if ξ > 1/2.

The easy case is ξ > 1/2. Since

b+(x1) = b−(x1) =
2σ(x2

1 − 1)

d3γ
, lim

x→x1
x>x1

b±x (x) = ±∞

due to χx(x1) 6= 0, we conclude that b± is strictly monotonically increasing (decreasing) on [x1,∞)
and b+((x1,∞)) ∩ b−((x1,∞)) = ∅.

If ξ = 1/2, we can argue similarly. Still we have b+(0) = b−(0) = −2σd−3γ−1, but b±x remains
bounded as x→ 0. Indeed, from the Taylor expansion

1 +
x(x2 − 1)I0(x)

2I1(x)
=

7

8
x2 +O(x4), x→ 0,

we infer that

lim
x→0
x>0

b±x (x) = ± 2σ

d3γ
· 7/4

2
√

7/8
≷ 0.
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Therefore, the same conclusions hold as before, namely, b± is strictly monotonically increasing (de-
creasing) on [0,∞) and b+((0,∞)) ∩ b−((0,∞)) = ∅.

Let us now turn to the case ξ < 1/2 and take a look at x = 0. By (5.11), (5.12), and b±x (0) = 0
because of evenness, we see that b±xx(0) has the same sign as ±(2σ/d− (b±(0))2fxx(0)), or vanishes if
and only if 2σ/d = (b±(0))2fxx(0). Now

2σ

d
− (b±(0))2fxx(0) =

2σ

d
−
(

2σ

d3γ
· −1

1±√1− 2ξ

)2

· 1

2
=

σ

4dξ
(9ξ − 1±

√
1− 2ξ) =:

σ

4dξ
g±(ξ).

First, because of

g+(0) = 0, g+(1/2) = 7/2 > 0, g+
ξξ(ξ) = − 1

(1− 2ξ)3/2
< 0,

g+ is positive on (0, 1/2). Therefore, for any ξ < 1/2, b+ is strictly monotonically increasing on [0,∞).
Second, we have

g−(0) = −2 < 0, g−(1/2) = 7/2 > 0, g−ξ (ξ) = 9 +
1√

1− 2ξ
> 0, g−(16/81) = 0,

and thus

g−(ξ)


< 0, 0 ≤ ξ < 16/81,

= 0, ξ = 16/81,

> 0, 16/81 < ξ < 1/2.

Hence, b− is strictly monotonically decreasing on [0,∞) if ξ > 16/81 and has exactly one local
extremum (which is in fact a global maximum) if ξ < 16/81. We moreover want to prove that
max b− < min b+, that is, max b− < b+(0). To this end, first notice that b− < 0 on [0,∞) since both
the nominator and denominator in the definition of b− have a simple root at x = 1 and thus b− cannot
have a zero. By (5.10) we therefore have

max b− ≤ − inf
x>0

√
2σx

dfx(x)
= −

√
2σ

d
inf
x>0

1√
1− I0(x)I2(x)/I1(x)2

≤ −
√

2σ

d
.

Hence,

b+(0) = − 2σ

d3γ(1 +
√

1− 2ξ)
= −

√
σ

d
·

√
ξ

1 +
√

1− 2ξ
> −1

4

√
σ

d
> −

√
2σ

d
≥ max b−,

since ξ 7→ √ξ/(1 +
√

1− 2ξ) is strictly monotonically increasing on [0, 16/81].
Let us now consider ξ = 16/81. Differentiating (5.11) twice more, evaluating at 0, and using

b−x (0) = b−xx(0) = b−xxx(0) = 0 yields

b−xxxx(0)(2b−(0)f(0) + d2γ) = −b−(0)2fxxxx(0) =
1

4
b−(0)2 > 0.

In particular, b−xxxx(0) < 0; hence, b− is strictly monotonically decreasing.
To summarise, for fixed λ we have therefore proved the following, provided 1/(νd) /∈ N; below in

Figure 2 the respective cases are visualised:
• If ξ ≥ 16/81:

– The dispersion relation D(−(kν)2, λ) = 0 can have at most one root k ∈ N.
– If 16/81 ≤ ξ < 1/2 and

− 2σ

d3γ(1−√1− 2ξ)
< c(λ) < − 2σ

d3γ(1 +
√

1− 2ξ)
,

the dispersion relation has no root.
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• If ξ < 16/81:
– If

c(λ) > − 2σ

d3γ(1 +
√

1− 2ξ)
or c(λ) = max b− or c(λ) ≤ − 2σ

d3γ(1−√1− 2ξ)
,

the dispersion relation has at most one root.
– If

max b− < c(λ) ≤ − 2σ

d3γ(1 +
√

1− 2ξ)
,

the dispersion relation has no root.
– If

− 2σ

d3γ(1−√1− 2ξ)
< c(λ) < max b−,

the dispersion relation has at most two roots.

x1

y0

b+

b−

x

(a) ξ ≥ 1/2.

0

y+

y−

b+

b−

x

(b) 16/81 ≤ ξ < 1/2.

0

y+

y−

b+

b−

x

(c) 0 < ξ < 16/81.

Figure 2. Qualitative behaviour of b± for different ξ (in the case γ > 0). Here,
y0 := 2σd−3γ−1(x2

1 − 1) and y± := −2σd−3γ−1/(1±√1− 2ξ).

If 1/(νd) ∈ N and

c(λ) = −d
2γI1(1)

I0(1)
,

there is the additional root k = 1/(νd).
If, however, γ < 0, these statements remain true after reversing all inequalities in the conditions for

c(λ) and changing max b− to min b−.
Next, let us turn to the transversality condition, fix λ, and assume that D(−(kν)2, λ) = 0 has

exactly one solution k ∈ N. Since cλ(λ) 6= 0, it holds that Dλ(−(kν)2, λ) 6= 0 if and only if ξ ≤ 1/2 or
kνd > x1 otherwise.

Finally, we have a look at (5.2). Here, qλ = 0 and h(λ) = d−2 + 2σ−1d−1λ(4λ − γd2) by (5.4).
Therefore, h(λ) > 0 for all λ ∈ R if γ2 < 8σd−5 ⇔ ξ > 1

2 , and in the case ξ ≤ 1
2 , h(λ) > 0 if and only

if λ /∈ [λ−, λ+] where

λ± :=
|γ|d2(sgn γ ±√1− 2ξ)

8
.
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6. Global bifurcation

The theory for local bifurcation having set up, we now turn to global bifurcation, which is of course
the main motivation of our formulation “identity plus compact”. To this end, we first state the global
bifurcation theorem by Rabinowitz.

Theorem 6.1. Let X be a Banach space, U ⊂ R×X open, and F ∈ C(U ;X). Assume that F admits
the form F(λ, x) = x+ f(λ, x) with f compact, and that Fx(·, 0) ∈ C(R;L(X,X)). Moreover, suppose
that F(λ0, 0) = 0 and that Fx(λ, 0) has an odd crossing number at λ = λ0. Let S denote the closure
of the set of nontrivial solutions of F(λ, x) = 0 in R×X and C denote the connected component of S
to which (λ0, 0) belongs. Then one of the following alternatives occurs:

(i) C is unbounded;
(ii) C contains a point (λ1, 0) with λ1 6= λ0;
(iii) C contains a point on the boundary of U .

The proof of this theorem in the case U = X can be found in [25, Theorem II.3.3] and is practically
identical to the proof for general U .

Now we can prove the following result.

Theorem 6.2. Assume (4.13) and that there exists λ0 6= 0 such that the dispersion relation

D(−(kν)2, λ0) = 0,

with D given by (4.14), has exactly one solution k0 ∈ N and assume that the transversality condition

Dλ(−(k0ν)2, λ0) 6= 0

holds. Let S denote the closure of the set of nontrivial solutions of F(λ, η, φ) = 0 in R × X and C
denote the connected component of S to which (λ0, 0, 0) belongs. Then one of the following alternatives
occurs:

(i) C is unbounded in the sense that there exists a sequence (λn, ηn, φn) ∈ C such that
(a) |λn| → ∞, or
(b) ‖ηn‖C2,α([0,L]) →∞, or
(c) ‖r2/pγ(Ψn) + r2/p−2F (Ψn)F ′(Ψn)‖Lp(Zηn ) → ∞ with p := 5

2−α , where Zηn denotes a L-
periodic instance of the axially symmetric fluid domain in R3 corresponding to ηn and Ψn =

r2
((
φn + d2

(d+ηn)2
ψλn

)
◦H[ηn]−1

)
is the corresponding original Stokes stream function,

as n→∞;
(ii) C contains a point (λ1, 0, 0) with λ1 6= λ0;
(iii) C contains a sequence (λn, ηn, φn) such that ηn converges to some η in C2,β

0,per,e(R) for any
β ∈ (0, α) and such that there exists z ∈ [0, L] with

η(z) = −d,
that is, intersection of the surface profile with the cylinder axis occurs.

Proof. As was already observed in Lemma 3.2, our nonlinear operator F is of class C2 and admits the
form “identity plus compact” on each R × Uε, ε > 0. Moreover, it is well-known that F(η,φ)(λ, η, φ)
has an odd crossing number at (λ0, 0, 0) provided F(η,φ)(λ0, 0, 0) is a Fredholm operator with index
zero and one-dimensional kernel, and the transversality condition holds. These properties, in turn,
are consequences of the hypotheses of the theorem in view of Lemmas 4.2 and 4.4 since F(η,φ)(λ0, 0, 0)
coincides with L(λ0) up to an isomorphism. For each ε > 0, we can thus apply Theorem 6.1 with U
chosen to be the interior of R× Uε. Thus, on each R× Uε, C coincides with its counterpart obtained
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from Theorem 6.1. Since ε > 0 is arbitrary and R× U =
⋃
ε>0(R× Uε), it is evident that necessarily

inf
(λ,η,φ)∈C

min
R

(η + d) = 0(6.1)

whenever C is bounded in R×X and (ii) fails to hold.
Let us investigate alternative (i) further. In order to show that it can be as stated above, we show

that, in view of alternative (i) of Theorem 6.1, C is bounded in R × X if (i)(a)–(c) and (6.1) fail to
hold. Indeed, along C we have φ = A(λ, η, φ) and, since (6.1) does not hold, η + d ≥ ε uniformly for
some ε > 0. Thus,

‖φ‖
C0,α

per (Ω0)
+ ‖Iφ‖H1

per(Ω
I
0 ) ≤ ‖Iφ‖C0,α

per (ΩI
0 )

+ ‖Iφ‖H1
per(Ω

I
0 ) ≤ C‖Iφ‖W 2,p(Ω̃I

0 )

≤ C
(
‖η‖C2,α([0,L]), ε

−1,

∥∥∥∥∥γ
(

(d+ η)2|y|2
(
Iφ+

d2

(d+ η)2
Iψλ

))

+
1

(d+ η)2|y|2 (FF ′)

(
(d+ η)2|y|2

(
Iφ+

d2

(d+ η)2
Iψλ

))
+ Lη

d2Iψλ
(d+ η)2

∥∥∥∥∥
Lp(Ω̃I

0 )

)

≤ C
(
‖η‖C2,α([0,L]), ε

−1, |λ|,
∥∥∥∥∥s3/p

[
γ

(
(d+ η)2s2

(
φ+

d2

(d+ η)2
ψλ
))

+
1

(d+ η)2s2
(FF ′)

(
(d+ η)2s2

(
φ+

d2

(d+ η)2
ψλ
))]∥∥∥∥∥

Lp(Ω̃0)

)

≤ C
(
‖η‖C2,α([0,L]), ε

−1, |λ|,
∥∥∥∥∥
(
s3/p

[
γ

(
(d+ η)2s2

(
φ+

d2

(d+ η)2
ψλ
))

+
1

(d+ η)2s2
(FF ′)

(
(d+ η)2s2

(
φ+

d2

(d+ η)2
ψλ
))])

◦H[η]−1

∥∥∥∥∥
Lp(Ω̃η)

)

≤ C
(
‖η‖C2,α([0,L]), ε

−1, |λ|,
∥∥∥∥r3/p

[
γ(Ψ) +

1

r2
(FF ′)(Ψ)

]∥∥∥∥
Lp(Ω̃η)

)

≤ C
(
‖η‖C2,α([0,L]), ε

−1, |λ|,
∥∥∥r2/pγ(Ψ) + r2/p−2(FF ′)(Ψ)

∥∥∥
Lp(Zη)

)
after using Sobolev’s embedding, the Calderón–Zygmund inequality (see [19, Chapter 9]; notice that
on the right-hand side the term ‖Iφ‖Lp(Ω̃I

0 ) can be left out because of unique solvability of the Dirichlet
problem associated to Lη), and changes of variables via H[η] and via cylindrical coordinates in R5 and
R3, and where Ω̃η denotes a periodic instance of Ωη = H[η](Ω0) and Ψ, Zη are analogously defined as
in the statement of (c); here, the constant C > 0 can change in each step.

Finally, we turn to alternative (iii). If (6.1) holds, but not (i)(b), then clearly we find a sequence as
described in (iii) due to the compact embedding of C2,α

0,per,e(R) in C2,β
0,per,e(R). �

Remark 6.3. Alternative (i)(c) says that the angular component of the vorticity, in general given by
ωϑ = ω · eϑ = −rγ(Ψ)− (FF ′)(Ψ)/r, satisfies ‖r2/p−1ωϑn‖Lp(Zηn ) →∞ as n→∞.

We also have the following.

Proposition 6.4. In Theorem 6.2 the alternative (i)(b) can be replaced by
(i)(b’) (α) ‖ηn‖C1,α([0,L]) →∞, or
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(β) ‖|un|2‖C0,α(Sn) →∞ (the square of the velocity [the kinetic energy density] is unbounded
in C0,α at the free surface Sn), or

(γ) |Q(λn, ηn, φn)| → ∞ (the Bernoulli constant is unbounded).

Proof. This follows easily from the Bernoulli equation

Q(λ, η, φ) =
1

2
|u|2 − σ

(
ηzz

(1 + η2
z)

3/2
− 1

(d+ η)
√

1 + η2
z

)
at the free surface. �
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