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Abstract. This article is dedicated to Elliott Lieb in celebration

of his 90th birthday. I recount briefly some history of our joint work

on the existence of the thermodynamic limit for Coulomb systems

and discuss, even more briefly, two open problems of fundamental

nature.

1. Introduction

My friendship with Elliott goes back more than six decades. During

that period we have collaborated on many scientific projects, including,

most significantly, the proof of the existence of the thermodynamic

limit.

The first paper on Coulomb systems by Elliott and me was submitted

for publication on February 4, 1969 and appeared in the March 31,
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1969 issue of Physical Review Letters. I do not remember any referee

reports or if we had to make any changes but I do remember (somewhat

vaguely) sending a preprint to Freeman Dyson which included some

remarks about possible extensions to spin-spin interactions. Dyson

responded by noting that there is no lower bound (see (1) below) on

these interactions. We did not mention these in our paper. In any case

our paper was published pretty fast [1].

The first sentence of that paper reads: “In this note we wish to report

the solution to a classic problem lying at the foundation of statistical

mechanics.” The statement of the result is given in the abstract. “It is

shown that a system made up of nuclei and electrons, the constituents

of ordinary matter, has a well-defined statistical-mechanically com-

puted free energy per unit volume in the thermodynamic bulk limit.

This proves that statistical mechanics, as developed by Gibbs, really

leads to a proper thermodynamics for macroscopic systems.”

The final paragraph of that paper states: “Many of the ideas pre-

sented here had their genesis at the Symposium on Exact Results in

Statistical Mechanics at Irvine, California, in 1968, and we should like

to thank our colleagues for their encouragement and stimulation: M. E.

Fisher, R. Griffiths, O. Lanford, M. Mayer, D. Ruelle, and especially A.

Lenard.” The conference in Irvine in the fall of 1968 was a memorable
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one. It occurred in the midst of a tumultuous year marked by student

uprisings on many campuses around the world. Passing through Paris

during that Summer I remember the posters at Orsay demanding “No

Exams”. Irvine was peaceful however and Elliott and I enjoyed our

discussions and the sandy beach.

The complete proof of the result was published more than three

years later in Advances in Mathematics [2]. That paper, which runs

to more than 70 pages, also contains an Appendix by Barry Simon on

“Operator Theory Needed in Statistical Mechanics”.

To give some background to our 1968 work let me quote from a

review, Statistical Mechanics: A Review of Selected Rigorous Results,

which I wrote in December, 1967. It appeared in the Annual Reviews

of Physical Chemistry in 1968 [3]. I review there the proofs of the

existence of the thermodynamic limit available at that time. I then

note that these proofs require the system Hamiltonian to satisfy the

following two conditions:

(1) H-stability: The Hamiltonian of the system consist-

ing of N particles has to have a lower bound on its

ground state energy proportional to N , i.e.

H ≥ −BN, B ≥ 0.(1)
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A lower bound on the potential energy of the form (1) implies H-

stability but not the converse.

(2) Temperance: The interaction energy between a group

of N1 particles and another group of N2 particles sepa-

rated by a distance r must fall off with distance faster

than 1/rd, where d is the space dimension, d = 3 here

(unless otherwise specified).

I then go on to give an outline of the proof by Ruelle and Fisher for

systems satisfying conditions 1 and 2. The concluding paragraph of

this section reads, with some modifications: “the only — and this is

perhaps the most important — system for which the existence of the

thermodynamic limit has not yet been proven is a system of charged

particles interacting through Coulomb forces only. We certainly expect

thermodynamics to apply when the system is electrically neutral, since

actual matter consists just of such charged point particles. Nuclear

forces are presumably not essential for thermodynamics to exist, and

they would give the wrong order of magnitude for binding energies of

matter. The existence of a lower bound [eq (1)] for charged particles

with hard cores was proven long ago by Onsager. This was recently

generalized somewhat by Fisher & Ruelle. A beautiful proof of con-

dition (1) for a quantum system of charged point particles, at least
4



one species of which obeys Fermi-Dirac statistics, was recently given

by Dyson and Lenard. The Fermi-Dirac statistics, i.e. the exclusion

principle is essential here, otherwise (1) is violated and E0 ∼ −N7/5

and there is no thermodynamic limit.” 1

I will not try to describe here how we overcame the problem of long

range interactions. The fact that the Coulomb potential decays ex-

actly as 1/r in three dimensions is crucial in our analysis. This permit-

ted us to use Newton’s Theorem, derived for the gravitational poten-

tial. Applied to Coulomb systems with positive and negative charges

it states that a spherically symmetric charge neutral system contained

in a sphere of radius R produces no electric field outside R. We really

enjoyed giving a reference to Newton in our paper.

At this point I would like to mention how Onsager proved H-stability

for a classical system of charged hard spheres of diameter D as this may

not be well known. Onsager’s proof also involves the use of Newton’s

Theorem. It starts by noting that in the presence of hard cores, which

requires that the distance between two particles |xi−xj |must be greater

than D, “the charge on each particle can be considered (as far as the

1E. Wigner raised the question at a seminar I gave on this subject: why is not

there a spontaneous creation of an over-all neutral N charged mesons (Bosons)

which would have a net negative energy?
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interactions are concerned) to be smeared out on the surface of a sphere

of diameter D. This has a finite self energy ε(D). It is then a basic

fact of electrostatics that

1

2

∑
i 6=j

eiej/|x1 − xj | =
1

2

∫
R3

E2(x)d3x−
∑

self energy(2)

≥ −Nε(D), |x1 − xj | ≥ D.

Here E(x) is the electric field at the point x and the integral is obviously

non-negative.”

The above is taken from an article I wrote in 1980 [4]. The article is

based on lectures I gave at the International School of Mathematical

Physics, “Ettore Majorana”, Erice, Sicily, June, 1980. This school was

organized by Giorgio Velo and Arthur Wightman and was attended

by Elliott, Jürg Fröhlich and many other colleagues. It was a most

enjoyable school with visits to historical Greek and Roman sites.

I will devote the rest of this article to two of the questions Elliott

and I discussed at that meeting which are, as far as I know, still open

and interesting.

2. Thermodynamics limit for dipoles

One of the most interesting still open problems which Elliott and I

discussed a lot during the meeting at Erice and in other places is the
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existence of the thermodynamic limit for systems of dipoles, located on

some regular lattice, like Z
3, or having hard cores in R

3. The “bare”

dipole interaction potential of particles with a permanent dipole mo-

ment of strength |µ| in an external field E is given by

Uα =
1

2

∑
i 6=j

[µi · µj − 3(µi · r̂ij)(µj · r̂ij)]/r
3
ij −

∑
E · µi,(3)

where µi are the dipole moments, vectors in R
3, ri ∈ Λ ⊂ Z

d(Rd) is the

position of the i-th particle and r̂ij is the unit vector along (ri − rj).

There can also be other short range potentials such as hard cores for

ri ∈ R
3, which assures H-stability. The dipole-dipole interaction falls

off as r−3, just failing to satisfy the temperance condition in three

dimensions, E is an external electric field.

It was shown by Griffiths and by Fröhlich and Park [5], and later

by Banerjee, Griffiths and Widom in [6], that when E = 0 this system

has a well defined thermodynamic limit as Λ → Z
d(Rd) which is shape

independent, both classically and quantum mechanically. Since E = 0

the average net polarization is equal to zero.

When E 6= 0 on the other hand one expects a net polarization and

a shape dependent free energy density which can be computed from

macroscopic considerations for elliptically shaped domains Λ. Proving
7



this remains a challenge to mathematical physics. I have not found any

results on this problem later than 1998, the date of [6].

When the dipoles are confined to a lower dimensional region the r−3

decay is sufficiently rapid to permit the standard proofs of the existence

of the thermodynamic limit to go through. The actual properties of

such systems in one and two dimensions is a rich topic of investigation.

The structure of the ground state of such a dipole system in two di-

mensions with a limited number of orientations was discussed in a work

by Giuliani, Lebowitz and Lieb [7]. There “We prove that a system of

discrete two-dimensional (2D) in-plane dipoles with four possible ori-

entations, interacting via a three-dimensional (3D) dipole-dipole inter-

action plus a nearest neighbor ferromagnetic term, has periodic striped

ground states. As the strength of the ferromagnetic term is increased,

the size of the stripes in the ground state increases, becoming infi-

nite, i.e., giving a ferromagnetic ground state, when the ferromagnetic

interaction exceeds a certain critical value. We also give a rigorous

proof of the reorientation transition in the ground state of a 2D sys-

tem of discrete dipoles with six possible orientations, interacting via a

3D dipole-dipole interaction plus a nearest neighbor antiferromagnetic

term. As the strength of the antiferromagnetic term is increased, the

ground state flips from being striped and in plane to being staggered
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and out of plane. An example of a rotator model with a sinusoidal

ground state is also discussed.” This paper is part of a series of works

by Alessandro, Elliott and me on periodic structures. For additional

work in this direction see Fröhlich and Spencer [8] and Giuliani [9].

3. From electrons and nuclei to atoms and molecules

Having established the existence of the thermodynamic limit there

is little doubt that an appropriate fundamental description of bulk

macroscopic matter in equilibrium is via the Gibbs density matrix ρ ∼

exp(−βH), with H the Coulomb Hamiltonian of nuclei and electrons.

It is then natural to ask for the actual structure of a macroscopic system

consisting of electrons and nuclei. We know from empirical observations

that this bare Hamiltonian, with the right statistics, can lead to the

formation of many different states of matter. The simplest of these

are gases and liquids. In these cases the bare Coulomb interaction is

replaced by an effective HamiltonianHeff whose basic entities are atoms

or molecules.

For example, to obtain the properties of helium or nitrogen at mod-

erate temperatures and pressures it certainly suffices, for all practical

purposes to consider the atoms or molecules as the basic units with

an effective two- or three-body interaction between them. There will
9



always be a certain fraction of “ionized” atoms corresponding to “free”

electrons and ions. This “degree of ionization” will in fact be complete

when the density goes to zero at a fixed positive temperature [7]. The

mathematical-physics issue is then to obtain an Heff which empirically

seems to be approximately the same for a large range of temperatures

and densities. The degree of ionization increases with temperature and

the system becomes a plasma at sufficiently high temperature. It is also

true that as the density increases the degree of ionization also increases

leading to a phase transition from an insulator to a conductor.

A proof of the formation of atoms and molecules, starting with the

Coulomb Hamiltonian, was achieved so far only for special limits of

zero pressure and zero temperature, by C. Fefferman [11] and by J.

Conlon, E. Lieb and H. T. Yau [12], where the approximate formalism

has been given a rigorous foundation. The result by Fefferman (estab-

lished modulo some reasonable assumptions) in the simplest case of the

electron-proton system is as follows: if one fixes the chemical potential

µ = 1
2
(µe+µp) below the ground-state energy of a hydrogen atom Eat,

then in the limit β → ∞ the system consists of free electrons and pro-

tons. On the other hand, when the chemical potential is fixed slightly

above Eat, the system will consist of independent hydrogen atoms when

β → ∞. Conlon, Lieb and Yau extended this result to molecules.
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In the above limits both the particle density and the temperature

go to zero. One therefore has to go beyond this formalism to gain an

understanding of the structure of ordinary fluids at moderate temper-

ature and density in which almost all electrons and nuclei are bound

in neutral clusters of atoms or molecules with a certain small degree

ionization as described by the Saha equation.

A fundamental conceptual difficulty in dealing with these problems

is the lack of an a priori distinction between “free or ionized” and

“bound or atomic” states in the many-body quantum formalism. We

discussed this problem in a paper with Macris and Martin in 1992 [13].

We write there that to overcome this problem Girardeau [14] suggested

that the bound and free electron states for partially ionized hydrogen

are given in terms of the spectrum of the equilibrium one-proton-one-

electron density matrix. It associates the discrete part of the spectrum

with “bound states” and the continuum with “ionized states”. This

was also suggested in an earlier work by Macris and Martin. The most

recent review of the subject that I am aware of is [15].

These ideas were studied for some very simple model systems in

[13] and [15]. They seem worthwhile investigating further as are other

approaches to this problem. The extension of the results of Fefferman
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and of Conlon, Lieb and Yau to finite density and temperature are

most desirable.
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