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Duals in natural characteristic

Peter Schneider, Claus Sorensen

Abstract

In this article we introduce a derived smooth duality functor RHom(−, k) on the
unbounded derived category D(G) of smooth k-representations of a p-adic Lie group G.
Here k is a field of characteristic p. Using this functor we relate various subcategories of
admissible complexes in D(G).

1 Introduction

Let G be a p-adic Lie group of dimension d, and let k be a field of characteristic p. We denote
by Mod(G) the abelian category of smooth G-representations in k-vector spaces.

In this paper we endow the unbounded derived category D(G) = D(Mod(G)) with a tensor
product ⊗k plus internal homs RHom, and begin exploring the resulting closed symmetric
monoidal category. The duality functor RHom(−, k) is of particular interest to us. It gives a
derived approach to the higher smooth duality functors Sj introduced by Kohlhaase in [Koh].

Our first result (Proposition 2.7) shows that the functors Sj are compatible with duals on
the Hecke side. If HU denotes the Hecke algebra of a torsion free open pro-p subgroup U ⊆ G,
we give an HU -equivariant spectral sequence with E2-page H i(U,Sj(V )) converging to the
twisted dual Hecke modules Hd−i−j(U, V )∨(χG). Here the character χG : G → k× turns out
to coincide with the duality character in [Koh]. This is a non-trivial fact and we give a proof.
In particular χG = 1 if G is an open subgroup of the F-points of a connected reductive group
over a p-adic field F.

Motivated by [DGA], which gives a differential graded version of the Hecke algebra H•
U

along with an equivalence between D(G) and the derived category D(H•
U ) of differential

graded modules over H•
U , we turn to studying the functor RHom(−, k) in the derived setting.

We first observe that RHom(−, k) is involutive on the subcategory Dadm(G) of complexes
V • with admissible cohomology representations hi(V •) for all i ∈ Z. We then introduce a
possibly larger subcategory

D(G)a ⊇ Dadm(G)

consisting of globally admissible complexes, by which we mean H i(U, V •) is finite-dimensional
for all i ∈ Z. As we show in Proposition 4.5, a complex V • belongs to D(G)a precisely when
the natural biduality morphism

ηV • : V • −→ RHom(RHom(V •, k), k)

is a quasi-isomorphism. As a result, the notion of being globally admissible is independent of
the choice of U . Finally we show that a globally admissible V • satisfying various boundedness
conditions actually lies in the subcategory Dadm(G). For instance, Corollary 4.12 tells us
Db

adm(G) contains exactly those complexes V • whose total cohomology H∗(U, V •) is finite-
dimensional.
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To orient the reader we point out that D(G)a is equivalent to the category Dfin(H
•
U )

of differential graded H•
U -modules with finite-dimensional cohomology spaces in each degree.

We have work in progress aiming at an intrinsic description of the duality functor on D(H•
U )

corresponding to RHom(−, k).

2 Higher smooth duality

For any compact open subgroup K ⊆ G we have the completed group ring Ω(K) of K over
k. This is a noetherian ring (cf. [pLG] Thm. 33.4). We let Mod(Ω(K)) denote the abelian
category of left Ω(K)-modules. But Ω(K) also is a pseudocompact ring (cf. [pLG] IV§19). We
therefore also have the abelian category Modpc(Ω(K)) of pseudocompact left Ω(K)-modules
together with the obvious forgetful functor Modpc(Ω(K)) → Mod(Ω(K)). Both categories
have enough projective objects. Any finitely generated Ω(K)-module M is pseudocompact in
a natural way. This leads to the natural isomorphism

(1) Ext∗Modpc(Ω(K))(M,N) ∼= Ext∗Mod(Ω(K))(M,N)

for any finitely generated module M in Mod(Ω(K)) and any pseudocompact module N in
Modpc(Ω(K)).

Pontrjagin duality gives rise to the equivalence of categories

Mod(K)op
≃
−−→ Modpc(Ω(K))

V 7−→ V ∨ := Homk(V, k)

where, of course, in order to make V ∨ a left module we use the inversion map g 7→ g−1 on K.
In particular, we have the natural isomorphisms

Ext∗Mod(K)(V1, V2) ∼= Ext∗Modpc(Ω(K))(V
∨
2 , V ∨

1 ) .

If we apply this with the trivial K-representation V2 := k and use (1) we obtain the natural
isomorphism

(2) Ext∗Mod(K)(V, k)
∼= Ext∗Mod(Ω(K))(k, V

∨)

for V in Mod(K).
If K ′ ⊆ K is another open subgroup then in (2) we have on both sides the obvious

restriction maps. Hence we may pass to the inductive limit

(3) lim
−→
K

Ext∗Mod(K)(V, k)
∼= lim
−→
K

Ext∗Mod(Ω(K))(k, V
∨) .

Note that, for V in Mod(G), the right hand side are Kohlhaase’s higher smooth dual functors

S∗(V ) := lim
−→
K

Ext∗Mod(Ω(K))(k, V
∨)

in [Koh]. We use the left hand side to understand these as derived functors. For any V1, V2 in
Mod(G) we introduce

Hom(V1, V2) := {f ∈ Homk(V1, V2) : f is K-equivariant

for some compact open subgroup K ⊆ G}.
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Via the G-action defined by gf := gf(g−1−), for g ∈ G, this is again an object in Mod(G).
Since the functors

Mod(G) −→ Mod(G)

V2 7−→ Hom(V1, V2)

are left exact we have the corresponding right derived functors

Exti(V1, V2) for i ≥ 0.

Lemma 2.1. i. If V2 is injective in Mod(G) then Hom(V1, V2) is H0(U,−)-acyclic for
any compact open subgroup U ⊆ G.

ii. Ext∗(V1, V2) = lim
−→K

Ext∗Mod(K)(V1, V2).

Proof. Note that any injective object in Mod(G) remains injective when viewed in Mod(U).
Therefore this is Prop. 2.2 in the appendix by Verdier in [CG].

We see that, in particular, we can rewrite Kohlhaase’s functors as the derived functors

S∗(V ) = Ext∗(V, k) .

Remark 2.2. By [Bru] Thm. 4.1 the global dimension of Ω(K) as a pseudocompact ring is
equal to the cohomological dimension of K. By Lazard (cf. [CG] I-47) the latter is equal to d
provided K is pro-p and torsion free. Since G contains arbitrarily small open pro-p subgroups
without torsion we conclude from Lemma 2.1.ii that Exti(V1, V2) = 0 for any i > d.

Proposition 2.3. For any compact open subgroup U ⊆ G we have the E2-spectral sequence

H i(U,Extj(V1, V2)) =⇒ Exti+j
Mod(U)(V1, V2) .

In particular,
H i(U,Sj(V )) =⇒ Exti+j

Mod(U)(V, k) .

Proof. This is the composed functor spectral sequence which exists by Lemma 2.1.i.

The above spectral sequence has an additional equivariance property which we now
describe. We fix a compact open subgroup U ⊆ G and consider the compact induction
XU := indGU (k) in Mod(G). We then have the endomorphism ring HU := EndMod(G)(XU )

op

so that XU becomes a right HU -module. Frobenius reciprocity gives a natural isomorphism of
functors H0(U,−) ∼= HomMod(G)(XU ,−) on Mod(G). By using injective resolutions it extends
to a natural isomorphism of cohomological functors

H∗(U,−) ∼= Ext∗Mod(G)(XU ,−) .

Through its right action on XU the right hand side becomes a left HU -module. In this way
H∗(U,−) is equipped with a left HU -module structure. In particular, HomMod(U)(V1, V2) =
H0(U,Hom(V1, V2)) ∼= HomMod(G)(XU ,Hom(V1, V2)) carries a leftHU -module structure which
is functorial in V1 and V2. By derivation we obtain a functorial left HU -module structure on
Ext∗Mod(U)(V1, V2).

Remark 2.4. The spectral sequence in Prop. 2.3 is HU -equivariant.

3



Proof. This is straightforward from the way the composed functor spectral sequence is con-
structed.

We now suppose in addition that U is pro-p and torsion free. Then U is a Poincaré group
of dimension d ([CG] I-47 Ex. (3)). A straightforward variant of the appendix by Verdier in
[CG] therefore gives the following: In Mod(U) we have the dualizing object

Î := lim
−→

K⊆U,cores

Homk(H
d(K, k), k) ,

which actually is isomorphic to the trivial representation k in Mod(U), together with an
isomorphism

(4) Homk(H
i(U, V ), k) ∼= Extd−i

Mod(U)(V, Î)
∼= Extd−i

Mod(U)(V, k) for any i ≥ 0

which is natural in V in Mod(U); this latter isomorphism is induced by the Yoneda product

Extd−i
Mod(U)(V, Î)×H i(U, V ) −→ Hd(U, Î) ∼= Hd(U, k)(∼= k)

(Def. 4.5, Prop. 3.1.5, and first displayed formula on p. V-20). In the following we will keep
writing Î (instead of k) but will view it even as a trivial G-representation. From now on we
assume that V lies in Mod(G) and we will see that then all terms in the above Yoneda pairing
carry a natural left HU -action.

A. From the proof of Prop. 8.4.i in [OS] we know a formula for the HU action on H∗(U, V ).
ViewingHU as the convolution algebra of U -bi-invariant functions with compact support
on G we denote by τh ∈ HU , for h ∈ G, the characteristic function of the double coset
UhU in G. The diagram

H∗(U, V )

res
��

τh· // H∗(U, V )

H∗(U ∩ h−1Uh, V )
h∗ // H∗(U ∩ hUh−1, V )

cores

OO

is commutative.

B. By [CG] I Prop. 18 the same Î is also a dualizing object in Mod(U ′) for any open
subgroup U ′ ⊆ U .

C. As introduced above, we have a natural left HU -action on Ext∗Mod(U)(V, Î). To give an

explicit formula we let V ′ be any other object in Mod(G) and we first recall that, for
any open subgroup U ′ ⊆ U and any h ∈ G, we have the following natural maps:

– The restriction map Ext∗Mod(U)(V, V
′)

res
−−→ Ext∗Mod(U ′)(V, V

′) which derives the ob-
vious forgetful map on homomorphisms.

– The corestriction map Ext∗Mod(U ′)(V, V
′)

cores
−−−→ Ext∗Mod(U)(V, V

′) which derives the

map which sends a U ′-equivariant homomorphism f : V → V ′ to the U -equivariant
homomorphism

∑

g∈U/U ′ gf(g−1−) : V → V ′.
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– The conjugation map Ext∗Mod(U)(V, V
′)

h∗−→ Ext∗Mod(hUh−1)(V, V
′) which derives

the map which sends a U -equivariant homomorphism f : V → V ′ to the hUh−1-
equivariant homomorphism hf(h−1−) : V → V ′.

As for A. it is straightforward to verify that, for any h ∈ G, the diagram

Ext∗Mod(U)(V, V
′)

res

��

τh· // Ext∗Mod(U)(V, V
′)

Ext∗Mod(U∩h−1Uh)(V, V
′)

h∗ // Ext∗Mod(U∩hUh−1)(V, V
′)

cores

OO

is commutative.

E. It is easily checked that the map

HU −→ HU

τ 7−→ τ(−−1)

is an anti-involution of the k-algebra HU . It sends τh to τh−1 .

Lemma 2.5. For any 0 ≤ i ≤ d and any h ∈ G the diagram of Yoneda pairings

Extd−i
Mod(U)(V, Î)

res

��

× H i(U, V ) // Hd(U, Î)

Extd−i
Mod(U∩h−1Uh)

(V, Î)

h∗

��

× H i(U ∩ h−1Uh, V )

cores

OO

// Hd(U ∩ h−1Uh, Î)

cores

OO

h∗

��

Extd−i
Mod(U∩hUh−1)

(V, Î)

cores

��

× H i(U ∩ hUh−1, V )

h−1
∗

OO

// Hd(U ∩ hUh−1, Î)

cores

��

Extd−i
Mod(U)(V, Î) × H i(U, V )

res

OO

// Hd(U, Î)

is commutative.

Proof. We fix injective resolutions V
≃
−→ J • and Î

≃
−→ I• in Mod(G), which remain injective

resolutions after restriction to any given open subgroup of G.
The upper rectangle: Let β• : J • → I•[d− i] a U -equivariant and α• : I• → J •[i] a U ∩

h−1Uh-equivariant homomorphism of complexes representing classes [β•] ∈ Extd−i
Mod(U)(V, Î)

and [α•] ∈ H i(U, V ), respectively. Then β• also represents res[β•] whereas cores[α•] is repre-
sented by

∑

g∈U/U∩h−1Uh
gα•. We compute

[β•[i]] ◦ cores[α•] = [β•[i] ◦
∑

g∈U/U∩h−1Uh

gα•] = [β•[i] ◦
∑

g∈U/U∩h−1Uh

gα•(g−1−)]

= [
∑

g∈U/U∩h−1Uh

g(β•[i] ◦ α•)(g−1−)] = [
∑

g∈U/U∩h−1Uh

g(β•[i] ◦ α•)]

= cores(res[β•[i]] ◦ [α•]) .
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The middle rectangle: Let β• : J • → I•[d − i] a U ∩ h−1Uh-equivariant and α• :
I• → J •[i] a U ∩hUh−1-equivariant homomorphism of complexes representing classes [β•] ∈
Extd−i

Mod(U)∩h−1Uh
(V, Î) and [α•] ∈ H i(U ∩hUh−1, V ), respectively. The h∗[β

•] and h−1
∗ [α•] are

represented by hβ
•
and h−1

α
•
. We compute

h∗[β
•[i]] ◦ [α•] = [hβ

•
[i] ◦ α•] = [hβ•[i](h−1α•(−))] = [hβ•[i](h−1α•(hh−1−))]

= [hβ•[i](h
−1
α•(h−1−))] = [h(β•[i] ◦ h−1

α•)(h−1−)] = [h(β•[i] ◦ h−1
α•)]

= h∗([β
•[i]] ◦ h−1

∗ [α•]) .

The lower rectangle: This is entirely analogous to the computation for the upper rectangle.

At this point we fix an isomorphism Hd(U, Î) ∼= k and henceforth treat it as an identifi-
cation. Since, for any other open pro-p and torsion free subgroup U ′ ⊆ G, the corestriction

maps Hd(U ′, Î)
∼=
←− Hd(U ′ ∩ U, Î)

∼=
−→ Hd(U, Î) are isomorphisms (cf. [CG] I-50(4)), this in-

duces a corresponding identification Hd(U ′, Î) = k. In particular, under these identifications

the conjugation isomorphism h∗ : Hd(U ∩ h−1Uh, Î)
∼=
−→ Hd(U ∩ hUh−1, Î), for any h ∈ G,

becomes the multiplication by a scalar χG(h) ∈ k×.

Lemma 2.6. The map χG : G→ k× is a character which is independent of U and is trivial
on any pro-p subgroup of G.

Proof. The independence from the chosen identification Hd(U, Î) = k as well as he triviality
on U are obvious. The former implies the independence from U and hence, by the latter,
the triviality on any open torsion free pro-p subgroup of G. Suppose that we have checked
the multiplicativity of χG already and let U0 be any pro-p subgroup of G. Note that, as a
p-adic Lie group, G always has an open torsion free pro-p subgroup. Hence χG|U0 factorizes
through a finite quotient which is a p-group. Since any finite subgroup of k× has order prime
to p it follows that χG is trivial on U0. To establish multiplicativity let g, h ∈ G. Since
conjugation commutes with corestriction we have the following three commutative diagrams,
which together show our claim:

Hd(U ∩ gUg−1, Î) Hd(U ∩ gUg−1 ∩ ghU(gh)−1, Î)
cores
∼=

oo

Hd(U ∩ g−1Ug, Î)

g∗

OO

Hd(U ∩ g−1Ug ∩ hUh−1, Î),
cores
∼=

oo

g∗

OO

Hd(U ∩ hUh−1, Î) Hd(U ∩ g−1Ug ∩ hUh−1, Î)
cores
∼=

oo

Hd(U ∩ h−1Uh, Î)

h∗

OO

Hd(U ∩ (gh)−1Ugh ∩ h−1Uh, Î),
cores
∼=

oo

h∗

OO
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and
Hd(U ∩ gUg−1 ∩ ghU(gh)−1, Î)

cores
∼=

// Hd(U ∩ ghU(gh)−1, Î)

Hd(U ∩ g−1Ug ∩ hUh−1, Î)
cores
∼=

//

g∗

OO

Hd(g−1Ug ∩ hUh−1, Î)

g∗

OO

Hd(U ∩ (gh)−1Ugh ∩ h−1Uh, Î)

h∗

OO

cores
∼=

// Hd(U ∩ (gh)−1Ugh, Î).

h∗

OO
(gh)∗

ii

The map

HU −→ HU

τ 7−→ χGτ (pointwise product of functions)

is an algebra homomorphism. Pulling back an HU -module M along this homomorphism de-
fines the twisted HU -module M(χG). Also note that we may use the anti-involution in E.
to make the k-linear dual M∨ := Homk(M,k) of a left HU -module M again into a left
HU -module.

Using A. and C. we then may rewrite the diagram in Lemma 2.5 as the commutative
diagram

Extd−i
Mod(U)(V, Î)

τh·

��

× H i(U, V ) // k

χG(h)·

��
Extd−i

Mod(U)(V, Î) × H i(U, V )

τ
h−1 ·

OO

// k.

This says that the duality isomorphism (4) in fact is an isomorphism of HU -modules

(5) Extd−i
Mod(U)(V, k)

∼=
−−→ H i(U, V )∨(χG) .

Proposition 2.7. For any compact open subgroup U ⊆ G which is pro-p and torsion free
and any V in Mod(G) we have an HU -equivariant E2-spectral sequence

H i(U,Sj(V )) =⇒ Hd−i−j(U, V )∨(χG) .

Proof. The spectral sequence arises by combining the second spectral sequence in Prop. 2.3
(observe Remark 2.4) with the duality isomorphism (5).

Remark 2.8. Suppose that G = G(F) where F/Qp is a finite extension and G is a connected
reductive F-split group over F. Assuming that a pro-p Iwahori subgroup U of G is torsion free
it is shown in [OS] Prop. 7.16 that χG = 1. Under additional assumptions this was proved
before in [Koz].

In fact, we will show that χG coincides with the duality character introduced by Kohlhaase
in [Koh] after Def. 3.12 and which we temporarily denote by χKoh

G .

Proposition 2.9. We have χG = χKoh
G .
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Proof. The character χKoh
G describes the G-action on a certain one dimensional k-vector space

Ed(k) the original definition of which we do not need. Instead we use [Koh] Prop. 3.2 which
says that, for any compact open subgroup G0 ⊆ G, there is a natural G0-equivariant isomor-

phism ℓG,G0 : Ed(k)
∼=
−→ ExtdMod(Ω(G0))

(k,Ω(G0)) such that:

1) For any g ∈ G the diagram

Ed(k)

χKoh
G

(g)·

��

ℓG,G0 // ExtdMod(Ω(G0))
(k,Ω(G0))

g∗

��
Ed(k)

ℓ
G,gG0g

−1
// ExtdMod(Ω(gG0g−1))(k,Ω(gG0g

−1))

is commutative, where g∗ is the conjugation isomorphism (compare the argument in the
last paragraph of the proof of [Koh] Prop. 3.13).

2) For any open subgroup G1 ⊆ G0 the diagram

ExtdMod(Ω(G0))
(k,Ω(G0))

ℓG0,G1

��

Ed(k)

ℓG,G0
44❥❥❥❥❥❥❥❥❥❥❥

ℓG,G1 **❚❚❚
❚❚

❚❚
❚❚

❚❚
❚

ExtdMod(Ω(G1))
(k,Ω(G1))

is commutative. Moreover ℓG0,G1 is the composite of the restriction map

ExtdMod(Ω(G0))
(k,Ω(G0))

res
−−→ ExtdMod(Ω(G1))

(k,Ω(G0))

and the map

Extd(k, j∨G1.G0
) : ExtdMod(Ω(G1))

(k,Ω(G0))→ ExtdMod(Ω(G1))
(k,Ω(G1))

which is induced by the Pontrjagin dual j∨G1,G0
of the extension by zero map jG1,G0 :

C∞(G1, k)→ C∞(G0, k).

The Pontrjagin dual of C∞(G0, k) being Ω(G0) we have, using (2), the isomorphism

PG0 : ExtdMod(Ω(G0))
(k,Ω(G0))

∼=
−→ ExtdMod(G0)

(C∞(G0, k), k) .

Combining it with the above two diagrams we arrive at the commutative diagrams

(6) Ed(k)

χKoh
G (g)·

��

PG0
◦ℓG,G0

∼=
// ExtdMod(G0)

(C∞(G0, k), k)

g∗

��
Ed(k)

P
gG0g

−1◦ℓG,gG0g
−1

∼=
// ExtdMod(gG0g−1)(C

∞(gG0g
−1, k), k)

8



and

(7) ExtdMod(G0)
(C∞(G0, k), k)

res

++❳❳❳❳
❳❳❳

❳❳❳
❳❳❳

Ed(k)

PG0
◦ℓG,G0

∼=

44❥❥❥❥❥❥❥❥❥❥❥❥

PG1
◦ℓG,G1

∼=

**❚❚❚
❚❚

❚❚
❚❚

❚❚
❚❚

ExtdMod(G1)
(C∞(G0, k), k)

Extd(jG1,G0
,k)ss❢❢❢❢❢

❢❢❢
❢❢❢

❢❢

ExtdMod(G1)
(C∞(G1, k), k).

Specializing to G0 = U again we note that the duality isomorphism (4) for V = C∞(U, k)
and i = 0 is given by

ExtdMod(U)(C
∞(U, k), k)

∼=
−−→ Homk(HomMod(U)(k,C

∞(U, k)),Hd(U, k))

e 7−→
[

φ 7→ φ∗(e)
]

.

Let conU : k → C∞(U, k) denote the map which sends 1 ∈ k to the constant function with
value 1 on U . Then the above isomorphism is equivalent to the isomorphism

ExtdMod(U)(C
∞(U, k), k)

∼=
−−→ Hd(U, k)

e 7−→ con∗U (e) .

The first isomorphism being natural in conjugation by g ∈ G and this conjugation sending
conU to congUg−1 we see that we have the commutative diagram

ExtdMod(U)(C
∞(U, k), k)

g∗

��

con∗

U // Hd(U, k)

g∗

��
ExtdMod(gUg−1)(C

∞(gUg−1, k), k)
con∗

gUg−1
// Hd(gUg−1, k).

(8)

Furthermore, if U ′ ⊆ U is any open subgroup, then we have the commutative diagram of
duality pairings

ExtdMod(U)(C
∞(U, k), k)

res

��

× H0(U,C∞(U, k)) // Hd(U, k)

ExtdMod(U ′)(C
∞(U, k), k)

Extd(jU′,U ,k)

��

× H0(U ′, C∞(U, k))

cores

OO

// Hd(U ′, k)

cores

OO

ExtdMod(U ′)(C
∞(U ′, k), k) × H0(U ′, C∞(U ′, k))

H0(U ′,jU′,U )

OO

// Hd(U ′, k).

Here the top. resp. bottom, rectangle is commutative by the top rectangle in Lemma 2.5, resp.
the functoriality of the Yoneda pairing. Note that the middle column maps conU ′ to conU .
Hence we obtain the commutative diagram

ExtdMod(U)(C
∞(U, k), k)

Extd(jU′,U ,k)◦res

��

con∗

U // Hd(U, k)

ExtdMod(U ′)(C
∞(U ′, k), k)

con∗

U′ // Hd(U ′, k).

cores

OO

9



By combining it with the diagram (7) we deduce the commutative diagram

Hd(U, k)

∼= &&▼▼
▼▼

▼▼
▼▼

▼

Ed(k)

con∗
U
◦PU◦ℓG,U

∼=

77♥♥♥♥♥♥♥♥

con∗

U′
◦PU′◦ℓG,U′

∼=
''PP

PP
PP

P
k

Hd(U ′, k),

cores

OO

∼=
88qqqqqqqq

where the right hand oblique arrows are our standard identifications. This means that the

isomorphism con∗U ◦PU ◦ ℓG,U : Ed(k)
∼=
−→ k does not depend on the subgroup U . With this

information we consider the commutative diagram

Ed(k)

χKoh
G

(g)·
��

con∗

U ◦PU◦ℓG,U

∼=
// Hd(U, k)

g∗
��

∼= // k

χG(g)·

��
Ed(k)

con∗

gUg−1 ◦P
gUg−1◦ℓG,gUg−1

∼=
// Hd(gUg−1, k)

∼= // k

which arises by combining (6) and (8). Since the horizontal arrows coincide we conclude that
χKoh
G (g) = χG(g).

Lemma 2.10. Suppose that G is a connected reductive group over a finite extension F of Qp;
if G is an open subgroup of G(F) then χG = 1.

Proof. The above Prop. 2.9 together with [Koh] Cor. 5.2 show the assertion in the case F = Qp.
In general let G′ denote the Weil restriction of G to Qp. It is shown in [Oes] App. 3 that G′

again is a connected linear algebraic group with the property that G(F) = G′(Qp) as p-adic
Lie groups. Since our field extension is separable it follows from loc. cit. A.3.4 that with G

also G′ is reductive. This reduces the general case to the case F = Qp.

3 Derived smooth duality

We begin by recalling some general nonsense about the adjunction between tensor product and
Hom-functor which for three k-vector spaces V1, V2, and V3 is given by the linear isomorphism

Homk(V1 ⊗k V2, V3)
∼=
−−→ Homk(V1,Homk(V2, V3))(9)

A 7−→ λA(v1)(v2) := A(v1 ⊗ v2) .

Suppose that all three vector spaces carry a left G-action. Then Homk(V1 ⊗k V2, V3) and
Homk(V1,Homk(V2, V3)) are equipped with the G×G×G-action defined by

(g1,g2,g3)A(v1 ⊗ v2) := g3A(g
−1
1 v1 ⊗ g−1

2 v2) and (g1,g2,g3)λ(v1)(v2) := g3(λ(g
−1
1 v1)(g

−1
2 v2)),

respectively. The above adjunction is equivariant for these two actions. If we restrict to the
diagonal G-action, then the above adjunction induces the adjunction isomorphism

Homk[G](V1 ⊗k V2, V3)
∼=
−−→ Homk[G](V1,Homk(V2, V3)) .

10



If the G-action on the Vi is smooth then this also can be written as an isomorphism

(10) HomMod(G)(V1 ⊗k V2, V3) ∼= HomMod(G)(V1,Hom(V2, V3)) .

Let D(G) denote the unbounded derived category of Mod(G). The tensor product functor

Mod(G) ×Mod(G) −→ Mod(G)

(V1, V2) 7−→ V1 ⊗k V2 ,

where the G-action on the tensor product is the diagonal one, is exact in both variables.
Therefore it extends directly (i.e., without derivation) to the functor

D(G)×D(G) −→ D(G)

(V •
1 , V

•
2 ) 7−→ tot⊕(V

•
1 ⊗k V

•
2 ) ,

which we usually denote simply by V •
1 ⊗k V •

2 .
1 On the other hand, since Mod(G) is a

Grothendieck category, we have for any V0 in Mod(G) the total derived functor

RHom(V0,−) : D(G) −→ D(G)

such that RjHom(V0, V ) = Extj(V0, V ) for any V in Mod(G) and j ≥ 0. We want to extend
this to a bifunctor D(G)op×D(G)→ D(G). First we recall that Mod(G) has arbitrary direct
products (but which are not exact); we will denote these by

∏∞ to avoid confusion with the
cartesian direct product. Hence, for any two complexes V •

1 and V •
2 in Mod(G) we may define

the complex

Hom•(V •
1 , V

•
2 ) :=

∏

j∈Z

∞
Hom(V j

1 , V
j+•

2 )

in Mod(G) in the usual way. By construction we have that

Hom•(V •
1 , V

•
2 ) = lim

−→
K

(

∏

j∈Z

Hom(V j
1 , V

j+•

2 )
)K

= lim
−→
K

∏

j∈Z

Hom(V j
1 , V

j+•

2 )K

= lim
−→
K

∏

j∈Z

HomMod(K)(V
j
1 , V

j+•

2 )(11)

= lim
−→
K

Hom•
Mod(K)(V

•
1 , V

•
2 )

is the inductive limit over all compact open subgroups K ⊆ G of the usual Hom-complexes
for the abelian categories Mod(K).

The adjunction 10 shows that the assumptions of [KS] Thm. 14.4.8 are satisfied (with
Pi = Ci = Mod(G), G the tensor product functor, and F1 = F2 = Hom). Hence we obtain the
following result.

Proposition 3.1. The total derived functor RHom(−,−) : D(G)op ×D(G) −→ D(G) exists

and can be computed by RHom(V •
1 , V

•
2 ) = Hom•(V •

1 , J
•) where V •

2
≃
−→ J• is a homotopically

injective resolution. Moreover, there are the natural adjunctions

HomD(G)(V
•
1 ⊗k V

•
2 , V

•
3 ) = HomD(G)(V

•
1 , RHom(V •

2 , V
•
3 ))

1This uses the fact that for any two complexes of vector spaces one of which is acyclic their tensor product

is acyclic as well.
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and
RHomMod(G)(V

•
1 ⊗k V

•
2 , V

•
3 ) = RHomMod(G)(V

•
1 , RHom(V •

2 , V
•
3 ))

for any V •
i in D(G).

Corollary 3.2. (D(G),⊗k, k,RHom) is a closed symmetric monoidal category.

For V2 = k viewed as complex concentrated in degree zero we, in particular, obtain the
total derived duality functor

RHom(−, k) : D(G)op −→ D(G)

such that RjHom(V, k) = Sj(V ) for any V in Mod(G) and any j ≥ 0. In order to see in which
way k is a dualizing object for Mod(G) we have to introduce two finiteness conditions. First
we observe that by Remark 2.2 and (11) we may use [Har] Prop. I.7.6 to conclude that the
functor

RHom(−, k) : Db(G)op −→ Db(G)

(is way-out in both directions and) respects the bounded subcategories.
Next we recall that a representation V in Mod(G) is called admissible if, for any open

subgroup K ⊆ G, the vector space of K-fixed vectors V K is finite dimensional. In fact,
it suffices to check the defining condition for a single compact open subgroup K (apply the
Nakayama lemma to the dual Ω(K)-module V ∨ or see [Koh] Lemma 1.7). The full subcategory
Modadm(G) of admissible representations in Mod(G) is a Serre subcategory (cf. [Em1] Prop.
2.2.13). Hence we have the strictly full triangulated subcategories Db

adm(G) ⊆ Db(G) and
Dadm(G) ⊆ D(G) of those complexes whose cohomology representations are admissible.

Lemma 3.3. The derived duality functor RHom(−, k) respects both subcategories Db
adm(G)

and Dadm(G).

Proof. It is shown in [Koh] Cor. 3.15 that for an admissible representation V in Mod(G)
the representations Sj(V ) are admissible as well. Hence for an admissible V the complex
RHom(V, k) lies in Db

adm(G). On the other hand we have observed already that our functor is
way-out in both directions in the sense of [Har] §7. Therefore our assertion follows from loc.
cit. Prop. I.7.3.

Let V • be any complex in Mod(G) and fix an injective resolution k
≃
−→ J •. We construct

a natural transformation

(12) ηV • : V • −→ Hom•(Hom•(V •,J •),J •)

as follows. Inserting the definitions we have to produce, for any ℓ ∈ Z, a natural G-equivariant
map

ηV ℓ : V ℓ −→
∏

j∈Z

∞
Hom(

∏

i∈Z

∞
Hom(V i,J i+j),J j+ℓ)

compatible with the differentials. It is straightforward to check that the maps ηV ℓ(v)((fi,j)i) :=
(−1)ℓjfℓ,j(v) have these properties.

Proposition 3.4. If the complex V • has admissible cohomology then the natural transforma-
tion ηV • is a quasi-isomorphism.

12



Proof. Since we have a natural transformation between way-out functors the lemma on way-
out-functors ([Har] Prop. I.7.1(iii)) tells us that we need to establish the assertion only in the
case where our complex is a single admissible representation (viewed as a complex concen-
trated in degree zero). In fact, by loc. cit. Prop. I.7.1(iv) we can go one step further. Suppose
given a class P of admissible representations such that every admissible representation is
embeddable into a finite direct sum of representations in this class. Then it suffices to check
the assertion for representations in P. We cannot apply this directly, though. First let us fix
a compact open subgroup K in G. Then we observe:

– Any admissible G-representation V is also admissible as a K-representation;

– k
≃
−→ J • is also an injective resolution in Mod(K);

– the natural transformation ηV remains the same if constructed for V considered only
as a K-representation.

This means that, for the purposes of our proof, we may assume that our group G is compact.
Let C∞(G, k) denote, as before, the vector space of k-valued locally constant functions on
G. Equipped with the left translation action it is an admissible smooth G-representation.
We have C∞(G, k)∨ = Ω(G). Let V be any admissible representation in Mod(G). Then V ∨

is a finitely generated (pseudocompact) Ω(G)-module ([Koh] Prop. 1.9(i)). Hence we find a
surjection Ω(G)m ։ V ∨ in Modpc(G) for some integer m ≥ 0. It is the dual of an injective
map V →֒ C∞(G, k)m in Mod(G). Therefore we can take the single object C∞(G, k) for the
class P. By [Koh] Prop. 3.13 we have, for any integer j, that

RjHom(C∞(G, k), k) = Sj(C∞(G, k)) ∼=

{

χG ⊗k C
∞(G, k) for j = d,

0 otherwise,

where χG : G → k× is Kohlhaase’s duality character. Hence RHom(C∞(G, k), k) ≃ (χG ⊗k

C∞(G, k))[−d] and then RHom(RHom(C∞(G, k), k), k) ≃ C∞(G, k). One checks from the
proof in loc. cit. that the latter quasi-isomorphism is induced by the natural transformation
ηC∞(G,k).

Corollary 3.5. On Dadm(G) the functor RHom(−, k) is involutive.

4 Globally admissible complexes

In this section we will generalize some of the results in section 3 to a subcategory of D(G)
which is potentially larger thanDadm(G). The possible drawback is that the defining condition
for this subcategory is a “global” finiteness condition.

We let Vec denote the abelian category of k-vector spaces and D(k) its unbounded derived
category. In the following we fix an open subgroup U ⊆ G which is pro-p and torsion free. As
recalled in Remark 2.2 the functor

Mod(G) −→ Vec

V 7−→ V U = H0(U, V )

has finite cohomological dimension d. Hence its total derived functor RH0(U,−) : D(G) −→
D(k) exists (cf. [Har] Cor. I.5.3)).
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On the other hand the functor Homk(−, k) on Vec of taking the k-linear dual is exact
and therefore passes directly to a functor form D(k)op to D(k) which, for simplicity, we also
denote by Homk(−, k).

Proposition 4.1. The diagram

D(G)op

forget
��

RHom(−,k) // D(G)

forget
��

D(U)op

RH0(U,−)
��

RHom(−,k) // D(U)

RH0(U,−)
��

D(k)op
Homk(−,k)[−d]// D(k)

is commutative (up to a natural isomorphism).

Proof. The upper rectangle is commutative since the forgetful functor Mod(G) → Mod(U),
having the compact induction indGU as an exact left adjoint, preserves injective as well as
homotopically injective resolutions. For the lower triangle we first observe that the second
adjunction formula in Prop. 3.1 tells us that the composed functor RH0(U,RHom(−, k)) is
naturally isomorphic to the functor RHomMod(U)(−, k). Hence it remains to exhibit a natural
isomorphism between RHomMod(U)(−, k) and Homk(RH0(U,−), k)[−d]. For this we start
with the Yoneda pairing

RHomMod(U)(V
•, k) ×RHomMod(U)(k, V

•) −→ RHomMod(U)(k, k) .

By our assumption on the group U the natural homomorphism σ≤dRHomMod(U)(k, k)
∼=
−→

RHomMod(U)(k, k) is an isomorphism and the upper truncation σ≤dRHomMod(U)(k, k) at

degree d (cf. [Har] p. 69/70) maps to its cohomology Hd(U, k)[−d] ∼= k[−d] in degree d. The
Yoneda pairing therefore induces a pairing

RHomMod(U)(V
•, k)×RHomMod(U)(k, V

•) −→ k[−d]

and hence a natural homomorphism

Homk(RHomMod(U)(k, V
•), k[−d]) −→ RHomMod(U)(V

•, k) .

To show that it is an isomorphism we need to check that the map induced on cohomology

(13) Homk(H
d−∗U, V •), k) −→ Ext∗Mod(U)(V

•, k)

is bijective. If V • is a single representation in degree zero then we have seen this already in
(4). By the Example 1 on p. 68 in [Har] the functor RH0(U,−) and hence also the functor
Homk(RHomMod(U)(k,−), k[−d]) are way-out in both directions. Similarly, by Remark 2.2
and [Har] Prop. I.7.6 the functor RHomMod(U)(−, k) is way-out in both directions as well.
Hence it follows from [Har] Prop. I.7.1(iii) that (13) always is bijective.

Definition 4.2. A complex V • in D(G) is globally admissible if its cohomology groups
H i(U, V •), for any i ∈ Z, are finite dimensional vector spaces. Let D(G)a ⊆ D(G) denote the
strictly full triangulated subcategory of all globally admissible complexes.
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We will see only later in Cor. 4.6 that this definition, indeed, does not depend on the
choice of U . To rephrase the definition let Dfin(k) ⊆ D(k) denote the strictly full triangulated
subcategory of all objects all of whose cohomology vector spaces are finite dimensional. Then
D(G)a is the full preimage in D(G) of Dfin(k) under the functor RH0(U,−).

Corollary 4.3. The duality functor RHom(−k) respects the subcategory D(G)a.

Proof. This is immediate from Prop. 4.1 since the functor Homk(−, k) on D(k) respects the
subcategory Dfin(k).

In (12) we had introduced the biduality morphism ηV • : V • → RHom(RHom(V •, k), k).
Our further analysis of it will be based upon the following general observation.

Lemma 4.4. A homomorphism V •
1 → V •

2 in D(G) is an isomorphism if and only the induced
map H i(U, V •

1 )→ H i(U, V •
2 ), for any i ∈ Z, is bijective.

Proof. This is an immediate consequence of the equivalence H between D(G) and the derived
category of a certain differential graded algebra in [DGA] Thm. 9, which we will recall in
section ??. By construction the functor H has the property that h∗(H(−)) = H∗(U,−).

Proposition 4.5. The biduality morphism ηV • , for any V • in D(G), is an isomorphism if
and only if V • lies in D(G)a.

Proof. According to Lemma 4.4 we have to check that the maps

H i(U, ηV •) : H i(U, V •)→ H i(U,RHom(RHom(V •, k), k))

are bijective for any i ∈ Z if and only if V • lies in D(G)a. By Prop. 4.1 we have natural
isomorphisms

ξiV • : H i(U,RHom(V •, k))
∼=
−−→ Homk(H

d−i(U, V •), k) .

We now claim that the diagram

H i(U, V •)

b
��

Hi(U,ηV •) // H i(U,RHom(RHom(V •, k), k))

ξi
RHom(V •,k)

∼=
��

Homk(Homk(H
i(U, V •), k), k)

Homk(ξ
d−i

V • ,k)

∼=
// Homk(H

d−i(U,RHom(V •, k)), k),

where b denotes the natural map from a k-vector space into its double dual, is commutative
up to the sign (−1)i(d−i). This immediately shows that H i(U, ηV •) is bijective if and only if
b is bijective which, of course, is the case if and only if the vector space H i(U, V •) is finite
dimensional.

To establish this claim we compute RHom(−, k) by using an injective resolution J• of k in
Mod(G) and hence in Mod(U). Then RHom(V •, k) = Hom•(V •, J•) by Prop. 3.1. Moreover
the adjunction property (10) implies that Hom•(V •, J•) always is homotopically injective.
Finally we may also assume that V • is homotopically injective. Our diagram therefore becomes

hi((V •)U )

b
��

Hi(U,ηV •) // HomK(U)(
∏

j∈ZHom(V j , J j+•), J•[i])

ξi
RHom(V •,k)

∼=

��
Homk(Homk(h

i((V •)U ), k), k)
Homk(ξ

d−i

V • ,k)

∼=
// Homk(HomK(U)(V

•, J•[d− i]), k),
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where K(U) denotes as usual the homotopy category of unbounded complexes in Mod(U).
We first recall that, once we fix an identification hd((J•)U ) = Hd(U, k) ∼= k, the map ξiV • is
explicitly given by

ξiV • : HomK(U)(V
•, J•[i]) −→ Homk(h

d−i((V •)U ), k)

[ǫ•] 7−→
[

[δd−i] 7−→ [ǫd−i(δd−i)]
]

.

Now let [vi] ∈ hi((V •)U ). By definition of ηV • its image under the top horizontal arrow in the
above diagram is the homotopy class of the homomorphism of complexes

∏

j∈Z

Hom(V j , J j+•) −→ J•[i]

(fj,•)• 7−→ (−1)i•fi,•(vi) .

of degree i. Under the right perpendicular arrow it is further mapped to the linear map

HomK(U)(V
•, J•[d− i]) −→ k(14)

[(fj,d−i)j ] 7−→ (−1)i(d−i)[fi,d−i(vi)] .

But [(fj,d−i)j ] corresponds under ξd−i
V • to the linear map in Homk(h

i((V •)U ), k) sending [δi]
to [fi,d−i(δi)]. Hence the preimage of (14) under the bottom horizontal map in the diagram
is equal to (−1)i(d−i)b([vi]) as claimed.

Corollary 4.6. The subcategory D(G)a in D(G) is independent of the choice of the subgroup
U ⊆ G.

What is the relation between the subcategories Dadm(G) and D(G)a? We had observed
earlier that a representation V in Mod(G) is admissible if and only if the vector spaceH0(U, V )
is finite dimensional. Moreover, by [Em2] Lemma 3.3.4, we have the following fact.

Lemma 4.7. If V in Mod(G) is an admissible representation in Mod(G) then all the vector
spaces H i(U, V ), for i ≥ 0, are finite dimensional.

This lemma says that, for an admissible V , the complex RH0(U, V ) lies in Dfin(k). By the
Example 1 on p. 68 in [Har] the functor RH0(U,−) is way-out in both directions. Therefore
[Har] Prop. I.7.3(iii) implies that the functor RH0(U,−) maps Dadm(G) to Dfin(k). This
proves the following.

Proposition 4.8. Dadm(G) ⊆ D(G)a.

Alternatively this can be seen by combining Prop. 3.4 and Prop. 4.5. On the subcategory
D+(G) of bounded below complexes we have a stronger result.

Proposition 4.9. A complex V • in D+(G) lies in Dadm(G) if and only if H i(U, V •) is finite
dimensional for any i ∈ Z; i.e., we have D+(G) ∩Dadm(G) = D+(G) ∩D(G)a.

Proof. The direct implication holds true by Prop. 4.8. For the reverse implication we now
assume that all the H i(U, V •) are finite dimensional.

Choose an integer m such that hj(V •) = 0 for any j < m. In this situation it is a standard
fact (cf. [KS] Exer. 13.3) that we have H0(U, hm(V •)) = RmH0(U, V •) = Hm(U, V •). Hence
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H0(U, hm(V •)) is finite dimensional. As recalled before Lemma 4.7 this implies that hm(V •)
is admissible. Moreover, Lemma 4.7 then says that H i(U, hm(V •)) is finite dimensional for
any i ∈ Z. We now use the distinguished triangles

hm(V •)[−m]
+1

ww♦♦♦
♦♦
♦♦
♦♦
♦♦

τ≤m−1V • // τ≤mV •

gg◆◆◆◆◆◆◆◆◆◆

and τ≥m+1V •

+1

xxqqq
qq
qq
qq
q

τ≤mV • // V •

dd❏
❏
❏
❏
❏❏
❏❏
❏❏

in D(G) (cf. [KS] Prop. 13.1.15(i)). Since τ≤m−1V • ≃ 0 in D(G) the left triangle implies that
H i(U, τ≤mV •) ∼= H i−m(U, hm(V •)) is finite dimensional for any i ∈ Z. Using this as an input
for the long exact cohomology sequence associated with the right triangle we conclude that
H i(U, τ≥m+1V •) is finite dimensional for any i ∈ Z as well. But hj(τ≥m+1V •) = 0 for any
j ≤ m. Therefore we may repeat our initial reasoning for the complex τ≥m+1V • and deduce
that hm+1(τ≥m+1V •) = hm+1(V •) is admissible. Proceeding inductively in this way we obtain
that hj(V •) is admissible for any j ∈ Z.

Lemma 4.10. For any V • in D(G) and any i ∈ Z we have: If H i(U, V •) = 0 then hi(V •) = 0.

Proof. This is almost literally the same proof as the one for the reverse implication in [DGA]
Prop. 5.

Corollary 4.11. Any globally admissible complex V • in D(G) such that H i(U, V •) = 0 for
any sufficiently small i lies in D+(G) and hence in Dadm(G).

Corollary 4.12. Db
adm(G) is the subcategory of all complexes V • in D(G) whose total coho-

mology H∗(U, V •) is finite dimensional.

Proof. The direct implication is a consequence of Lemma 4.7 using the hypercohomology
spectral sequence. The reverse implication follows from Prop. 4.9 and Lemma 4.10.

Remark 4.13. If G is compact then the natural functor D+(Modadm(G))
≃
−→ D+

adm(G) :=
D+(G) ∩Dadm(G) is an equivalence.

Proof. This follows from [Em2] Prop. 2.1.9 and [Har] Prop. I.4.8.
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