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Double Inequalities for Complete Monotonicity

Degrees of Remainders of Asymptotic Expansions

of the Gamma and Digamma Functions

Mohamed Bouali

Abstract

Motivated by several conjectures posed in the paper ” Completely
monotonic degrees for a difference between the logarithmic and psi
functions”,we confirm in this work some conjectures on completely
monotonic degrees of remainders of the asymptotic expansion of the
logarithm of the gamma function and the digamma function and we
give two bounded for this degrees.

1 Introduction

Completely monotonic functions have attracted the attention of many au-
thors. Mathematicians have proved many interesting results on this topic.
For example, Koumandos [8] obtained upper and lower polynomial bounds
for the function x/(ex−1), x > 0, with coefficients of the Bernoulli numbers
Bk. This enabled him to give simpler proofs of some results of H. Alzer and
F. Qi et al., concerning complete monotonicity of certain functions involving
the functions Γ(x), ψ(x) and the polygamma functions ψ(n)(x), n = 1, 2, ....,
[5].

A function f is said to be completely monotonic on an interval I if f
has derivatives of all orders on I which alternate successively in sign, that
is, (−1)nf (n)(x) ≥ 0 for all x ∈ I and all n ∈ N. See for example [[25], Chap
VIII], [[26], Chap I], and [[27], Chap IV].

A notion of completely monotonic degree was invented first in reference
[7] and reviewed in the recent paper [20]. It can be used to measure and dif-
ferentiate complete monotonicity more accurately, and it is also introduced
in [7, 9, 10, 11, 12, 13, 16, 17, 18, 19] and closely related references.

Let f(x) be a completely monotonic function on (0,+∞) and denote
f(+∞) = limx→+∞ f(x) ≥ 0. When the function xr[f(x) − f(+∞)] is
completely monotonic on (0,+∞) if and only if 0 ≤ r ≤ α, the number α,
denoted by degxcm[f ], is called the completely monotonic degree of f(x) with
respect to x ∈ (0,+∞). For more studies on complete monotonicity, the
reader is also referred to [7, 9, 10, 13, 17, 18].
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For x > 0, the classical gamma function Γ(x) =

∫

∞

0
tx−1e−tdt first intro-

duced by L. Euler, is one of the most important functions in mathematical
analysis. It often appears in asymptotic series, hypergeometric series, Rie-
mann zeta function, number theory, and so on.

In [[2], Theorem 8], [[14], Theorem 2], and [28], the functions

Rn(x) = (−1)n[log Γ(x)−(x−
1

2
) log(x)+x+

1

2
log(2π)−

n
∑

k=1

B2k

2k(2k − 1)

1

x2k−1
,

for n ≥ 0 were proved to be completely monotonic on (0,+∞), where an
empty sum is understood to be 0 and the Bernoulli numbers Bn are define
by the following series [21, 23, 24] by

z

ez − 1
= 1−

z

2
+

∞
∑

n=1

b2n
(2n)!

z2n, |z| < 2π.

Which implies that the functions (−1)mR
(m)
n for m,n ≥ 0 are completely

monotonic on (0,+∞). By the way, we call the function (−1)nRn(x) for
n ≥ 0 the remainders of asymptotic formula of log Γ(x). See [[1], p. 257,
6.1.40] and [[15], p. 140, 5.11.1]. The completely monotonic degree of the
function Rn(x) for n ≥ 0 with respect to x, (0,+∞) was proved in [[12],
Theorem 2.1] to be at least n.

Stimulated by the above results and related ones, Qi conjectured in [31]
that: the completely monotonic degrees of Rn(x) for n ≥ 0 with respect to
x, (0,+∞) satisfy

degxcm(R0) = 0, degxcm(R1) = 1, (1.1)

and
degxcm(Rn) = 2(n − 1), n ≥ 2. (1.2)

The completely monotonic degrees of −R′

n(x) for n ≥ 0 with respect to x,

degxcm(−R′

0) = 1, degxcm(−R′

1) = 2. (1.3)

and
degxcm(−R′

n) = 2n− 1, n ≥ 2. (1.4)

The completely monotonic degrees of (−1)mR
(m)
n (x) for m ≥ 2 and n ≥ 0

with respect to x,

degxcm((−1)mR
(m)
0 ) = m− 1, degxcm((−1)mR

(m)
1 ) = m, (1.5)

and
degxcm((−1)mR(m)

n ) = m+ 2(n− 1), n ≥ 2. (1.6)
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Proposition 1.1 For all n ≥ 2, the completely monotonic degree of the

function Rn(x) with respect to x > 0 satisfies:

2(n− 1) ≤ degxcm(Rn) < 2n− 1.

Proof. In [Qi and Mansour], it is proved that

−R′

n+1(x) =

∫

∞

0
fn(t)e

−xtdt,

where

fn(t) = (−1)n(
1

t
−

1

2
coth

t

2
+

n+1
∑

k=1

B2k

(2k)!
t2k−1).

Moreover, Rn+1 is a completely monotonic of degree at lest n + 1, hence,
limx→∞Rn+1(x) = 0. Hence for all x > 0, We have,

Rn+1(x) =

∫

∞

0
gn(t)e

−xtdt,

where

gn(t) = (−1)n(
1

t2
−

1

2t
coth

t

2
+

n+1
∑

k=1

B2k

(2k)!
t2k−2).

Integrate by part yields

x2nRn+1(x) =

∫

∞

0
(gn(t))

(2n)e−xtdt,

g(2n)n (t) = (−1)n((
1

t2
−

1

2t
coth

t

2
)(2n) +

B2n+2

(2n + 2)(2n + 1)
). (1.7)

We use the Legendre integral formula. See for instance [4] (page 265) and
[6] (page 92). For all t > 0,

∫

∞

0

sin(xt)

ex − 1
dx =

π

2
coth(πt)−

1

2t
.

Integrate by part yields,
∫

∞

0

sin(xt)

ex − 1
dx = [

1

2
sin(xt) log(1+e−2x−2e−x)]∞0 −

t

2

∫

∞

0
cos(xt) log(1+e−2x−2e−x)dx.

Hence,

1

(2π)2

∫

∞

0
cos(

xt

2π
) log(1 + e−2x − 2e−x)dx =

1

t2
−

1

2t
coth(

t

2
).

Applying the theorem of derivation under the integral sign, it follows that

g(2n)n (t) =
1

(2π)2n+2

∫

∞

0
x2n cos(

xt

2π
) log(1+e−2x−2e−x)dx+

(−1)nB2n+2

(2n + 2)(2n + 1)
.
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Since,

1

t2
−

1

2t
coth(

t

2
) = −

∞
∑

k=0

B2k+2

(2k + 2)!
t2k, |t| < 2π.

We deduce that,

1

(2π)2n+2

∫

∞

0
x2n log(1 + e−2x − 2e−x)dx = (−1)n+1 22nB2n+2

(2n + 2)(2n + 1)
.

Thus,

g(2n)n (t) =
1

(2π)2n+2

∫

∞

0
x2n

(

cos(
xt

2π
)− 1

)(

log(1 + e−2x − 2e−x))
)

dx.

Let θ(x) = log(1 + e−2x − 2e−x). Then, θ′(x) = 2(e−x − e−2x) ≥ 0 and

limx→∞ θ(x) = 0. then, g
(2n)
n (t) > 0 for all t > 0. Which implies that

degtcm(Rn+1) ≥ 2n.

Assume tαRn(t) is completely monotonic. Then α ≤ − tR′

n(t)
Rn(t)

for all
t > 0. Since,

tR′

n(t)

Rn(t)
=

t(ψ(t)− log t)− 1
2 +

∑n+1
k=1

B2k
2k

1
t2k−1

log Γ(t)− (t− 1
2) log(t) + t+ 1

2 log(2π) −
∑n+1

k=1
B2k

2k(2k−1)
1

t2k−1

,

Hence,

lim
t→0

−tR′

n(t)

Rn(t)
= 2n+ 1.

Furthermore,

x2n+1Rn+1(x) =

∫

∞

0
g(2n+1)
n (t)e−xtdt,

and

g(2n+1)
n (t) =

−1

(2π)2n+3

∫

∞

0
x2n+1 sin(

xt

2π
) log(1 + e−2x − 2e−x))dx.

Hence, x2n+1Rn+1(x) is not completely monotonic. Then, degtcm(Rn+1) ∈
[2n, 2n + 1) for all n.

Proposition 1.2 There is m0 ∈ N such that for m ≥ m0, the function

(−1)mxm−1R
(m)
0 (x) is not completely monotonic.

Proof. We have

R0(x) = log Γ(x)− (x−
1

2
) log x+ x−

1

2
log(2π).

then, for all x > 0 and all m ≥ 2,

(−1)mR
(m)
0 (x) = (−1)mψ(m−1)(x)−

(m− 1)!

2xm
−

(m− 2)!

xm−1
.
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(−1)mR
(m)
0 (x) =

∫

∞

0
(
tm−1

1− e−t
−
tm−1

2
− tm−2)e−xtdt,

then, for all m ≥ 2,

(−1)mxm−1R
(m)
0 (x) =

∫

∞

0
(
( tm−1

1− e−t

)(m−1)
−

(m− 1)!

2
)e−xtdt.

Set gm(t) =
(

tm−1

1−e−t

)(m−1)
− (m−1)!

2 . Assume that xm−1ϕm is completely

monotonic for all m, then, gm(t) ≥ 0 and fm(t) ≥ (m−1)!
2 . Furthermore, it

is proved by Alzer that for all t > 0, lim
m→∞

1

(m− 1)!
fm(t/(m − 1)) = s(t),

where,

s(t) =
1

2
+

1

π

∞
∑

k=1

1

k
sin(

t

2kπ
).

Which gives, s(t) ≥ 1
2 for all t > 0. From Theorem 2.1 (see ([3] p. 105)),

we can derive that there is a > 0 such that s(a) < 0, Which gives a con-
tradiction. The Bernstein-Widder theorem [26] implies xm−1ϕm(x) is not
completely monotonic on (0,∞) for all m ∈ N. This completes the proof.

Remark 1.3 By the proposition above, one deduces that xm(−1)mR
(m)
0 (x)

is not completely monotonic for all m ∈ N.

One shows that, m ≥ 80, f ′m

(
√

252
(m+4)(m+3)

)

< 0.

Proposition 1.4 For m ≥ 3, the completely monotonic degree of the func-

tion (−1)mR
(m)
0 (x) with respect to x > 0 is not less that m−2 and less than

m− 1,

m− 2 ≤ degxcm((−1)mR
(m)
0 (x)) < m− 1

Proof. As above, we have

xm−2ϕm(x) =

∫

∞

0
(
( tm−1

1− e−t

)(m−2)
−

(m− 1)!

2
t− (m− 2)!)e−xtdt.

Moreover for |x| < 2π,

xm−1

1− e−x
= xm−2 +

xm−1

2
+

∞
∑

k=2

Bk

k!
xk+m−2,

hence, the m−2 derivative of the function
xm−1

1− e−x
at 0 is equal to (m−2)!.

This implies,

( tm−1

1− e−t

)(m−2)
−

(m− 1)!

2
t− (m− 2)! =

∫ t

0
(fm(t)−

(m− 1)!

2
)dt. (1.8)
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To show that xm−2ϕm(x) is completely monotonic, it sufficient to prove that
for all t > 0,

( tm−1

1− e−t

)(m−2)
−

(m− 1)!

2
t− (m− 2)! ≥ 0.

We saw that

fm(t) = (m− 1)! + (m− 1)!

∞
∑

k=1

e−ktLm−1(kt),

and by the fact that, |Lm(x)| ≤ e
x
2 for all x > 0. It then follows that

|

∞
∑

k=1

e−ktLm−1(kt)| ≤
e−

t
2

1− e−
t
2

,

hence,

(m− 1)!(1 −
e−

t
2

1− e−
t
2

) ≤ fm(t),

It is easy seeing that 1− e−
t
2

1−e−
t
2

≥ 1
2 if and only if t ≥ 2 log 3. Then, for all

t ≥ 2 log 3 ≃ 2.19

fm(t)−
(m− 1)!

2
≥ 0.

Moreover, H. Alzer et al. [3] (p.113) showed that for all t ∈ (−2π, 2π),

fm(t) =

∫

∞

0
s(tu)um−1e−udu,

where,

s(u) =
1

2
+

1

π

∞
∑

k=1

1

k
sin(

u

2kπ
).

Let t ∈ [0, 2π), then,

∫ t

0
(fm(t)−

(m− 1)!

2
)dt =

∫ t

0
(

∫

∞

0
(s(tu)−

1

2
)um−1e−udu)dt.

then,

∫ t

0
(fm(t)−

(m− 1)!

2
)dt =

∫

∞

0

(

∫ t

0

1

π

∞
∑

k=1

1

k
sin(

tu

2kπ
)
)

dt)um−1e−udu

= 4

∫

∞

0

(

∞
∑

k=1

sin2(
tu

4kπ
)
)

um−2e−udu ≥ 0.

This complete the proof.
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Proposition 1.5 For m ≥ 1, the completely monotonic degree of the func-

tion (−1)mR
(m)
1 (x) with respect to x > 0 is not less that m and less than

m+ 1,

m ≤ degxcm((−1)mR
(m)
1 (x)) < m+ 1

Proof. We saw that

−R1(x) = log Γ(x)− (x−
1

2
) log(x) + x+

1

2
log(2π) −

1

12x
,

So, for all m ≥ 1,

(−1)mR
(m)
1 (x) = (−1)m+1ψ(m−1)(x) +

(m− 2)!

xm−1
+

(m− 1)!

2xm
+

m!

12xm+1
,

Hence,

(−1)mR
(m)
1 (x) =

∫

∞

0

(tm

12
+
tm−1

2
+ tm−2 −

tm−1

1− e−t

)

e−xtdt.

It follows that

(−1)mxmR
(m)
1 (x) =

∫

∞

0
(
m!

12
− f ′m(t))e−xtdt,

where fm(t) =
( tm−1

1− e−t

)(m−1)
. It is known that for |t| < 2π,

fm(t) =

∫

∞

0
s(tu)um−1e−udu,

then

f ′m(t) =

∫

∞

0
s′(tu)ume−udu.

Since, for all x ∈ R, s′(x) =
1

2π2

∞
∑

k=1

1

k2
cos(

x

2kπ
). Then, |s′(x)| ≤ 1

12 . Thus,

m!

12
− f ′m(t) =

∫

∞

0
(
1

12
− s′(tu))tme−tdt ≥ 0, for all |t| < 2π. (1.9)

On the other hand,

fm(t) = (m− 1)!
∞
∑

k=0

e−ktLm(kt),

then,

f ′m(t) = (m− 1)!
∞
∑

k=0

ke−kt(L′

m(kt)− Lm(kt)).

7



Using the relation, tL′

m(t) = mLm(t)−mLm−1(t), then,

tf ′m(t) = (m− 1)!
∞
∑

k=0

e−kt(mLm(kt)−mLm−1(kt)− ktLm(kt)).

By an inequality due to Szegö (see [14, p. 168]) we have |Lm(t)| ≤ e
t
2 for

t ≥ 0, so that we obtain for t > 0,

tf ′m(t) ≤ 2m!
e−t/2

1 − e−t/2
− 2t (m− 1)!

d

dt
(

e−t/2

1− e−t/2
),

This yields the following inequality

tf ′m(t) ≤ 2m!
e−t/2

1− e−t/2
+ (m− 1)!

t

4 sinh2(t/4)
, (1.10)

which gives,

m!

12
− f ′m(t) ≥ (m− 1)!(

m

12
−

2me−t/2

t(1− e−t/2)
−

1

4 sinh2(t/4)
),

Let K(t,m) = m
12 − 2me−t/2

t(1−e−t/2)
− 1

4 sinh2(t/4)
. It easy to see that the function

K(t,m) increases on the variable m if and only if 1
12 −

2e−t/2

t(1−e−t/2)
≥ 0, which

is true for t ≥ 4. Moreover,

K ′(t, 1) =
−2 + et/2(2 + t)

(−1 + et/2)2t2
+

1

8

coth(t/4)

sinh2(t/4)
≥ 0.

Then, for t ≥ 4 and m ≥ 1,

K(t,m) ≥ K(t, 1).

Furthermore, for t ≥ 6 we have K(t, 1) ≥ K(6, 1) > 0.1. Which implies that

K(t,m) ≥ 0 for all t ≥ 6, and m ≥ 1. (1.11)

By equations (1.9) and (1.11), we get for all t > 0,

m!

12
− f ′m(t) ≥ 0.

Thus (−1)mxmR
(m)
1 (x) is completely monotonic.

Let m ≥ 1, we have seen that f ′m(t) ≤ m!/12 for all t ≥ 0 and f ′m(0) =
m!/12. Hence, lim

t→+∞

(m!/2 − f ′m(t))e−xt = lim
t→0

(m!/2 − f ′m(t))e−xt = 0.

Integrate by part yields

(−1)mxm+1R
(m)
1 (x) = −

∫

∞

0
f ′′m(t)e−xtdt,

8



If for all m ≥ 1 and all t > 0 f ′′m(t) ≤ 0. Then, by using equation (1.10), we
have, limt→∞ f ′m(t) = 0, and f ′m(t) ≥ 0 for all t > 0. Therefore

fm(t) ≥ fm(0) =
(m− 1)!

2
.

Using the fact that lim
m→∞

1

(m− 1)!
fm(t/(m − 1)) = s(t) for all t ∈ R. It

follows that, s(t) ≥ 1/2, and H(t) ≥ 0 for all t > 0. Which contradicts
the result of Alzer et al [3]. Which states that H(xjk) < −C(log log xkj)

1/2,
C > 0, for some positive sequence xjk going to infinity as k → +∞.

The Bernstein-Widder theorem [36] implies xm+1(−1)mR
(m)
1 (x) is not

completely monotonic on (0,∞) for all m ∈ N. This completes the proof.
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