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Abstract

We describe scenarios for the emergence of Shilnikov attractors, i.e. strange attrac-

tors containing a saddle-focus with two-dimensional unstable manifold, in the case of three-

dimensional flows and maps. The presented results are illustrated with various specific

examples.
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1 Introduction

The discovery of spiral chaos, i.e. the proof of the existence of a complex structure of orbits in a
neighbourhood of a homoclinic loop of a saddle-focus equilibrium state, is rightfully considered
one of the most significant achievements of the theory of dynamical systems. This discovery was
made by L.P. Shilnikov in his work [1], published in 1965. At that time, in both mathematics and
physics, there was practically no more or less suitable concept for explaining such phenomena in
models described by finite-dimensional deterministic systems. Therefore, the complex structure
(chaos) in neighbourhoods of homoclinic loops of equilibria was absolutely unexpected and com-
pletely contradicted the concepts based on the theory of two-dimensional systems. Moreover,
such significant difference in the orbit structure for a saddle and a saddle-focus was seemed very
strange, since from the topological point of view, the saddle and saddle-focus are arranged in the
same way. However, they differ globally. Thus, from the Shilnikov conditions of nondegeneracy
for a homoclinic loop of a saddle [2, 3, 4], one can deduce that in its neighbourhood there is
a smooth two-dimensional global central invariant manifold, and thus the problem is effectively
two-dimensional. Whereas the saddle-focus does not have such a manifold even locally, and
therefore the dynamics here is principally multidimensional.

A saddle-focus differs from a saddle in that, among its leading eigenvalues (those nearest to the
imaginary axis), a pair of complex-conjugate ones exists. Then in the case of three-dimensional
systems saddle-focus equilibria are divided into two different types:
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• a saddle-focus (2,1) with two-dimensional stable and one-dimensional unstable manifolds
that has eigenvalues λ± iω, γ, where λ < 0, γ > 0, ω 6= 0;

• a saddle-focus (1,2) with one-dimensional stable and two-dimensional unstable manifolds
that has eigenvalues λ, γ ± iω, where λ < 0, γ > 0, ω 6= 0.

Back in the papers [2, 3] Shilnikov showed that bifurcations of systems with a homoclinic loop
of a saddle-focus (2,1) with negative saddle value

σ = λ+ γ

do not differ from the case of a saddle – here a unique stable limit cycle is born when the loop
spits inward (this is due to the fact that the first return map turns out to be contracting in
this case). The case of a three-dimensional saddle-focus (1,2) is obviously reduced to the case
of a saddle-focus (2,1) by time reversal. Therefore, here in the case σ > 0 a unique completely
unstable limit cycle is born from a homoclinic loop of a saddle-focus of type (1,2).

However, if the closest to the imaginary axis eigenvalues are complex conjugate ones, i.e.,
if σ > 0 in the case of a saddle-focus (2,1) or σ < 0 in the case of a saddle-focus (1,2), the
situation becomes completely different – already the system itself with a homoclinic loop has
a complex structure, since, in any neighbourhood of the loop, there are infinitely many saddle
periodic orbits [1]. In fact, Shilnikov discovered in [1] that the existence of a homoclinic loop
of such saddle-focus implies chaos. The notion itself did not exist then (in 1965); the “chaos
theory” emerged and became popular only 10-20 years later. Chaos was found in many nonlinear
models and it also occurred that strange attractors in models of various origins often have a
spiral structure, i.e. the chaotic orbits seem to move near a saddle-focus homoclinic loop.

According to the classification of saddle-foci, we will also distinguish two types of spiral
homoclinic attractors of three-dimensional flows:

1) a figure-8 spiral attractor, when the attractor contains a saddle-focus (2,1) (with σ > 0)
and entirely both its one-dimensional unstable separatrices (composing a homoclinic-8);

2) a Shilnikov attractor, when the attractor contains a saddle-focus (1,2) (with σ < 0) and
entirely its two-dimensional unstable manifold.

That the homoclinic loop to a saddle-focus implies chaos – this is the Shilnikov theorem
[1, 5], but why is the converse also so often true, i.e. why is the observed chaos often spiral?
This question was of great interest to Shilnikov. He discovered [6, 7] that if a system depends on
a parameter and evolves as it changes, from a stable (stationary) regime to a chaotic one, then
on this way a saddle-focus equilibrium arises naturally and, moreover, its stable and unstable
manifolds can come close enough to each other, so that the creation of a homoclinic loop (and
chaos) becomes quite expected.

Shilnikov described the corresponding scenarios in the paper [7] for the case of a one-
parameter family Xµ : ẋ = X(x, µ) of multidimensional systems. In Section 2 we discuss the
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Shilnikov scenario for the three-dimensional case. As one can see, this scenario is extremely sim-
ple (if to ignore certain fine intermediate details that themselves can be very complicated), and
therefore, it should come as no surprise that it is often seen in many models.1 We consider some
of these models in Section 3 as examples of systems in which Shilnikov’s scenario is implemented.

It is interesting to note that spiral chaos was not initially detected in a number of such models,
the studies of chaotic dynamics ended either at the stage of Feigenbaum-type attractors (which
are formed inside the Shilnikov whirlpool (see Sec. 2) as a result of an infinite cascade of period-
doubling bifurcations with limit cycles) or a little further, when the attractor in the Poincaré
section becomes “one-component”, like the Rössler attractor (an example of such attractor is
shown in Fig. 2e), or the interpretation of the process of its occurrence was inadequate etc. Of
course, this situation was a consequence of the lack of a “guiding thread” – the Shilnikov scenario
in this case.

In the work [7] Shilnikov expressed one more important idea that the scenario he proposed
for flows can be generalized to the case of maps. In this case, the generalization is direct: the
equilibrium state is replaced by a fixed (or periodic) point, and the local and global bifurca-
tions involved in the scenario are replaced by their analogs for maps. In Section 4 we give
a phenomenological description of such scenarios for the case of orientable and nonorientable
three-dimensional maps, and in Section 5 we give some examples of how such scenarios can be
implemented in the case of three-dimensional generalized Hénon maps.

2 On Shilnikov scenario for three-dimensional flows

Consider a one-parameter family Xµ : ẋ = X(x, µ) of three-dimensional flows such that the
system Xµ has at µ0 < µ < µ1 a single stable equilibrium Oµ in some absorbing domain D, see
Fig. 1a. In other words, the system Xµ for µ0 < µ < µ1 has in D a global attractor that is the
stable equilibrium Oµ. Let at µ ∈ (µ0, µ1) and close to µ1 the equilibrium Oµ have eigenvalues
ν1,2 = λ(µ)± iω(µ), ν3 = λss(µ), where λss < λ < 0. This means that Oµ is a stable focus by its
leading eigenvalues ν1 and ν2.

Assume that at µ = µ1 a supercritical (soft) Andronov-Hopf bifurcation occurs with Oµ.
Then the eigenvalues ν1,2 evolve as µ changes in such a way that λ(µ) < 0 if µ < µ1, λ(µ1) = 0,
and λ(µ) > 0 if µ > µ1. Thus, at µ > µ1 the equilibrium Oµ becomes a saddle-focus (1,2) and a
stable limit cycle Lµ is born in its neighbourhood. Accordingly, for all sufficiently small µ > µ1,
the global attractor in D of the system Xµ is this asymptotically stable limit cycle Lµ. The type
of stability of the cycle Lµ is determined by its multipliers ρ1(µ) and ρ2(µ), which are initially
both positive and less than one. In this case, the unstable manifold W u(Oµ) of the point Oµ is
a two-dimensional disk with the boundary Lµ, and orbits starting from points on W u(Oµ) are
wound to Lµ along spirals “from the inside”, see Fig. 1b.

1Their list is quite large, we will indicate only some of the most known three-dimensional models. Thus, spiral
chaos was found in radio-electronic devices, such as the Chua circuit [8], the Anishchenko-Astakhov generator [9],
in the optical laser systems [10, 11, 12, 13], in chemical systems [14, 15], in a certain class of models describing the
behavior of neurons [16], in biophysical experiments [17], in electromechanical systems [18, 19], in electrochemical
processes [20, 21], in nonlinear convection in magnetic fields [22], in mechanical systems [23], etc.
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Figure 1: The main stages of the phenomenological scenario for the emergence of the Shilnikov attractor. One

of the criteria for the strangeness of such an attractor is the existence of a homoclinic (double-asymptotic) orbit

to the saddle-focus Oµ.

We assume that with a further increase in µ the multipliers ρ1(µ) and ρ2(µ) of Lµ become
equal at some µ = µ∗ and complex conjugate for µ > µ∗. This “smooth bifurcation” corresponds
to change of type of Lµ, from nodal type for µ < µ∗ to focal one for µ > µ∗. Then, the two-
dimensional unstable manifold W u(Oµ) of the equilibrium Oµ begins to twist onto the cycle Lµ.
In this case, W u(Oµ) takes a form of roulette which is a boundary of the so-called “Shilnikov
whirlpool”, inside of which all orbits of system Xµ starting in D are drawn (generally speaking,
except for one orbit – the stable separatrix W s−(Oµ) of the equilibrium Oµ), see Fig. 1c.

When µ changes, the sizes of the whirlpool increase, the “retraction inward of orbits” is
preserved, but the limit cycle Lµ may lose its stability. In particular, a strange attractor can
form in its place as a result of a series of various bifurcations2. This attractor, in turn, can
transform into the Shilnikov attractor, i.e. a strange attractor that contains the saddle-focus Oµ
of type (1,2) and entirely its two-dimensional unstable manifold.

The moment µ = µℓ of the formation of a homoclinic loop of saddle-focus Oµ can be traced
by observing for the stable separatrix W s+(Oµ): at µ < µℓ it leaves D (as in Fig. 1c), at µ > µℓ
it enters the whirlpool, and, at µ = µℓ, it falls on the unstable manifold W u(Oµ) (thus, W s+(Oµ)
entirely belongs to W u(Oµ)).

With a further change in µ, the separatrix W s+(Oµ) entirely enters the whirlpool, makes
many turns there, then can again lie on W u(Oµ) forming a multi-round homoclinic loop and
etc. The moments of formation of such loops are discrete in the parameter µ, but they are not

2The sequence of these bifurcations can be very diverse: this can be a cascade of period doubling bifurcations
followed by the appearance of a Feigenbaum attractor or, few further, a Hénon-like attractor in the Poincaré
map; or a two-dimensional stable invariant torus Tµ can be born from the cycle, which can then break down, for
example, according to the Afraimovich-Shilnikov scenario [25], giving rise a strange attractor of the “torus-chaos”
type; some limit cycle can undergo a subcritical Andronov-Hopf or period-doubling bifurcation after which a
chaotic dynamics inside the whirlpool appears instantly; etc.
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isolated: for each such value of the parameter µ, those values of µ are accumulated again that
correspond to secondary multi-round loops [24].

Discrete moments with respect to the parameter µ, when the separatrix W s+(Oµ) forms
homoclinic loops, correspond to the existence of Shilnikov homoclinic attractors3. At these
moments, the equilibrium Oµ enters the attractor together with its unstable manifold W u(Oµ),
and typical orbits of the attractor visit any arbitrarily small neighborhood of the point Oµ. The
latter property makes it relatively easy to find the moments of formation of Shilnikov homoclinic
attractors using, for example, automated plotting of the µ-dependence of the distance of attractor
points from the saddle-focus.

3 Examples of Shilnikov attractors in three-dimensional flows

For a long time the Shilnikov’s works [1, 5, 26] on spiral chaos were practically unknown to the
mathematical community. They gained a world recognition due to a series of quite affordable
papers by Arneodo, Coullet, Tresser, and Spiegel [27, 28, 29, 30], in which the importance of the
Shilnikov homoclinic loop for the chaos theory was emphasized. In particular, in [28], geometric
illustrations of the Shilnikov’s theorem were given. Also, in this paper, it was presented a simple
example of a piece-wise linear oscillatory system, in which the existence of a homoclinic loop of
saddle-focus (2,1) was analytically established and figure-8 spiral strange attractors were found
numerically.

In this section we consider two examples of three-dimensional system in which the Shilnikov
attractors are observed: the first example is the well-known ACT-system from the paper [29],
and the second example is the Gaspard–Nicolis model of chemical oscillator from [31].

3.1 Shilnikov attractor in an Arneodo-Coullet-Tresser system

In the paper [29], a smooth three-dimensional system











ẋ = y

ẏ = z

ż = −y − βz + µx(1− x),

(1)

was proposed which demonstrates spiral chaos at certain regions of values of the parameters β
and µ. Let us consider this system in more detail.

Since system (1) has the constant divergence equal to −β, attractors can exist only for β > 0.
Note that for all values of parameters µ > 0 and β > 0, system (1) has two equilibria O1(0, 0, 0)
and O2(1, 0, 0). Moreover, the equilibrium O1 for β <

√
3 is always a saddle-focus (2,1), while

the equilibrium O2 can be both stable and saddle-focus (1,2).

3of course, when inside the whirlpool there are no other attractors – for example, local bifurcations may lag
behind global bifurcations and then, it can happen that both the limit cycle Lµ is stable and a homoclinic loop
exists
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Following [29] we put β = 0.4. Now our goal is to illustrate the scenario of the emergence of
the Shilnikov attractor containing the saddle-focus O2 when the parameter µ changes. In Fig. 2
main stages of the scenario are shown.

a) µ = 0.5 b) µ = 0.75 c) µ = 0.776

d) µ = 0.782 e) µ = 0.8 f) µ = 0.863

Figure 2: Scenario of the emergence of Shilnikov attractor in system (1).

For 0 < µ < µ1 = 0.4, the stable equilibrium O2 is the only attractor of the system. Note that
the boundary of its absorbing domain is formed by the two-dimensional stable invariant manifold
of the saddle-focus O1. At µ = µ1, the equilibrium O2 undergoes a supercritical Andronov-Hopf
bifurcation. As a result, for µ > µ1, a stable limit cycle L is born in a neighborhood of the
equilibrium O2 that becomes a saddle-focus (1,2), see Fig. 2a. The stable limit cycle exists
for µ1 < µ < µ2 ≈ 0.72. Starting with µ = µ2, the cycle goes through a cascade of period-
doubling bifurcations (see Fig. 2b,c after the first and second period-doubling bifurcations), and,
as a result, a strange attractor of Feigenbaum type appears, see Fig. 2d. Then, this attractor
is transformed into a Rössler-like attractor (on a two-dimensional Poincaré section, it can be
also interpreted as a Hénon-like attractor). With a further increase in the parameter µ up to
µ = µ3 ≈ 0.86311445, the attractor changes quite smoothly and is not homoclinic, since it is
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separated from the saddle-focus O2.
However, as µ→ µ3, a “hole” around O2 decreases and, finally, disappears at µ = µ3. In this

case, orbits of the attractor can come arbitrarily close to the saddle-focus O2, see Fig. 2f. As
we know, this is due to the appearance of a homoclinic orbit to the saddle-focus O2 and, hence,
to the creation of the Shilnikov attractor, see Fig. 3a, where the numerically found homoclinic
orbit is also shown.

a) µ = 0.86311445 b) β = 0.01, µ = 0.02 c) µ = 1.6062

Figure 3: (a) Shilnikov attractor with a homoclinic loop of the saddle-focus O2 of type (1,2) (b) illustration of

the formation of the Shilnikov whirlpool; (c) µ = µ5, a homoclinic loop of the saddle-focus O1 of type (2,1), here

the attractor no longer exists.

Note that, using system (1), we can trace a formation of the Shilnikov whirlpool – when
the cycle L becomes of focal type. Illustration of the moment of occurrence of the Shilnikov
whirlpool is shown in Fig. 3b, where, for greater clarity, we take β = 0.01 (then the divergence of
the systemDiv = −β will be small) in order to be able to show how the unstable two-dimensional
manifold of the saddle-focus O2 winds around the stable limit cycle L.

With a further increase in the parameter µ, from µ = µ3 to µ = µ4 ≈ 0.873, a phenomenon
of complication of the structure of the Shilnikov whirlpool can be observed, see e.g. [32, 33]. At
µ = µ4, a crisis of the attractor occurs: it collides with the two-dimensional stable manifold of
the saddle-focus O1 which is a natural boundary of the absorbing domain for the attractor under
consideration. Note that the saddle-focus O1 can also have homoclinic loops, see Fig. 3a where
such a loop is shown for µ = µ5 ≈ 1.6062 (it was also found numerically in [29]). However, any
attractors do not exist for close values of µ.

3.2 Example of Shilnikov attractor in the Gaspard-Nicolis model of chemical

oscillator.

In this section we consider an example of interesting system in which the Shilnikov attractor
arises almost instantly as a result of a single rigid (subcritical) bifurcation. This scenario begins
as usual: a stable equilibrium O undergoes a supercritical Andronov-Hopf bifurcation, as a result,
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it becomes a saddle-focus (1,2) and a stable limit cycle L is born. This cycle first becomes focal
one and the Shilnikov whirlpool (with the boundary W u(O)) is formed. However, this limit cycle
itself remains stable for a long time (by the parameter) and, independently of it, non-attractive
chaotic dynamics (metastable chaos) has time to develop inside the whirlpool. Next, at a certain
value of the parameter, the cycle L undergoes a period doubling bifurcation that is subcritical:
a saddle cycle of doubled period merges with L. After this, a strange attractor is immediately
observed, which at very close values of a parameter becomes homoclinic – the Shilnikov attractor
appears.

Below we will show how this happens in the system











ẋ = x(βx− fy − z + g),

ẏ = y(x+ sz − α),

ż = (x− αz3 + bz2 − cz)/ε,

(2)

proposed by P. Gaspard and G. Nicolis in the paper [31], in which it was shown that strange
attractors containing a saddle-focus (1,2) can exist in system (2). The corresponding parameter
regions where such attractors can be observed have been specified in [34]. Following [34] we take
some parameters to be fixed

b = 3, ε = 0.01, f = 0.5, g = 0.6, s = 0.3, c = 4.8, α = 0.7825, (3)

and the parameter β choose as the governing one.

a) β = 0.1 b) β = 0.3812 c) β = 0.39213

Figure 4: Scenario of the Shilnikov attractor emergence in the model (2) of the chemical oscillator: (a) the

attractor is the stable equilibrium state O; (b) saddle cycle ls of period-2 approaches the stable limit cycle l; (c)

Shilnikov homoclinic attractor.

For β < βAH ≈ 0.261, the nonzero equilibrium O of system (2) is stable, see Fig. 4a (O
is only equilibrium with positive coordinates having a physical sense). For β = βAH this
equilibrium undergoes a supercritical Andronov-Hopf bifurcation. After this, on the interval
β ∈ (βAH , βPD ≈ 0.3817), the attractor of the system is the stable limit cycle l, see Fig. 4b, and

8



the equilibrium O becomes a saddle-focus (1,2). At β ≈ 0.365 the cycle l becomes focal and a
Shilnikov funnel is formed, further both multipliers of l becomes negative and one of them tends
to −1 as β → βPD. Simultaneously, a saddle limit cycle ls of double period approaches the cycle
l, see Fig. 4b and merges with l. As a result of this subcritical period doubling bifurcation, at
β > βPD the limit cycle l becomes saddle and, instantly, a strange attractor is observed. With
a further increase in the parameter β, the orbits of this attractor begin to approach closer and
closer to the saddle-focus O. At β = βh ≈ 0.3921, a homoclinic loop of the saddle-focus O is
formed, i.e. a homoclinic Shilnikov attractor arises, Fig. 4 c.

4 On Shilnikov scenarios for three-dimensional orientable and

nonorientable maps

We discuss now scenarios of the emergence of discrete Shilnikov attractors, i.e. homoclinic at-
tractors containing a fixed (periodic) point that is a saddle-focus with two-dimensional unstable
manifold, thus, it is a saddle-focus (1,2) in the case of three-dimensional maps.

We consider one-parameter families Tµ of three-dimensional diffeomorphisms in two cases,
when map Tµ is orientable (orientation preserving) and when Tµ is nonorientable (orientation
reversing) map. In order not to get involved with the problems of orientability of the ambient
manifold, we will assume that in both cases Tµ is given in R3. Then the Jacobian J(Tµ) of
the map Tµ will be everywhere positive in the orientable case and everywhere negative in the
nonorientable case.

4.1 The orientable case

A sketch of scenario of a typical discrete Shilnikov attractor appearance for one-parameter fam-
ilies Tµ of three-dimensional orientable maps is illustrated in Fig. 5. This scenario starts with
a stable fixed point Oµ that loses the stability at µ = µ1 under a discrete supercritical (soft)
Andronov-Hopf bifurcation, Fig. 5a–b: for µ > µ1 the point Oµ becomes a saddle-focus (1,2) and
a stable closed invariant curve Lµ is born in a neighborhood of Oµ. Thus, the curve Lµ becomes
the attractor of map Tµ. During this transition, see Fig. 5a–b, the point Oµ changes its type
from a stable point to a saddle-focus (1,2) point: for µ < µ1 it has three multipliers inside the
unit circle, for µ = µ1 two complex conjugate multipliers of Oµ fall on the unit circle, and for
µ > µ1 they go outside it.

The next stage of the scenario is connected with changes in Lµ. Typically, this happens
in the following way. Just after the discrete Andronov-Hopf bifurcation, at small µ − µ1, the
unstable manifold of Oµ is a two-dimensional disk Dµ with the boundary Lµ that has a type of
nodal invariant curve. We assume that, at further changing µ, the curve Lµ undergoes a “smooth
bifurcation”, when it changes its type from nodal to focal and, thus, the two-dimensional manifold
W u(Oµ) begins to wind up on Lµ, like a roll. As a result, W u(Oµ) takes the form of a kind of
cauldron, the Shilnikov whirlpool, inside which all orbits from the absorbing region are drawn,
except for orbits of the stable separatrix W s−(Oµ), see Fig. 5c.
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Figure 5: A sketch of scenario of the emergence of a discrete Shilnikov attractor.

Then, chaotic dynamics begins to develop in this whirlpool as µ changes. At first, the
attractor is simple, it is the stable invariant curve Lµ, and then it loses its stability. This can
happen in a variety of ways (for example, in a soft way through a cascade of doubling of invariant
curves with their subsequent destruction and the formation of attractors of torus-chaos type, or
in a rigid way through a subcritical bifurcation with some of stable invariant curves, after which
chaos can be observed immediately, “by explosion”, etc.). In principle, for the essence of the
phenomenological scenario, it does not matter how this happens. The main thing here is that the
invariant manifolds W u(Oµ) and W s+(Oµ) begin to intersect and a strange homoclinic attractor
can arise containing the saddle-focus Oµ and entirely its two-dimensional unstable manifold, see
Fig. 5d. We call this attractor a discrete Shilnikov attractor.

It should be noted that there is almost complete similarity in the main features of this scenario
with the corresponding scenario in the case of a flow, see section 1. However, even here one can
see a significant difference. The Shilnikov homoclinic flow attractor exists only for discrete values
of the control parameter corresponding to the existence of homoclinic loops of the saddle-focus
equilibrium. Whereas, the Shilnikov attractor for maps exists on intervals of parameter values for
which the invariant manifolds (W u(Oµ) and W s+(Oµ)) have transversal intersections. Moreover,
these intervals can be large enough and their values can reach even those at which the attractor
is destroyed and disappears altogether.

There is also one more important feature of Shilnikov discrete attractors, which flow attractors
do not have. This feature manifests itself in the case when the stable invariant curve Lµ is
resonant. Then, on the curve itself, there are alternating saddle and stable periodic points of the
same period, and the formation of the Shilnikov whirlpool occurs due to the fact that the stable
points become foci. Thus, the manifold W u(Oµ) is twisted over Lµ only in some places (near
stable points). This also subsequently affects the shape of the emerging Shilnikov attractor. For
example, such an attractor can have a characteristic “triangular ” or “square” shape in the case
of resonances 1:3 and 1:4, when Oµ has a pair of multipliers λe±iψ with ψ close to 2π/3 and π/2,
respectively, see Fig. 6. In addition, the resonant invariant curves of three-dimensional maps can
themselves be destroyed in very interesting ways, giving rise to amusing attractors inside the
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funnel, see, for example, Fig. 6b, which shows a “superspiral” attractor containing two orbits of
period 4, which are saddle-foci of type (2,1) and (1,2).

a) b)

Figure 6: Discrete attractors in resonant case: (a) a “triangular” discrete Shilnikov attractor; (b) a “superspiral”

period-4 attractor. We found these attractors in the three-dimensional Mirá map x̄ = y, ȳ = z, z̄ = M1 + Bx +

M2z − y2 for B = 0.7 and (a) M1 = 0.195, M2 = −0.26; (b) M1 = 0.35, M2 = 0.8.

4.2 The nonorientable case

A sketch of a typical discrete Shilnikov scenario for one-parameter families Tµ of three-dimensional
nonorientable maps is illustrated in Fig. 7. This scenario starts with those µ at which Tµ has
a nonorientable stable fixed point Oµ with multipliers −λ, γ±iψ, where 0 < λ < γ < 1 and
0 < ψ < π, Fig. 7a. We assume that Oµ loses the stability at µ = µ1 under a supercritical
Andronov-Hopf bifurcation: for µ > µ1 the point Oµ becomes a nonorientable saddle-focus (1,2),
and a stable closed invariant curve Lµ is born in a neighborhood of Oµ, Fig. 7b. Thus, the curve
Lµ becomes the attractor of map Tµ. During this transition, the point Oµ has three multipliers
less than one in the absolute value for µ < µ1, then, for µ = µ1, two of its complex conjugate
multipliers fall on the unit circle, and for µ > µ1 they go out and the point Oµ becomes a
saddle-focus (1,2) that is nonorientable since its stable multiplier is negative.

Next stage of the scenario is connected with changes in Lµ. Typically, this happens in
the following way. Just after the Andronov-Hopf bifurcation, at small µ − µ1, the unstable
manifold of Oµ is a two-dimensional disk Dµ with the boundary Lµ where the curve Lµ has a
type of nonorientable nodal invariant curve. Because of the curve Lµ is nonorientable it can
not become of focal type as in the orientable case. Thus, the manifold W u(Oµ) can not take a
form of whirlpool just over Lµ. However, there exists another way for creation of a whirlpool.
Namely, at further changing µ, first the curve Lµ undergoes a doubling bifurcation: the curve Lµ
itself becomes saddle and two stable period-2 invariant curves L1

µ and L2
µ originate from it here
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Figure 7: A sketch of scenario of the emergence of a nonorientable discrete Shilnikov attractor.

L2
µ = Tµ(L

1
µ) and L1

µ = Tµ(L
2
µ). Such a feature of the bifurcation of doubling of an invariant

curve is obtained due to the fact that near the bifurcation the curve Lµ possesses two invariant
manifolds, strongly stable W ss and central W c, which locally are both cylinders, but the map
Tµ in the restriction to W c changes orientation. Accordingly, after the bifurcation, the curves
L1
µ and L2

µ lie on W c on opposite sides of Lµ.
4 After this doubling bifurcation, the unstable

manifold W u(Oµ) immediately corrugates and begins to rush between the curves L1
µ and L2

µ but
still remains inside the cylinder W c(Lµ). Note that the curves L1

µ and L2
µ are both invariant

and orientable for T 2
µ , therefore they can become focal ones when changing µ. In this case

the manifold W u(Oµ) starts to wind on both L1
µ and L2

µ and, thus, a nonorientable Shilnikov
whirlpool is created, see Fig 7d.

Then, in this whirlpool, when µ changes, chaotic dynamics begins to develop. At first, the
attractor is simple, it is the stable period-2 invariant curve (L1

µ, L
2
µ), and then it loses its stability.

Again, as for the orientable case, this can happen in a variety of ways... The main thing here
is that the invariant manifolds W u(Oµ) and W s(Oµ) can intersect and a strange homoclinic
attractor can arise containing the saddle-focus Oµ and its two-dimensional unstable manifold. In
Fig 7d below it is shown a sketch of manifolds W u(Oµ) and W s(Oµ) even before they crossed.
One can imagine (but difficult to draw) what will happen when they intersect. However, it
is clear that in this case the manifold W u(Oµ), since the stable multiplier of the point Oµ is
negative, will accumulate towards itself from both sides, and, accordingly, the point Oµ will
reside inside the attractor. In the case of discrete orientable Shilnikov attractor, its fixed point
Oµ lies on its boundary (since the global piece of W u(Oµ) accumulates at W u

loc(Oµ) only from
one side (namely, from the side where W s+

loc (Oµ) is located).
Thus, we see that orientable and nonorientable discrete Shilnikov attractors have different

structures. Although they both exist for an open set of parameter values, and it is also important
for their geometry whether the invariant curve Lµ is resonant or not.

4More details about bifurcations of doubling of closed invariant curves can be found, for example, in [35].

12



5 Examples of three-dimensional maps with Shilnikov attractors

In this section we consider two examples of discrete Shilnikov attractors in the case of three-
dimensional orientable and nonorientable maps. Recall that such attractors contain a fixed point
O of the saddle-focus type, with eigenvalues λ, γ1,2 = γe±iψ, where |λ| < 1, γ > 1, 0 < ψ < π.
The unstable manifold of O is two-dimensional and it resides entirely in the attractor.

First, we consider the case of orientable (with 0 < λ < 1) Shilnikov attractor in three-
dimensional map of the form

x̄ = y, ȳ = z, z̄ = Bx+ Cy +Az − y2, (4)

where A,B,C are parameters. Numerically found example of such attractor is shown in Fig. 8h
for map (4) with the Jacobian B = 0.5 > 0.

Figure 8: Stages of the emergence of the Shilnikov attractor in map (4) for B = 0.5, A = 1.49, as C changes

(Figure (b) is only schematic): (a) C = −1.7, a stable invariant curve L ; (b) a schematic picture of a Shilnikov

funnel, which is formed when W u(O) begins to wound onto L (the following figures (c)–(h) show what happens

inside this funnel); (c) C = −1.73, the curve L is doubled, L → 2L; (d) C = −1.76 – after the second doubling,

2L → 4L; (e) C = −1.77 – after the third doubling, 4L → 8L; (f) C = −1.775, a chaotic attractor A2 containing

the saddle curves 4L and 2L; (g) C = −1.8, a chaotic attractor A1 containing also the saddle curve L; (h)

C = −1.82, a discrete Shilnikov attractor.
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Fig. 8 shows main stages of the development of a discrete Shilnikov attractor in map (4) for
B = 0.5, A = 1.49 as C changes. The formation of the attractor proceeds in accordance with the
general bifurcation scenario described in [36, 37], see section 4.1:

Figure 9: The Shilnikov attractor from Fig. 8h and a part of the stable separatrix W s+(O) are shown in a

suitable angle for viewing.

• At the beginning, the attractor of map (4) is a stable fixed point O(0, 0, 0) (it is stable for
−0.99 > C > c1 = −1.495).

• Then, at C = c1, the point O undergoes a supercritical Andronov-Hopf bifurcation: O be-
comes a saddle-focus (1,2) and a stable closed invariant curve L is born in its neighborhood
(the curve L is shown in Fig. 8a at C = −1.7).

• Next, the unstable manifold of O starts winding onto L and the Shilnikov whirlpool is
formed (schematically, the whirlpool is shown in Fig. 8b).

• Further, the dynamics inside the whirlpool become more and more complicated. In the
case of map (4), an example of such development is shown in Fig. 8d–h. First, we observe
three successive doubling bifurcations of stable invariant curves, L → 2L → 4L → 8L,
Fig. 8c-d-e. We did not observe the doubling of 8L. Instead, a strange attractor appears
which has at the beginning a torus-chaos type due to a destruction of the curve 8L, then
it sequentially captures the saddle curves 4L, 2L (Fig. 8f) and L (Fig. 8g).

• Finally, when homoclinic intersections are created between W u(O) and W s(O), a discrete
Shilnikov attractor is formed containing the fixed point O, Fig. 8h. In Fig. 9, the nu-
merically obtained stable separatrix W s+(O) is shown which confirms the existence of
homoclinic intersections of W u(O) and W s+(O) within the attractor.

Now we consider the case of the appearance of nonorientable Shilnikov attractor again in
map (4). (Recall that in this map such attractor was found in [38]). Figure 10 shows main stages

14



of the development of this attractor when B = −0.915, A = −2.786 are fixed and C changes.
The stages of the attractor creation follow the general bifurcation scenario described in [38, 39],
see also section 4.2:

Figure 10: Stages of the emergence of a nonorientable Shilnikov attractor in map (4) for B = −0.915, A = −2.786

when C changes (picture (c) is only schematic).

• At the beginning, the attractor is the fixed point O(0, 0, 0) that is stable for 4.701 > C >
c1 ≈ −2.712).

• Then, at C = c1, the point O undergoes a supercritical Andronov-Hopf bifurcation and
becomes a nonorientable saddle-focus (1,2) and a stable closed invariant curve L is born
(see Fig. 10a for C = −2.723).

• Next, the curve L undergoes a component-doubling bifurcation [35]: a pair of stable period-
2 curves L1 and L2 are born from L (these curves are shown in Fig. 10b for C = −2.733).
With the further change of C, the two-dimensional unstable manifold of Oµ begins to wind
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up on both the curves L1 and L2 and a nonorientable Shilnikov whirlpool is formed, which
has a “double roll” shape (it is shown schematically, in Fig. 10c).

• Further, the dynamics inside the funnel becomes more complicated. In particular, several
bifurcations of doubling of invariant curves occur giving rise of strange attractors inside
the whirlpool, (see Fig. 10e, where one of such attractors is shown for C = −2.736).

• Finally, when homoclinic intersections are created between W u(O) and W s(O), a non-
orientable discrete Shilnikov attractor is formed, (see Fig. 10f for C = −2.743). In Fig. 10g
a piece of W s(O) is shown confirming that the attractor contains the point O.

6 Conclusion

We note that the Shilnikov’s ideas about the importance of scenarios for the emergence of spiral
attractors and, more generally, homoclinic attractors (strange attractors containing either an
equilibrium or a periodic orbit and its entire unstable manifold) were implemented in a number
of our works. The first one was our work with L.P. Shilnikov [36], in which we gave a phenomeno-
logical description of scenarios for the emergence of discrete attractors of various types (discrete
Lorenz attractors, figure-8 attractors and Shilnikov attractors), and also gave examples of the
implementation of these scenarios in one-parameter families of three-dimensional maps. Now the
theory of discrete homoclinic attractors looks quite advanced, and it is, of course, richer than the
corresponding theory of three-dimensional flows, see e.g. [40, 37, 41, 39, 42]. On the other hand,
there is also a certain feedback here: a detailed study of discrete homoclinic attractors also has
led to the discovery of new types of attractors of three-dimensional flows (for example, Lorenz
attractors with several equilibria [42]). By the way, these studies are still ongoing.
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