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Position of the centroid of a planar convex body

MAREK LASSAK

Abstract. It is well known that any planar convex body A permits to inscribe an affine-regular

hexagon HA. We prove that the centroid of A belongs to the homothetic image of HA with ratio
4
21 and the center in the center of HA. This ratio cannot be decreased.
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1 Introduction

This paper concerns the position of the centroid of a planar convex body, i.e., a closed bounded

convex set. Recall that the notion of centroid is discussed by, among others, Bonnesen and

Fenchel [2], Grünbaum [3], Hammer [4] and Neumann [5].

As usual, by an affine-regular hexagon we understand a non-degenerated affine image of

the regular hexagon. Besicovitch [1] proved that for every planar convex body A there exists an

affine-regular hexagon HA inscribed in A. Our aim is to prove that the centroid of A belongs to

the homothetic image 4
21HA of HA with ratio 4

21 and the center in the center of HA. In general,

this ratio cannot be lessened, which is explained at the end of the paper.

For a compact set C of the Euclidean plane E2 denote by cenx(C) and ceny(C) the first and

the second coordinates of the centroid of C. Let compact sets B1, . . . , Bn ⊂ E2 with non-empty

interiors have disjoint interiors and B =
⋃n

j=1Bj . It is well known that

cenx(B) =
Σn
j=1cenx(Bj) · area(Bj)

Σn
j=1area(Bj)

, ceny(B) =
Σn
j=1ceny(Bj) · area(Bj)

Σn
j=1area(Bj)

. (1)

2 The position of the centroid of a convex body with respect to

an inscribed affine-regular hexagon

Let D ⊂ E2 and ℓ be a straight line. Imagine D as the union of segments (including one-

point segments) being intersections of D by straight lines perpendicular to ℓ. Shift every such

a segment perpendicularly to ℓ in order to obtain its image centered at ℓ. Denote the union of
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all these obtained segments by symℓD. It is the result of the Steiner symmetrization of D. The

proof of the following lemma is given in a number of books. For instance in Section 40 of [2].

Lemma. If D ⊂ E2 is convex, then symℓD is convex.

Theorem. Let A ⊂ E2 be a convex body and HA be an affine-regular hexagon inscribed in A.

Then the centroid of A belongs to the homothetic image of HA with ratio 4
21 and center in the

center of HA.

Proof. For better clarity, we divide the proof into a preliminary text mostly on notations, and

then Parts 1–8 with considerations.

We do not lose the generality assuming that the successive vertices a1, . . . , a6 of HA are

(1, 1), (−1, 1), (−2, 0), (−1,−1), (1,−1), (2, 0), see Figure. Denote by o the center (0, 0) and by

a the midpoint of a1a2. Since we deal with ceny(A), by Lemma we may assume that x = 0 is

an axis of symmetry of A.

In order to prove the assertion, let us show that for any side of 4
21HA the centroid of A

is on the same side of the straight line containing this side which contains o. Observe that it

is enough to show this for one side of the hexagon 4
21HA. Let us provide this task for the side

connecting 4
21a1 and 4

21a2.

Denote by ai the intersection of the straight lines containing aiai+1 and ai−1ai−2 for

i = 1, . . . , 6 (mod 6), see Figure. We define the star S(HA) over HA as the union of HA and six

triangles Ti(HA) = ai−1
−
aiai, where i = 1, . . . , 6 and where a0 means a6. From the convexity of

A we conclude that A ⊂ S(HA).

We do not make our considerations narrower assuming that the centroid of A is over or

on the axis y = 0. Since our aim is to show that ceny(A) ≤ 4
21 for every convex body A, it is

sufficient to consider only such convex bodies A which are disjoint with the interiors of T4(HA),

T5(HA) and T6(HA). Still the closure of A\⋃6
i=4 Ti(HA) is a convex body with H inscribed and

the centroid at the same or higher level.

Provide any supporting straight line L1 of A at a1 and the symmetric (with respect to

x = 0) supporting line L2 of A at a2. Denote by u = (0, w) the intersection point of L1 (and

thus of L2) with the axis x = 0. Since the second coordinates of a and a2 are equal to 1 and 2,

respectively, we have w ∈ [1, 2].

Since L1 passes through u = (0, w) and a1 = (1, 1), it has the equation y − 1 = (−w +

1)(x − 1). Its point of intersection with the segment a6
−
a1 (being a subset of the straight line

y = x− 2) is m1 = (2+w
w

, 2−w
w

). Similarly, we get the symmetric point m2 being the intersection

of L2 with the segment a3
−
a3.
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Figure. Illustration to the proof of Theorem

Later we explain the geometric meaning of the following number

w0 =
1

3
(

3

√

44− 3
√
177 +

3

√

44 + 3
√
177 − 1) = 1.6589670....

Parts 3–7 lead to the proof of our theorem for w ∈ [w0, 2] and Part 8 for w ∈ [1, w0] .

Part 1 where we introduce a heptagon and find its ceny.

Let z ∈ [0, 1]. Since a1 = (1, 1) and m1 = (2+w
w

, 2−w
w

), every point p1(z), or shortly p1, of

a1m1 has the form (1−z)a1+zm1. So p1 = ((1−z)+z 2+w
w

, (1−z)+z 2−w
w

) = (z· 2
w
+1, z· 2−2w

w
+1).

The symmetric point with respect to x = 0 is denoted by p2. The second coordinates of them

are z · 2−2w
w

+ 1.

Consider the heptagon G = up2a3a4a5a6p1. The area of each of the two symmetric wings

W1 = a1a6p1 and W2 = a2a3p2 of G is z · 2−w
w

and ceny of each wing of this heptagon is
1+z 2−2w

w
+1

3 =
2+z 2−2w

w

3 . The area of the triangle a1ua2 is 1
2 · 2 · (w − 1) = w − 1 and its ceny is

2+w
3 . Moreover, the area of HA is 6 and its ceny is 0. Taking all this into account and having in

mind that G = HA ∪ a1a6p1 ∪ a2a3p2 ∪ a1ua2, by the right part of (1) we conclude that

ceny(G) =
0 + 2

3 (2 + z 2−2w
w

)z 2−w
w

+ 2+w
3 (w − 1)

6 + 2z 2−w
w

+ w − 1

which, after a simplification, equals to

2(2 + z 2−2w
w

)z 2−w
w

+ w2 + w − 2

6z 2−w
w

+ 3w + 15
. (2)
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Part 2 whose aim is to show the following statement

Denote by ν the numerator and by δ the denominator of ceny(G) as in (2) (so ceny(G) =

ν
δ
). Consider a truncation of the wings Wi of G to symmetric convex subsets Ai = Wi ∩ A for

i = 1, 2. Put Vi = Wi \ Ai for i = 1, 2 and V = V1 ∪ V2. We have

ν − area(V )ceny(V )

δ − area(V )
≤ ν

δ
iff ceny(V ) ≥ ν

δ
. (3)

Let us confirm this. We have
ν−area(V )ceny(V )

δ−area(V ) ≤ ν
δ
iff δ(ν − area(V )ceny(V )) ≤ ν(δ −

area(V )) iff ν · area(V ) ≤ δ · area(V )ceny(V ) iff ν ≤ δ · ceny(V ) iff ceny(V ) ≥ ν
δ
.

Observe that
ν−area(V )ceny(V )

δ−area(V ) is nothing else but ceny(A
′), where A′ = G \ V .

Part 3 where we start considerations for w ∈ [w0, 2].

For every w ∈ [w0, 2] we are looking for the positions of p1 and thus of p2 such that ceny(G)

is the largest. For this reason let us find the derivative of the function (2) with respect to z:

2(w − 2)[4z2(−w2 + 3w − 2) + 4z(w2 + 4w − 5) + (w4 − w3 − 12w2)]

3w(w2 − 2wz + 5w + 4z)2
. (4)

The discriminant of the quadratic function in the square bracket is 16w2(2w4+4w3−w2−
6w+1). Hence (4) equals 0 for z = w(w2+4w−5±

√
2w4+4w3−w2−6w+1)

2(w2−3w+2)
. Take into account only the

root

zw =
w(w2 + 4w − 5−

√
2w4 + 4w3 − w2 − 6w + 1)

2(w2 − 3w + 2)
(5)

which is positive for every w ∈ [w0, 2) (the other one is always negative here). Moreover, put

z2 = limw→2− zw. This is z2 =
5
7 .

We see that for any fixed w ∈ [w0, 2] the global maximum of (2) as a function of z from

the interval [0, 1] can be only for z = 0, z = zw or z = 1. Substituting these three z into (2) we

see that the global maximum of (2) in the interval [0, 1] is at z = zw for every fixed w ∈ [w0, 2].

Part 4 where our aim is to show that for each w ∈ [w0, 2] the value of (2) for z = zw is at

most 4
21 .

This task with substituting z = zw into (2) seems to be very complicated to perform. We

can get it around by performing the more general task to show that for every w ∈ [w0, 2] and

z ∈ [57 , 1] we have

2(2 + z 2−2w
w

)z 2−w
w

+ w2 + w − 2

6z 2−w
w

+ 3w + 15
≤ 4

21
. (6)
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This task is more general since zw belongs to [57 , 1] for every w ∈ [w0, 2]. Really, the

inequality zw ≤ 1 is equivalent to w6− 7w4− 2w2+16w2+8w− 16 ≥ 0 and thus to (w− 1)(w−
2)(w+3)(w3+w2−2w−4) ≥ 0, which means that it holds true in [1, 2] if and only if w ∈ [w0, 2]

(still w0 is the only real root of this polynomial). Moreover, the inequality 5
7 ≤ zw is equivalent

to −7(w − 2)(7w2 + 22w + 20) ≥ 0, which means that it holds true in the whole interval [1, 2],

so in particular for every w ∈ [w0, 2].

Equivalently to (6), it is sufficient to show that

28z2(w2 − 3w + 2) + 20zw(2 − w) + w2(7w2 + 3w − 34) (7)

is at most 0 for every point (w, z) of the rectangle [w0, 2]× [57 , 1].

In order to simplify evaluations consider this task in the larger rectangle [1, 2] × [57 , 1].

Let us apply the following method of finding the global maximum of a continuous function

f(w, z) in a polygon R ⊂ E2. Namely, first we find the points being the solutions of the system

of two equations when partial derivatives of our function f(w, z) are 0 in the interior of R. Next

we write the equations of the sides in the forms z = g(w) or w = g(z). We find the critical

points in the relative interiors of each side, where the derivative of the respective equation is 0.

Finally, we check the values of f(w, z) at the vertices of R. The largest value at all the found

points gives the maximum value of f(w, z) in R.

In our particular case our function f(w, z) = 28z2(w2−3w+2)+20zw(2−w)+w2(7w2+

3w − 34) is given by (7). Moreover, R = [1, 2] × [57 , 1]. According to the recalled method we

find the partial derivatives f ′
w(w, z) = 28w3 + 9w2 + 56wz2 − 40wz − 68w − 84z2 + 40z and

f ′
z(w, z) = 56w2z − 20w2 − 168wz + 40w + 112z. Consider the system of equations when both

are 0. Finding z from the second and substituting to the first we get three solutions: w ≈ −1.8,

w = 0 and w ≈ 1.544. None of them is in the interval [w0, 2]. Hence the system of equations

has no solution in our R, and thus in its interior.

Let us find the critical points in the relative interiors of the sides. After substituting z = 5
7

to f(w, z) we get 1
7(49w

4+21w3−238w2−100w+200). Its derivative 1
7(196w

3+63w2−476w−100)

is 0 only at w1 = 1.5103.... Placing z = 1 to our f(w, z) we get 7w4 + 3w3 − 26w2 − 44w + 56.

Its derivative 28w3+9w2−52w−44 equals 0 in [1, 2] only at w2 = 1.5427.... Substituting w = 1

to f(w, z) we get 20z − 24, which is negative for every z ∈ [57 , 1]. Placing w = 2 to f(w, z) we

get 0 for every z ∈ [57 , 1].

We have f(w1,
5
7) ≈ −23.803, f(w2, 1) ≈ −23.094, f(1, 1) = −4, f(1, 57) = −9.714,

f(2, 57) = 0, and f(2, 1) = 0. Thus the global maximum of f(w, z) in R is 0. Hence (7) is

at most 0 and thus (6) holds true in R. We conclude that (2) for z = zw is at most 4
21 for every

w ∈ [1, 2] and so for every w ∈ [w0, 2].
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Part 5 where we show that ceny(V ) ≥ ν
δ
for any w ∈ [w0, 2] and zw in place of z.

Recall from Part 2 that ν
δ
= ceny(G). Looking at the second coordinates of a1, a6 and p1

we get ceny(a1a6p1) = (zw
2−2w
w

+ 1)/2. Hence ceny(V1) ≥ (zw
2−2w
w

+ 1)/2 and so ceny(V ) ≥
(zw

2−2w
w

+ 1)/2.

We see that in order to confirm the promise of Part 5 it is sufficient to show that

zw
2−2w
w

+ 1

2
≤ 2(2 + zw

2−2w
w

)zw
2−w
w

+ w2 + w − 2

6zw
2−w
w

+ 3w + 15
, (8)

for every w ∈ [w0, 2], where the right side is taken from (2). Instead, let us show the inequality

z 2−2w
w

+ 1

2
≤ 2(2 + z 2−2w

w
)z 2−w

w
+ w2 + w − 2

6z 2−w
w

+ 3w + 15
,

or equivalently, let us show that

8z2 − 12z2w − 22zw2 + 26zw + 4z2w2 − 6zw3 − 2w4 + w3 + 19w2 (9)

is at most 0 for every point (w, z) of the piece of the curve z = zw when w ∈ [w0, 2].

Instead, let us find the global maximum of (9) in a triangle containing it. Namely, in the

triangle T between the straight lines w = 2, z = −5
7w + 15

7 , and z = 1. Its vertices are (2, 1),

(85 , 1) and (2, 1321).

First let us show that the piece of the curve z = zw for w ∈ [w0, 2] is a subset of T . The

reason is that −5
7w + 15

7 ≤ zw ≤ 1 for every w ∈ [w0, 2]. The left inequality is equivalent to the

inequality (2839w4 − 10571w3 + 18960w2 − 284088w + 22472)(w − 1)(2 − w) ≥ 0 which holds

true for every w ∈ (−∞,∞). Thus in [1, 2] and so for every w ∈ [85 , 2]. The right inequality

zw ≤ 1 is shown just after (6).

Next let us find the global maximum of (9) in T by the method described in Part 4.

Consider the system of equations −8w3−18w2z+3w2+8wz2−44wz+38w−12z2+26z = 0

and −6w3+8w2z−22w2−24wz+26w+16z = 0 (where the left sides are the partial derivatives

of (9)). Finding z = 3w3+11w2−13w
4w2−12w+8

from the second and substituting it into the first we get

the equation w(68w6 − 141w5 − 262w4 + 359w3 + 356w2 − 447w + 68) = 0 whose solutions are

w = 0, w ≈ 0.183, w ≈ 0.951, w ≈ 1.037 and w ≈ 2, 614. All these w are out of the interval [85 , 2]

which implies that all the obtained points (w, z) are out of T . Thus the system of equations has

no solution in the interior of T .

Look for critical points in the relative interiors of the sides. Substituting z = −5
7w+ 15

7 into

(9) we get 1
49(212w

3 − 511w2 − 789w+1830). Its derivative 1
49(848w

3 − 1533w2 − 1578w+1830)

is never 0 in [85 , 2]. Putting z = 1 into (9) we get −2w4 − 5w3 + w2 + 22w. Its derivative

−8w3 − 15w2 + 2w + 22 is never 0 in [85 , 2]. Putting w = 2 into (9) we get 8z2 − 84z + 52. Its

derivative 16z − 84 is never 0 in [57 , 1].



Centroid of a planar convex body 7

The value of (9) at (2, 1) is −44, at (85 , 1) is −11.827..., and at (2, 1321) is −4.598.... So the

global maximum of the function (9) in T is −11.827.... Hence (9) is always negative in T .

Consequently, we have shown that (9) is at most 0 in T and thus that (8) is true for every

w ∈ [w0, 2]. Therefore ceny(V ) ≥ ν
δ
for G with zw in the part of z.

Part 6 where we show that ceny(A
′) ≤ 4

21 for w ∈ [w0, 2].

Recall that ceny(G) = ν
δ
. By Part 5 and by (3) we have

ν−area(V )ceny(V )
δ−area(V ) ≤ ν

δ
. The left

side is ceny(A
′) and the right one is ceny(G) with G is taken for z = zw. By (6) it is at most

4
21 . So ceny(A

′) ≤ 4
21 .

Part 7 on enlarging A′ up to A which leads to the proof of our theorem for w ∈ [w0, 2].

Put A′′
1 = A ∩ p1a6m1, A

′′
2 = A ∩ p2a3m2 and A′′ = A′′

1 ∪ A′′
2 . Clearly A = A′ ∪ A′′. We

intend to show that adding A′′ to A′ does not increase ceny, so that ceny(A) ≤ ceny(A
′).

First let us show that if the triangles p1a6m1 and p2a3m2 are added to A′, then ceny does

not increase. Applying the easy to show implication: “if int(X) ∩ int(Y ) = ∅, ceny(X) ≤ µ

and ceny(Y ) ≤ µ, then ceny(X ∪ Y ) ≤ µ as well” and having in mind that ceny(A
′) ≤ 4

21

(see Part 6), it is sufficient to show that ceny(p1a6m1) ≤ 4
21 (then also ceny(p2a3m2) ≤ 4

21 ).

Let us show this. Since ceny(p1a6m1) = (zw · 2−2w
w

+ 1 + 2−w
w

)/3, we have to show that this

is at most 4
21 . This task is equivalent to 7zw(2 − 2w) ≤ 4w − 14. After substituting zw

and providing some simplifications, this inequality is equivalent to h(w) ≥ 0, where h(w) =

49w6−196w5+105w4+1946w2+1800w−400. We have h′′(w) = 14(105w4−280w3+90w2+278).

From the fact that h′′(w) always positive we conclude that h′(w) is an increasing function. Thus

from h(1) = 3304 we see that h(w) ≥ 0 for w ≥ 1, and thus for every w ∈ [w0, 2]. Hence

ceny(p1a6m1) ≤ 4
21 .

Also for adding only A′′ to A′, the value of ceny does not increase. The reason is that

ceny(A
′′
1) ≤ ceny(p1a6m1) and ceny(A

′′
2) ≤ ceny(p2a3m2). The first follows from the convexity of

A′′
1 and from the observation that every segment jointing a6 with a point of p1m1 has in common

with A′′
1 only a segment which is lower. Analogously, we confirm the second inequality.

We conclude that ceny(A) ≤ ceny(A
′). This and ceny(A

′) ≤ 4
21 (see Part 6) imply

ceny(A) ≤ 4
21 .

Part 8 where we prove our theorem for w ∈ [1, w0].

Consider the pentagon P = m1um2a4a5. It is the special case of G for z = 1. Thus

substituting z = 1 to (2) we see that ceny(P ) equals to w4+w3−2w2−4w+8
3w(w2+3w+4) . In order to show

that this is at most 4
21 for every w ∈ [1, w0] take into account the equivalent inequality (w −

2)(7w3 + 17w2 + 8w − 28) ≤ 0. Its left side equals 0 only for w = 2 and w = w3 ≈ 0.934.
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Consequently, this inequality and thus also the preceding one hold true in [w3, 2]. Hence also in

[1, w0]. Resuming, ceny(P ) ≤ 4
21 .

From z = 1 we see that V1 = a1a6m1 for our P = G. The second coordinates of a1, a6

and m1 give ceny(a1a6m1) =
4−2w
3w . Hence ceny(V1) ≤ 4−2w

3w . Thus by ceny(V ) = ceny(V1) we

get ceny(V ) ≤ 4−2w
3w .

In order to show that the right side of (3) is now true we have to show that ceny(V ) ≥
ceny(P ), where, as P takes the role of G, the right side is denoted by ν

δ
in (3). Hence we have to

show that 4−2w
3w ≥ w4+w3−2w2−4w+8

3w(w2+3w+4)
. This is equivalent to the inequality w4 +3w3 − 8w− 8 ≤ 0.

A simple evaluation confirms that it is true in [1, w0] (by the way, we have here the equality just

for w = w0). Thus ceny(V ) ≥ ceny(P ).

The shown inequality means that the right side of (3) is fulfilled. Hence the left side of (3),

i.e., ceny(A
′) ≤ ν

δ
holds true. From A = A′ for our P = G we obtain ceny(A) ≤ ν

δ
. Consequently,

from ν
δ
= ceny(P ) ≤ 4

21 we conclude that ceny(A) ≤ 4
21 .

Thanks to results of Parts 7 and 8 the thesis of our theorem holds true.

The ratio 4
21 in Theorem cannot be lessened as it follows from the example of the pentagon

−
a2a3a4a5a6 in the part of A, and the hexagon a1 . . . a6 as HA. The author expects that there

are no more such examples besides the affine images of the above presented one.
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