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Abstract

In recent years, there has been a great interest in random graph models to model complex networks
in the most diverse areas such as Social Sciences, Physics, Biology, Economics, Ecology and Computer
Science.

A class of models that have been widely used are the exponential random graph (ERG) models,
which form a comprehensive family of models that include independent and dyadic edge models,
Markov random graphs, and many other graph distributions, in addition to allow the inclusion of
covariates that can lead to a better fit of the model.

Another increasingly popular class of models in statistical network analysis are stochastic block
models (SBMs). They can be used for the purpose of grouping nodes into communities or discovering
and analyzing a latent structure of a network. The stochastic block model is a generative model
for random graphs that tends to produce graphs containing subsets of nodes characterized by being
connected to each other, called communities.

Many researchers from various areas have been using computational tools to adjust these models
without, however, analyzing their suitability for the data of the networks they are studying. The
complexity involved in the estimation process and in the goodness-of-fit verification methodologies for
these models can be factors that make the analysis of adequacy difficult and a possible discard of one
model in favor of another. And it is clear that the results obtained through an inappropriate model
can lead the researcher to very wrong conclusions about the phenomenon studied.

The purpose of this work is to present a simple methodology, based on Hypothesis Tests, to verify
if there is a model specification error for these two cases widely used in the literature to represent
complex networks: the ERGM and the SBM. We believe that this tool can be very useful for those
who want to use these models in a more careful way, verifying beforehand if the models are suitable
for the data under study.
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Complex Network Modeling, Stochastic Block Models, Exponential Graph Models, Misspecification

Error, Hypothesis Testing

1 Introduction

The understanding of interaction mechanisms in complex real-world networks through random graph
models is a topic that has gained a lot of attention in the literature in recent years Newman(2001).

Practical applications of random graphs are found in all areas where complex networks need to
be modeled, some examples are Social Science, Physics, Biology, Economics, Ecology and Computer
Science. Economic or social interactions are also often organized into complex network structures.
Similar phenomena are observed in communication networks such as the internet or in traffic flow.
In current problems in Biosciences, protein networks in the cell are important examples, as well as
molecular networks in the genome. On larger scales, networks of cells are found as in neural networks,
up to the scale of organisms in ecological food webs. Many random graph models try to mirror the
different types of complex networks found in different areas. For a more comprehensive description of
the theme and applications, we recommend reading Newman (2010) and Reuven and Shlomo (2010).

http://arxiv.org/abs/2202.01825v1


The random graph of Erdös and Rényi( Erdős, 1959) is one of the best studied network models,
however, for real world networks such as social networks, the Internet or biological networks, it is
not a good model as some basic properties do not fit well. Complex networks tend to have non-
trivial topological characteristics that differ from random graphs of Erdös Renyi, such as heavy tail in
the degree distribution, high clustering coefficient, hierarchical structures and average length of short
paths. Two models of random graphs widely used to model natural phenomena that try to capture
these characteristics are the scale-free networks, proposed by Barabási and Albert (1998) and the
models of Small-World introduced by Watts and Strogats (1989).

In recent years, there has been a great interest in exponential random graph models to model net-
works, especially social networks. (Frank and Strauss, 1986, Frank, 1991, Wasserman and Pat- tison,
1996; see also Pattison and Wasserman, 1999, Robins et al., 1999). The exponential random graph
model class is a comprehensive family of models that includes independent and dyadic edge models, the
random graphs of Markov de Frank and Strauss (1986and many other graph distributions, in addition
to allowing the inclusion of covariates that can lead to a better fit of the model. The estimation of the
parameters of this model is done through computational methods and is implemented in several pro-
gramming languages, in software R, for example, has the package called ERGM implemented (Hunter
et al, 2009).

Another increasingly popular class of models in the statistical analysis of networks are the stochastic
block models (SBMs) introduced by Holland et al (1983). They can be used for the purpose of grouping
nodes into communities or discovering and analyzing a latent structure of a network. There has been
rapid development in the theme of clustering based on random graph models in the last ten years.
Citing just a few, we have the two works by Abbe and Sandom ( 2015) and that of Karrer e Newman
(2011). The stochastic block model is a generative model for random graphs that tends to produce
graphs containing subsets of nodes characterized by being connected to each other, called communities.
This model is hierarchical in the sense that we first sort the nodes that belong to each group, then
we sort the edges between the nodes. Each of these draws is governed by a law that depends on
specific parameters. Due to the complexity of the likelihood of this two-stage process, the estimation
of parameters of a SBM is also based on computational methods that are implemented in several
languages. For example, in the R software, the Stochastic Block Model (SBM) package implemented
by Leger (2016) is implemented. A detailed review of SBMs can be found in Lee and Wilkinson (2019)
and a very interesting extension applied to large networks is presented in Peixoto (2014).

Many researchers from various areas have been using computational tools to fit models without,
however, making a critical analysis regarding its suitability for the data being analyzed, especially in
cases where the chosen model is an ERG or a SBM. For the ERG we cite, for example, the verification
procedures based on resampling presented in Kolaczyk e Csárdi (2014). In the case of SBM, one
of the model-fitting verification methodologies are based on the Akaike Information Criterion, AIC
(Akaike, 1973 and 1974)) and are implemented in the SBM package of R. The complexity involved
in the estimation process and in the quality-of-fit verification methodologies for these models may be
factors that hinder the analysis of adequacy and a possible discard of one model in favor of another. It
is clear that the results obtained through an unsuitable model can lead the researcher to very wrong
conclusions about the phenomenon studied.

The purpose of this work is to present a simple methodology, based on Hypothesis Tests, to verify
if there is a model specification error for these two cases widely used in the literature to represent
complex networks: the ERG and the SBM. We believe that this tool can be very useful for those who
want to use these models in a more careful way, verifying beforehand if the models are suitable for the
data under study. We highlight the advantage of this type of methodology in relation to the selection
processes of models of the AIC or BIC type (Schwarz,1978) and others with the same proposal, because
in these tools we do not have an indication as to the suitability of the models, but a selection from
among the proposed candidates, which may all be unsuitable.

We will derive the tests taking into account the likelihood of these two models, using maximum
likelihood estimators already proposed in the literature, for the ERG we quote Schmid and Desmarais
(2017) and for the SBM we quote Celisse, Daudin and Pierre (2012). We will closely follow the work
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presented by White (1982), where a model fit verification test is proposed for random variables whose
densities satisfy a general set of regularity conditions.We will show that the ERG and SBM models
satisfy these conditions and we will explain the statistics that must be calculated to perform the tests
on each of these models. We will develop a package in R with the implementation of tests for the two
models and we will present a simulation study showing that the proposed tests achieve the desired
purposes.

2 Main Definitions

2.1 Some models for random graphs

2.1.1 Erdos Rényi Random Graphs

A random graph G is a random variable that takes values in a family of graphs G. The study of
such graphs dates back to the 1950s, when Paul Erdos and Alfréd Rényi derived a series of results
on random graphs. The graphs we refer to here are all labeled, that is, the vertices are distinct (for
example, there are

(

n
2

)

graphs with n vertices and exactly one edge).
There are two ways to define the Erdős-Rényi random graph model: the model denoted by G(n,M),

represents a graph chosen at random from the collection of all graphs with n nodes and M edges. For
example, in the model G(3, 2) each of the three possibilities of graphs with three vertices and two edges
are included with a probability of 1

3 .
And the Erdos-Rényi model denoted by G(n, p), represents a graph with n vertices in which: for

each pair u, v of vertices of G = G(n, p) , the edge uv is random (exists or does not exist), regardless
of any other edge. A Bernoulli independent random variable with parameter p is used to decide on the
presence of the edge uv; the edge uv is in the graph if and only if the variable results in success. By
the independence between the edges, the probability of a graph G, with n vertices and M edges, is

P (G) = pM (1− p)(
n

2)−M . (1)

Several properties of Erdos-Rényi graphs are now well known. This model is sometimes used as a
reference for evaluating others, representing the role of a network with uniform random behavior.(See
Frank e Strauss (1986))

Several other random graph models are studied in the literature. They attend the need for more
complicated and realistic models(than the ER model) that describe the real networks observed in
practice. Some characteristics considered typical of real networks are the presence of a large number
of vertices n, few edges (e(G) = O(n)), small diameter (diam(G) = O(log n), ie, two vertices taken
at random are connected by a short path), degrees of vertices distributed according to a power law
(the number of vertices with degree k is proportional to k−β , for some constant β), and clustering
effect (clustering, or transitivity of connections: vertices with common neighborhoods are more likely
to be connected) . The number of publications and studies of complex networks and random graphs
is large. For an introduction to the area, we cite Chatterjee and Diaconis (2011) and Robins, Pattison
and Kalish (2007).

2.1.2 Exponential Random Graphs (ERG)

The ERG model, also known as the (p∗)model, was first proposed by Holland and Leinhardt (1983),
and was built on the statistical foundations established by Besag (1974). These models constitute a
family of statistical models that have been widely used to model social networks. The importance
of this model lies in its ability to represent the social structural effects commonly observed in many
human social networks, including general effects based on the degree of each vertex, such as reciprocity
and transitivity, or even, activity based attributes and popularity effects.

Substantial developments were made by Frank and Strauss (1986), and continued to be made by
other authors throughout the 1990s. And they are still the object of study by several researchers,
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always in an attempt to make the ERG an even better model, more applicable to real network data.
A detailed review of the subject is presented in Wasserman and Pattison (1996). The model proposed
by Besag (1979), in the context of Spatial Statistics, in turn, is centered on the Hammerley-Clifford
Theorem (1971), born in Statistical Physics, which shows that a probabilistic model for graphs, with a
certain dependence structure must necessarily belong to an exponential family. More than that, This
important Theorem also shows which network information should be used to calculate the probabilities
of a given configuration.

The problem that arises when considering dependency structures between vertices, even though
they are considerably simple structures like those considered in the article mentioned above, is that the
number of parameters to be estimated in the model is very large, as we will detail later in this text. The
inferences proposed for the parameters of this model are based on pseudo maximum likelihood, using
an analogy with the logistic regression model, which makes the inferences unreliable. In an attempt
to overcome these and other problems, in the 2000s new specifications on the vertex dependence
structure were proposed by researchers, such as those found in the series of articles published by Snijders
(1997). The main idea in these works is to reduce the dimension of the vector of parameters of the
models and preserve the characteristics of the network. ERG models also appear that allow exogenous
characteristics of the network to be used to model the probability of occurrence of a configuration, thus
improving inferences for the network. An alternative ERG model to those proposed by the articles by
Snijders and collaborators, but with a similar objective in relation to the decrease in the number of
parameters, was proposed by Hunter and Handcock (2009).

A random graph model is an ERG if, for every graph G ∈ G, we can express the probability of its
occurrence by

P (G; θ) = exp

(

n
∑

i=1

θiTi(G)− ϕ(θ)

)

= exp

(

n
∑

i=1

θiTi(G)

)

/z(θ).

where θ = (θ1, . . . , θn) is a vector of known real parameters and Ti(G) are functions of G (such as the
number of edges, triangles, stars, circuits, etc. .); that is, if the distribution over the graph space is
a member of the exponential family of distributions. As in the Erdos-Rényi model, we consider the
number n of vertices of G fixed. The factor e−ϕ(θ) = z−1 (θ) is sometimes called the normalization
constant.

Two difficulties in using exponential random graphs are the estimation of z(θ) and the fact that
very different values of θ give rise to essentially equal distributions in the graph space (See Chatterjee
and Diaconis, 2011) .

• Independent edge case
Assume that the connections between the vertices occur independently of each other, that is,
that there is no dependence within the network. In this case, the function Ti(G) becomes only
the pointer of the edge Yij of the adjacency matrix Y of G, in this way, the general ERG model
is greatly simplified, since the parameters of the model reduce to the binding coefficients ij and
the ERG reduces to the Erdös-Rènyi model.

• Markov Graph Model
Following the work of Besag (1974) in the area of Spatial Statistics, Frank and Strauss (1986)
proposed a Markov dependence on a Graph, postulating that a possible link from i to j is assumed
to be dependent on any other possible link involving i or j, even though all other connections
in the network are fixed. Markov dependence implies that two possible edges of a network are
conditionally independent unless they share a common vertex. They showed that this assumption
resulted in models for undirected graphs that involve parameters associated with simple network
statistics such as number of edges, star-shaped and triangle-shaped structures. In this model,
two vertices are considered neighbors if they share an edge. A subset of the set of vertices, V,
where all elements are neighbors is called a clique.

We note that all model specifications involve statistics that are just functions of the y network
itself, only endogenous effects are considered. Even so, it is natural to expect that the probability
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of a connection between two vertices may also depend on characteristics, attributes of the ver-
tices themselves. So, allowing the incorporation of exogenous effects can lead to more accurate
inferences about the network. We can incorporate attributes that were measured at the verties,
in the form of additional statistics in the function within the exponential.

2.1.3 Stochastic Block Models (SBM)

When analyzing complex networks, a basic task in the area of community detection (or clustering)
is to partition the vertices of a graph into clusters that are more densely connected. More generally,
community structures can also refer to groups of vertices that connect similarly to the rest of the
graph, without necessarily having a higher internal density. In the most general context, community
detection refers to the problem of inferring similarity relationships between items in a network by
observing their local interactions.

Community detection is one of the central problems in networking and data science. The Stochastic
Block Model(SBM) has been widely used as a canonical model to study these issues.

Let’s define the Stochastic Block Model: A graph G in the set of vertices v(G) can be represented
by its adjacency matrix Y = {Yij}1≤i6=j≤n

, where

Yij =

{

1 if there is an edge between the vertices i and j
0 otherwise,

where Yii = 0 for all i, that is, there is no connection of the vertex with itself.
We consider a graph whose vertices belong to different m categories. These categories we will call

blocks. Let X = (Xi)
n
i=1, where Xi = k, if vertex i belongs to block k, for all i ∈ {1, . . . , n} and

k ∈ {1, . . . ,m}. Then the block graph can be represented by (Y,X), X is called the block structure of
the graph G.

For a random block graph, the number of vertices n is fixed, but the adjacency matrix Y and the
block structure X are random.

Let the vertex set be {1, . . . , n} and the following conditions:

1. Yij = Yji and Yii = 0.

2. There is a partition of the n vertices into m blocks such that for all i, j, h with i 6= j 6= h, if i
and h belong to the same block, then Yij and Yhj are identically distributed.

The stochastic block model is a probability distribution family of a block graph G with vertex set
{1, . . . , n} and block set {1, . . . ,m}, defined as follows:

1. Parameters are the vector θ = (θ1, . . . , θm), of the block probabilities and the matrix η =
(ηkl)1≤k≤l≤m, from the probabilities of the block-dependent edges.

2. The vector of blocks consists of the (Xi)
n
i=1 independent and identically distributed random

variables, where P (Xi = k) = θk, for k = 1 . . . ,m.

3. Conditional to the block of vertex Xi, edges Yij are independent with Yij ∼ Bernoulli(ηXi,Xj
).

If (X,Y ) represents a block graph G, the probability function is given by:

P (θ, η;X,Y ) = θn1

1 · · · θnm
m

∏

1≤k≤l≤m

ηekl

kl (1− ηkl)
nkl−ekl ,

where nk =
∑n

i=1 I(Xi = k) denotes the number of vertices of G that belong to block k,

ekl =
∑

1≤i6=j≤n

YijI(xi = k)I(xj = l).
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denotes the number of edges of G that have a vertex in block k and a vertex in block j, and

nkl =

{

nknl if k 6= l
(

nk

2

)

if k = l,

We will also denote s =
∑

1≤i≤j≤n Yij the total number of edges.

The conditional distribution of the block graph given the block vector (Xi)
n
i=1 is a stochastic block

model with independent edges where the blocks are a function of the parameters. In general, the
number of model parameters tends to infinity together with n, which makes their estimation difficult.
Several stochastic properties of stochastic block models are studied in the literature. (See Snijders
(1997) and Celisse, Daudin and Pierre (2012))

2.2 Maximum Likelihood Estimation

2.2.1 Maximum Likelihood Estimation on ERG

Suppose X1, . . . , Xn are independent and identically distributed random variables following distribu-
tion f(·|θ). Given the observed values x1, . . . , xn we can build the likelihood function:

L(θ;x1, . . . , xn) =

n
∏

i=1

f(xi|θ).

This function is the joint density of x1, . . . , xn, but as a function of θ. Let θ̂ be the value of θ
corresponding to the global maximum of the function, θ̂ is called the model’s maximum likelihood
estimator. An easier way to find θ̂ is to use the log-likelihood function. This function has the same
maximum likelihood estimator θ̂ as likelihood function. The log-likelihood function is defined by:

l(θ;x1, . . . , xn) = log

{

n
∏

i=1

f(xi|θ)
}

=

n
∑

i=1

log [f(xi|θ)] .

In the case of the ERG we have that

L(θ;T ) =
n
∏

i=1

exp(θiTi(G))

z(θ)
,

implies in

l(θ;T1, . . . , Tn) =
n
∑

i=1

θiTi(G)− log







∑

y∈Ω

exp [θiTi(y)]







where Ω is the set of all possible graphs of n vertices.
In the simplest cases, for example in the one-parameter model, direct maximization is easy to

obtain:

eθ̂

1 + eθ̂
=

∑(n2)
t=1 Ut
(

n
2

) ,

where Ut are the
(

n
2

)

random variables that represent the existence of the edges of the graph and
will be discussed in detail throughout this thesis.

When we are dealing with very large networks, it is very difficult to differentiate the second term of
the equation and the computational complexity increases with the number of enough statistics used.
In both cases the estimator obtained is consistent.

Some methods are used in the literature, for example the pseudo-likelihood estimation method
or Markov Chain’s Monte Carlo method (MCMC) which is most used and implemented today. (See
Corander and Dahmstrom (1998))
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2.2.2 Maximum Likelihood Estimation on SBM

In the case of SBM, we have that the likelihood function is given by

L(θ, η;x, y) =
n
∏

i=1

n
∏

j=1







m
∏

l=1

θ
(Ixi=l)
1

∏

1≤k≤l≤m

ηekl

kl (1 − ηkl)
nkl−ekl







,

implies in

l(θ, η;x, y) =
n
∑

i=1

n
∑

j=1

log

({

e
∑l

k=1

∑m
l=1

{ekl log(ηkl)+(1−ekl) log(1−ηkl)}
m
∏

l=1

θ
(Ixi=l)
1

})

.

This function is not easy to maximize, firstly because Yij is only conditionally independent of Xi

and Xj , secondly because the number of random variables in the expression

l
∑

k=1

m
∑

l=1

{ekl log(ηkl) + (1− ekl) log(1− ηkl)} (2)

is
(

n
2

)

, much greater than the number of vertices n.
Several techniques are used in this case. A direct maximization can be done computationally by

applying a log-likelihood transformation that passes the expression 2 from a problem with
(

n
2

)

variables
to a problem with n variables. The Expectation Maximization(EM) algorithm can be applied, for
that, it is necessary to take the vector X as the missing data vector and maximize the log-likelihood
expectation restricted to P (Y,X, θ, η|Y, θ, η). One can still use MCMC methods. All methods generate
consistent estimators, however in practice the estimation can only be done for graphs with reasonably
small n and m and generate generally unstable estimates of η. (See Snidjers (1997))

An estimation method using EM and variational techniques, called Variational EM, was proposed
and has been the most used in the study of SBM. The method can still generate unstable estimates for
η, but it is quite useful in practice, as it can estimate the parameters for graphs with large n and/or
m and the estimators obtained are consistent. (See Celisse, Daudin and Pierre(2012)). The package
blockmodels of the R software uses the Variational EM to estimate the parameters of the SBM (Leger,
2016).

2.3 Quasi-Likelihood Estimation for Misspecification

Since Fisher postulated the maximum likelihood method in the 1920s, the method has become one of
the most important tools for estimation and inference available to statisticians.

A fundamental assumption underlying the classical results on the properties of the maximum likeli-
hood estimator is that the stochastic law that determines the behavior of the phenomena investigated
(the true structure) is known within a specified parametric family of probability distributions (the
model). In other words, the probability model is considered to be correctly specified. In many (if not
most) circumstances, one may not have complete confidence that this is so. If the probability model
is not assumed to be correctly specified, it is natural to ask what happens to the properties of the
maximum likelihood estimator. Does it still converge to some limit asymptotically, and does that limit
have any meaning? If the estimator is somehow consistent, is it also asymptotically normal? Does the
estimator have properties that can be used to decide whether or not the specified family of probability
distributions contains the true structure? We will provide the answers to these questions.

Under some conditions, the maximum quasi-likelihood estimator (QMLE) is a natural estimator for
the parameters that minimize the Kullback-Leibler information criterion, so the maximum likelihood
estimator converges to a well-defined limit, even when the probability is not specified correctly. An
interesting feature of this result is that, with the wrong specification, the asymptotic covariance matrix
of the QMLE is no longer equal to the inverse of the Fisher information matrix. However, the covariance
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matrix can be estimated consistently and, as expected, simplifies the familiar form in the absence of
specification errors. This property is exploited to produce a new test for specification errors, applicable
to a wide range of problems, in this work we will extend to ERG and SBM. (See White (1982))

The quasi-log-likelihood function of the sample is defined as follows:

Ln(U, θ) ≡ n−1
n
∑

t=1

log f(Ut, θ)

and we define the quasi-maximum likelihood estimator (QMLE) as the vector of parameters θ̂n which
is the solution of the equation:

θ̂n = max
θ∈Θ

Ln(U, θ)

Next, we present some assumptions that will be necessary to show the existence and convergence
results of QMLE presented in White (1982). The proofs of the Theorems stated in this section can
also be found in this article.

Assumption 1. The independent random vectors 1×M , Ut with t = 1, . . . , n, have a common joint
distribution function H ∈ Ω , a measurable Euclidean space, with measurable Radon-Nikodym density
h = dH/dν.

As H is unknown a priori, we choose a family of distribution functions that may or may not contain
the true structure, H . It is usually easy to choose this family to satisfy the next assumption.

Assumption 2. The family of distribution functions F (u, θ) has Radon-Nikodym densities f(u, θ) =
dF (u, θ)/dν that are measurable in u for each θ ∈ Θ, a compact subset of a p-dimensional Euclidean
space and continuous in θ for each u ∈ Ω.

Theorem 1. Given the assumptions 1 and 2, for all n there is a measurable QMLE θ̂n.

Once the existence of a QMLE is assured, we move on to examining its properties. When F
contains the true structure H (that is, H(u) = F (u, θ0) for some θ0 ∈ Θ) the general theory of
maximum likelihood estimators guarantees that the MLE is consistent for θ0 under proper regularity
conditions. However, without this restriction, he observed that since Ln(U, θ) is a natural estimator

of E(log f(Ut, θ)), θ̂n is a natural estimator of θ∗, the parameter vector that minimizes the Kullback-
Leibler Information Criterion (KLIC),

I(h : f, θ) ≡ E

(

log

[

h(Ut)

f(Ut, θ)

])

.

Here expectations are taken with respect to the true distribution. Therefore,

I(h : f, θ) ≡
∫

log(h(u))dH(u)−
∫

log(f(u, θ))dH(u).

The opposite of I(h : f, θ) is called the entropy of the distribution H(u) with respect to F (u, θ).

Intuitively, I(h : f, θ) measures our ignorance of the true structure. For θ̂n to be a natural estimator
of θ∗, we impose the following condition

Assumption 3. a) E(log(h(Ut)) exists and | log f(Ut, θ)| ≤ m(u) for all θ ∈ Θ, where m is inte-
grable with respect to H

b) I(h : f, θ) has a unique minimum at θ∗ ∈ Θ.

The assumption 3 ensures that the KLIC is well-defined.

Theorem 2. Given the assumptions 1 to 3, θ̂n → θ∗ when n → ∞ for almost every sequence (Ut).

(θ̂n
q.c.→ θ∗).
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In other words, the QMLE is generally a consistent estimator for vector parameters.
The next step is to show an asymptotic normality of the QMLE and, for that, it is necessary to

define some auxiliary matrices, when partial derivatives exist:

An(θ) = n−1
n
∑

t=1

[

∂2 log f(Ut, θ)

∂θi∂θj

]

,

Bn(θ) = n−1
n
∑

t=1

[

∂ log f(Ut, θ)

∂θi
.
∂ log f(Ut, θ)

∂θj

]

.

And we consider the expectations,

A(θ) = E

(

∂2 log f(Ut, θ)

∂θi∂θj

)

,

B(θ) = E

(

∂ log f(Ut, θ)

∂θi
.
∂ log f(Ut, θ)

∂θj

)

.

When the proper inverses exist, we define:

Cn(θ) = An(θ)
−1Bn(θ)An(θ)

−1,

C(θ) = A(θ)−1B(θ)A(θ)−1.

Assumption 4. ∂ log f(u, θ)/∂θi, i = 1, . . . , p, are measurable functions of u for each θ in Θ and
continuous functions of θ for each u in Ω.

Assumption 5. |∂2 log f(u, θ)/∂θi∂θj | e |∂ log f(u, θ)/∂θi.∂ log f(u, θ)/∂θj|, i, j = 1, . . . , p are domi-
nated by integrable functions with respect to H for all u in Ω and θ in Θ.

Assumption 6. a) θ∗ is an interior point of Θ,

b) B(θ∗) is non-singular,

c) θ∗ is a regular point of A(θ).

The assumption 4 ensures that the first two derivatives with respect to θ exist, that these derivatives
are measurable with respect to θ follows from the assumption 2, since the derivative can be considered
as the limit of a sequence of measurables. These conditions allow us to apply a mean value theorem to
random functions. The premise 5 guarantees that the derivatives are dominated by integrable functions
with respect to H , which guarantees that A(θ) and B(θ) are continuous on θ and that we can apply
a law of large numbers to An(θ) and Bn(θ) . On the assumption 6, we define a regular point of the
matrix A(θ) as a value for θ such that A(θ) has rank constant in some open neighborhood of θ.

With these additional assumptions, the following Theorem guarantees that the QMLE has an
asymptotically normal distribution.

Theorem 3. (Asymptotic Normality)Given the assumptions from 1 to 6:

√
n
(

θ̂n − θ∗

)

A∼ N(0, C(θ∗)).

Also C(θ̂n)
q.c.∼ C(θ∗), element by element.

We have asymptotic normality since

∫

∂2 log f(u, θ)

∂θi∂θj
.f(u, θ)dν = −

∫

∂ log f(u, θ)

∂θi
.
∂ log f(u, θ)

∂θj
.f(u, θ)dν (3)
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The equation 3 is the familiar equality in maximum likelihood theory that ensures the equivalence
of the Hessian(left side) and inverse Fisher Information Matrix(right side). In the present case, this
equivalence will generally not be valid. However, when the model is specified correctly and the next
assumption is valid, we get an information matrix equivalence result.

The following assumptions are necessary to state the Theorem 4 about the Fisher Information
associated with θ.

Assumption 7. ∂[∂ log f(u, θ)/∂θi.f(u, θ)]/∂θj, i, j = 1, . . . , p, are dominated by integrable functions
with respect to ν for all θinΘ, and the minimal support of f(u, θ) does not depend on θ.

Together, the given conditions from 1 to 7 and h(u) = f(u, θ0) for some θ0 in Θ, can be considered
as the usual maximum likelihood regularity conditions, as they ensure that all familiar results hold.

Theorem 4. (Information Matrix)Given the assumptions from 1 to 7, if g(u) = f(u, θ0) for some
θ0 into Θ, then θ∗ = θ0 and A(θ0) = −B(θ0) , hence C(θ0) = −A(θ0)

−1 = B(θ0)
−1, where −A(θ0) is

Fisher’s information matrix.

The Theorem 4 essentially says that when the model is specified correctly, the information matrix
can be expressed in Hessian form, −A(θ0) or in product form, B(θ0). Equivalently, A(θ0)+B(θ0) = 0.
When this equality fails, it follows that the model is misspecified, and this misspecification can have
serious consequences when standard inferential techniques are applied. So A(θ∗) + B(θ∗) is a useful
indicator for misspecification!

The matrix A(θ∗)+B(θ∗) is not observable, but can be consistently estimated by An(θ̂n)+B(θ̂n).

To obtain a test statistic, we consider the asymptotic distribution of the elements of
√
n(An(θ̂n) +

B(θ̂n)), anticipating that, under appropriate conditions, these elements have an asymptotically normal
distribution, with a mean of zero, in the absence of misspecification. Given a consistent estimator for
the asymptotic covariance matrix, we can obtain a test statistic asymptotically χ2

q, for a specified q.
We now define other auxiliary matrices necessary for the construction of the misspecification test

statistic. Let’s consider l = 1, . . . , p(p+1)/2; i = 1, . . . , p; j = 1, . . . , p, where p is the number of vector
coordinates θ (number of model parameters). And be

dl(Ut, θ) =
∂ log f(Ut, θ)

∂θi
.
∂ log f(Ut, θ)

∂θj
+

∂2 log f(Ut, θ)

∂θi∂θj
,

We also define

Dln(θ̂n) = n−1
n
∑

t=1

dl(Ut, θ̂n),

which are the elements of An(θ̂n) +Bn(θ̂n).

Dn(θ̂n) = n−1
n
∑

t=1

d(Ut, θ)

When partial derivatives and expectations exist, we define:

∇Dn(θ) = n−1
n
∑

t=1

[

∂dl(Ut, θ)

∂θk

]

∇D(θ) = E

(

∂dl(Ut, θ)

∂θk

)

The following assumptions are necessary to construct a quantity with an asymptotic distribution
that will be used in the construction of a hypothesis test to verify if there is a misspecification in
relation of the family H .

10



Assumption 8. ∂dl(u, θ)/∂θk, l = 1, . . . , q, k = 1, . . . , p, exist and are continuous functions of θ for
each u.

Assumption 9. |dl(u, θ)dm(u, θ)|, |∂dl(Ut, θ)/∂θk|, and |dl(u, θ).∂ log(u, θ)/∂θk| , l,m = 1, . . . , q,
k = 1, . . . , p are dominated by integrable functions with respect to H for all u and θ in Θ.

These assumptions play analogous to the 4 and 5 assumptions. The hypothesis 8 requires continuous
third derivatives for the quasi-log-likelihood function. Among other things, the hypothesis 9 guarantees
that ∇D(θ) is finite for all θ in Θ. We define:

V (θ) = E
(

[

d(Ut, θ)−∇D(θ)A(θ)−1∇ log f(Ut, θ)
]

.
[

d(Ut, θ)−∇D(θ)A(θ)−1∇ log f(Ut, θ)
]′
)

V (θ∗) is the asymptotic covariance matrix of
√
nDn(θ̂n) and we have:

Assumption 10. V (θ∗) is non-singular.

A consistent estimator for V (θ∗) is

Vn(θ̂n) = n−1
n
∑

t=1

[

d(Ut, θ̂n)−∇Dn(θ̂n)An(θ̂n)
−1∇ log f(Ut, θ̂n)

]

.
[

d(Ut, θ̂n)−∇Dn(θ̂n)An(θ̂n)
−1∇ log f(Ut, θ̂n)

]′

Then we have

Theorem 5. (Test for misspecification) If assumptions from 1 to 10 are satisfied, and g(U) =
f(U, θ0), for θ0 ∈ Θ, so

i)
√
nDn(θ̂n)

A∼ N(0, V (θ0));

ii) Vn(θ̂n)
qc→ V (θ0), and Vn(θ̂n) is almost certainly non-singular for all sufficiently large n;

iii) The test for misspecification:

In = nDn(θ̂n)
′(Vn(θ̂n))

−1Dn(θ̂n) (4)

has asymptotic distribution χ2
q.

To perform the test, In is calculated and compared with the critical value of the distribution χ2
q

for a given test size. If (4) does not exceed this value, the null hypothesis that the model was specified
correctly cannot be rejected.

3 Misspecification Tests on Random Graph Models

In this work we build misspecification tests for the ERG and SBM models from the tests developed by
White (1982) presented in the previous section. These tests are important because both models have
been widely used in practice to model social networks and this tool we propose can be used to verify
if the model is really suitable for the database.

We will first show that the ERG and SBM models satisfy the regularity conditions described in
assumptions 1 to 10. In this way, we will prove that the statistics In can be used to construct hypothesis
tests to verify the adequacy of these models to network databases. Next, we will find the auxiliary
matrices necessary for the construction of theses statistics in each case and we will present the tests
for each model.

The construction of misspecification tests is possible due to two reasons: First We observe that
the likelihood functions of these models can be written as a function of the probability distributions
of their vertices and edges, in this way a single sample of a network can be taken as the sample of n
vertices or m edges of this network. Second It is possible to obtain asymptotically consistent maximum
likelihood estimators for the ERG and the SBM, as described in Section 2.2.
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3.1 Misspecification Tests on Exponential Random Graph Models

In this section we will build a misspecification test for the ERG. We saw that it was possible to write
the probability distribution of an ERG as a function of the probability distributions of its edges, which
made it possible to obtain a quasi-likelihood function for the model. We verified that all the regularity
conditions of the ERG function are valid, so it was possible to obtain a measurable quasi-likelihood
estimator, asymptotically consistent estimators for the auxiliary matrices and a misspecification test
for the model.

We consider the model with only one parameter, θ, and with the function T (G) = e(G) = k equal
to the number of edges of the graph.

Proposition 1. For the ERG the probability distribution of a graph G is equal to the product of the
probability distributions of its edges.

We calculate the normalization constant ϕ(θ) by solving for 1 =
∑

G∈G P (θ;G):

1 =

(n2)
∑

i=0

∑

G∈G(e(G)=i)

exp(iθ − varphi(θ)) = e−ϕ(θ)

(n2)
∑

i=0

(
(

n
2

)

i

)

eθi = e−ϕ(θ)
(

1 + eθ
)(n2) .

It follows that e−ϕ(θ) = z−1 (θ) =
(

1 + eθ
)−(n2) . Then, the probability function of a particular graph

G, with k edges is given by:

P (G; θ) = ekθ
(

1 + eθ
)−(n2) =

(

eθ

1 + eθ

)k (

1− eθ

1 + eθ

)(n2)−k

which is the expression 1 of the Erdos-Rényi model with parameter p =
(

eθ

1+eθ

)

. Thus, ER models

with p 6= 0.1 are exponential random graphs.
In this case, the probability function of a particular graph G, with k edges is given by:

P (k; θ) = ekθ(1 + eθ)−(
n
2),

Let’s sample Ut, t = 1, . . . ,
(

n
2

)

, the
(

n
2

)

elements below the main diagonal of the matrix Y where Yij is

the random variable of Bernoulli

(

eθ

1 + eθ

)

, variable indicating the existence of the edge between the

vertices i and j, for i = 1, . . . , n and j = 1, . . . , n. We will take the elements below the main diagonal
of Y in the following order: column by column, from column 1 to column n− 1, from the lowest index
row to the n row. In this way:

U1 = y2,1
U2 = y3,1 U(n−1)+1 = y3,2
U3 = y4,1 U(n−1)+2 = y4,2 U(n−1)+(n−2)+1 = y4,3
U4 = y5,1 U(n−1)+3 = y5,2 U(n−1)+(n−2)+2 = y5,3 U(n−1)+(n−2)+(n−3)+1 = y5,4
U5 = y6,1 U(n−1)+4 = y6,2 U(n−1)+(n−2)+3 = y6,3 U(n−1)+(n−2)+(n−3)+2 = y6,4

...
...

...
...

Un−1 = yn,1 U(n−1)+(n−2) = yn,2 U(n−1)+(n−2)+(n−3) = yn,3 U(n−1)+(n−2)+(n−3)+(n−4) = yn,4 . . . U(n
2
) = yn,n−1

So we have k =

(n2)
∑

t=1

Ut and

P (k; θ) = ekθ(1 + eθ)−(
n

2) =

(n2)
∏

t=1

eUtθ(1 + eθ)−1

12



that is, P (k; θ) =

(n2)
∏

t=1

f(Ut; θ) where f(Ut; θ) = eUtθ(1 + eθ)−1.

Proposition 2. The regularity conditions given in assumptions 1 to 10 are valid for f(Ut; θ) in the
ERG.

1. As H is unknown, a priori, we choose a family of distribution functions that may or may not

contain the true structure, H. In the case of the ERG, H has a distribution Bernoulli

(

eθ

1 + eθ

)

for all Ut, satisfying the assumption 1.

2. For the ERG, f(Ut, θ) = eUtθ(1+eθ)−1 which is measurable in Ut for each θ ∈ R and continuous
on θ for each Ut ∈ {0, 1}, satisfying the assumption 2.

3. E(log(h(Ut)) exists and | log f(Ut, θ)| = |θUt − log(1+ eθ)| for all θ ∈ R is integrable with respect
to H.

In this way, the assumption 3 is satisfied.

4.
∂ log f(Ut, θ)

∂θ
=

(

Ut −
eθ

1 + eθ

)

is measurable in Ut for each θ ∈ R and continuously differentiable in θ for each Ut ∈ {0.1},
satisfying the assumption 4.

5. We have
∣

∣

∣

∂2 log f(u,θ)
∂θ2

∣

∣

∣ = eθ

(1+eθ)2 and
∣

∣

∣

∂ log f(u,θ)
∂θ

.∂ log f(u,θ)
∂θ

∣

∣

∣ =
(

Ut − eθ

1+eθ

)2

are dominated by

integrable functions with respect to H for all Ut in {0.1} and θ in R. So supposition 5 satisfied.

6. In the case of the ERG θ∗ ∈ R, B(θ∗) is non-singular and θ∗ is a regular point of A(θ) which
satisfies the assumption 6.

7. Note that
∂[∂ log f(u,θ)

∂θ
.f(u, θ)]

∂θ
=

eUtθ(2U2
t − 2Ut − 1)eθ + (Ut − 1)2e2θ

(1 + eθ)3
is integrable with respect

to ν for all θ ∈ R being the assumption 7 checked.

8. No ERG
∂d1(u, θ)

∂θk
=

(

−2Ut

eθ

(1 + eθ)2
+ eθ

(

3eθ − 1

(1 + eθ)3

))

is a continuous function of θ for each

Ut, the assumption 8 being satisfied.

9. The functions:

|d1(u, θ)d1(u, θ)| =
[

U2
t − 2Ut

eθ

1 + eθ
+ eθ

(

eθ − 1

(1 + eθ)2

)]2

,

∣

∣

∣

∣

∂d1(Ut, θ)

∂θ

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

(

−2Ut

eθ̂

(1 + eθ̂)2
+ eθ̂

(

3eθ̂ − 1

(1 + eθ̂)3

))∣

∣

∣

∣

∣

and

∣

∣

∣

∣

d1(u, θ).
∂ log(u, θ)

∂θ

∣

∣

∣

∣

=

∣

∣

∣

∣

[

U2
t − 2Ut

eθ

1 + eθ
+ eθ

(

eθ − 1

(1 + eθ)2

)]

.

[

Ut −
eθ

1 + eθ

]∣

∣

∣

∣

are integrable with respect to H for all Ut and θ in R, the assumption 9 being satisfied.

10. In the ERG, V (θ∗) is non-singular, and the assumption 10 is checked.
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As are valid all assumptions from 1 to 10, we get a measurable QMLE, asymptotically consistent
estimators for the auxiliary matrices and a misspecification test for the ERG.

Theorem 6. Given the assumptions 1 and 2, for every n exists QMLE θ̂n, measurable.

Indeed, for the ERG Ln(U, θ) ≡
(

n

2

)−1 (n2)
∑

t=1

logf(Ut, θ) =

(

n

2

)−1 (n2)
∑

t=1

(

θUt − log(1 + eθ)
)

=

=



θ

∑(n2)
t=1 Ut
(

n
2

) − log(1 + eθ)





is measurable and has a maximum for θ ∈ R.

In this case the maximum is given by θ̂n = log











∑(n2)
t=1

Ut

binomn2

1−
∑(n2)

t=1
Ut

(n2)











.

Let θ̂ = θ̂n, let’s define the following auxiliary matrices:

An(θ̂) =

(

n

2

)−1 (n2)
∑

t=1

[

∂2 log f(Ut, θ̂)

∂θ2

]

=

(

n

2

)−1 (n2)
∑

t=1

(

− eθ̂

(1 + eθ̂)2

)

= − eθ̂

(1 + eθ̂)2
,

Bn(θ̂) =

(

n

2

)−1 (n2)
∑

t=1

[

∂ log f(Ut, θ̂)

∂θ
.
∂ log f(Ut, θ̂)

∂θ

]

=

(

n

2

)−1 (n2)
∑

t=1





(

Ut −
eθ̂

1 + eθ̂

)2


 .

Cn(θ̂) = An(θ̂)
−1Bn(θ̂)An(θ̂)

−1 =

(

1 + eθ̂
)4

e2θ̂

(

n

2

)−1 (n2)
∑

t=1





(

Ut −
eθ̂

1 + eθ̂

)2


 ,

Let’s define

dl(U, θ) =
∂ log f(Ut, θ)

∂θi
.
∂ log f(Ut, θ)

∂θj
+

∂2 log f(Ut, θ)

∂θi∂θj
,

l = 1, . . . , p(p+ 1)/2; i = 1, . . . , p; j = 1, . . . , p. Where p is the number of coordinates of the vector θ.
In the case of the ERG, we only have one parameter, so we calculate the d1, given by

d1(Ut, θ) =
∂ log f(Ut, θ)

∂θ
.
∂ log f(Ut, θ)

∂θ
+

∂2 log f(Ut, θ)

∂θ2
= U2

t − 2Ut

eθ

1 + eθ
+ eθ

(

eθ − 1

(1 + eθ)2

)

.

The test will be based on Dn(θ̂) =

(

n

2

)−1 (n2)
∑

t=1

dl(Ut, θ̂), which are the elements of An(θ̂) +B(θ̂).

Let l = 1, . . . q = p(p+ 1)/2, define the vector d(Ut, θ), of dimension q × 1, like this

d(Ut, θ) = U2
t − 2Ut

eθ

1 + eθ
+ eθ

(

eθ − 1

(1 + eθ)2

)

So Dn(θ̂) =
(

n
2

)−1∑(n2)
t=1 d(Ut, θ̂). For the ERG,

Dn(θ̂) =

(

n

2

)−1 (n2)
∑

t=1

(

U2
t − 2Ut

eθ̂

1 + eθ̂
+ eθ̂

(

eθ̂ − 1

(1 + eθ̂)2

))
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From Dn(θ̂), we define:

∇Dn(θ) =

(

n

2

)−1 (n2)
∑

t=1

[

∂d1(Ut, θ̂)

∂θ

]

=

(

n

2

)−1 (n2)
∑

t=1

(

−2Ut

eθ̂

(1 + eθ̂)2
+ eθ̂

(

3eθ̂ − 1

(1 + eθ̂)3

))

V (θ∗) is the asymptotic covariance matrix of
√
nDn(θ̂) and we have that a consistent estimator for

V (θ∗) is

Vn(θ̂) =

(

n

2

)

−1 (n
2
)

∑

t=1

[

d(Ut, θ̂)−∇Dn(θ̂)An(θ̂)
−1

∇ log f(Ut, θ̂)
]

.
[

d(Ut, θ̂)−∇Dn(θ̂)An(θ̂)
−1

∇ log f(Ut, θ̂)
]

′

.

In the ERG:

Vn(θ̂) =

(

n

2

)−1 (n2)
∑

t=1

[(

U2
t − 2Ut

eθ̂

1 + eθ̂
+ eθ̂

(

eθ̂ − 1

(1 + eθ̂)2

))

+

+







(

n

2

)−1 (n2)
∑

t=1

(

U2
t − 2Ut

e hatθ

1 + eθ̂
+ eθ̂

(

eθ̂ − 1

(1 + eθ̂)2

))






.
(1 + eθ̂)2

eθ̂
.

(

Ut −
e

ˆtheta

1 + eθ̂

)







2

Thus, we generate the following test:

Theorem 7. (Misspecification Test on Exponential Random Graphs) Assumptions from 1 to
10 are satisfied, and if h(U) = f(U, θ0), to θ0 ∈ Θ, then

In =
1

Vn(θ̂)







(

n

2

)−1 (n2)
∑

t=1

(

U2
t − 2Ut

eθ̂

1 + eθ̂
+ eθ̂

(

eθ̂ − 1

(1 + eθ̂)2

))







2

(5)

has asymptotic distribution χ2
1.

For a hypothesis test with α of significance, calculate 6 and use the criterion: if In ≤ χ2
(α,1), where

χ2
(α,1) is the cumulative distribution value of χ2

1 in α, the model was well specified, otherwise the model
was misspecified.

3.2 Misspecification Test on Stochachistic Block Models

In this section we will build a specification error test for SBM. We saw that it was possible to write the
probability distribution of an SBM as a function of the probability distributions of its edges, when the
classes and the number of connections of each of its vertices are given, which made it possible to obtain
a quasi- likelihood for the model. We verified that all regularity conditions of the SBM function are
valid, so it was possible to obtain a measurable quasi-likelihood estimator, asymptotically consistent
estimators for the auxiliary matrices and a specification error test for the SBM.

The probability distribution function for a graph in SBM is given by:

P (θ, η;X,Y ) = θn1

1 · · · θnm
m

∏

1≤k≤l≤m

ηekl

kl (1− ηkl)
nkl−ekl ,

where nk =
∑n

i=1 I(Xi = k) denotes the number of vertices of G that belong to block k,

ekl =
∑

1≤i6=j≤n

YijI(xi = k)I(xj = l).
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denotes the number of edges of G that have a vertex in block k and a vertex in block j, and

nkl =

{

nknl if k 6= l
(

nk

2

)

if k = l,

To build the Misspecification Test in the case of SBM we need to rewrite P (θ, η;X,Y ) as a function
of the random variable Ut. The following proposition shows how to do this.

Proposition 3. For SBM, the probability distribution of a graph G is equal to the product of the
probability distributions of its edges, when given the blocks and the number of connections at each of
its vertices. So,

P (θ, η;X,Y ) = f(Ut, θ, η) =

(

θ

Ixi=k

ni

k θ

Ixj=l

nj

l

)

η
yij

kl (1 − ηkl)
(1−yij).

Let’s construct the sample vector Ut, t = 1, . . . ,
(

n
2

)

, for each edge of the graph G, we will associate
to each edge t two vertices it(vertex i of edge t) and jt(vertex j of edge t) , Ut will be obtained from
the sample matrices X and Y .

The vector Ut, of 5 dimensions, for each edge t, must contain the following information:

• the block k of the vertex it, we will denote this block by kt;

• the block l of the vertex jt, we will denote this block by lt;

• the number of links from vertex it: nt
i =

∑n
p=1 yip;

• the number of links from the vertex jt: nt
j =

∑n
p=1 yjp;

• the random variable ytij of Bernoulli(ηkl)( variable indicating the edge t between the vertices it

and jt.)

That is, Ut =
(

kt, lt, nt
i, n

t
j, y

t
ij

)

, t = 1, . . . ,
(

n
2

)

.
This construction of Ut is plausible because is possible associate to each edge t two vertices, it(vertex

i of edge t) and jt(vertex j of edge t), just notice that for the
(

n
2

)

elements yij that are below the main
diagonal of the matrix Y , their vertex it is in the block xi( where i is the row index of the element yij)
and the vertex jt is in the block xj ( where j is the column index of the element yij), for each t. Thus,
once again, we will take the elements below the main diagonal of Y in the following order: column by
column, from column 1 to column n− 1, in the direction of the row with the lowest index to the row
n . So:

U1 = (x2, x1, n2, n1, y2,1)
U2 = (x3, x1, n3, n1, y3,1) U(n−1)+1 = (x3, x2, n3, n2, y3,2)
U3 = (x4, x1, n4, n1, y4,1) U(n−1)+2 = (x4, x2, n4, n2, y4,2) U(n−1)+(n−2)+1 = (x4, x3, n4, n3, y4,3)
U4 = (x5, x1, n5, n1, y5,1) U(n−1)+3 = (x5, x2, n5, n2, y5,2) U(n−1)+(n−2)+2 = (x5, x3, n5, n3, y5,3)
U5 = (x6, x1, n6, n1, y6,1) U(n−1)+4 = (x6, x2, n6, n2, y6,2) U(n−1)+(n−2)+3 = (x6, x3, n6, n3, y6,3)

...
...

...
Un−1 = (xn, x1, nn, n1, yn,1) U(n−1)+(n−2) = (xn, x2, nn, n2, yn,2) U(n−1)+(n−2)+(n−3) = (xn, x3, nn, n3, yn,3)

U(n−1)+(n−2)+(n−3)+1 = (x5, x4, n5, n4, y5,4)
U(n−1)+(n−2)+(n−3)+2 = (x6, x4, n6, n4, y6,4)

...
U(n−1)+(n−2)+(n−3)+(n−4) = (xn, x4, nn, n4, yn,4) . . . U(n2)

= (xn, x(n−1), nn, n(n−1), yn,n−1)
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Hence, we have

P (θ, η;X,Y ) = θn1

1 · · · θnm
m

∏

1≤k≤l≤m

ηekl

kl (1− ηkl)
nkl−ekl =

(n2)
∏

t=1

θ

Ix
it

=k

nt
i

k θ

Ix
jt

=l

nt
j

l η
yt
ij

kl (1− ηkl)(
1−yt

ij)

that is, P (θ, η;X,Y ) =

(n2)
∏

t=1

f(Ut; θ, η) where f(Ut, θ, η) =



θ

Ix
it

=k

nt
i

k θ

Ix
jt

=l

nt
j

l



 η
yt
ij

kl (1− ηkl)
(1−yt

ij)

To simplify the notation a bit let’s use Ut =
(

kt, lt, nt
i, n

t
j , y

t
ij

)

= (k, l, ni, nj, yij), that is, let’s omit
the subscript t in all elements of Ut, knowing that each one of them depends on t.

So f(Ut, θ, η) =

(

θ

Ixi=k

ni

k θ

Ixj=l

nj

l

)

η
yij

kl (1− ηkl)
(1−yij)

Proposition 4. The regularity conditions given in assumptions 1 to 10 are valid for f(Ut, θ, η) in
SBM.

1. As H is unknown a priori, we choose a family of distribution functions that may or may not
contain the true structure, H. For SBM, H has joint distribution P (θ, η;X,Y ) with P (xi = k) =
θk ∈ (0, 1) and ηkl ∈ (0, 1), for all k, l = 1, . . . ,m, satisfying the assumption 1.

To simplify the notation, we will denote the set (θ, η) just by θ from this point forward.

2. For the ERG, f(Ut, θ) =

(

θ

Ixi=k

ni

k θ

Ixj=l

nj

l

)

η
yij

kl (1− ηkl)
(1−yij) is measurable in Ut for each θ ∈ Θ

and continuous in θ for each Ut ∈ Ω, satisfying the assumption 2.

3. E(log(h(Ut)) exists and

| log f(Ut, θ)| =
∣

∣

∣

∣

(

Ixi=k

ni

)

log(θk) +

(

Ixj=l

nj

)

log(θl) + yij log(ηkl) + (1− yij) log(1− ηkl))

∣

∣

∣

∣

for all θ ∈ Θ is integrable with respect to H. In this way, the assumption 3 is satisfied.

4. The functions

∂ log f(Ut, θ)

∂θk
=

(

Ixi=k

ni

)

θk

∂ log f(Ut, θ)

∂θl
=

(

Ixj=l

nj

)

θl

∂ log f(Ut, θ)

∂ηkl
=

yij
ηkl

− (1− yij)

1− ηkl

are measurable in Ut for each θ ∈ Θ and continuously differentiable in θ for each Ut ∈ Ω,
satisfying the assumption 4.

5. Let’s see that the modulus of the products of the first-order derivatives and the modulus of the
second-order derivatives of log f(Ut, θ) with respect to each of the parameters, are dominated by
integrable functions with respect to H for all Ut in Ω and θ in Θ. So the assumption 5 will be
satisfied. Following are the functions:

∣

∣

∣

∣

∣

(

∂ log f(Ut, θ)

∂θk

)2
∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

(

Ixi=k

ni

)2

θ2k

∣

∣

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∂ log f(Ut, θ)

∂θk

∂ log f(Ut, θ)

∂θl

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

(

Ixi=k

ni

)(

Ixj=l

nj

)

θkθl

∣

∣

∣

∣

∣

∣
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∣

∣

∣

∣

∂ log f(Ut, θ)

∂θk

∂ log f(Ut, θ)

∂ηkl

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

(

Ixi=k

ni

)

θk

(

yij

ηkl
−

(1− yij)

1− ηkl

)

∣

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∂ log f(Ut, θ)

∂θl

∂ log f(Ut, θ)

∂θk

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

(

Ixi=k

ni

)(

Ixj=l

nj

)

θlθk

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

∂ log f(Ut, θ)

∂θl

)2
∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

(

Ixj=l

nj

)2

θ2l

∣

∣

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∂ log f(Ut, θ)

∂θl

∂ log f(Ut, θ)

∂ηkl

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

(

Ixj=l

nj

)

θl

(

yij
ηkl

− (1− yij)

1− ηkl

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂ log f(Ut, θ)

∂ηkl

∂ log f(Ut, θ)

∂θk

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

(

yij
ηkl

− (1− yij)

1− ηkl

)

(

Ixi=k

ni

)

θk

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂ log f(Ut, θ)

∂ηkl

∂ log f(Ut, θ)

∂θl

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

(

yij
ηkl

− (1− yij)

1− ηkl

)

(

Ixj=l

nj

)

θl

∣

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

(

∂ log f(Ut, θ)

∂ηkl

)2
∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

(

yij
ηkl

− (1− yij)

1− ηkl

)2
∣

∣

∣

∣

∣

∣

∣

∣

∣

∂2 log f(Ut, θ)

∂θ2k

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

−
(

Ixi=k

ni

)

θ2k

∣

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∂2 log f(Ut, θ)

∂θk∂θl

∣

∣

∣

∣

= 0,

∣

∣

∣

∣

∂2 log f(Ut, θ)

∂θk∂ηkl

∣

∣

∣

∣

= 0

∣

∣

∣

∣

∂2 log f(Ut, θ)

∂θl∂θk

∣

∣

∣

∣

= 0,

∣

∣

∣

∣

∂2 log f(Ut, θ)

∂θ2l

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

−
(

Ixj=l

nj

)

θ2l

∣

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∂2 log f(Ut, θ)

∂θl∂ηkl

∣

∣

∣

∣

= 0

∣

∣

∣

∣

∂2 log f(Ut, θ)

∂ηkl∂θk

∣

∣

∣

∣

= 0,

∣

∣

∣

∣

∂2 log f(Ut, θ)

∂ηkl∂θl

∣

∣

∣

∣

= 0,

∣

∣

∣

∣

∂2 log f(Ut, θ)

∂η2kl

∣

∣

∣

∣

=

∣

∣

∣

∣

−yij
η2kl

− (1− yij)

(1− ηkl)2

∣

∣

∣

∣

which are all dominated by integrable functions with respect to H.

6. In the case of SBM θ∗ ∈ R, B(θ∗) is non-singular and θ∗ is a regular point of A(θ) which satisfies
the 6 assumption.

7. Note that

∂[∂ log f(Ut,θ)
∂θk

.f(Ut, θ)]

∂θk
=

(

Ixi=k

ni

)(

Ixi=k

ni

− 1

)



θ

(

Ixi=k

ni
−2

)

k θ

Ixj=l

nj

l



 η
yij

kl (1 − ηkl)
(1−yij)

∂[∂ log f(Ut,θ)
∂θl

.f(Ut, θ)]

∂θl
=

(

Ixj=l

nj

)(

Ixj=l

nj

− 1

)



θ

Ixi=k

ni

k θ

(

Ixj=l

ni
−2

)

l



 η
yij

kl (1− ηkl)
(1−yij)

∂[
∂ log f(Ut,θ)

∂ηkl
.f(Ut, θ)]

∂ηkl
=



θ

Ixi=k

ni
k

θ

Ixj=l

nj

l





[(

η
yij−1

kl (yij − ηkl)

1− ηkl

)

.

(

yij − ηkl

ηkl − η2
kl

)

+

(

(1− ηkl) η
yij
kl

1− ηkl

)(

yij (2ηkl − 1) − η2kl

(1− ηkl)
2 ηkl

)]

are integrable with respect to ν for all θ ∈ Θ and the assumption 7 is checked.
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8. In SBM

∂d1(u, θ)

∂θk
=







−2
(

Ixi=k

ni

)2

θ3k
+

2
(

Ixi=k

ni

)

θ3k






,
∂d1(u, θ)

∂θl
= 0,

∂d1(u, θ)

∂ηkl
= 0,

∂d2(u, θ)

∂θk
=





−
(

Ixi=k

ni

)(

Ixj=l

nj

)

θ2kθl



,
∂d2(u, θ)

∂θl
=





−
(

Ixi=k

ni

)(

Ixj=l

nj

)

θkθ2l



,
∂d2(u, θ)

∂ηkl
= 0,

∂d3(u, θ)

∂θk
=





−
(

Ixi=k

ni

)

θ2k

(

yij
ηkl

− (1− yij)

1− ηkl

)



,
∂d3(u, θ)

∂θl
= 0,

∂d3(u, θ)

∂ηkl
=





(

Ixi=k

ni

)

θk

(−yij
η2kl

− (1− yij)

(1− ηkl)2

)



,

∂d4(u, θ)

∂θk
= 0,

∂d4(u, θ)

∂θl
=







−2
(

Ixj=l

nj

)2

θ3l
+

2
(

Ixj=l

nj

)

θ3l






,
∂d4(u, θ)

∂ηkl
= 0,

∂d5(u, θ)

∂θk
= 0,

∂d5(u, θ)

∂θl
=



−

(

Ixj=l

nj

)

θ2l

(

yij
ηkl

− (1− yij)

1− ηkl

)



,
∂d5(u, θ)

∂ηkl
=





(

Ixj=k

nj

)

θl

(−yij
η2kl

− (1− yij)

(1− ηkl)2

)



,

∂d6(u, θ)

∂θk
= 0,

∂d6(u, θ)

∂θl
= 0,

∂d6(u, θ)

∂ηkl
=

(

2

(

yij
ηkl

− (1− yij)

1− ηkl

)(−yij
η2kl

− (1− yij)

(1 − ηkl)2

)

+
2yij
η3kl

− 2 (1− yij)

(1− ηkl)3

)

,

are continuous functions of θ ∈ Θ for each Ut ∈ Ω, the assumption 8 being satisfied.

9. All functions:

|di(u, θ)dj(u, θ)|,
∣

∣

∣

∂di(Ut,θ)
∂θk

∣

∣

∣,
∣

∣

∣

∂di(Ut,θ)
∂θl

∣

∣

∣,
∣

∣

∣

∂di(Ut,θ)
∂ηkl

∣

∣

∣,
∣

∣

∣di(u, θ).
∂ log(u,θ)

∂θk

∣

∣

∣,
∣

∣

∣di(u, θ).
∂ log(u,θ)

∂θl

∣

∣

∣,
∣

∣

∣di(u, θ).
∂ log(u,θ)

∂ηkl

∣

∣

∣,

are products of functions integrable with respect to H, so these functions are integrable with
respect to H for all 1 ≤ i ≤ 6, Ut and θ ∈ Θ, satisfying the guess 9.

10. In SBM, V (θ∗) is non-singular, and the assumption 10 is checked.

As the assumptions from 1 to 10 are valid, we obtain a measurable QMLE, asymptotically consistent
estimators for the auxiliary matrices and a misspecification test for the SBM.

Theorem 8. Given the assumptions 1 and 2, for every n there is a measurable QMLE θ̂n.

Indeed for SBM, Ln(U, θ) ≡
(

n

2

)−1 (n2)
∑

t=1

logf(Ut, θ) =

(

n

2

)−1 (n2)
∑

t=1

[(

Ixi=k

ni

)

log(θk) +

(

Ixj=l

nj

)

log(θl) + yij log(ηkl) + (1− yij) log(1− ηkl)

]

is measurable and has a maximum for θ ∈ Θ.
In this case the maximum can be obtained via Variational EM and in this work we will use the

estimates via Variational EM, obtained by the package blockmodels of the R software.
Let θ̂ = θ̂n, let’s define the following auxiliary matrices:

∇ log f(Ut, θ) =







∂ log f(Ut,θ)
∂θk

∂ log f(Ut,θ)
∂θl

∂ log f(Ut,θ)
∂ηkl






=















(

Ixi=k

ni

)

θk
(

Ixj=l

nj

)

θl(

yij

ηkl
− (1−yij)

1−ηkl

)
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An(θ̂) =













(

n
2

)−1∑(n2)
t=1

[

∂2 log f(Ut,θ̂)
∂θ2

k

]

(

n
2

)−1∑(n2)
t=1

[

∂2 log f(Ut,θ̂)
∂θk∂θl

]

(

n
2

)−1∑(n2)
t=1

[

∂2 log f(Ut,θ̂)
∂θk∂ηkl

]

(

n
2

)−1∑(n2)
t=1

[

∂2 log f(Ut,θ̂)
∂θl∂θk

]

(

n
2

)−1∑(n2)
t=1

[

∂2 log f(Ut,θ̂)
∂θ2

l

]

(

n
2

)−1∑(n2)
t=1

[

∂2 log f(Ut,θ̂)
∂θl∂ηkl

]

(

n
2

)−1∑(n2)
t=1

[

∂2 log f(Ut,θ̂)
∂ηkl∂θk

]

(

n
2

)−1∑(n2)
t=1

[

∂2 log f(Ut,θ̂)
∂ηkl∂θl

]

(

n
2

)−1∑(n2)
t=1

[

∂2 log f(Ut,θ̂)
∂η2

kl

]













An(θ̂) =























(

n
2

)−1∑(n2)
t=1





−

(

Ixi=k

ni

)

θ̂k
2



 0 0

0
(

n
2

)−1∑(n2)
t=1





−

(

Ixj=l

nj

)

θ̂l
2



 0

0 0
(

n
2

)−1∑(n2)
t=1

(

−yij

η̂kl
2 − (1−yij)

(1−η̂kl)2

)























let’s define

dl(U, θ) =
∂ log f(Ut, θ)

∂θi
.
∂ log f(Ut, θ)

∂θj
+

∂2 log f(Ut, θ)

∂θi∂θj
,

l = 1, . . . , p(p+ 1)/2; i = 1, . . . , p; j = 1, . . . , p. Where p is the number of coordinates of the vector θ.
In the case of SBM, we have the parameters θk, θl and ηkl for each Ut, that is, 3 parameters, in

this way we calculate the dl, for l = 1, 2, . . . , 6 given by

d1(Ut, θ) =
∂ log f(Ut, θ)

∂θk
.
∂ log f(Ut, θ)

∂θk
+

∂2 log f(Ut, θ)

∂θ2k
=

(

Ixi=k

ni

)2

θ2k
+

−
(

Ixi=k

ni

)

θ2k

d2(Ut, θ) =
∂ log f(Ut, θ)

∂θk
.
∂ log f(Ut, θ)

∂θl
+

∂2 log f(Ut, θ)

∂θk∂θl
=

(

Ixi=k

ni

)(

Ixj=l

nj

)

θkθl

d3(Ut, θ) =
∂ log f(Ut, θ)

∂θk
.
∂ log f(Ut, θ)

∂ηkl
+

∂2 log f(Ut, θ)

∂θk∂ηkl
=

(

Ixi=k

ni

)

θk

(

yij
ηkl

− (1− yij)

1− ηkl

)

d4(Ut, θ) =
∂ log f(Ut, θ)

∂θl
.
∂ log f(Ut, θ)

∂θl
+

∂2 log f(Ut, θ)

∂θ2l
=

(

Ixj=l

nj

)2

θ2l
+

−
(

Ixj=l

nj

)

θ2l

d5(Ut, θ) =
∂ log f(Ut, θ)

∂θl
.
∂ log f(Ut, θ)

∂ηkl
+

∂2 log f(Ut, θ)

∂θl∂ηkl
=

(

Ixj=l

nj

)

θl

(

yij
ηkl

− (1− yij)

1− ηkl

)

d6(Ut, θ) =
∂ log f(Ut, θ)

∂ηkl
.
∂ log f(Ut, θ)

∂ηkl
+

∂2 log f(Ut, θ)

∂η2kl
=

(

yij
ηkl

− (1− yij)

1− ηkl

)2

+
−yij
η2kl

− (1− yij)

(1 − ηkl)2

The test will be based on Dn(θ̂) =

(

n

2

)−1 (n2)
∑

t=1

dl(Ut, θ̂), which are the elements of An(θ̂) +Bn(θ̂).
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Let l = 1, . . . q = p(p+ 1)/2 = 6, define the vector d(Ut, θ), of dimension q × 1 = 6× 1 , so

d(Ut, θ) =











































(

Ixi=k

ni

)

2

θ2

k

+
−

(

Ixi=k

ni

)

θ2

k
(

Ixi=k

ni

)(

Ixj=l

nj

)

θkθl
(

Ixi=k

ni

)

θk

(

yij

ηkl
− (1−yij)

1−ηkl

)

(

Ixj=l

nj

)

2

θ2

l

+
−

(

Ixj=l

nj

)

θ2

l(

Ixj=l

nj

)

θl

(

yij

ηkl
− (1−yij)

1−ηkl

)

(

yij

ηkl
− (1−yij)

1−ηkl

)2

+
−yij

η2

kl

− (1−yij)
(1−ηkl)2











































So Dn(θ̂) =
(

n
2

)−1∑(n2)
t=1 d(Ut, θ̂). For SBM,

Dn(θ̂n) =





























































(

n
2

)−1∑(n2)
t=1





(

Ixi=k

ni

)

2

θ̂k
2 +

−

(

Ixi=k

ni

)

θ̂k
2





(

n
2

)−1∑(n2)
t=1





(

Ixi=k

ni

)(

Ixj=l

nj

)

θ̂kθ̂l





(

n
2

)−1∑(n2)
t=1





(

Ixi=k

ni

)

θ̂k

(

yij

η̂kl
− (1−yij)

1−η̂kl

)





(

n
2

)−1∑(n2)
t=1





(

Ixj=l

nj

)

2

θ̂l
2 +

−

(

Ixj=l

nj

)

θ̂l
2





(

n
2

)−1∑(n2)
t=1





(

Ixj=l

nj

)

θ̂l

(

yij

η̂kl
− (1−yij)

1−η̂kl

)





(

n
2

)−1∑(n2)
t=1

(

(

yij

η̂kl
− (1−yij)

1−η̂kl

)2

+
−yij

η̂kl
2 − (1−yij)

(1−η̂kl)2

)





























































From Dn(θ̂), we define ∇Dn(θ̂) =
(

n
2

)−1∑(n2)
t=1

[

∂dl(Ut,θ̂)
∂θk

]

.

∇Dn(θ̂) =

































(

n
2

)−1∑(n2)
t=1

(

∂d1(u,θ̂)
∂θk

)

(

n
2

)−1∑(n2)
t=1

(

∂d1(u,θ̂)
∂θl

)

= 0
(

n
2

)−1∑(n2)
t=1

(

∂d1(u,θ̂)
∂ηkl

)

= 0
(

n
2

)−1∑(n2)
t=1

(

∂d2(u,θ̂)
∂θk

)

(

n
2

)−1∑(n2)
t=1

(

∂d2(u,θ̂)
∂θl

)

(

n
2

)−1∑(n2)
t=1

(

∂d2(u,θ̂)
∂ηkl

)

= 0
(

n
2

)−1∑(n2)
t=1

(

∂d3(u,θ̂)
∂θk

)

(

n
2

)−1∑(n2)
t=1

(

∂d3(u,θ̂)
∂θl

)

= 0
(

n
2

)−1∑(n2)
t=1

(

∂d3(u,θ̂)
∂ηkl

)

(

n
2

)−1∑(n2)
t=1

(

∂d4(u,θ̂)
∂θk

)

= 0
(

n
2

)−1∑(n2)
t=1

(

∂d4(u,θ̂)
∂θl

)

(

n
2

)−1∑(n2)
t=1

(

∂d4(u,θ̂)
∂ηkl

)

= 0
(

n
2

)−1∑(n2)
t=1

(

∂d5(u,θ̂)
∂θk

)

= 0
(

n
2

)−1∑(n2)
t=1

(

∂d5(u,θ̂)
∂θl

)

(

n
2

)−1∑(n2)
t=1

(

∂d5(u,θ̂)
∂ηkl

)

(

n
2

)−1∑(n2)
t=1

(

∂d6(u,θ̂)
∂θk

)

= 0
(

n
2

)−1∑(n2)
t=1

(

∂d6(u,θ̂)
∂θl

)

= 0
(

n
2

)−1∑(n2)
t=1

(

∂d6(u,θ̂)
∂ηkl

)

































The functions that must be summed in the components of ∇Dn(θ) are the functions that were
obtained in the assumption 8.
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V (θ∗) is the asymptotic covariance matrix of
√
nDn(θ̂) and we have a consistent estimator for

V (θ∗) It’s

Vn(θ̂) =

(

n

2

)

−1 (n
2
)

∑

t=1

[

d(Ut, θ̂)−∇Dn(θ̂)An(θ̂)
−1

∇ log f(Ut, θ̂)
]

.
[

d(Ut, θ̂)−∇Dn(θ̂)An(θ̂)
−1

∇ log f(Ut, θ̂)
]

′

.

In SBM, for each of the Ut vectors we will get

Vt(θ̂) =
[

d(Ut, θ̂)−∇Dn(θ̂)An(θ̂)
−1∇ log f(Ut, θ̂)

]

.
[

d(Ut, θ̂)−∇Dn(θ̂)An(θ̂)
−1∇ log f(Ut, θ̂)

]′

,

Vt(θ̂) is a matrix of dimension 6 × 6, and Vn(θ̂) will be a matrix 6 × 6, whose entries are the average

of the respective entries of the Vt(θ̂).
Thus, we arrive at the following test:

Theorem 9. (Misspecification Test on Stochachistic Block Models) If the assumptions from
1 to 10 are satisfied, and if h(U) = f(U, θ0), to θ0 ∈ Θ, then

In = nDn(θ̂)
′(Vn(θ̂))

−1Dn(θ̂) (6)

has asymptotic distribution χ2
6.

For a hypothesis test with α of significance, calculate 9 and use the criterion: if In ≤ χ2
(α,6), where

χ2
(α,6) is the cumulative distribution value of χ2

6 in α, the model was well specified, otherwise the model
was misspecified.

4 Simulation

In the previous sections we built misspecification tests for the ERG and the SBM, specifying the test
statistics and their respective distributions. In this Section we will present simulations to verify the
behavior of the proposed tests in known scenarios.

The tests were applied to samples of graphs that were generated by varying the values of each
parameter of the models, the number of vertices and number of classes, in the case of SBM. To apply
the tests, we simulated random samples of graphs in two scenarios: (1) graphs generated from each
of the models and (2) graphs generated with other models. From the samples, we estimated the
parameters via maximum likelihood and built the sample vectors Ut, which will be used in each test.
Then we find the auxiliary matrices d(Ut, θ̂), Dn(θ̂), ∇Dn(θ̂), An(θ̂), ∇ log f(Ut, θ̂) to calculate Vn(θ̂)
and finally get In and compare with the cumulative distribution value of χ2

q, fixed to a α.
The codes were implemented in R, version 4.1.2, and executed on a computer with AMD Ryzen

processor 5 3.6 GHz, 16GB of RAM and 512GB SSDM2. The simulation time in each scenario was
directly related to the number of vertices and number of classes, in the case of SBM. Some tests ran
in seconds while others took a few minutes.

For each of the scenarios, we performed Monte Carlo(MC) replications and investigated what
percentage of the tests indicated when the model was well-specified. In Tables 1, 2, 3 and 4 it is
possible to observe the proportion of simulated tests that indicate a well-specified model in each of the
scenarios.

4.1 Behavior of Misspecification Tests on ERG

For the ERG, we consider tests in which the graphs are divided into two scenarios. In scenario 1,
we generate graphs with ERG distribution with only one parameter θ, in scenario 2, we will generate
graphs that, intentionally, do not have ERG distribution with only one parameter θ. In both scenarios
we varied the number of vertices of the graphs, did 1000 or 10000 Monte Carlo(MC) replications and
investigated what percentage of the tests indicated when the model was well-specified.
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1. Scenario 1: In each replication we generate a random α in the range (0, 1), the graphs have
n = 50, n = 100, n = 200, n = 1000, or n = 10000 vertices. The probability of a vertex i
connecting to any other vertex j is exactly α for any vertices i and j, that is, theoretically, we

are in a graph with an ERG distribution with only one parameter θ = log
(

α
1−α

)

.

2. Scenario 2: In each replication we generate a random α in the range (0, 1), the graphs have
n = 50, n = 100, n = 200, n = 1000 or n = 10000 vertices. The probability of a vertex i
connecting to another vertex j is pk.α for each n

10 vertices, where pk is a random value in the
range (0, 1), for k = 1, 2, . . . , 10, that is, we generate graphs whose probability for each group of
n
10 vertices is a random percentage of α, so, theoretically, we are in a graph whose distribution

is not that of the ERG with parameter θ = log
(

α
1−α

)

.

The test for misspecification of the ERG model has the following assumptions:

H0 : the generating graph has ERG distribution(θ),
against

Ha : the generating graph has no distribution ERG(θ).

Let’s take as an estimate of θ the maximum likelihood estimator given by

θ̂ = log











∑(n2)
t=1

Ut

(n2)

1−
∑(n2)

t=1
Ut

(n2)











.

In both scenarios, following the process described in section 3.1, we find the sample vectors Ut and
the auxiliary matrices d(Ut, θ̂), Dn(θ̂) , ∇Dn(θ̂), An(θ̂), ∇ log f(Ut, θ̂) to calculate Vn(θ̂). Finally, we
get In and compare it to the cumulative distribution value of χ2

1 at α = 0.05. If In is less than or
equal to the value of the cumulative distribution of χ2

1 in α = 0.05, we do not reject H0, that is, the
test of hypotheses indicates that the model was well-specified.

Table 1 presents the proportion of simulated tests, in scenario 1, that indicate a well-specified
model, we can infer that for different values of θ in graphs with 50, 100, 200, 1000 and 10000 vertices
the hypothesis test with a significance level of 5% indicated good adequacy, as expected.

Table 1: Scenario 1 for the ERG: Proportion of simulated hypothesis tests that indicate a well-specified
model.

Replications Number of vertices Proportion
1000 50 0.998
1000 100 0.999
1000 200 0.999
1000 1000 1
1000 10000 1
10000 50 0.9984
10000 100 0.9993
10000 200 0.9999
10000 1000 1
10000 10000 1

Table 2 shows the proportion of simulated tests, in scenario 2, that indicate a well-specified model,
we can infer that for different values of θ in graphs with 50, 100, 200, 1000 and 10000 vertices the
hypothesis test with a significance level of 5% indicated poor adequacy, as was also expected.
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Table 2: Scenario 2 for the ERG: Proportion of simulated hypothesis tests that indicate a well-specified
model.

Replications Number of vertices Proportion
1000 50 0
1000 100 0
1000 200 0
1000 1000 0
1000 10000 0
10000 50 0.0029
10000 100 0.0014
10000 200 0.0006
10000 1000 0
10000 10000 0
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4.2 Behavior of Misspecification Tests on SBM

For SBM we also consider tests in which the graphs are divided into two scenarios: in Scenario 1, we
generate the graphs with the SBM distribution with the parameters (θ, η). In Scenario 2, we generate
random graphs by perturbing the original parameters (θ, η). In both scenarios, we varied the number
of vertices and the number of blocks of the graphs, did 100 or 1000 Monte Carlo(MC) replications and
investigated what percentage of the tests indicated when the model was well-specified.

1. Scenario 1: In each replication we generate the matrix η where ηkl is random in (0, 1) and
ηkl = ηlk, for k = 1, 2, . . . ,m and l = 1, 2, . . . ,m, where m is the number of existing blocks and
we generate the vector X such that , for i = 1, 2, . . . , n, xi is random between {1, 2, . . . ,m} and
represents the class of vertex i. The probability of a vertex i connecting to any other vertex
j is exactly ηkl if vertex i is of class k and vertex j is of class l , that is, a graph with SBM

distribution with parameter (θ, η) where η is formed by ηkl and θk =
∑

n
i=1

Ixi=k

m
.

We generate graphs with n = 90 and m = 3 or m = 6, n = 120 and m = 4 or m = 6, n = 200
and m = 4 or m = 10, n = 300 and m = 3 or m = 10 or m = 15, n = 1000 and m = 4 or m = 10
or m = 20 or m = 100.

2. Scenario 2: In each replication we generate the matrix η where ηkl is random in (0, 1) and
ηkl = ηlk, for k = 1, 2, . . . ,m and l = 1, 2, . . . ,m, where m is the number of existing blocks and
we generate the vector X such that , for i = 1, 2, . . . , n, xi is random between {1, 2, . . . ,m} and
represents the class of vertex i. The probability of a vertex i connecting to another vertex j is
pk.η for each n

10 vertices, where pk is a random value in the range (0, 1), for k = 1, 2, . . . , 10, that
is, we generate graphs whose probability for each group of n

10 vertices is a random percentage of
η, thus, a graph whose distribution is not that of the SBM with the parameters (θ, η) where η

is formed by ηkl and θk =
∑n

i=1
Ixi=k

m
. We generate graphs where n = 90 and m = 3 or m = 6,

n = 120 and m = 4 or m = 6, n = 200 and m = 4 or m = 10 and n = 300 and m = 3 or m = 10
or m = 30.

The SBM misspecification test has the following assumptions:

H0 : the generating graph has distribution SBM(θ, η),
against

Ha : the generating graph has no distribution SBM(θ, η).

let’s take as an estimate of (θ, η) the maximum likelihood estimator
(

θ̂, η̂
)

obtained via Variational

EM by the package blockmodels from R software,
In both scenarios, following the process described in section 3.2, we construct the sample vectors

Ut. Then we build the auxiliary matrices d(Ut, θ̂), Dn(θ̂), ∇Dn(θ̂), An(θ̂), ∇ log f(Ut, θ̂) to calculate

Vn(θ̂) and finally get In and compare with the cumulative distribution value of χ2
6 at α = 0.05. If In

is less than or equal to the value of the cumulative distribution of χ2
6 in α = 0.05, H0 is accepted, that

is, the test of hypotheses indicates that the model was well-specified as a SBM.
Table 3 presents the proportion of simulated tests, in scenario 1, that indicate a well-specified

model, we can infer that for different values of (θ, η) in graphs with variations of the number of blocks
and vertices the test indicated good fit as expected.
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Table 3: Scenario 1 for the SBM: Proportion of simulated hypothesis tests that indicate a well-specified
model.

Replication Number of vertices Number of blocks Proportion
100 90 3 1
100 90 6 0.99
100 120 4 1
100 120 6 0.98
100 200 4 0.99
100 200 10 0.97
100 300 3 1
100 300 10 1
100 300 30 0.99
1000 90 3 0.963
1000 90 6 0.972
1000 120 4 0.968
1000 120 6 0.981
1000 200 4 0.971
1000 200 10 0.982
1000 300 3 0.983
1000 300 10 0.989
1000 300 30 0.991

Table 4 presents the proportion of simulated tests, in scenario 2, that indicate a well-specified
model, we can infer that for different values of (θ, η) in graphs with variations of the number of blocks
and vertices, the test indicated a bad fit, as was also expected.

Table 4: Scenario 2 for the SBM: Proportion of simulated hypothesis tests that indicate a well-specified
model.

Replication Number of vertices Number of blocks Proportion
100 90 3 0
100 90 6 0.02
100 120 4 0
100 120 6 0.01
100 200 4 0
100 200 10 0.02
100 300 3 0.01
100 300 10 0.02
100 300 30 0.02
1000 90 3 0.042
1000 90 6 0.054
1000 120 4 0.036
1000 120 6 0.044
1000 200 4 0.031
1000 200 10 0.038
1000 300 3 0.022
1000 300 10 0.024
1000 300 30 0.032
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4.3 Conclusions

The simulations were performed with random samples of graphs in two scenarios for each of the
analyzed models: ERG and SBM: (1) In the first scenario, the graphs were generated from each of the
specified models. (2) In the second scenario, the graphs were generated with other models. Parameter
estimates were made via maximum likelihood and we calculated test statistics for each sample. Tables
1 and 3 refer to Scenario 1, where graphs were generated according to the ERG and SBM models,
showing that most of the simulated tests indicate that the model is adequate to the data. But when
the generated graphs are not generated following the models, the results shown in Tables 2 and 4,
referring to scenario 2, show that most of the tests applied indicate that the model is not suitable for
the data .

So, we observe that when the test is applied to a sample that, in fact, was generated according to
the tested models, it gets it right (does not reject H0) in practically all simulations. For both ERG
and SBM , Tables 1 and 3.

In the case of the test for specification error of the ERG, we noticed from Table 2 that, even though
the number of vertices is considerably large, the proportion of errors is very small, less than 1% in all
replicas.

We can see from Table 4 that, even when we have a large number of vertices and blocks, the error
proportion of the proposed test is also very small, lower than the expected 5% of the type I error.

With these simulations, we illustrate the effectiveness of the proposed tests to verify the specification
error of the ERG and SBM models.

The R codes used to generate the graphs and calculate the tests can be found at:
https://drive.google.com/drive/folders/1epDTdqS42853 Arrg7TzMsz3oNaLQfbG *
*select and copy the address, paste in the browser and add the symbol manually.
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timation for Markov graphs. Research report. Stockholm: Department of Statistics, Stockholm
University.

[9] CHATTERJEE, S. AND DIACONIS, P. (2011) Estimating and understanding exponential ran-
dom graph models. ArXiv e-prints.
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