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BOUNDS ON THE PICARD RANK OF TORIC FANO VARIETIES WITH MINIMAL

CURVE CONSTRAINTS

R. BEHESHTI AND B. WORMLEIGHTON

Abstract. We study the Picard rank of smooth toric Fano varieties constrained to possess families

of minimal rational curves of given degree. We discuss variants of a conjecture of Chen–Fu–Hwang

and prove a version of their statement that recovers the original conjecture in sufficiently high

dimension. We also prove new cases of the original conjecture for high degrees in all dimensions.

Our main tools come from toric Mori theory and the combinatorics of Fano polytopes.

1. Introduction

1.1. Context. Controlling numerical invariants of important classes of varieties is valuable for

classification purposes and for understanding their geography. In this paper we study toric Fano

varieties and seek to bound their Picard rank. One of the key results in this area is a theorem of

Casagrande.

Theorem 1 ([8, Thm. 1]). Let - be a Q-factorial Gorenstein toric Fano variety of dimension =. Then

�p-q ď 2=.

As is often the case in toric geometry, the proof occurs on a combinatorial avatar of - , its

spanning or Fano polytope %. In this setting the Picard rank of - is given by the number of vertices

of % minus the dimension of - (or of %).

It is natural to investigate how such an upper bound behaves in light of geometric constraints

imposed on the class of Fano varieties. Recall that an irreducible component C of the space

of rational curves in a Fano variety - is called a minimal component if the union of curves

parametrized by C is dense in - and for a general G in - , the family CG of curves parametrized

by C through G is complete. A minimal component C is said to have degree : if ´ - ¨ � “ : for

a curve � parametrizd by C. Work of Chen–Fu–Hwang [9] studies the Picard rank of - where

- is a smooth toric Fano variety of dimension = with a minimal component of degree :. They

conjecture [9, Thm. 7] that in this case

(˚) �p-q ¨ p: ´ 1q ď
=p= ` 1q

2
.

It is proved in the same paper for all : in dimension at most 4.

1.2. Main results and conjectures. We further study the restrictions on the Picard rank imposed

by considering toric Fano varieties with minimal curve constraints. It will be convenient for us to

define the codegree codegpCq of a minimal component C to be dimp-q ` 1 ´ degpCq. For instance,

if - has a codegree 0 (i.e. degree = ` 1) minimal component then - “ P= [10]. We formulate the

following variants of Chen–Fu–Hwang’s conjecture.

Conjecture 1 (Strong conjecture). Let - be a smooth toric Fano variety of dimension = with a minimal

component C of degree :. Then

�p-q ď 2= ´ 2: ` 4 “ 2 codegpCq ` 2

Note that Conj. 1 is typically, but not always, stronger than (˚). This conjecture, like that of

Chen–Fu–Hwang, seems difficult and so we formulate the following weaker version.
1
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Conjecture 2 (Weak conjecture). Let - be a smooth toric Fano variety with a minimal component C of

codegree @. Then there exists a constant �@ depending only on the codegree @ such that

�p-q ď �@

It is easy to see that Conj. 2 implies (˚) for all Fano varieties of sufficiently large dimension and

all minimal components of fixed codegree (hence their degree grows linearly with dimension).

We present some results towards these conjectures. We obtain our main results by performing

a detailed ‘Batyrev-style’ analysis of primitive collections (see Def. 2.2) on toric Fano varieties,

along with new applications of results in toric Mori theory [7, 22].

Theorem 2 (Thm. 3.2). Conjecture 2 is true.

We can show more for toric Fano varieties with minimal components of low codegree. It

follows from classification theorems [10, 21] that �0 “ 1 and �1 “ 3.

Theorem 3 (Thm. 4.1). We verify that �p-q ď 5 for all smooth toric Fano varieties - with a minimal

component of codegree 2.

Corollary 1 (Thm. 3.2 + Cor. 4.3). We can conclude:

(i) Conjecture 1 holds for all smooth toric Fano varieties with a minimal component of codegree at

most 2.

(ii) The conjecture of Chen–Fu–Hwang holds for all smooth toric Fano varieties with a minimal

component of codegree at most 2.

(iii) The conjecture of Chen–Fu–Hwang hold for smooth toric Fano varieties of sufficiently high dimen-

sion for all minimal components of fixed codegree.

Remark 1. Some other cases of Conj. 1 – and hence the conjecture of Chen–Fu–Hwang – can be

verified using toric fibration methods; for a reference on the theory of toric fibrations see [13].

One can utilise classification results of Casagrande [7, Thm. 2.4] to reduce Conj. 1 for a toric Fano

variety of dimension = to the same bound for a toric Fano variety of lower dimension in some

situations. For instance, if - contains a toric divisor� with �- ´�� “ 3 then - can be expressed

as a fibration with base a toric Fano variety � of dimension dimp-q ´ 2. If Conj. 1 holds for �

then one can show that it also holds for - . In this way one can produce new examples of (albeit

somewhat special) toric Fano varieties satisfying Conj. 1, such as all toric Fano 5- and 6-folds

with such a toric divisor. We are curious if a melange of the techniques in this paper with other

(e.g. toric fibration) methods can be used to access more cases, or even the general case, of Conj. 1.

Remark 2. Another interesting problem is to study Conj. 1 and the conjecture of Chen–Fu-Hwang

for wider classes of toric Fano varieties where some singularities are permitted. Many bounds

on geometric invariants for toric Fano varieties extend beyond the smooth case, such as Thm. 1,

and so we are interested to explore versions of the conjectures addressed in this paper for other

classes, including Gorenstein toric Fano varieties and toric Fano orbifolds.

Acknowledgements. The authors are grateful to Al Kasprzyk, Andrea Petracci, and Jun-Muk

Hwang for helpful conversations. We also especially thank Cinzia Casagrande for helping us

identify and correct an error in an earlier draft. RB is partially supported by NSF grant DMS-

2101935.

2. Background

2.1. Fans, polytopes and toric varieties. Toric varieties are described by various combinatorial

gadgets, most notably fans and polytopes.

A fan Σ in a finite-dimensional real vector space + is a collection of cones satisfying certain

regularity and compatibility conditions [11, §3.1]. Given a fan Σ one can construct a toric variety
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-Σ. The combinatorics of Σ dictate many of the aspects of the geometry of -Σ; for example,

there is a bĳection between the set of rays (one-dimensional cones in Σ) and torus-invariant

prime divisors on -Σ. We denote the set consisting of the primitive elements along the rays of

Σ by �pΣq. Given E1, . . . , E= we denote the cone they generate (i.e. their Rě0-linear span) by

xE1, . . . , E=y.

A polytope % in a real vector space is the convex hull of a finite set of points. Consider a set

tE1 , . . . , EAu of vertices of %. We say that a polytope % is simplicial if every face of % is a simplex. %

is smooth if the vertices of each facet of % form a Z-basis of # ; in particular, % is simplicial. Note

that if % is a simplicial polytope then a face with A vertices will be pA ´ 1q-dimensional.

Definition 2.1. We say that a polytope % is Fano if:

(i) every vertex of % is primitive,

(ii) the origin is the only interior lattice point of %.

To such a polytope we can associate a projective toric Fano variety -% as the (possibly singular)

toric variety corresponding to the complete fan Σ% whose rays are generated by the vertices of

% and such that the cone xE1, . . . , E=y is in Σ% if and only if xE1 , . . . , E=y is a face of %. This

justifies the slight ambiguity of notation. Here Fano means that ´ -% is Q-Cartier and ample.

Conversely, to a toric Fano variety - one can associate a polytope – the polytope corresponding

to the anticanonical divisor of - [11, §4] – and the polar dual of this polytope is a Fano polytope

% such that - – -%. We often describe % as ‘the Fano polytope for -’.

Much is known about the combinatorics of Fano polytopes and their connections with mir-

ror symmetry, classification of Fano varieties, and other parts of combinatorics and algebraic

geometry [1, 2, 14–16, 18–20].

2.2. Primitive collections and minimal components.

Definition 2.2. A primitive collection P “ t�1 , . . . , �Au for a toric variety -Σ is a set of rays in Σ

such that the rays in P do not together span a cone in Σ, but such that the rays in every proper

subset of P do span a cone.

Primitive collections, introduced in [3], have been powerfully used to study the nef and effective

cones of toric varieties and to approach classification problems [4,12,22]. We often conflate rays

with their primitive generators and so will also describe a set of vectors as forming a primitive

collection when their corresponding rays do. When Σ arises from a polytope % we will also

describe vertices of % as forming primitive collections.

In our story certain primitive collections produce families of minimal rational curves. We

recall the setup from [9]. Fix a uniruled, complete, smooth variety - . In our context this will

always be a smooth projective toric variety, usually Fano. Let RatCurves=p-q be the normalised

space of rational curves on - [17]. For an irreducible component C Ď RatCurves=p-q consider

its universal family # : U Ñ C, which also comes with a map � : U Ñ - .

Definition 2.3. C is a dominating component if � is dominant. C is a minimal component if in addition

�´1pGq is complete for general G P - .

Theorem 2.4 ( [9, Thm. 7]). Let -Σ be a smooth projective toric variety. Minimal components in

-Σ correspond to primitive collections t�1, . . . , �:u such that the corresponding primitive generators

E1, . . . , E: satisfy

E1 ` ¨ ¨ ¨ ` E: “ 0

The (anticanonical) degree degpCq of a minimal component C is ´ - ¨ � for a curve � in

the family U . In the toric context this is equal to the number : in Thm. 2.4. As stated in the

introduction, we will make much use of the codegree: codegpCq :“ dimp-q ` 1 ´ degpCq.
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2.3. Mori theory and extremal classes. Following [6, 22] we introduce the relevant aspects of

toric Mori theory for toric varieties in our context. Fix a smooth toric variety- . The effective cones

of divisors and curves on - are polyhedral cones generated by the irreducible torus-invariant

divisors and curves respectively (hence the corresponding nef cones are also polyhedral).

The rays of the effective cone of curves NEp-q are called extremal rays [6, §1]. This contrasts

with non-toric Mori theory since we do not in addition assume that the pairing with  - is

negative. Through a combinatorial interpretation of the intersection pairing between divisors

and curves for toric varieties we can describe the space of curves up to numerical equivalence as

relations between ray generators. Namely, for a smooth toric variety -Σ described by a fan Σ in

R= we have

#1p-Σq “ kerp�q where � : R�pΣq Ñ R
= , p0EqEP�pΣq ÞÑ

ÿ

EP�pΣq

0EE

In other words, #1pGΣq is identified with the set of relations between elements of �pΣq.

We will often use the basic fact that a relation

(♦) 01G1 ` ¨ ¨ ¨ ` 0AGA ´ 11H1 ´ ¨ ¨ ¨ ´ 1BHB “ 0

for -Σ with 08 , 1 9 ą 0 defines an effective class if xH1, . . . , HBy is a cone in Σ [6, Lem. 1.4].

We will follow the standard convention of writing relations either as in (♦) or as

01G1 ` ¨ ¨ ¨ ` 0AGA “ 11H1 ` ¨ ¨ ¨ ` 1BHB

with all coefficients implicitly assumed to be positive, thus interpreting this relation as ‘left hand

side minus right hand side equals zero’.

For each primitive collection P “ tE1 , . . . , EAu we obtain a relation (and hence a curve class) of

the form

E1 ` ¨ ¨ ¨ ` EA ´ 01H1 ´ ¨ ¨ ¨ ´ 0BHB “ 0

where H1 , . . . , HB are the generators of the minimal cone in Σ containing E1 ` ¨ ¨ ¨ ` EA , and

01, . . . , 0B ą 0. Relations arising in this way are called primitive relations, they define effective

curve classes, and together they generate NEp-Σq as a real cone [3].

We call the unique primitive integral class along an extremal ray an extremal class. We will

refer often to the following influential result of Reid describing the combinatorics of fans (or

polytopes) ‘near to’ extremal classes.

Theorem 2.5 ( [22, Thm. 2.4]). Let � be an extremal class for a smooth toric variety -Σ. Then there

is a primitive collection P such that the corresponding primitive relation is identified with �. Write this

relation as

E1 ` ¨ ¨ ¨ ` EA ´ 01H1 ´ ¨ ¨ ¨ ´ 0BHB “ 0

For each I1 , . . . , IC P �pΣq such that I8 “ G? and I8 “ H@ for all 8 , ?, @ and such that xH1 , . . . , HB , I1, . . . , ICy

is a cone in Σ, we have that

xE1, . . . , pE8 , . . . , EA , H1, . . . , HB , I1, . . . , ICy

is a cone in Σ for each 8 “ 1, . . . , A.

Thus extremal classes produce many cones nearby to E1, . . . , EA . We will also draw on the

following result of Casagrande.

Corollary 2.6 ( [6, Cor. 4.4]). Let -Σ be a smooth toric Fano variety and let P be a primitive collection

for Σ. If the curve class corresponding to P has anticanonical degreee 1 then it is extremal.
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3. Proof of weak conjecture

We begin the proof of Thm. 2 with the following result.

Proposition 3.1. For any integer < ě 1 there is a constant �< depending only on < with the property:

if - “ -Σ is a smooth toric Fano variety and E1 , . . . , E< P �pΣq form a cone in Σ, then the number of

primitive collections of the form E1, . . . , E< , F is bounded by �< .

The key part of the statement is that the constant �< is independent of dimension.

Proof. We prove the statement by induction on <. Casagrande proved �1 “ 3 [7, Lem. 2.3].

Suppose the statement holds for any integer smaller than <. We will show

�< ď
<´1ÿ

8“1

ˆ
2 ¨

ˆ
< ´ 1

8

˙
`

ˆ
<

8

˙˙
�8

We first show that the number of primitive relations of the form E1`¨ ¨ ¨`E<`F “ 11D1`¨ ¨ ¨`1CDC
such that C ă < is bounded by

#<´1 “
<´1ÿ

8“1

ˆ
< ´ 1

8

˙
�8

Let E1 ` ¨ ¨ ¨ ` E< ` F “ 11D1 ` ¨ ¨ ¨ ` 1CDC be such a relation with
řC
9“1 1 9 maximal. Then, by our

induction hypothesis, for any subset of size 1 ď ; ď < ´ 1 of tD1, . . . , DCu there are at most �;
primitive collections of length ; ` 1 containing that subset. If there are more than #<´1 such

relations, there must be a relation E1 ` ¨ ¨ ¨ ` E< ` F1 “ 11
1
D1

1
` ¨ ¨ ¨ ` 11

BD
1
B such that F1 does not

make a primitive collection with any subset of tD1, . . . , DCu; that is, F1, D1, . . . , DC is a cone. On

the other hand we have the relation
Bÿ

9“1

11
9D

1
9 ` F “

Cÿ

9“1

1 9D9 ` F1

Note that F1, D1, . . . , DC form a cone and so this relation corresponds to an effective curve class of

anticanonical degree
řB
9“1 1

1
9

´
řC
9“1 1 9 ď 0, a contradiction.

We next show the number of primitive relations of the form E1 ` ¨ ¨ ¨ ` E< `F “ D1 ` ¨ ¨ ¨ ` D<
is bounded by #<´1 `

ř<´1
8“1

`
<
8

˘
�8. We suppose otherwise and fix one such relation

E1 ` ¨ ¨ ¨ ` E< ` F “ D1 ` ¨ ¨ ¨ ` D< .

By the induction hypothesis there are at most
ř<´1
8“1

`
<
8

˘
�8 vertices F1 such that F1 and a proper

subset of D1, . . . , D< form a primitive collection. Thus there are more than #<´1 relations of the

form E1 ` ¨ ¨ ¨ ` E< ` F1 “ D1
1

` ¨ ¨ ¨ ` D1
< such that F1 forms a cone with every proper subset of

tD1, . . . , D<u. Since

F `
<ÿ

9“1

D1
9 “ F1 `

<ÿ

9“1

D9 ,

D1, . . . , D< , F
1 cannot form a cone, so they form a primitive collection and we get more than #<´1

primitive relations of the form

D1 ` ¨ ¨ ¨ ` D< ` F1 “
Aÿ

9“1

2 9G 9

A similar argument to the above shows that there is one such relation with A “ < and 2 9 “ 1 for

all 9. Therefore this relation is extremal and so D1, . . . , D< , G1, . . . , G< form a cone by Thm. 2.5.

We have
<ÿ

9“1

D9 `
<ÿ

9“1

G 9 “
<ÿ

9“1

E 9 ` F `
<ÿ

9“1

D9 ` F1 “
<ÿ

9“1

D1
9 `

<ÿ

9“1

D9 ` F
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Since F, D1
1, . . . , D

1
< cannot form a cone there is a subset of tD1

81
, . . . , D1

8;
u of the D1

9
which form a

primitive collection with F and so there is a primitive relation

D1
81

` ¨ ¨ ¨ ` D1
8;

` F “

?ÿ

9“1

3 9H 9

with
ř?

9“1
3 9 ď <. We can then write

ř<
9“1 D9 `

ř<
9“1 G 9 as a linear combination of ray generators

with sum of coefficients ď 2<. This contradicts the assumption that - is Fano. �

Theorem 3.2. For any : P Zě0 there is a constant �: such that for any smooth toric Fano variety of

dimension = with a primitive relation of the form

E1 ` ¨ ¨ ¨ ` E=`1´: “ 0

we have �p-q ď �: .

Note that this follows from classification results [10, 21] when : ď 1.

Lemma 3.3. Let G1 , . . . , GA P �pΣq be such that xG1, . . . , GAy P Σ. Then there exist C ě 1 and

H1, . . . , HC`1 P �pΣq such that xG1, . . . , GA , H1, . . . , HCy P Σ and

H1 ` ¨ ¨ ¨ ` HC`1 ” 0 mod spanpG1 , . . . , GAq

Proof. Consider the fan for �pG1q, naturally living in R={ spanpG1q, with ray generators the

projections of ray generators in �pΣq neighbouring G1 [19, §2]. Repeating this construction gives

the fan for / “
ŞA
8“1 �pG8q living in R={ spanpG1 , . . . , GAq with ray generators the projections of

ray generators in �pΣq sharing a cone with all G1 , . . . , GA simultaneously. This is a smooth toric

variety and so there is a primitive collection H1 , . . . , HC`1 with

H1 ` ¨ ¨ ¨ ` HC`1 “ 0

corresponding to a minimal component of degree C` 1. Lift H 8 to ray generators H8 P �pΣq giving

a cone xH1, . . . , HCy and the congruence

H1 ` ¨ ¨ ¨ ` HC`1 ” 0 mod spanpG1 , . . . , GAq

It remains to show that � “ xG1, . . . , GA , H1, . . . , HCy P Σ. Assume not, then there is a ray � “ Rě0 ¨E

contained in the relative interior of �; so E “
řA
8“1 8G8 `

řC
9“1 � 9H 9 for 8 , � 9 ą 0. But the

projection of � then contains the ray � and so H1 , . . . , HC do not span a cone in Σ/ , which is a

contradiction. �

Proposition 3.4. There is a constant ": depending only on : with the following property: for any

smooth toric Fano variety - “ -Σ and any H1, . . . , H: P �pΣq, there are C ď ": cones �1, . . . , �C P Σ of

dimension at most :2: such that any nonnegative combination of the H1, . . . , H: belong to at least one �9 .

Proof. Suppose H1, . . . , H: P �pΣq. If xH1, . . . , H:y R Σ then H1 ` ¨ ¨ ¨ ` H: is in a unique minimal

cone xI1, . . . , I<y P Σ and so we can write

(♠) H1 ` ¨ ¨ ¨ ` H: “
<ÿ

C“1

0CIC

for positive integers 08, and with
ř
08 ă : since the class defined by this relation is effective. Let

A “ : ´
ř<
C“1 0C be the anticanonical degree of this effective class.

We first prove by induction on A that there is a constant ":,A such that for any : vertices

H1, . . . , H: P �pΣq defining an effective class of anticanonical degree A as above, there are at most

":,A cones of dimension at most :2A in Σ covering the cone generated by H1, . . . , H: (i.e. their

positive linear span). We always assume H1 . . . , H: do not generate a cone in Σ since otherwise

the statement is clear.
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If A “ 1 and tH1 , . . . , H:u X tI1 , . . . , I<u “ H, then (♠) defines an extremal class and so

H1, . . . , H: form a primitive collection. We can thus apply Thm. 2.5: for each 8 we find that

xH1, . . . , Ĥ8 , . . . , H: , I1, . . . , I<y P Σ and therefore the cone generated by H1, . . . , H: can be covered

by these : cones of dimension at most 2: ´ 1 in Σ. If A “ 1 and tH1 , . . . , H:u X tI1 , . . . , I<u ‰ H,

then up to renumbering the H8 , (♠) gives an extremal class of anticanonical degree 1 of the form

H1 ` ¨ ¨ ¨ ` H:1 “
<1ÿ

C“1

01
CI

1
C

with :1 ă : and xI1
1
, . . . , I1

< , H:1`1 . . . , H:y P Σ. Then the cone generated by H1 , . . . , H: can be

covered by the cones xH1, . . . , Ĥ8 , . . . , H: , I
1
1
, . . . , I1

<1
y, 1 ď 8 ď :1, and xH:1`1 , . . . , H:y, and by

Thm. 2.5 these cones are in Σ. Hence ":,1 ď :.

Suppose the statement holds for any A1 ă A. For each 1 ď 8 ď : we consider the set of vertices

tH1 , . . . , pH8 , . . . , H: , I1, . . . , I<u. If this set does not form a cone in Σ then we can write as in (♠)

(♥) H1 ` ¨ ¨ ¨ ` Ĥ8 ` ¨ ¨ ¨ ` H: ` I1 ` ¨ ¨ ¨ ` I< “
Bÿ

9“1

1 9F 9

for some F 9 P �pΣq and positive integers 1 9. From (♠) and (♥) we get

<ÿ

C“1

p0C ` 1qIC “ H8 `
Bÿ

9“1

1 9F 9

Since xI1, . . . , IBy P Σ we identify an effective class coming from the ‘opposite’ relation

H8 `
Bÿ

9“1

1 9F 9 “
<ÿ

C“1

p0C ` 1qIC

This class has anticanonical degree 1 `
řB
9“1 1 9 ´

ř<
C“1p0C ` 1q ą 0 and so

řB
9“1 1 9 ě

ř<
C“1 0C `<.

Applying this inequality to the calculation of the anticanonical degree of (♥), we see that

: ` < ´ 1 ´
Bÿ

9“1

1 9 ď : ` < ´ 1 ´
<ÿ

C“1

p0C ` 1q “ : ´ 1 ´
<ÿ

C“1

0C “ A ´ 1.

It follows that the anticanonical degree A1 of the cycle represented by equation (♥) is smaller than

the anticanonical degree of the cycle represented by relation (♠). Therefore, by our induction

hypothesis, the cone generated by tH1 , . . . , pH8 , . . . , H: , I1, . . . , I<u can be covered by at most

":`<´1,A1 cones of dimension at most p: ` < ´ 1q2A
1

ď :2: in Σ. Since the cone generated

by tH1 , . . . , H:u can be covered by the : cones generated by tH1 , . . . , pH8 , . . . , H: , I1, . . . , I<u, for

1 ď 8 ď :, we get

":,A ď : ¨ maxt":`<´1,A1 : 1 ď < ď : ´ 1, 1 ď A1 ď A ´ 1u.

noting that < ă : from (♠). Since 0 ă A ă : we get the desired bound

": “ maxt":,A : 1 ď A ď : ´ 1u

depending only on :. �

We recursively apply Lem. 3.3 starting from our primitive relation E1 ` ¨ ¨ ¨ ` E=´:`1 “ 0. We

thus get a sequence of collections of vertices tH1
1
, . . . , H1

C1`1
u, tH2

1
, . . . , H2

C2`1
u, . . . , tH ;

1
, . . . , H ;

C;`1
u

such that

‚ C1 ` ¨ ¨ ¨ ` C; “ :

‚ H 81 ` ¨ ¨ ¨ ` H 8C8`1 ” 0 mod spanpE1 , . . . , E=´:`1 , H
1
1 , . . . , H

1
C1`1 , H

2
1 , . . . , H

8´1
C8´1`1q

‚ tE1, . . . , E=´: , H
1
1 , . . . , H

1
C1
, . . . , H ;1, . . . , H

;
C;

u P Σ and is of dimension =.
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These properties imply that for every F P �pΣq there is a nonnegative combination 8 of C8 of the

vertices H 81 , . . . , H
8
C8`1 such that

F ` 1 ` ¨ ¨ ¨ ` ; ” 0 mod spanpE1 , . . . , E=´:`1q

Since 1 ` ¨ ¨ ¨ ` ; is a nonnegative combination of C1 ` ¨ ¨ ¨ ` C; “ : elements of �pΣq and

since there are C8 ` 1 ways we can choose C8 vertices from H 8
1
, . . . , H 8

C8`1
, by Prop. 3.4, there are

B ď ":pC1 `1q . . . pC;`1q cones �1, . . . , �B P Σ of dimension at most :2: such that each 1 `¨ ¨ ¨`;
as above belongs to one of the �9 , 1 ď 9 ď B. So for each F P �pΣq, there is 1 ď 9 ď B and D9 in

the cone �9 such that

F ` D9 ” 0 mod spanpE1 , . . . , E=´:`1q

So if F R tE1 , . . . , E=´:`1u, then F does not form a cone with vertices of �9. By Prop. 3.1

the number of such F R tE1 , . . . , E=´:`1u is bounded by a constant which depends only on :,

therefore the size of �pΣqztE1 , . . . , E=´:`1u is bounded by a constant which depends only on :.

Proof of Thm. 3.2. Let - “ -Σ be a smooth toric Fano variety of dimension = with a minimal

component of codegree :. By the argument above the number of vertices of the Fano polytope

for - is bounded by = ` �: where �: is a constant depending only on :, giving the result. �

It is very unlikely that the bounds we produce in this proof are sharp in any meaningful sense.

4. Sharp bounds for codegree two

We can however verify more in the codegree two case.

Theorem 4.1. If - is a smooth toric Fano variety with a minimal component of codegree 2 then

�p-q ď 5.

This bound is sharp in all dimensions, achieved by P=´2 ˆ dP6. The statement can be verified

by a direct check in dimensions 4 and 5; we used the Graded Ring Database [5] and computations

of Reynolds [23] that list all primitive relations for toric Fano 4- and 5-folds. and so we will focus

on the case dimp-q ě 6. The dimension 4 case also follows from [9, §5].

To fix notation let G1 ` ¨ ¨ ¨ ` G= “ 0 be a primitive relation, let ( “ tG1, . . . , G=´1u, let Γ “

span
R

p(q, and consider the projection � : R= Ñ R={Γ – R2. Suppose G, H, I P �pΣqz( are

such that 0 is in the convex hall of �pGq,�pHq,�pIq; equivalently �pGq P x´�pHq,´�pIqy. Then

xG, H, Iy R Σ since a non-trivial non-negative combination of tG, H, Iu is equal to a non-negative

combination of the G8 . So if xG, Hy, xG, Iy, xH, Iy P Σ, then tG, H, Iu is a primitive collection. We

consider the primitive relation corresponding to G, H, I in this case. If G ` H ` I “ D ` E then by

Theorem 2.5 xD, G, Hy, xD, H, Iy, xD, G, Iy P Σ. Since 0 is in the convex hall of at least one of the sets

t�pDq,�pGq,�pHqu, t�pDq,�pHq,�pIqu, t�pDq,�pGq,�pIqu, we conclude D P (. Similarly E P (. We

thus have three possibilities.

(a) G ` H ` I “ G8 ` G 9 for some (possibly equal) 8 , 9

(b) G ` H ` I “ E for some E P �pΣq

(c) G ` H ` I “ 0.

We will use the division into these three cases to prove Thm. 4.1.

Lemma 4.2. Suppose - “ -Σ is a smooth toric Fano variety of dimension = ě 6 and G1 `¨ ¨ ¨`G=´1 “ 0

is a primitive relation in Σ. If there is also a primitive collection in Σ of the form tG,´Gu then �p-q ď 5.

Proof. If there is H P �pΣq such that xG, Hy R Σ, then tG, Hu form a primitive collection and since

- is Fano, we have a primitive relation of the form G ` H “ 0 or G ` H “ I for some I P �pΣq, so

if H ‰ ´G, then G ` H P �pΣq.

We consider two different cases:

(1) There is H P �pΣqz( such that H ‰ ´G, xG, Hy R Σ, and I :“ G ` H R (, and
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(2) There is no such H as in case (1),

and treat each case separately.

Case (1): suppose there is H as above. Since H “ p´Gq ` I we have x´G, Iy R Σ. Consider the

projection� as above. Then�pHq,�pIq are in the same half-plane bounded by the span of�pGq. If

E P �pΣqzp(Y tG,´G, H, Iuq is such that �pEq in the opposite half-plane, then we show E “ ´H or

E “ ´I. If E does not make a cone with one of G or ´G then by [7, Lemma 2.3] we have E “ ´H or

E “ ´I. Similarly, if E does not make a cone with one of H or I then [7, Lemma 2.3] gives E “ ´H

or E “ ´I. So it is enough to show E cannot make a cone with each one of G,´G, H, I. Otherwise

since �pEq is in one of the cones x´�pGq,´�pIqy, x´�pIq,´�pHqy, or x´�pHq,´�p´Gqy, we get a

primitive relation of one of the forms:

(i) E ` G ` I “ �

(ii) E ` H ` I “ �

(iii) E ` H ` p´Gq “ �

where � has degree at most 2. So we have � ` H “ E ` 2I in case (i), � ` G “ E ` 2I in case (ii),

and � ` I “ E ` 2H in case (iii). In each case this gives an effective class of anticanonical degree

degp�q ´ 2 ď 0 since xE, Iy, xE, Hy P Σ, and hence we get a contradiction.

Since there is at least one E P �pΣq such that �pEq is in the opposite open half plane as �pHq, at

least one of ´H or ´I should be in �pΣq. If both ´H,´I P �pΣq then, since G ` p´Iq “ ´H R (,

applying the same argument as above to ´H,´I gives that there cannot be F P �pΣqz( with

�pFq in the same half-plane as �pHq other than G,´G, H, I. We conclude �p-q ď 5.

Now suppose ´H P �pΣq,´I R �pΣq. To get the desired bound it is enough to show that

there is at most one D P �pΣqzp( Y tG,´G, H, I,´Huq. For such D we note that �pDq must be in

the same open half-plane as �pHq. Assume to the contrary there are two such D1, D2 P �pΣq.

Note that in this case x´H, Gy, x´G,´Hy P Σ. Then �pD1q and �pD2q are in one of the cones

x�p´Gq,�pHqy, x�pHq,�pGqy and so we can assume we have two primitive relations of the form

either:

() G ` p´Hq ` D1 “ � and G ` p´Hq ` D2 “ �

(�) G ` p´Hq ` D1 “ � and p´Gq ` p´Hq ` D2 “ �

Observe that � cannot have degree strictly less than 2 since G ` D1 “ � ` H and xG, D1y P Σ;

outlawing cases (b) and (c). Similarly for �. We conclude that � “ G8 ` G 9 and � “ G: ` G; for

some 8 , 9 , :, ;.

In case () we have G8`G 9`D2 “ G:`G;`D1 but xG8 , G 9 , G: , G;y P Σ since = ě 6 and so by Thm. 2.5

xG8 , G 9 , D2y P Σ, giving an effective class of anticanonical degree zero and hence a contradiction.

Similarly, in case (�) we have G8 ` G 9 ` G: ` G; “ D1 ` 2p´Hq ` D2 but xG8 , G 9 , G: , G;y P Σ, which

similarly produces a contradiction. This completes the proof of case (1).

Case (2): suppose there is no H as in case (1). We may assume that for every E P �pΣq there is at

most one D P �pΣq such that xD, Ey R Σ and D ‰ ´E. Indeed, if D1, D2 are two such vertices then

´D1,´D2 P �pΣq – thus D1, D2 R ( – and E ` D1 “ ´D2 so x´D1,´D2y R Σ. Also p´D1q ` p´D2q R (

as if ´D1 ´ D2 “ G: then D1 ` D2 “
ř
C‰: G: , which would give an effective class of non-positive

anticanonical degree. Replacing tG,´G, Hu with t´D2, D2,´D1u puts us back in the situation

of case (1) and so we are done. If such a D exists for E we denote it by D “ E1 to indicate its

relationship to E. Note that if ´E, E1 P �pΣq, then we can assume at least one of E1 and E ` E1 is

in ( since otherwise considering tE,´E, E1u will return us to the situation of case (1).

Pick F1, F2 P �pΣqzp( Y tG,´Guq such that �pF1q,�pF2q are strictly in opposite half planes

with respect to tG,´Gu. We note that F1 and F2 each make cones with each of G and ´G. For

instance, if xF1, Gy R Σ then F1 ` G P ( and so �pF1q “ �p´Gq, contradicting our assumption

that �pF1q and �pF2q are strictly in opposite half planes. Note also that there is at most one
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vertex G‹ ‰ ˘G with �pG‹q on the line spanned by �pGq and �p´Gq, which follows from the proof

of [9, Prop. 3.8].

We consider two subcases:

(2.1) xF1, F2y P Σ: Then �pF1 ` F2q “ 0 and either �pGq P x�pF1q,�pF2qy or �p´Gq P

x�pF1q,�pF2qy. We then get a primitive relation of the form ´G ` F1 ` F2 “ G: ` G; or of

the form G ` F1 ` F2 “ G: ` G;, noting that again cases (b) and (c) are not possible since this

would result in an effective class of nonpositive anticanonical degree. We show in this case there

cannot be any H P �pΣqzt´Gu such that xH, Gy R Σ. If there is such H then G ` H “ G< for some

< by our assumption. This gives relations of the form either F1 ` F2 ` H “ G: ` G; ` G< or

G< ` F1 ` F2 “ G: ` G; ` H. Since = ě 6 we have xG: , G; , G<y P Σ, and applying Thm. 2.5 to

the extremal relation G ` H “ G< and the cone xG: , G; , G<y we find xG: , G; , Hy P Σ. In each case

we thus locate effective classes of anticanonical degree zero and hence a contradiction. Similarly

there cannot be any H P �pΣqztGu such that xH,´Gy R Σ. Therefore such G‹ as above does not

exist in this case.

If both ´F1, F
1
1 P �pΣqz( then we claim that I “ F1 ` F1

1 is not in (. This will yield a

contradiction since, as noted above, because x´F1, F
1
1y R Σ we must have I P (. If I “ G< for

some < then we have either F2 ` G< ` G “ G: ` G; ` F1
1 or F2 ` G< ` p´Gq “ G: ` G; ` F1

1.

Applying Thm. 2.5 to either of the extremal relations ˘G ` F1 ` F2 “ G: ` G; and the cone

xG: , G; , G<y gives that xF2, G< ,˘Gy P Σ and so the relations above – or rather their negatives –

define effective classes of anticanonical degree zero, which is impossible.

Therefore we can assume that at most one of ´F1, F
1
1

is in �pΣqz( and by a similar argument

that at most one of ´F2, F
1
2

is in �pΣqz(. To get the desired bound it is enough to show

�pΣq Ď ( Y tG,´G, F1, F
1
1, F2, F

1
2,´F1,´F2u

If E P �pΣqzp( Y tG,´G, F1, F
1
1
, F2, F

1
2
,´F1,´F2uq then we have a primitive relation of one of

the forms E ` p˘Gq ` F1 “ G8 ` G 9 or E ` p˘Gq ` F2 “ G8 ` G 9 for some 8 , 9. Indeed, E forms

a cone with each of ˘G, F1 and F2 by construction and �pEq must live in one of the cones

x�pGq,�pF1qy, x�pF1q,�p´Gqy, x�p´Gq,�pF2qy, x�pF2q,�pGqy. We then deduce that we are in

case (a) similarly to before. Assume that the primitive relation we obtain is E ` G `F1 “ G8 ` G 9 .

Combining this with one of the relations ˘G`F1`F2 “ G:`G; gives eitherF2`G8`G 9 “ E`G:`G;
or E ` 2F1 ` F2 “ G8 ` G 9 ` G: ` G; , but the vertices on both right-hand sides form cones in Σ

(since = ě 6) and so we obtain a contradiction. Similar arguments work in the other cases.

(2.2) xF1, F2y R Σ: As we can apply the argument from case (1) to any two vertices whose

images are in opposite half-planes we may assume that any two such vertices do not form a cone

and hence form a primitive collection. Therefore, there are at most two other vertices whose

images under � are in the same half-plane as �pF1q: namely ´F2 and F1
2
. Similarly, if there are

two other vertices whose images under � are in the same half plane as �pF2q then they must be

´F1 and F1
1.

If F1 “ ´F2 then either �pΣq Ď ( Y tG,´G, G‹, F1, F2u and we are done or there is E P �pΣq

such that for some 8 P t1, 2u we have that �pEq is in the opposite half-plane as �pF8q and E ‰ ´F8;

that is, E “ F1
8
. Replacing tF1, F2u with tF8 , Eu in this case we may assume from the beginning

that F1 ‰ ´F2. If tF1,´F1, F2,´F2u Ď �pΣq then since �p´F1q,�p´F2q belong to opposite

half-planes, we have x´F1,´F2y R Σ and so p´F1q`p´F2q P �pΣqz(. This follows sinceF1`F2 P

�pΣq and ´F1 ´ F2 R (. Considering the set tF1,´F1, F2u places us back in the situation of

case (1) and we are done. Since we have seen that �pΣqzp( Y tG,´G, G˚uq Ď tF1,´F1, F2,´F2u

we find that if at most three of tF1,´F1, F2,´F2u are in �pΣq then �p-q ď 5, which is the only

remaining possibility. �

Proof of Thm. 4.1 for = ě 6. Let�denote the projection map as before. We first prove the statement

when there are G, H, I P �pΣqz( such that xG, Hy, xG, Iy, xH, Iy P Σ and 0 is in the convex hall of
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�pGq,�pHq,�pIq; equivalently if �pIq P x´�pGq,´�pHqy. In this case tG, H, Iu form a primitive

collection.

By Lemma 4.2 we may assume that for every E P �pΣq there is at most one F P �pΣq

with xF, Ey R Σ and if such F exists, then F ‰ ´E. Indeed, if there are F1 ‰ F2 such that

xF1, Ey, xF2, Ey R Σ and F1, F2 ‰ ´E, then ´F1,´F2 P �pΣq, so �p-q ď 5 by Lemma 4.2. For

E P �pΣq, if there is a F ‰ ´E which does not make a cone with E then we denote it by F “ E1.

We consider the cases (a), (b) and (c) separately for the primitive collection tG, H, Iu.

(a) Let G ` H ` I “ G8 ` G 9 . If �pΣq Ď ( Y tG, H, I, G1, H1, I1u we are done. Assume there is

D P �pΣqzp( Y tG, H, I, G1, H1, I1uq. Then �pDq belongs to one of the cones

x´�pGq,´�pHqy, x´�pHq,´�pIqy, x´�pIq,´�pGqy.

Without loss of generality we assume �pDq P x´�pGq,´�pHqy so tD, G, Hu form a primitive

collection. Let

D ` G ` H “ �

be the corresponding primitive relation where � “ G: ` G; or � “ E P �pΣq or � “ 0.

� cannot be of the form G: ` G; as otherwise we find I ` G: ` G; “ D ` G8 ` G 9 , which gives an

effective class of anticanonical degree zero. Indeed, xI, G: , G;y P Σ by applying Thm. 2.5 to the

relation G ` H ` I “ G8 ` G 9 and the cone xG8 , G 9 , G: , G;y (noting that = ě 6 is required here). We

next consider the two cases � “ E and � “ 0.

(a.1) Suppose � “ E. If there is F P �pΣqzp( Y tG, H, I, G1, H1, D, D1uq then we get a primitive

relation of the formF`G`H “ � orF`D`G “ � orF`D`H “ �where� “ 0 or� “  P �pΣq.

Note that � “ G: ` G; is not possible for the same reason as above. We get E ` F “ � ` D or

E ` F “ � ` H or E ` F “ � ` G and so F “ E1. Therefore �pΣq Ď ( Y tG, H, I, G1, H1, D, D1, E1u.

We show G1 and H1 cannot exist in �pΣq and so �p-q ď 5. Suppose to the contrary that G1 P �pΣq

and G ` G1 “ � P �pΣq. We will find a contradiction by showing � R ( Y tG, H, I, G1, H1, D, D1, E1u.

From G ` H ` I “ G8 ` G 9 we get

� ` H ` I “ G1 ` G8 ` G 9 .

This shows � R ( since otherwise by Theorem 2.5 the left hand side will form a cone which is

not possible. Also � ‰ H or I since if, for example, � “ H we get 2H ` I “ G1 ` G8 ` G 9 which

is not possible since the left hand side forms a cone. From the relation D ` G ` H “ E we get

D ` � ` H “ E ` G1. If � “ D1 then � :“ � ` D P �pΣq, so � ` H “ E ` G1 which is not possible

since xE, G1y P Σ as E ‰ G. Similarly � ‰ H1. Also, � ‰ D since otherwise 2D ` H “ E ` G1 which

is not possible since xD, Hy P Σ. Finally � ‰ E1 since otherwise, D ` E1 ` H “ E ` G1 but this is a

primitive relation so xE1 , Ey should be in Σ, a contradiction.

(a.2) Suppose � “ 0. Then we have D “ ´G ´ H. It is enough to consider the case

�pΣq Ď ( Y tG, H, I, G1, H1, I1,´G ´ H,´G ´ I,´H ´ Iu.

We show that in this case G1, H1, I1, if they exist, are elements of (. Suppose to the contrary

that for example I1 P �pΣqz( and let F “ I ` I1. We get F ` G ` H “ G 9 ` G 9 ` I1. Suppose

F “ G: P (. Then we have G: ` G ` H “ G8 ` G 9 ` I1 but xG: , G, Hy P Σ from applying Thm. 2.5

to G ` H ` I “ G8 ` G 9 and the cone xG8 , G 9 , G:y, giving an effective class of anticanonical degree

zero. Hence F R (. Also, F ‰ H since otherwise G ` 2H “ G8 ` G 9 ` I1 but xG, Hy P Σ, giving a

contradiction in the same way. Similarly F ‰ G. We have F ‰ ´H´ I as otherwise 2I` I1 ` H “ 0

which is not possible since tI1 , Hu is a part of a basis for the lattice. Similarly F ‰ ´G´ I. Finally

F ‰ ´G ´ H as otherwise G8 ` G 9 ` I1 “ 0, giving I1 P (. Thus we must have F “ G1 or F “ H1.

Assume F “ G1. Applying the same argument as above to G1 we get G ` G1 “ H1 or G ` G1 “ I1. If

G ` G1 “ I1, then G ` I “ 0, a contradiction. If G ` G1 “ H1 then applying the same argument to

H1 we get H1 ` H “ I1 and hence G ` H ` I “ 0, a contradiction.
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(b) Let G ` H ` I “ E. By the proof for (a) we may assume for any D1, D2, D3 P �pΣqz( such that

�pD1q P x´�pD2q,´�pD3qy and tD1, D2, D3u is a primitive collection that we have D1 ` D2 ` D3 “ 0

or D1 ` D2 ` D3 P �pΣq.

If �pΣq Ď ( Y tG, H, I, G1, H1, I1u then �p-q ď 5, so assume that there exists D P �pΣqzp( Y

tG, H, I, G1, H1, I1uq and without loss of generality assume �pDq P x´�pGq,´�pHqy. Then tD, G, Hu

is a primitive collection with primitive relation D ` G ` H “ F P �pΣq or D ` G ` H “ 0.

Therefore D ` E “ F ` I or D ` E “ I, so D “ E1. So �pΣq Ă ( Y tG, H, I, G1, H1, I1, E1u. Note

that if E R ( Y tG1, H1, I1u, then letting D “ E in the above argument we get 2E “ F ` I or

2E “ I which is not possible. So E P tG1, H1, I1u or E P (. If E P tG1, H1, I1u, then E1 P tG, H, Iu, so

�pΣq Ă (YtG, H, I, G1, H1, I1u and we are done. So we may assume E “ G< P (. A similar argument

shows that we may assume for any D1, D2, D3 P �pΣqz( such that �pD1q P x´�pD2q,´�pD3qy and

tD1, D2, D3u is a primitive collection we have D1 ` D2 ` D3 “ 0 or D1 ` D2 ` D3 P (.

It is thus enough to show it is not possible that G, H, I, G1, H1, I1, G1
< are all distinct vertices

in �pΣqz(. Suppose otherwise. We can assume ´�pG1
<q P x�pGq,�pHqy and so we have a

primitive relation of the form G1
< ` G ` H “ G: or G1

< ` G ` H “ 0. The first option gives

G1
< ` G< “ I ` G: , yielding I1 “ G: and thus a contradiction as I1 R (. As a result we must

have G1
< ` G ` H “ 0 and G< ` G1

< “ I. We show �pI1q R x´�pGq,´�pHqy. If not, we obtain a

primitive relation I1 ` G ` H “ 0 or I1 ` G ` H “ G 9 , giving I1 ` G< “ I or I1 ` G< “ I ` G 9. Note

that xI1, G<y R Σ and so I “ G< , a contradiction. Hence �pI1q R x´�pGq,´�pHqy and therefore

�pI1q P x´�pGq,´�pIqy “ x´�pGq,´�pG1
<qy or �pI1q P x´�pHq,´�pIqy “ x´�pHq,´�pG1

<qy.

Without loss of generality we may assume �pI1q P x´�pHq,´�pG1
<qy. Then we have a primitive

relation I1 ` G1
< ` H “ 0 or I1 ` G1

< ` H “ G; . The first gives I1 “ G, a contradiction. The second

gives I1 “ G ` G; which is also a contradiction since G1 R (. Hence �p-q ď 5.

(c) Let G ` H ` I “ 0. Suppose that there exists some E P �pΣqzp( Y tG, H, I, G1, H1, I1uq. Then

we can assume without loss of generality that �pEq P x´�pHq,´�pIqy. So tE, H, Iu is a primitive

collection. If E ` H ` I ‰ 0 then by cases (a) and (b) we have �p-q ď 5. If E ` H ` I “ 0 then

E “ G, a contradiction. Hence �p-q ď 5.

To summarise, we have reduced to the case where if xG, Hy P Σ and �pIq P x´�pGq,´�pHqy

then I does not make a cone with one of G or H. By Lemma 4.2 we can assume for any

G P �pΣq,´G R �pΣq. We select G, H P �pΣq with xG, Hy P Σ and such that the cone generated by

�pGq and �pHq is maximal among cones in R2 coming from such pairs. If there is I P �pΣq such

that �pIq is outside the cone x�pGq,�pHqy, then I does not form a cone with either G or H: if �pIq

is in x�pGq,´�pHqy or x´�pGq,�pHqy then this follows from maximality of the cone generated by

�pGq and �pHq. Thus I “ H1 or I “ G1.

Let E be such that �pEq is in the open half plane determined by �pGq not containing �pHq.

If E “ G1, then G ` G1 “ H1 since �pG ` G1q is non-zero and is outside x�pHq,�pGqy. So the cone

x�pGq,�pHqy is covered by the the cones x´�pGq,´�pH1qy, x´�pH1q,´�pG1qy, and x´�pG1q,´�pHqy.

So we see that �pΣq Ď ( Y tG, H, G1, H1u, which concludes the proof. A similar argument shows

the result if E “ H1 and �pEq and �pGq are in opposite half planes determined by �pHq. If E “ H1

and �pEq and �pGq are in the same half plane determined by �pHq, then we choose F such that

�pFq is in the opposite open half plane and use the same argument to conclude the proof. �

Corollary 4.3. Conjecture 1 and the conjecture of Chen–Fu–Hwang hold for all smooth toric Fano varieties

with a minimal component of codegree 2.

Conjecture 1 predicts that �p-q ď 6 for all such - , and the conjecture of Chen–Fu–Hwang

predicts �p-q ď t
=p=`1q
2p=´2q

u, which is 5 for = “ 4, 5, 6, 7; 6 for = “ 3, 8, 9, 10; and in general increases

linearly with =.
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