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ABSTRACT

This paper is concerned with data-driven optimal control of nonlinear systems. We present a convex
formulation to the optimal control problem with a discounted cost function. We consider OCP with
both positive and negative discount factor. The convex approach relies on lifting nonlinear system dy-
namics in the space of densities using the linear Perron-Frobenius (P-F) operator. This lifting leads
to an infinite-dimensional convex optimization formulation of the optimal control problem. The
data-driven approximation of the optimization problem relies on the approximation of the Koop-
man operator using the polynomial basis function. We write the approximate finite-dimensional
optimization problem as a polynomial optimization which is then solved efficiently using a sum-of-
squares-based optimization framework. Simulation results are presented to demonstrate the efficacy
of the developed data-driven optimal control framework.

Keywords Optimal Control · Nonlinear Systems · Linear Transfer Operators

1 Introduction

Data-driven optimal control of a nonlinear system is a problem that has significant interest with applications ranging
from vehicle autonomy, robotics to manufacturing and power systems. The traditional approach to optimal control
problem (OCP) relies on solving the Hamilton Jacobi Bellman (HJB) equation [Fleming and Rishel, 2012]. The HJB
equation is a nonlinear partial differential equation and challenging to solve. Existing algorithms for solving HJB
equations rely on iterative scheme [Beard et al., 1997, Bertsekas, 2011]. This iterative scheme is also at the heart of
the variety of reinforcement learning (RL) algorithms for the data-driven optimal control [Sutton and Barto, 2018]. In
this paper, we present an alternate approach based on the dual formulation of the OCP. This dual approach leads to a
convex optimization formulation of the OCP, which can be solved using a single-shot algorithm. This is in contrast
to the iterative scheme used for solving the HJB equation. Furthermore, the iterative algorithm required for solving
the HJB equation requires an initial stabilizing controller. Finding stabilizing controller for a nonlinear system is, in
general, a nontrivial problem. However, the computational framework for solving the OCP problem in the dual space
does not require an initial stabilizing controller.

∗This work was supported by the NSF under grant 2031573, 1932458, and 1942523.
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The dual formulation to the OCP we present is based on the theory of linear operators, namely the P-F and Koopman
operators [Lasota and Mackey, 1994] and is developed in [Huang and Vaidya, 2020]. However, there are differences
between the results presented in this paper and [Huang and Vaidya, 2020] as discussed in our contributions. The
convex formulation to the OCP in the dual space of densities and occupation measure has been extensively stud-
ied in [Henrion and Korda, 2013, Korda et al., 2017, Lasserre et al., 2008]. The computational framework in these
works relies on moment-based relaxation of the infinite-dimensional optimization problem. In contrast, our pro-
posed computational framework uses data and depends on the linear operator theory for the finite-dimensional ap-
proximation of the infinite-dimensional convex optimization problem. The convex formulation for optimal control
is also extended to study stochastic OCP, control design with safety constraints, and data-driven stabilization prob-
lems [Yu et al., 2021, Choi et al., 2020]. There is a growing body of literature on the use of the Koopman operator for
data-driven control, where the control dynamical system is lifted in the space of functions or observables using the
Koopman operator [Kaiser et al., 2021,Huang et al., 2018,Arbabi et al., 2018,Ma et al., 2019,Korda and Mezić, 2020,
Mauroy and Mezić, 2013,Huang et al., 2020]. However, in this paper, we lift the control system using the P-F operator,
which is dual to the Koopman operator. Unlike Koopman-based lifting, P-F lifting of the control dynamical system
leads to a convex formulation of the OCP [Raghunathan and Vaidya, 2013, Vaidya et al., 2010].

The main contributions of this paper are stated as follows. First, we provide a convex formulation to the infinite hori-
zon OCP with discounted cost involving continuous-time dynamics. We consider OCP problems with both positive
and negative discount. For the continuous-time OCP, the negative (positive) discount corresponds to the case where
the cost function is exponentially decreasing (increasing) with time. There is extensive literature on the OCP with
negative discount factor [Modares and Lewis, 2014, Modares et al., 2016, Ghosh et al., 1993]. One of the main contri-
butions of this paper is to provide condition for the existence of optimal control problem with a positive discount. The
condition arises in the form of a stronger notion of almost everywhere exponential stability [Vaidya and Mehta, 2008].
Unlike [Huang and Vaidya, 2020], the computation framework relies on the use of polynomial basis for the approx-
imation of linear Koopman operator using generator Extended Dynamic Mode Decomposition (gEDMD) algorithm
[Klus et al., 2020]. Hence, we employ sum-of-square (SOS) optimization methods for solving a finite-dimensional
optimization problem. The finite-dimensional approximation of the infinite-dimensional optimization problem is writ-
ten as a semi-definite program (SDP). SOS-based optimization toolbox is then used to solve the SDP in a numerically
efficient manner. Existing rigorous results for the convergence analysis of Koopman operator in the limit of data and
number of basis functions goes to infinity are leveraged to provide convergence analysis of data-driven optimization
problem. Simulation results are presented to verify the efficacy of the developed framework. The results presented in
this paper are an extension of our conference paper [Moyalan et al., 2021]. In particular, the data-driven framework
for optimal control design and theorems involving OCP with discounted cost function are new to this paper.

The rest of the paper is structured as follows. In Section 2, we introduce preliminaries and notations used throughout
the paper. The main results of the paper on the convex formulation to OCP are presented in Section 3. The SOS
and Koopman-based computation framework for the data-driven approximation of the convex optimization problem is
discussed in Section 4. Simulation results are presented in Section 5. Conclusions are presented in Section 6.

2 Preliminaries and Notations

Notation: R
n denotes the n dimensional Euclidean space and R

n
≥0 is the positive orthant. Given X ⊆ R

n and

Y ⊆ R
m, let L1(X,Y),L∞(X,Y), and Ck(X,Y) denote the space of all real valued integrable functions, essentially

bounded functions, and space of k times continuously differentiable functions mapping from X to Y respectively. If
the space Y is not specified then it is understood that the underlying space is R. B(X) denotes the Borel σ-algebra on
X and M(X) is the vector space of real-valued measure on B(X). st(x) denotes the solution of dynamical system
ẋ = f(x) starting from initial conditionx. We will use the notationNδ to denote the δ neighborhood of the equilibrium
point at the origin for some fixed δ > 0 and X1 := X \ Nδ .

2.1 Koopman and Perron-Frobenius Operators

Consider a dynamical system

ẋ = f(x), x ∈ X ⊆ R
n (1)

where the vector field is assumed to be f(x) ∈ C1(X,Rn). There are two different ways of linearly lifting the finite
dimensional nonlinear dynamics from state space to infinite dimension space of functions, Koopman and Perron-
Frobenius operators.

Koopman Operator: Kt : L∞(X) → L∞(X) for dynamical system (1) is defined as

[Ktϕ](x) = ϕ(st(x)), ϕ ∈ L∞.

2
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The infinitesimal generator for the Koopman operator is

lim
t→0

Ktϕ− ϕ

t
= f(x) · ∇ϕ(x) =: Kfϕ. (2)

Perron-Frobenius Operator: Pt : L1(X) → L1(X) for system (1) is defined as

[Ptψ](x) = ψ(s−t(x))

∣

∣

∣

∣

∂s−t(x)

∂x

∣

∣

∣

∣

, ψ ∈ L1, (3)

where |·| stands for the determinant. The infinitesimal generator for the P-F operator is given by

lim
t→0

Ptψ − ψ

t
= −∇ · (f(x)ψ(x)) =: Pfψ. (4)

These two operators are dual to each other where the duality is expressed as
∫

Rn

[Ktϕ](x)ψ(x)dx =

∫

Rn

[Ptψ](x)ϕ(x)dx.

2.2 Sum of squares

Sum of squares (SOS) optimization [Topcu et al., 2010, Parrilo, 2003, Parrilo and Sturmfels, 2003, Parrilo, 2000] is a
relaxation of positive polynomial constraints appearing in polynomial optimization problems. SOS polynomials are

in a set of polynomials that can be described as a finite linear combination of monomials, i.e., p =
∑ℓ
i=1 dip

2
i where

p is a SOS polynomial, pi are polynomials, and di are nonnegative coefficients. Hence, SOS is a sufficient condition
for the nonnegativity of a polynomial. Thus SOS relaxation provides a lower bound on the minimization problems of
polynomial optimizations. Using the SOS relaxation, a large class of polynomial optimization problems with positive
constraints can be formulated as SOS optimization as

min
d

w⊤d s.t. ps(x,d) ∈ Σ[x], pe(x;d) = 0, (5)

where Σ[x] denotes SOS set, w is weighting coefficient, ps and pe are polynomials parametrized by coefficients
d. The problem in (5) can be translated into a Semidefinite Programming (SDP) [Parrilo, 2003, Laurent, 2009].
There are readily available SOS optimization packages such as SOSTOOLS [Papachristodoulou et al., 2013] and
SOSOPT [Seiler, 2013] for solving (5).

2.3 Almost everywhere uniform stability and Stabilization

This section derives results on a stronger notion of stability used in formulating optimal control problem with dis-
counted cost. We first present the notion of, a.e., uniform stability as introduced in [Rajaram et al., 2010]. In the rest
of the paper, we will use the following notation.

Definition 1 [a.e. uniform stability] The equilibrium point of (1) is said to be a.e. uniform stable w.r.t. measure
µ ∈ M(X) if, for every given ǫ, there exists a time T (ǫ) such that

∫ ∞

T (ǫ)

µ(Bt)dt < ǫ (6)

where Bt := {x ∈ X : st(x) ∈ B} for any set B ∈ B(X1).

The above stability definition essentially means that given any arbitrary set B not containing the origin, the measure
of the set of all initial conditions that stay inside B can be made arbitrarily small after a sufficiently long time. Note
that the above definition of a.e. uniform stability is stronger than the almost everywhere stability notion as introduced
in [Rantzer, 2001] (refer to [Rajaram et al., 2010] for the proof). The following definition of a.e. exponential stability
is introduced here and is stronger than the above Definition 1. The following exponential stability definition is a
continuous-time counterpart of the discrete-time definition studied in [Vaidya and Mehta, 2008].

Definition 2 [a.e. exponential stability] The equilibrium point is said to be almost everywhere exponential stable w.r.t.
measure µ with rate γ > 0 if there exists a constant M such that

µ(Bt) ≤Me−γt (7)

where Bt := {x ∈ R
n : st(x) ∈ B} for any set B ∈ B(X1).

3
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In the following, we state theorems providing necessary and sufficient condition for a.e. uniform and a.e uniform
exponential stability. These results are proved under the following assumption on the equilibrium point of (1).

Assumption 1 We assume that x = 0 is locally stable equilibrium point for the system (1) with local domain of
attraction denoted by D and let 0 ∈ Nδ ⊂ D.

Theorem 2 The equilibrium point x = 0 for the system (1) satisfying Assumption 1 is almost everywhere uniform
stable w.r.t. measure µ if and only if there exists a density function ρ(x) ∈ C1(X \ {0},R+) which is integrable on X1

and satisfies

∇ · (fρ) = h0 (8)

where h0 ∈ C1(X) is the density function corresponding to the measure µ.

Refer to [Rajaram et al., 2010, Theorem 13] for the proof.

3 Convex Formulation of Optimal Control Problem

In this section we briefly summarize the main results from [Huang and Vaidya, 2020] on the convex formulation of
the optimal control problem. Consider a control affine system of the form

ẋ = f̄(x) + g(x)ū, x ∈ X ⊆ R
n (9)

where, x is the state, ū = [ū1, . . . , ūm]⊤ ∈ R
m is the control input and g(x) = (g1(x), . . . ,gm(x)). All the vector

fields are assumed to belong to C1(X,Rn).

Remark 1 The affine control assumption for a dynamical control system is not restrictive as any non-affine dynamical
control system can be converted to control-affine by extending the state space. In particular, consider the control
dynamical system of the form

ẋ = f(x,u)

then we can define u as a new state and introduce ũ as another control input to write the above system as the following
affine in the input control system

ẋ = f(x,u), u̇ = ũ

The following assumption is made on (9).

Assumption 3 We assume that the linearization of the nonlinear system dynamics (9) at the origin is stabilizable i.e.,

the pair ( ∂ f̄
∂x

(0),g(0)) is stabilizable.

Using the above stabilizability assumption, we can design a local stable controller using data. The detailed procedure
for the design of such controller is given in Section 4. Let uℓ be the locally stable controller. Defining f(x) :=
f̄(x) + g(x)uℓ and u = ū− uℓ, we can rewrite control system (9) as

ẋ = f(x) + g(x)u. (10)

The following is valid for the above dynamical system. With the control input u = 0, the origin of system (10) is
almost sure asymptotically stable locally in small neighborhood D of the origin such that Bδ ⊂ D.

Consider the discounted cost OCP of the form

J⋆(µ0)=inf
u

∫

X1

[
∫ ∞

0

eγt(q(x(t)) + βu(t)⊤Ru(t)) dt

]

dµ0

subject to (10) (11)

where γ ∈ R. The existing literature on OCP with discounted cost address the case where γ is negative, i.e., negative
discount factor. In this paper, with the stronger notion of a.e. uniform stability with geometric decay, we can address
the case of cost with a positive discount. Note that the cost function is a function of initial measure µ0, and this
dependency on µ0 can be explained as follows. The cost function can be written as

J(µ0) =

∫

X1

V (x)dµ0(x) (12)

4
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where, V (x) can be written as

V (x) =

∫ ∞

0

eγt(q(x(t)) + βu⊤(t)Ru(t))dt

with x(·) being a trajectory with initial condition x(0) = x.While V (x) can be recognized with the familiar cost
function used in the formulation of OCP in primal domain, the cost function J(µ0) is minimized w.r.t. set of initial
condition distributed with initial measure µ0. In the rest of the paper we assume that the initial measure µ0 is equivalent
to Lebesgue with density function 0 < h0(x) ∈ L1(R

n,R>0) ∩ C1(Rn). We make the following assumption on the
OCP.

Assumption 4 We assume that the state cost function q : Rn → R≥0 is zero at the origin and uniformly bounded
away from zero outside the neighborhood Nδ and R > 0. Furthermore, there exists a feedback control for which the
cost function in (11) is finite and that the optimal control is feedback in nature, i.e., u⋆ = k⋆(x) with the function k⋆

being in C1(X,Rm).

With the assumed feedback form of the optimal control input, the OCP can be written as

inf
k∈C1(X)

∫

X1

[∫

∞

0
eγt(q(x(t)) + βk(x(t))⊤Rk(x(t))) dt

]

dµ0

s.t. ẋ = f(x) + g(x)k(x) (13)

The following is the main theorem on the OCP with discounted cost function.

Theorem 5 Consider the OCP (13) with discount factor γ ≤ 0 and assume that the cost function and optimal control
satisfy Assumption 4. Then the OCP (13) can be written as the following infinite dimensional convex optimization
problem

J⋆(µ0) = inf
ρ∈S,ρ̄∈C1(X1)

∫

X1

q(x)ρ(x) + β
ρ̄(x)⊤Rρ̄(x)

ρ
dx

s.t. ∇ · (fρ+ gρ̄) = γρ+ h0 (14)

where ρ̄ = (ρ̄1, . . . , ρ̄m) and S := L1(X1) ∩ C1(X1,R≥0). The optimal feedback control input is recovered from the
solution of the above optimization problem as

k⋆(x) =
ρ̄
⋆(x)

ρ⋆(x)
. (15)

Furthermore, if γ = 0, then optimal control k⋆(x) is a.e. uniformly stabilizing w.r.t. measure µ0.

Proof of theorem (5) is given in Appendix.

Next, we consider discounted cost OCP with L1 norm on control term

inf
k∈C1(X)

∫

X1

[∫∞

0 eγt(q(x(t)) + β‖k(x(t))‖1) dt
]

dµ0(x)

s.t. ẋ = f(x) + g(x)k(x). (16)

We make the following assumption on the nature of optimal control for the L1-norm OCP (16).

Assumption 6 We assume that the state cost function q : Rn → R≥0 is zero at the origin and uniformly bounded
away from zero outside the neighborhoodNδ and R > 0. Furthermore, there exists a feedback control input for which
the cost function in (16) is finite. Furthermore, the optimal control is feedback in nature, i.e., u⋆ = k⋆(x) with the
function k⋆ is assumed to be C1(X,Rm).

Theorem 7 Consider the OCP (16) with discount factor γ ≤ 0 and assume that the cost function and optimal con-
trol satisfy Assumption 6 respectively. Then the OCP (16) can be written as following infinite dimensional convex
optimization problem

J⋆(µ0) = inf
ρ∈S,ρ̄∈C1(X1)

∫

X1

q(x)ρ(x) + β‖ρ̄(x)‖1dx

s.t. ∇ · (fρ+ gρ̄) = γρ+ h0 (17)

where ρ̄ = (ρ̄1, . . . , ρ̄m) and S := L1(X1) ∩ C1(X1,R≥0). The optimal feedback control input is recovered from the
solution of the above optimization problem as

k⋆(x) =
ρ̄
⋆(x)

ρ⋆(x)
. (18)

Furthermore, if γ = 0, then optimal control k(x) is a.e. uniformly stabilizing w.r.t. measure µ0.

5
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Proof 8 The proof of Theorem 7 follows along similar lines to the proof of Theorem 5.

Remark 2 It is important to emphasize that the optimal feedback controller with discount factor γ = 0 is stabilizing
in almost everywhere sense. This is analogous to the optimal control design in the primal formulation. The optimal
cost function also serves as a Lyapunov function, thereby ensuring the stability of the feedback control system. In our
proposed dual setting, the optimal density function serves as a.e. stability certificate for the case of discount factor
γ = 0. However, due to the dual nature of the Lyapunov function and density function [Vaidya and Mehta, 2008,
Rantzer, 2001], the density function has a singularity at the origin. Because of this singularity at the origin, the
cost function is evaluated in X1 excluding the small region around the origin. Hence it may become necessary to
design a local stabilizing or local optimal controller. The existence of such a local stabilizing controller is ensured
following Assumption 3. The local controller, say kℓ, can be blended with global control k⋆ using the following
formula [Rantzer and Ceragioli, 2001].

u(x) =
ρL

ρL + ρN
kℓ(x) +

ρN
ρL + ρN

k∗(x)

ρL(x) = max{((xTPx))−3 −∆, 0}

where matrix P > 0 define a control Lyapunov function. The parameter ∆ determines the region of operation for the
local controller.

The optimal control results involving L2 and L1 norm on the control input with positive discount factor, i.e., γ > 0,
are proved under the following assumption.

Assumption 9 We assume that the state cost function q : Rn → R≥0 is zero at the origin and uniformly bounded away
from zero outside the neighborhood Nδ and R > 0. Furthermore, there exists a feedback control for which the cost
function in (11) is finite and that the optimal control is feedback in nature, i.e., u⋆ = k⋆(x) with the function k⋆ being
in C1(X,Rm). Furthermore, the feedback controller is assumed to be almost everywhere exponentially stabilizing
(Definition 2) with decay rate γ′ > γ > 0.

Note that Assumption 9 is same as Assumption 4 except for the additional requirment that the feedback controller is
a.e. exponentially stabilizing with decay rate strictly large than γ.

Theorem 10 Consider the OCP (13) with discount factor γ > 0 and assume that the cost function and optimal control
satisfy Assumption 9. Then the OCP (13) can be written as the following infinite dimensional convex optimization
problem

J⋆(µ0) = inf
ρ∈S,ρ̄∈C1(X1)

∫

X1

q(x)ρ(x) + β
ρ̄(x)⊤Rρ̄(x)

ρ
dx

s.t. ∇ · (fρ+ gρ̄) = γρ+ h0 (19)

where ρ̄ = (ρ̄1, . . . , ρ̄m) and S := L1(X1) ∩ C1(X1,R≥0). The optimal feedback control input is recovered from the
solution of the above optimization problem as

k⋆(x) =
ρ̄
⋆(x)

ρ⋆(x)
. (20)

The proof of this theorem is provided in the Appendix. Theorem analogous to Theorem 7 can be stated and proved for
the case involving L1 control norm and with positive discount factor γ > 0.

Remark 3 In the above formulations of the OCPs, we did not explicitly impose constraints on the control input.
Explicit constraints on the magnitude of the control input can be imposed in a convex manner as follows:

‖u‖1 ≤M ⇐⇒ |ρ̄1(x)|
2 + . . .+ |ρ̄m(x)|2 ≤Mρ(x), (21)

for some positive constant M . To arrive at (21) we have used the formula for the optimal feedback control, i.e., (20)
and the fact that ρ(x) > 0. The above constraints are linear in the optimization variables ρ̄ and ρ and hence can
be implemented convexily. So the OCP involving explicit norm constraints on the control input can be implemented
convexily by augmenting the optimization problem with linear constraints in (21).

6
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Remark 4 In the above formulations of the OCP problem, we have assumed that density function h0 > 0, implying
that the initial measure µ0 is equivalent to Lebesgue. This assumption is necessary as h0 > 0 guarantees that ρ > 0
(refer to Eq. (48)) and hence the the feedback control input k = ρ̄

ρ
is well defined. However, it is possible to relax

this assumption and work with density function h0 ≥ 0. This will correspond to the case where the initial measure µ0

is continuous w.r.t. Lebesgue measure and not equivalent to Lebesgue. In order to ensure that the feedback control
input is well defined when µ0 is continuous w.r.t. Lebesgue measure, we need to impose the following constraints on
the control input

|ρ̄k(x)|
2 ≤Mρ(x), k = 1, . . . ,m

for some large constant M . The above constraints will ensure that the for a.e. x if ρ(x) = 0 =⇒ ρ̄k(x) = 0 for
k = 1, . . . ,m thereby the feedback control input is well defined. Working with absolutely continuous initial measure
µ0 or equivalently h0 ≥ 0 will correspond to the case where optimality is guaranteed only from set of initial condition
with support on µ0.

In the following, we demonstrate how the results involving dual formulation to the OCP problem works out for the
special case of scalar linear system. The main conclusion is that the optimal control obtained using dual formulation
matches with the control obtained using a primal formulation of OCP, namely the linear quadratic regulator problem
for a particular choice of h0(x). Note that the initial measure or the density function h0(x) is unique to our dual
formulation with no parallel in the primal formulation.

4 Koopman and SOS-based Computation Framework for Optimal Control

This section provides Koopman and SOS-based computational framework for the finite-dimensional approximation of
OCP involving L1/L2 costs. We begin with the following parameterization for the optimization variables ρ and ρ̄.

ρ(x) = a(x)/b(x)α, ρ̄(x) = c(x)/b(x)α, (22)

where a(x) ≥ 0 and c(x) = [c1(x), . . . , cm(x)]
⊤

. Here, b(x) is a positive polynomial (positive at x 6= 0), and α is a
positive constant which is sufficiently large for integrability condition. In fact b(x) is chosen to be control Lyapunov
function based on the linearized control dynamics at the origin. The data-driven procedure for the identification of the
linear dynamics used in the construction of b(x) is explained in Remark 7. The particular form for the parameterization
of the optimization variable in (22) is chosen because of the fact that ρ has singularity at the origin (Remark 2).
Using (22), we can write the constraints for the optimization problem as in (16) and (17) as

h = ∇ · (fρ+ gρ̄)− γρ = ∇ · [(fa+ gc)/bα]− γ
a

bα

=
1

bα+1
[(1 + α)b∇ · (fa+ gc)− α∇ · (bfa+ bgc)

− γab].

With the above form of the constraints, we assume the following parameterization for h = d
bα+1 , where d is an arbitrary

positive polynomial. With the assumed form of h, we write the constraints in the optimization variable, a and c as

(1 + α)b∇ · (fa+ gc)− α∇ · (bfa+ bgc)− γab = d (23)

The above constraint in the optimization problem can be written in terms of the P-F generator as follows:

(1 + α)b

(

Pfa+

m
∑

i=1

Pgi
ci

)

− α

(

Pf (ba) +

m
∑

i=1

Pgi
(bci)

)

− γa = d (24)

4.1 Data-driven Approximation of the Generators

From (24), it follows that the data-driven approximation of the constraints in the optimization problems (17) and (19)
involves approximation of the P-F generators, Pf and Pgi

. Furthermore, the P-F generator can be expressed in terms
of the Koopman generator as

−Pfψ=∇ · (fψ)= f · ∇ψ +∇ · fψ=Kfψ +∇ · fψ. (25)

Expressing the P-F generator in terms of the Koopman generator allows us to use data-driven methods used to approx-
imate the Koopman generator for the approximation of the P-F generator. In particular, we use generator Extended

7
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Dynamic Mode Decomposition (gEDMD) algorithm from [Klus et al., 2020] for the approximation. To approximate
Koopman generators, we first collect time-series data from the dynamical system in (9) by injecting different control
inputs: i) zero control inputs, u = 0, and ii) unit step control inputs, u = ej

2 for j = 1, . . . ,m for a finite time horizon
with sampling step δt. Let,

Xi = [x1, . . . ,xTi
] , Ẋi = [ẋ1, . . . , ẋTi

] , (26)

with i = 0, 1, . . . ,m for zero and step control inputs where Ti are the number of data points for ith input case. The
samples in Xi do not have to be from a single trajectory; it can be a concatenation of multiple experiment/simulation
trajectories. Also, time derivatives of the states ẋ can be accurately estimated using numerical algorithms such as finite
differences. Next, we construct a polynomial basis vector:

Ψ(x) = [ψ1(x), . . . , ψQ(x)]
⊤, (27)

which can include monomials or Legendre/Hermite polynomials. The data-driven approximation of the generator will
essentially involve the projection of the infinite-dimensional Koopman and P-F generators on the finite-dimensional
space spanned by the basis function (27). Following [Klus et al., 2020], we define:

Ψ̇(x, ẋ) = [ψ̇1(x, ẋ), . . . , ψ̇Q(x, ẋ)]
⊤, (28)

ψ̇k(x, ẋ) = (∇xψk)
⊤ẋ =

∑n
j=1

∂ψk

∂xj

dxj

dt
(29)

The partial derivatives of the basis function are computed analytically which is required for ψ̇k(x, ẋ). Note that we

also need
dxj

dt
which is simply denoted by ẋj . The value of ẋj is approximated using finite differences:

ẋj ≈
xj − xj−1

∆t
(30)

where xj−1 and xj are the j − 1th and jth data point in the system trajectory and ∆t is the time difference between
two consecutive data points. A more sophisticated finite-difference method can be used, e.g., total variation regulariza-
tion [Chartrand, 2011] for noisy data and discontinuous derivatives, and also second-order central difference for better
accuracy. Then, the Koopman generator approximate Li for each input case can be approximated as:

Li = argmin
Li

||Bi −AiLi||F ,

Ai =
1

Ti

∑Ti

ℓ=1 Ψ(Xi,ℓ)Ψ(Xi,ℓ)
⊤,

Bi =
1

Ti

∑Ti

ℓ=1 Ψ(Xi,ℓ)Ψ̇(Xi,ℓ, Ẋi,ℓ)
⊤,

(31)

and Xi,ℓ and Ẋi,ℓ denote ℓth column of Xi and Ẋ, respectively. The solution of (31) is explicitly known, Ki = A
†
iBi,

where † stands for pseudo-inverse. Given the Koopman generator approximates for f , Kf ≈ L0, using the linearity of
the generators,

Kgj
≈ Lj − L0, j = 1, . . . ,m. (32)

The above is one method to estimate Kf and Kgj
. They can also be approximated jointly by using trajectories subject

to arbitrary inputs. Next, we approximate the divergence of vector field f as

∇ · f = ∇ · [K0x1, . . . ,K0xn]
⊤ ≈ ∇ · (C⊤

x L0Ψ) (33)

where Cx is a coefficient vector for x, i.e., x = C
⊤
xΨ, which can be found easily if Ψ includes 1st-order monomials

(i.e., x). Similarly, the divergence of vector fields gj are approximated as

∇ · (gj) ≈ ∇ · (C⊤
x LjΨ), j = 1, . . . ,m. (34)

from (25), (32)–(34), P-F generators are approximated by

Pj=Lj +∇ · (C⊤
x LjΨ)I (35)

for j = 0, 1, . . . ,m.

2ej ∈ R
m denotes unit vectors, i.e., jth entry of ej is 1, otherwise 0.

8
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Remark 5 While the above procedure describes an approach for the approximation of the Koopman generators cor-
responding to the drift vector field, f(x), and control vector fields, gj(x), for j = 1, . . . ,m using zero input and step
input, it is also possible to identify these vector field using random inputs. The problem of data-driven identification
of the system dynamics using random or arbitrary control input will involve identifying bilinear vector fields. It can
again be reduced to a least-square optimization problem similar to (31).

To parameterize the optimization variables, we express polynomial functions a(x), b(x), and cj(x) with respect to the
basis Ψ(x). Let Ca, Cb, and Ccj be the coefficient vectors used in the expansion of a(x), b(x), and cj(x):

a(x)=C
⊤
aΨ(x), b(x)=C

⊤
b Ψ(x), cj(x)=C

⊤
cj
Ψ(x). (36)

Note that Cb contains constant coefficients of b(x) since b(x) is a known polynomial function. Similarly, let Cab, Cbc1 ,
. . . , Cbcm denote coefficient vectors of polynomials, a(x)b(x), and b(x)cj(x), for j = 1, . . . ,m, namely,

a(x)b(x) = C
⊤
abΨ(x), b(x)cj(x) = C

⊤
bcj

Ψ(x). (37)

Constructing the coefficient vectors Cab, and Cbcj from the coefficient vectors Ca, Cb, and Ccj requires trivial numeri-

cal procedures. In case that Ψ(x) is a monomial, finding these coefficient vectors are straightforward. If Ψ(x) is not
a monomial vector, it involves more complicated numerical steps. One approach is to express the basis with respect to

a common monomial vector M(x) such that Ψ(x) = C
⊤
ΨM(x) where CΨ is a coefficient matrix that connects Ψ(x)

and M(x). Then, we can find coefficient vectors in terms of the monomial vector M(x), i.e., a(x)b(x) = C
′

abM(x)

and b(x)cj(x) = C
′

bcj
M(x), and convert these coefficient vectors back to the original basis Ψ(x) by multiplying

pseudo-inverse of CΨ, i.e., Cab = C
†
ΨC

′

ab and Cbcj = C
†
ΨC

′

bcj
. The implementation of this procedure can be done

easily using polynomial toolbox provided in SOSOPT in Matlab [Seiler, 2013].

Now, using approximated infinitesimal PF generators in (35), we restate the LHS of (23) in (19) and (17) as:

(1 + α)b(x)
(

C
⊤
a P0Ψ(x) +

∑m
j=1C

⊤
c PjΨ(x)

)

− α
(

C
⊤
abP0Ψ(x) +

∑m
j=1C

⊤
bcj

PjΨ(x)
)

− γa(x)b(x).
(38)

Remark 6 In [Korda and Mezić, 2018, Klus et al., 2020], convergence results for the finite-dimensional approxima-
tion of the Koopman operator and generators in the limit as the number of basis functions and data points goes to
infinity is studied. These convergence results combined with the finite-dimensional approximation of the cost func-
tion for the optimization problem can be used to provide theoretical justification for the solution obtained using the
finite-dimensional approximation of the infinite-dimensional optimization problem.

In the following sections, we discuss the finite dimensional approximation of the cost function leading up to the
finite dimensional approximation of the infinite dimensional optimization problems (17) and (19) involving L1 and L2

norms on control input respectively.

4.2 Optimal Control with L1 norm of feedback control

Using the assumed paramaterization for the ρ and ρ̄ from (22) the cost function for the L1 OCP problem in (17) can
be written as

inf
a≥0,c

∫

X1

q(x)a(x)

b(x)α
+
β||c(x)||1
b(x)α

dx (39)

where a small neighborhood of the origin, N = {x ∈ X : |x| ≤ ǫ, ǫ > 0}, is chosen as a polytope and excluded from
the integration of the cost function to remove singularity of the density at the origin (refer to Remark 2).

To make (39) solvable, we introduce dummy polynomials s(x) = [s1(x), . . . , sm(x)]⊤, adding constraints:

s(x)− c(x) ≥ 0, s(x) + c(x) ≥ 0. (40)

The polynomial s is expressed in terms of the basis function using the coefficient vector Csj as:

sj(x)=C
⊤
sj
Ψ(x), (41)

for j = 1, . . . ,m. Substituting (37) in the integral cost (39), we obtain following finite dimensional approximation of
the cost function.

d⊤
1 Ca + β

∑m
j=1d

⊤
2 Csj (42)

9



Data-Driven Optimal Control via Linear Transfer Operators: A Convex Approach A PREPRINT

where d1 and d2 are the coefficient vectors given by

d1 =

∫

X1

q(x)Ψ(x)

b(x)α
dx, d2 =

∫

X1

Ψ(x)

b(x)α
dx. (43)

Using (40)–(43) and SOS positivity constraints denoted by Σ[x], (39) can be expressed as a SOS problem as:

min
Ca,Ccj

,Csj

j=1,...,m

d⊤
1 Ca + β

∑m
j=1d

⊤
2 Csj

s.t. (38) ∈ Σ[x], a(x) ∈ Σ[x],

(s(x)− c(x)) ∈ Σ[x], (s(x) + c(x)) ∈ Σ[x].

(44)

4.3 Optimal Control with L2 norm of feedback control

L2 OCP in (19) is restated as:

min
a,c

∫

X1

q(x)a(x)

b(x)α
+ β

c(x)⊤Rc(x)

a(x)b(x)α
dx

s.t. (38) ≥ 0, a(x) ≥ 0.

(45)

by following the same parameterization in (22). Subsequently, we reformulate (45) as follows:

min
a,c,w

∫

X1

q(x)a(x)

b(x)α
+ β

w(x)

b(x)α
dx

s.t. (38) ≥ 0, a(x) ≥ 0,

M(x) =

[

w(x) c(x)⊤

c(x) a(x)R−1

]

< 0,

(46)

where the positive semidefinite (PSD) of M(x) is a result of applying the Schur complement lemma on L2 cost

bounded by w(x), i.e.,
c(x)⊤Rc(x)

a(x) ≤ w(x). Now, to algebraically express M(x) < 0, we introduce the lemma:

Lemma 11 (Positive semidefinite polynomial matrix) [Scherer and Hol, 2006] A p× p matrix H(x) whose entries are polyno-
mials is positive semidefinite with respect to the monomial vector z(x), if and only if, there exist D < 0 such that

H(x) = (z(x)⊗ Ip)
⊤
D (z(x) ⊗ Ip) ,

where ⊗ denotes a Kronecker product (tensor product) and Ip is an identity matrix with dimension p.

Following Lemma 11, let z(x) be a monomial vector with the maximum degree equal to floor(deg(Ψ(x))/2) + 1,
then M(x) in (46) is PSD when there exists D < 0 such that M(x) = H(x). Using this result and (43), a SOS
problem equivalent to (46) can be formulated as follows:

min
Ca,Cw,Ccj
j=1,...,m

d⊤
1 Ca + βd⊤

2 Cw

s.t. (38) ∈ Σ[x], a(x) ∈ Σ[x], (47)

w(x) −H11(x) = 0, c(x) −H12(x) = 0,

a(x)R−1 −H22(x) = 0, D < 0

where Hij(x) denotes the ijth entry of H(x); and Cw is a coefficient vector of w(x), i.e., w(x) = C
⊤
wΨ(x).

Remark 7 To obtain b(x), the control Lyapunov function for the linearized dynamics, we first identify the linearized
control system dynamics from time-series data collected near the origin. to identify the linear dynamics, we use the
gEDMD algorithm discussed in Section 4.1 for the special case of identity basis functions i.e., Ψ(x) = x. Once
linearized system dynamics is identified we use linear quadratic regulator based optimal control for the construction
of b(x), namely b(x) = x⊤Px, where P is the solution of algebraic Riccati equation (ARE). Following Assumption 3,
we know that there exists a positive definite solution, P , to the ARE, which serves as control Lyapunov function for the
linearized control system.

10
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5 Simulation Results

In this section, we present simulation results to illustrate the proposed data-driven control framework. All the simula-
tion results are performed using MATLAB on a desktop computer with 64GB RAM. We have taken the value of α = 4
and β = 1 for all our examples. The cost function and control matrix for each example is q(x) = xTx and R = 1
respectively. Furthermore, the cost function is computed outside the region N of the neighborhood. However, we did
not implement a local stabilizing controller around the origin and hence no blending controller (Remark 2). Also, the
maximum degree of a(x) is taken to be 1. We take the simulation time step ∆t = 0.01 [s] for sampling time-series
data, and also, Legendre polynomials are used as dictionary functions for all examples. We use SOSOPT [Seiler, 2013]
toolbox to solve the formulated SOS optimization problems for the OCPs in (44) and (47). All other parameters used
for each example are listed in Table 1.

Example 1: Consider the dynamics of controlled simple nonlinear numerical system:

ẋ1 = −x1 + x2, ẋ2 = −0.5(x1 + x2) + 0.5x21x2 + x1u.

With this example we use L2 cost on the control input. For this example, optimal control and optimal cost can be
found by solving the HJB equation [Primbs and Nevistić, 1996] analytically and are given as below:

u⋆(x) = −x1x2, V ⋆(x) = 0.5x21 + x22.

Next, using the proposed method, we get an optimal control with discount factor γ = 0 as follows.

k⋆(x) = −1.38x1x2 + 0.00005x1 − 0.00004x2 − 0.0063

By rounding off the coefficients of k⋆(x), we see that u⋆(x) = k⋆(x). The small mismatch in decimal is due to
the choice of h0(x), which is unique to our formulation but is absent from the primal formulation of OCP. The
simulation results are obtained by solving inequality in the constraints corresponding to the case where h0 ≥ 0.
In this example, we collected 2 × 104 time-series data points by simulating the system to estimate the Koopman
generator. Figure 1 shows the comparison of trajectories simulated from the closed-loop system using the optimal
control solutions obtained by the HJB approach (dotted red) and the proposed data-driven convex approach (solid
black).

Example 2. Consider the dynamics of controlled Van der Pol oscillator as follows:

ẋ1 = x2, ẋ2 = (1 − x21)x2 − x1 + u.

In this example, we solve the L2 OCP for different values of the discount factor. Total 2 × 104 time-series data
points are collected from repeated simulations to estimate the Koopman generator. Fig.2 and 4 show the trajectories
of the closed-loop system starting from arbitrary initial points obtained from discount factor values, γ = 0 and γ = 1,
respectively. We notice that the controller becomes more aggressive for larger γ and trajectories converge to the origin
faster. This is expected as the OCPs achieve optimal control solutions at an exponential rate for γ > 0 for which the
closed-loop system converges faster than uniform stability. On the other hand, we observe that, for negative discount
factor γ < 0, the control solution is not guaranteed to stabilize the system to the origin, and the closed-loop dynamics
converge to a limit cycle as shown in Fig. (4) resulting from γ = −5. This is again expected as the cost function is
decreasing exponentially, and even without the stabilizing feedback controller, the optimal cost function is finite.

Example 3: Consider the dynamics of controlled simple inverted pendulum involing nonpolynomial dynamics:

ẋ1 = x2, ẋ2 = − sinx1 − 0.2x2 + u

The number of data points used in the estimation of the Koopman operator equals 2× 104. The simulation results for
the L2 optimal control for different discount factor γ are shown in Fig.5 - Fig.7. Similar to Example 2, we notice that,
for zero and positive discount factor γ, the controller obtained by positive discount factor can stabilize the origin at a

Table 1: Parameters for different examples

Ex 1 Ex 2 Ex 3 Ex 4

X [−5, 5]2 [−5, 5]2 [−5, 5]2 [−5, 5]3

N [−0.1, 0.1]2 [−0.1, 0.1]2 [−0.1, 0.1]2 [−0.1, 0.1]3

deg(c(x)) 2 6 3 6
deg(s(x)) 2 7 7 6
Ψ(x) 4th order 9th order 7th order 8th order

11
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Figure 1: L2 OCP results of system in Example 1, showing converging state trajectories for γ = 0.

faster rate than the case of γ = 0 whereas, for negative discount factor, the origin is not stabilized for the closed-loop
system.

Example 4: Consider the controlled Lorentz attractor:

ẋ1 = σ(x2 − x1), ẋ2 = x1(ρ− x3)− x2 + u, ẋ3 = x1x2 − ηx3,

where σ = 10, ρ = 28, and η = 8
3 . The open-loop dynamics of the Lorentz system with the above parameter values

are chaotic. For this example, we provide simulation results with L1 optimal control with γ = 0. We notice that the
optimal control can stabilize the system.

6 Conclusion

A systematic convex optimization-based framework is provided for optimal control of nonlinear systems with a dis-
counted cost function. In contrast to the existing literature of OCP with discounted cost, we consider the OCP problem
with both positive and negative discount factor and provide a condition for the existence of optimal control. The OCP
is formulated in the dual space of density function as an infinite-dimensional convex optimization problem. A new
data-driven algorithm is provided for the computation of optimal control combining methods from Sum-of-Squares
optimization and data-driven approximation of linear transfer operators. Simulation results are presented to verify the
developed framework on data-driven optimal control.

Appendix

Proof of Theorem 5
Consider the feedback control system

ẋ = f(x) + g(x)k(x)

12
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Figure 2: Trajectories of closed-loop system with L2 OCP solution for γ = 0 for Van der pol Oscillator.

and let Pct and U
c
t be the P-F and Koopman operator for the feedback control system. Using the definition of the

Koopman operator, the cost in (13) can be written as

J(µ0) =

∫

X1

∫ ∞

0

eγt[Uct(q + k⊤Rk)](x)dth0(x)dx.

Using the duality and linearity of the Koopman and P-F operators, we obtain

J(µ0) =

∫

X1

∫ ∞

0

(q + k⊤Rk)(x)eγt[Pcth0](x)dtdx.

Defining

ρ(x) :=

∫ ∞

0

eγt[Pcth0](x)dt, (48)

the J(µ0) can be written as

J(µ0) =

∫

X1

(q(x) + k(x)⊤Rk(x))ρ(x)dx. (49)

Defining ρ̄(x) := k(x)ρ(x), the cost function can be written in the form given in (19). We next show that ρ(x) and
ρ̄ satisfies the constraints in (19). Following Assumptions 4, we know that the state cost q is uniformly bounded away
from zero in X1 and optimal cost function is finite and hence we have

∞ > J(µ0) ≥

∫

X1

q(x)ρ(x)dx ≥ c

∫

X1

ρ(x)dx (50)

where c is the lower bound for the state cost function q(x) on X1. The above proves that there exists a constant M
such that

∫

X1

ρ(x)dx =

∫

X1

∫ ∞

0

eγt[Pcth0](x)dtdx ≤M. (51)

13
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Figure 3: Trajectories of closed-loop system with L2 OCP solution for γ = 1 for Van der pol Oscillator.

We next claim that

lim
t→∞

eγt[Pth](x) = 0 (52)

for µ0 almost all x ∈ X1. Using Barbalat Lemma, we know that for f(t) ∈ C1, and limt→∞ f(t) = α. If f ′(t) is
uniformly continuous, then limt→∞ f ′(t) = 0.

Letting f(t) =
∫ t

0 e
γτ
∫

X1
[Pcτh0](x)dxdτ and hence f ′(t) = eγt

∫

X1
[Pth0](x)dx. By Barbalat Lemma, since

eγt
∫

X1
[Pcth0](x)dx is uniformly continuous w.r.t. time for γ ≤ 0. The uniformly continuity follows from the

definition of the P-F semi-group and the fact that solution of dynamical system is uniformly continuous w.r.t. time.
We have

0 = lim
t→∞

eγt
∫

X1

[Pcth0](x)dx = lim
t→∞

∫

X1

eγt[Pcth0](x)dx

which implies
lim
t→∞

eγt[Pcth0](x) = 0 (53)

for a.e. x w.r.t. µ0 in X1. Next, we claim that ρ(x) as defined in (48) can be obtained as a solution of the following
equation

∇ · ((f(x) + g(x)k(x))ρ(x)) = γρ(x) + h(x), (54)

for x ∈ X1. Substituting (48) in (54), we obtain

∇ · (fcρ) =

∫ ∞

0

∇ · (fc(x)e
γt[Pcth0](x))dt

=

∫ ∞

0

−eγt
d

dt
[Pcth0](x)dt

−eγt[Pcth0](x)|
∞
t=0 +

∫ ∞

0

γeγt[Pcth0](x)dt

= h0(x) + γρ(x) (55)

14
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Figure 4: Trajectories of closed-loop system with L2 OCP solution for γ = −5 for Van der pol Oscillator.

In deriving (55) we have used the infinitesimal generator property of P-F operator Eq. (4) and the fact that
limt→∞ eγt[Pcth0](x) = 0 following (53). Furthermore, since h0(x) > 0, it follows that ρ(x) > 0 from the positivity
property of the P-F operator. Combining (49) and (55) along with the definition of ρ̄, it follows that the OCP
problem can be written as convex optimization problem (17). The optimal control k⋆(x) obtained as the solution of
optimization problem (17) is a.e. uniform stable (for γ = 0) follows from the results of Theorem 2 using the fact
that closed loop system satisfies (54) with ρ that is integrable. The optimal solution ρ⋆(x) ∈ L1(X1) ∩ C1(X1,R≥0)
follows from the fact that h0 ∈ L1(R

n,R>0) ∩ C1(Rn) and the definitions of ρ (48) and P-F operator (3).

Proof of Theorem 10 The proof of this theorem follows exactly along the lines of proof of Theorem 5 until equa-
tion (51). Unlike the proof of Theorem 5, where the claim (52) is proved using Barbalat Lemma, in this proof

limt→∞[Pth0](x) = 0 for µ0 almost all x ∈ X1 follows from Assumption 9. As µ0(Bt) ≤ Me−γ
′t implies

eγt[Pth0](x) → 0 for µ0 a.e. x ∈ X1. The rest of the proof then follows again along the lines of proof of Theorem 5.
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