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Abstract

We survey the impact of Lieb’s influential paper “Proofs of some conjectures on per-
manents” [J. Math. Mech. 16 1966, 127–134], which introduced the famous permanental
dominance conjecture. This conjecture has defied all attacks for over half a century, although
a number of related conjectures have recently been resolved.

1 Introduction

This is a survey article focusing on the legacy of Lieb’s paper [28] on permanents of matrices in
Hn, the set of n×n positive semi-definite Hermitian matrices. Let Sn denote the symmetric group
on {1, 2, . . . , n} and 1n denote the identity permutation in Sn. The permanent of an n×n complex
matrix A = [ai,j] is defined by

perA =
∑

σ∈Sn

n
∏

i=1

ai,σ(i).

More generally, if G is a subgroup of Sn and χ is any character of G then the (normalised)
generalised matrix function fχ is defined by

fχ(A) =
1

χ(1n)

∑

σ∈G

χ(σ)

n
∏

i=1

ai,σ(i).

If A ∈ Hn then fχ(A) is a non-negative real number. If G = Sn and χ is irreducible then fχ is
called a (normalised) immanant. If χ is the principal/trivial character then fχ is the permanent,
while if χ is the alternating character then fχ is the determinant. Taking G to be the trivial group
yields the diagonal product

h(A) =

n
∏

i=1

ai,i.

These three special examples of generalised matrix functions are related by

0 6 detA 6 h(A) 6 perA (1)

for all A ∈ Hn. The second inequality was shown by Hadamard [20] and the last inequality is due
to Marcus [29], [30].
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Lieb’s work [28] was motivated by results such as (1). He observed that “the few inequalities
that are known for the permanent are suspiciously similar to certain special cases of classical
inequalities for the determinants of such matrices – the only difference being that the direction
of the inequality is reversed”. Applying this principle to the classical result of Schur [50], which
states that detA 6 fχ(A) for all A ∈ Hn, Lieb proposed:

Conjecture 1. Let G be a subgroup of Sn, and let χ be a character of G. Then perA > fχ(A)
for any A ∈ Hn.

This conjecture subsequently became known as the “permanental dominance conjecture”. How-
ever, as noted by Zhang [62], there is some confusion in the literature between this name and the
“permanent on top conjecture”. We will use the latter name for the related Conjecture 4 below.

The special case of Conjecture 1 in which χ has degree 1 had earlier been the subject of an
open problem in [31], which was then listed as Problem 2 in Minc’s catalogue of open problems
[39]. Conjecture 1 was listed as Conjecture 42 in [40]. As we shall see in §2, the permanental
dominance conjecture has motivated a lot of research, whilst gaining a degree of notoriety. Despite
considerable scrutiny, it remains open 56 years later. The other key contribution from Lieb [28]
was the following result. An alternative proof of this theorem was subsequently given by Djoković
[9].

Theorem 1. Let

A =

[

B C
C∗ D

]

∈ Hn (2)

where B and D are b× b and d× d blocks, respectively. For any scalar λ, define

Aλ =

[

λB C
C∗ D

]

.

Now consider P (λ) = perAλ as a polynomial in λ. All coefficients of this polynomial are real and

nonnegative.

Notice that perA = P (1) is the sum of the coefficients of P (λ), which therefore dominates any
individual coefficient. In particular, it dominates the coefficient of λb, which gives:

Corollary 1. For A in (2) we have perA > (perB)(perD). Equality holds if and only if A has a

zero row or C is the zero matrix.

Also, if b = d then (perC)(perC∗) is the constant term in P (λ), which yields:

Corollary 2. If b = d in (2) then perA = P (1) > (perB)(perD) + (perC)(perC∗). Equality

holds if and only if A has a zero row or C is the zero matrix.

In his MathSciNet review of [28], Marcus described the proofs of these results as “extremely
ingenious and intricate arguments”. Lieb also stated a determinantal analogue of Theorem 1.

The following notation will be used throughout this paper. The direct sum of matrices A and
B will be denoted A⊕ B, while their tensor/Kronecker product will be denoted A⊗ B and their
Hadamard (elementwise) product will be denoted A◦B. For any matrix A the submatrix obtained
by deleting row i and column j from A will be denoted A(i|j). The Hermitian adjoint (conjugate
transpose) of A will be denoted A∗, while A will denote the conjugate of A. We use Cn to denote
the subset of all matrices [ai,j] ∈ Hn that satisfy ai,i = 1 for all 1 6 i 6 n. The matrices in Cn are
called correlation matrices.
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2 Related conjectures

In this section we examine the relationships between a raft of conjectures that are related to Lieb’s
permanental dominance conjecture. To assist the reader to keep track of all these conjectures,
we summarise their relationships by the implications pictured in Figure 1. We show only the
implications which have historically been demonstrated in the literature prior to the point at
which a conjecture has been proved or refuted. Of course, once a conjecture has been resolved
there are many new (uninteresting) implications that could be added. On the topic of resolution,
the current status of each conjecture is indicated in Figure 1 by a subscript on the conjecture’s
number. A X indicates the conjecture has been proved, a × shows that it has been disproved and
an ? indicates that it remains open. These details will gradually unfold in the historical account
below.

Conj 1? =⇒ Conj 3? =⇒ Conj 2X
⇑

Conj 7× ⇐⇒ Conj 4× =⇒ Conj 6× =⇒ Conj 9× =⇒ Conj 5?
⇓

Conj 10× =⇒ Conj 8× =⇒ Conj 11?

Figure 1: Relationship between various conjectures

We start by noting that Lieb’s work was motivated by two other conjectures. Firstly, Corol-
lary 1 solved the following conjecture by Marcus and Newman, first published as Conjecture
8 in [31]. It is a permanental analogue of a classical result by Fischer [14], who showed that
detA 6 (detB)(detD) for A partitioned as in (2).

Conjecture 2. For A in (2) we have perA > (perB)(perD).

Secondly, we have the following conjecture, which was credited to Marcus as Conjecture 9 in
[31].

Conjecture 3. Let A ∈ Hmk be partitioned into k × k blocks Ai,j, i, j = 1, 2, . . . , m. Let G be the

m×m matrix whose (i, j) entry is per(Ai,j) for i, j = 1, 2, . . . , m. Then

perA > perG. (3)

If the Ai,i are positive definite, then equality holds in (3) if and only if

A = A11 ⊕ A22 ⊕ · · · ⊕Amm.

It was noted in [31] that Conjecture 3 implies Conjecture 2. Also, Lieb [28] showed that
Conjecture 1 implies Conjecture 3, and his Corollary 2 proves the m = 2 case. Pate [42] proved
that Conjecture 3 holds when A is real and m is large enough relative to k.

For any A ∈ Hn we define the Schur power matrix π(A) to be the n!× n! matrix whose (σ, τ)
entry is

∏n
t=1 aσ(t),τ(t), where σ and τ run over all permutations in Sn. The following conjecture

was introduced by Soules [53] and included as Conjecture 31 in [39].

Conjecture 4. Let A = [ai,j ] ∈ Hn. Then perA is the maximum eigenvalue of π(A).
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If A ∈ Hn then π(A) is a principal submatrix of the n-fold Kronecker product ⊗nA, and hence
π(A) ∈ Hn!. It is easy to see that the row and column sums of π(A) equal perA and hence perA is
an eigenvalue. Schur [50] (cf. [3]) implicitly showed that detA is also an eigenvalue, and indeed it
is the lowest eigenvalue of π(A). So Conjecture 4 is equivalent to the assertion that all eigenvalues
of π(A) lie in the interval [detA, perA]. It can be shown (see Lemma 1 in [44]) that fχ(A) is an
eigenvalue of π(A) for any character χ of a subgroup of Sn, from which it follows that Conjecture 4
implies Conjecture 1.

Pate [43] proved a special case of Conjecture 4 in order to show that Conjecture 1 holds for
immanants associated with two part partitions. Soules [54] showed that if Conjecture 4 is false for
real matrices then for the smallest order for which it fails there must be a counterexample which is
singular, has zero row sums and has several other properties. Interestingly, as we will see shortly,
Drury [11] did eventually show that Conjecture 4 fails for real matrices.

Showing similar intuition to that which motivated Lieb [28], Chollet [8] proposed the following
permanental analogue of Oppenheim’s inequality for determinants:

Conjecture 5. If A,B ∈ Hn then

per(A ◦B) 6 (perA)(perB). (4)

Chollet himself showed that it suffices to consider the case when B = A, when (4) reduces to
per(A ◦ A) 6 (perA)2. By a standard scaling argument, we also lose no generality by assuming
that A ∈ Cn. The argument goes like this. If A = [ai,j ] has a zero row then both sides of (4)
are zero and there is nothing to prove. So we may assume that ai,i > 0 for each i. Now define a

diagonal matrix D = [di,j] by di,i = a
−1/2
i,i . Replace A by DAD and note that DAD ∈ Cn. Also

both per(A ◦A) and (perA)2 have been scaled by the same factor, namely h(A)−2, which justifies
the claim.

Let V = V (A) = π(A)π(A)∗ = π(A)2. Note that for any k,

Vk,k =
n!
∑

j=1

π(A)k,jπ(A)
∗

j,k =
n!
∑

j=1

|π(A)k,j|2 =
∑

τ∈Sn

∣

∣

∣

n
∏

i=1

ai,τ(i)

∣

∣

∣

2

=
∑

τ∈Sn

n
∏

i=1

|ai,τ(i)|2

= per([|ai,j|2]) = per(A ◦ A).

Also the sum of the elements in row k of V is

n!
∑

j=1

Vk,j =
n!
∑

j=1

n!
∑

i=1

π(A)k,iπ(A)i,j =
n!
∑

i=1

π(A)k,i

n!
∑

j=1

π(A)i,j =
n!
∑

i=1

π(A)k,i perA = (perA)2.

So to prove Conjecture 5 it suffices to show that π(A)2 has row sums that exceed its diagonal
entries. Interestingly, if A ∈ Cn then π(A) itself has the targetted property, since its row sums are
perA, which exceeds h(A) = 1 = ak,k for each k.

Zhang [61] initiated a new line of attack on Conjecture 5 by proving several properties of a
“maximising matrix”, namely a matrix X ∈ Cn that maximises per(A ◦X) for a given A ∈ Cn.

Soon after Chollet’s conjecture, Bapat and Sunder [2] proposed the following conjecture, which
is stronger, given (1). Both conjectures are implied by Conjecture 4 (see, for example, [36]).

Conjecture 6. If A,B ∈ Hn then per(A ◦B) 6 (perA)h(B).
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Using a similar scaling argument to the one we gave for Conjecture 5, Zhang [60] noted that
Conjecture 6 is true if and only if it is true for all correlation matrices A and B. Zhang also showed
that it is true if A,B ∈ Cn and every off-diagonal entry of B is equal to some fixed t in the interval
[0, 1].

Bapat and Sunder [3] proved Conjecture 4 for n 6 3. Marcus and Sandy [32] note that the
n = 3 case of Conjecture 5 follows immediately (see also Gregorac and Hentzel [17]). In the
same paper, Bapat and Sunder [3] gave a reformulation of Conjecture 4 which then appeared as
Conjecture 32 in [40] as follows:

Conjecture 7. Let c be a complex valued function on Sn satisfying

∑

σ,τ∈Sn

x(τ) c(στ−1) x(σ) > 0

for all complex valued functions x on Sn. Then

c(1n) perA >
∑

σ∈Sn

c(σ)

n
∏

i=1

ai,σ(i)

for any A = [ai,j ] ∈ Hn.

Bapat and Sunder’s paper [3] also contained this conjecture:

Conjecture 8. If A is positive definite, then perA is the largest eigenvalue of the matrix
[

ai,j perA(i|j)
]

.

Much later, Beasley [4] made the following conjecture, which is stronger than Conjecture 5 and
weaker than Conjecture 6:

Conjecture 9. If A,B ∈ Hn then

per(A ◦B) 6 max
{

(perA)h(B), (perB)h(A)
}

. (5)

He proved this conjecture holds for n 6 3 as well as noting that (5) is true if and only if it
holds for all correlation matrices (using a similar scaling argument to that seen above).

Let A ∈ Hn and 1 6 k 6 n. We define Ck(A) to be an
(

n
k

)

×
(

n
k

)

matrix whose α, β entry is
perA[α|β]× perA(α|β). Here, the entries are indexed by α, β ⊂ {1, 2, . . . , n} with |α| = |β| = k
(we can impose lexicographic order on these row and column indices, just for concreteness, but
the order is not important for our purposes). Also A[α|β] is the submatrix induced by rows α and
columns β, whereas A(α|β) is the submatrix formed by the removal of those rows and columns.
Pate [49] used Corollary 1 to deduce that perA dominates the diagonal entries of Ck(A). He also
showed that perA is an eigenvalue of Ck(A), and made the following conjecture.

Conjecture 10. Let A ∈ Hn and 1 6 k 6 n. Then the largest eigenvalue of Ck(A) is perA.

The k = 1 case of Conjecture 10 is precisely Conjecture 8. Pate showed that Conjecture 8
holds for a “large subcone” of Hn and also for all nonnegative real matrices. Pate also raised the
challenge of proving the following consequence of Conjecture 8:

Conjecture 11. For A ∈ Hn,

a11 perA(1|1)− a12 perA(1|2)− a21 perA(2|1) + a22 perA(2|2) 6 2 perA.
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Conjecture 4 had achieved quite some prominence, in part because of the number of conse-
quences a proof would have (see Figure 1). However, in the last five years or so a cascade of
counterexamples have demolished most of those conjectures. Shchesnovich [51] was the first to dis-
prove Conjecture 4, using a numerical search to find a rank 2 complex counterexample A = W ∗W ,
where

W =

[

4− 2i 2 + 3i −4 + 4i −3 − 4i 1
2 + 4i 3i 2 + 4i 3i −5 + 7i

]

.

He found that perA = 814 016 640 is smaller than the largest eigenvalue of π(A), which is
320(2 185 775 +

√
160 600 333 345).

Drury [10] found a rank 2 complex A ∈ C7 such that A and B = A∗ provide a counterexample
to Conjecture 6. His A = X∗X where

X =
1√
2

[ √
2 0 1 1 1 1 1

0
√
2 1 ω ω2 ω3 ω4

]

and ω = e2πi/5 is a primitive fifth root of unity. Note that per(A ◦ B) = 6185/128 > 45 = perA.
Drury then followed that in [11] with a geometrically inspired 16 × 16 real counterexample to
the same conjecture. He took a compound of a regular dodecahedron and a regular icosahedron
inscribed together in the unit sphere. He then chose one representative from each of the 16 pairs of
antipodal vertices and wrote its coordinates as one row in a 16× 3 matrix Y . The real correlation
matrix A = Y Y ∗ provided a counterexample to Conjecture 6 (with B = A). Drury also noted that
A gives a real counterexample to Conjecture 4. He did not observe, but it is easy to see, that both
his counterexamples to Conjecture 6 are also counterexamples to Conjecture 9. Finally, Drury [12]
gave a rank 2 complex counterexample to Conjecture 8. Let A = Z∗Z, where

Z =

[

−7 + 4i 9− 3i −6 + 2i 3 + 4i 7 + 6i 4− 4i i 5− 8i
4− 5i 1 + 4i −8 − 2i −7 + 4i 1− 4i 1− 8i 8− 6i 1− 3i

]

.

Then perA = 2 977 257 622 144 118 400 and the largest eigenvalue of
[

ai,j perA(i|j)
]

is approxi-
mately 1.7% larger at ≈ 3.028× 1018.

Tran [59] showed that Conjecture 10 is implied by Conjecture 4, before developing the following
(human checkable) counterexample to both conjectures. Consider the rank 2 matrix

H =













3 1− 2i −1 1 + 2i 1
1 + 2i 3 1− 2i −1 1
−1 1 + 2i 3 1− 2i 1

1− 2i −1 1 + 2i 3 1
1 1 1 1 1













∈ H5.

Then perH = 504 and the spectrum of π(H) is 5125, 5041, 4485, 3844, 3204, 2404, 1604, 093. In
particular, perH is not the largest eigenvalue of π(H), so H is a counterexample to Conjecture 4.
Tran also showed that H is a counterexample to Conjecture 10. Of course, on the basis of the
implications in Figure 1, [10], [11] and [12] all provided counterexamples to Conjecture 4. Interest-
ingly, none of the counterexamples mentioned so far appear to disprove Conjecture 1, Conjecture 5
or Conjecture 11.

Both Drury [12] and Zhang [62] pose questions regarding the smallest orders for which the
disproved conjectures fail. Conjecture 4 is known to hold for n 6 3 and fail for n > 5. The n = 4
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case remains open. Shchesnovich [51] searched for counterexamples for order 4 but was unable to
find any. Similarly, there is the question of the order of the smallest real counterexample (currently
the smallest known has order 16). Another challenge is to search for new bounds on the eigenvalues
of π(A) now that we know they can exceed perA.

It is well-known that π(A) is unitarily similar to a block diagonal matrix where the blocks are
indexed by the irreducible representations of Sn. Hence each eigenvalue of π(A) can be associated
with an irreducible character of Sn, and hence with a partition of n. In the same way, any
counterexamples to Conjecture 4 can also be associated with a particular partition of n. Drury
[12] calculated that the partitions associated with the counterexamples in [51] and [12] are (3, 2)
and (7, 1) respectively. He then conjectured that these are the only problematic cases in the
following sense:

Conjecture 12. Suppose that the Ferrers diagram for a partition Π of n does not contain the

Ferrers diagram for (3, 2) nor (7, 1). Then for all A ∈ Hn, the largest eigenvalue of the block of

π(A) associated with Π is at most perA.

To clarify what “contains” means in this last conjecture, the Ferrers diagram for Π contains
(3, 2) if the first part of Π is at least 3 and the second part is at least 2. Drury [12] also conjectures
that Conjecture 8 holds for real matrices, and that Conjecture 6 holds for real matrices of rank 2.

3 Lieb’s legacy

In the previous section we examined many conjectures which had been inspired either directly or
indirectly by Lieb’s paper [28]. Those conjectures have undoubtedly prompted much research of
permanents of Hermitian matrices, even though many of the conjectures are now known to be
incorrect. In this section we examine other aspects of the legacy of [28].

We begin by briefly reviewing some of the highlights of progress on Conjecture 1. Any reader
who is interested in further details is encouraged to seek out the expositions by Merris [36], [37],
James [23], [24], Pate [44], [46], [47], Cheon and Wanless [7], Bapat [1] and Zhang [62], among
others.

Merris [35] gave the following upper bound on generalised matrix functions, in the spirit of
Conjecture 1, but known to be weaker [36].

Theorem 2. Let G be a subgroup of Sn, and let χ be a character of G. Then

(h(An))1/n > fχ(A)

for any A ∈ Hn.

Most progress on the permanental dominance conjecture has been made on its specialisation to
immanants. For example, as a culmination of a series of papers by Pate and others, we know [46]
that Conjecture 1 is true for all immanants when n 6 13. In comparison, the general conjecture
has only been shown for n 6 3. Tabata [57], [58] examined the n = 3 case in detail and showed
strict inequality holds when χ is not the principal character. Interestingly, James [24] discovered
that the following matrix in H4









√
3 i i −i

−i
√
3 i i

−i −i
√
3 −i

i −i i
√
3
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achieves equality in Conjecture 1 when G is the alternating group A4 and χ is the character of
that group that satisfies χ((12)(34)) = 1 and χ((234)) = e2πi/3. It follows that for any n > 4 there
is at least one non-principal character which achieves equality in Conjecture 1 for some A ∈ Hn.

To describe the results which have been proved on immanants we define a partial order 4 on
the set of partitions of an integer n. Let λ and µ be two such partitions and let χ and χ′ be the
characters associated with λ and µ respectively by the well known bijection between partitions of
n and irreducible characters of Sn. By λ 4 µ we will mean that fχ(H) 6 fχ′(H) for all H ∈ Hn.
Let Jn ∈ Hn be the matrix in which ever entry is 1. Note that, f(3,1)(J2 ⊕ J2) < f(2,2)(J2 ⊕ J2) so
it is not true that (2, 2) 4 (3, 1). Similarly, f(3,1)(J3 ⊕ J1) > f(2,2)(J3 ⊕ J1) so that (3, 1) 4 (2, 2)
also fails. Hence 4 is not a total order. James [24] notes that using similar tests involving direct
products of blocks Ji for various values of i, it can be shown that for two partitions λ, µ of n to
satisfy λ 4 µ it is necessary but not sufficient that µ majorises λ.

The result of Schur [50] implies that (1n) 4 λ for all partitions λ of n. The specialisation of
the permanental dominance conjecture to immanants asserts that for all λ,

λ 4 (n). (6)

The following beautiful theorem of Heyfron [22] shows that the “single-hook immanants” are
neatly ordered between the determinant and permanent.

Theorem 3.
(1n) 4 (2, 1n−2) 4 (3, 1n−3) 4 · · · 4 (n− 1, 1) 4 (n). (7)

Heyfron’s theorem confirmed a conjecture originally made by Merris [34] (note that Merris [36]
attributes the conjecture to himself and Pierce). A number of partial results in this direction had
been obtained by Merris and Watkins [38] and Johnson and Pierce [26], [27], for example.

Stembridge [55], [56] notes that the analogue of the permanental dominance conjecture is
trivially true for totally positive matrices (real matrices with non-negative minors). He considers to
what extent analogues of Theorem 3 hold for this class of matrices. He also considers inequalities for
immanants of so called Jacobi-Trudi matrices, which are closely connected with the combinatorics
of symmetric functions. Haiman [21] develops these ideas and makes connections with Kazhdan-
Lusztig theory and characters of Hecke algebras.

Chan and Lam [5], [6] sharpened the inequalities in (7) in the case of matrices which are the
Laplacians of trees. More recently, Nagar and Sivasubramanian [41] generalised Chan and Lam’s
work to q-Laplacians.

A general scheme for obtaining inequalities involving immanants is described by Pate in [45]
and many such inequalities can be found throughout his papers. For example, in [47] he showed the
following results for positive integers n, p and k. If k > 2 and n > p+k−2 then (n+p− i, nk, i) 4
(n + p, nk) for 1 6 i 6 p. On the other hand if p > n + k − 1 then (n + p− i, nk, i) 4 (n + p, nk)
whenever p/2 6 i 6 n. In the same paper he obtained the following asymptotic result. For positive
integers k and s there exists an integer Nk,s such that for all n > Nk,s,

(n+ s, nk) 4 (2n+ s, nk−1) 4 (3n+ s, nk−2) 4 · · · 4 (kn+ n + s).

Corollary 1 has proven useful when deriving special cases of the permanental dominance con-
jecture (see e.g. Merris and Watkins [38]). For example, it immediately proves that Conjecture 1
holds when G is a Young subgroup of Sn (that is, a direct product of symmetric groups) and χ is
the trivial character on G.
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Next we turn our attention to other applications of Theorem 1 and its corollaries. Strengthening
(1), Marcus and Soules [33] found upper and lower bounds on perA − h(A) and h(a)− detA for
A ∈ Hn. They also proved this stronger form of Corollary 1:

Theorem 4. For A in (2) we have perA > (perB)(perD) + µn−2‖C‖2, where µ is the smallest

eigenvalue of A and ‖·‖ denotes the Euclidean norm.

Grone and Pierce [19] used Corollary 1 to prove the following bound for permanents of corre-
lation matrices.

Theorem 5. Let A = [ai,j ] ∈ Cn. Then perA > 1
n
‖A‖, with equality if and only if n = 2 or A is

an identity matrix or A is unitarily similar to

Y3 =







1 −1
2

−1
2

−1
2

1 −1
2

−1
2

−1
2

1






.

From Theorem 5 they also deduced the following three corollaries, each of which had been
conjectured by Grone and Merris [18].

Corollary 3. If A ∈ Cn then perA > (h(A2))1/n.

Corollary 4. If A ∈ Hn then (n− 1) perA + detA > nh(A).

Corollary 5. If A ∈ Cn is singular then perA > n/(n− 1).

The following result of Pate [48] was motivated by Corollary 5 (cf. (1)).

Theorem 6. If A ∈ Hn is real, and has rank at most 2, then

perA >
n!

2n−1
h(A).

Frenkel [15] derives analogues of Theorem 1 for Pfaffians and Hafnians, then applies his results
to something called the real linear polarisation constant problem. He also remarks that in order
to derive Theorem 1 it is not necessary to assume that A is positive semi-definite; it suffices for
both the diagonal blocks B and D to be positive semi-definite.

In a follow-up paper, Frenkel [16] obtained an analogue of Corollary 1 for α-permanents. The
α-permanent is defined by

per α(A) =
∑

σ∈Sn

αν(σ)
n
∏

i=1

ai,σ(i), (8)

where ν(σ) is the number of disjoint cycles of the permutation σ. Note that the 1-permanent is
just the permanent. Also, the (−1)-permanent is equal to the determinant, up to a factor of (−1)n.
Frenkel’s Theorem is this:

Theorem 7. Suppose that α is either a nonnegative integer or a real number with α > n − 1.
Then, for A ∈ Hn as in (2) we have perα A > (perαB)(perαD) and 0 6 (−1)n per−αA 6

(−1)n(per−αB)(per−αD).

Another application of Corollary 1 to α-permanents is given by Eisenbaum [13] in her study of
the stochastic comparisons between α-permanental point processes. Shirai [52] studies a function
closely related to (8) and considers for what values of α it is positive on Hn.

For a short paper, [28] has proved an inspiration for investigations in many different directions.
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