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Existence results for a class of quasilinear Schrodinger
equations with singular or vanishing potentials

Marino Badiale*® - Michela Guida?® - Sergio Rolando®

Abstract

Given two continuous functions V' (r) > 0 and K (r) > 0 (r > 0), which may be singular or
vanishing at zero as well as at infinity, we study the quasilinear elliptic equation

—Aw+V (|z))w — w (Aw?) = K(|z])g(w) inRY,

where N > 3. To study this problem we apply a change of variables w = f(u), already used by several
authors, and find existence results for nonnegative solutions by the application of variational methods.
The main features of our results are that they do not require any compatibility between how the potentials
V and K behave at the origin and at infinity, and that they essentially rely on power type estimates of the
relative growth of V' and K, not of the potentials separately. Our solutions satisfy a weak formulations
of the above equation, but we are able to prove that they are in fact classical solutions in R™¥\{0}. To
apply variational methods, we have to study the compactness of the embedding of a suitable function
space into the sum of Lebesgue spaces L% + L2, and thus into LY, (= L% + L) as a particular case.
The nonlinearity g has a double-power behavior, whose standard example is g(t) = min{t9t ~* %271},
recovering the usual case of a single-power behavior when ¢1 = ¢a.

Keywords. Quasilinear elliptic PDEs, unbounded or decaying potentials, Orlicz-Sobolev spaces, compact
embeddings
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1 Introduction
In the present paper, we study the following quasilinear elliptic equation
—Aw+V (|z))w—w (Aw?) = K(|z|)g(w) inRY (1.1

where N > 3,V > 0 and K > 0 are given potentials, and g : R — R is a continuous nonlinearity such
that g(0) = 0. Searching for standing waves solutions, this equation derives from an evolution Schrédinger
equation which has been used to study several physical phenomena (see and the references
therein), such as laser beams in matter [9]] and quasi-solitons in superfluids films [20].

It is not easy to apply variational methods to study (I.I), because the (formally) associated functional
presents unusual integral terms, like fRN w?|Vw|?dz. In recent times, a great amount of work has been
made on equation (I.I) and several techniques have been introduced to overcome these difficulties (see

TT2HT8I2TI22I25H28I30-33138\39] and the references therein). In this paper, following an idea introduced
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in [24]], we exploit a change of variable w = f(u) where f satisfies a suitable ordinary differential equation
(see Section 2). The problem in the new unknown u can be faced with usual variational methods, working

in an Orlicz-Sobolev space. This idea has been used in [14,21L311[32]], among others.

In almost all the papers dealing with (L), the potential V' (be it radial or nonradial) is supposed to be
positive and bounded away from zero at infinity. At the best of our knowledge, the only papers dealing with
a potential V' allowed to vanish at infinity are [1}21,22,31]] (see also for equation (I.1) in presence of
a parameter). In and [21]], the authors respectively prove existence and nonexistence results assuming
that V' is bounded. In [22]], existence of solutions is obtained for possibily singular Vs but bounded K’s.
In [31]}, which is the paper that inspired our work, both V' and K can be singular or vanishing at zero or at
infinity, and the authors prove existence of solution assuming that the potentials are radial and essentially

behave as powers of |x| as |x| — 0 and |z| — oo (see the paper introduction for more precise assumptions).

Here we study equation (L) via the change of variable w = f(u) in the case in which both V and K
are radial potentials that may be singular or vanishing at zero as well as at infinity. This implies that, even in
the new variational setting brought in by the variable change, the usual embeddings theorems for Sobolev
spaces are not available, and new embedding theorems need to be proved. We observe that, for semilinear
and p-laplacian elliptic equations, this has been done in several papers: see e.g. the references in [61[7,[19]
for a bibliography concerning the usual Laplace equation, [31[5[811,34-36.40,/41]] for equations involving
the p-laplacian, and [10,[37] for problems with a potential A on the derivatives (see also for biharmonic

equations).

The main novelty in our approach (with respect to the previous literature, and especially to [31]) is two-
folded. First, we look for embeddings of a suitable function space not into a single (weighted) Lebesgue
space L but into a sum of Lebesgue spaces L% + L. This allows to study separately the behaviour of the
potentials V and K at 0 and oo, assuming independent sets of hypotheses about these behaviours. Second,
we assume hypotheses not on V' and K separately but on their ratio, so admitting asymptotic behaviors of

general kind for the two potentials, not only power-like (cf. Section 8).

As a conclusion, our approach shows that, in order to have solutions, the potentials V' and K can have
independent behaviours at zero and at infinity, no needing to satisfy compatibility conditions between such
behaviours. Moreover, what does really count are not the growths of V' and K separately, but only how they

grow (or decay) relatively to one another.

The paper is organized as follows. In Section 2 we introduce our hypotheses on V' and K, the change of
variables w = f(u) and the main function spaces X and F we will work in. In Section[Bwe state a general
result concerning the embedding properties of E into LY + L% (Theorem[3.1) and some explicit conditions
ensuring that the embedding is compact (Theorems and B3). The general result is proved in Section
[ the explicit conditions in Section[3l In Section 6 we introduce our hypotheses on the nonlinearity g, we
study the main properties of the functional I associated to the dual problem and of its critical points, which
give rise to solutions to (I.I). In Section[7lwe apply our embedding results to get existence of non negative
solutions for equation (L.I)), stating and proving our main existence result, which is Theorem[Z1l Section

[lis devoted to concrete examples of potentials V and K satisfying our hypotheses, though escaping the



previous literature.

Notations. We end this introductory section by collecting some notations used in the paper.

oeR; = (0,+0) ={z e R:z >0}

e Forevery R > 0, we set Bg = {z € RV : |z < R}.

e For any subset A C RY, we denote A° := R \ A. If A is Lebesgue measurable, | A| stands for its
measure.

e —; denotes continuous embeddings.

e If Y is a Banach space, Y is its dual.

e (C'°(Q) is the space of the infinitely differentiable real functions with compact support in the open set
Q C RN, If Q has radial symmetry, CS%.(€) is the subspace of C£°(£2) made of radial functions.

e For any measurable set A C RY, L9(A) and L}

loc

(A) are the usual real Lebesgue spaces. If p : A — R is
a measurable function, then LP(A, p (2) dz) is the real Lebesgue space with respect to the measure p (z) dz
(dz stands for the Lebesgue measure on R”Y). In particular, if K : Ry — R is measurable, we denote
L} (A) = L1 (A, K (|z|) dz).

eFor N > 3,2" = ﬁ—g is the critical exponent of Sobolev embeddings.

2 Hypotheses and preliminary results
Throughout this paper, we assume N > 3 and the following hypothesis (H) on V, K:

(H) V:Ry — [0,400)and K : Ry — R are continuous, and there is C' > 0 such that for all r € (0, 1)

one has

Tl Q

V(r) <

We begin by introducing the function f we need to define the Orlicz-Sobolev space in which we will

work. This function is defined as the solution of the following Cauchy problem:

/ _ 1 :
{ 1) = WirsTinE inR @1
f(0)=0

The following lemma gives the main properties of the solution of (2.1). For the proofs see [[14131].

Lemma 2.1. There is a unique solution f € C*°(R,R) of (Z). Such a solution is odd, strictly increasing,

and surjective (hence invertible). Moreover, it satisifes the following properties:
(1) |f'(t)] < Lforall t € R;
(2) ()] < |t] forall t € R;
(3) f(®)/t = 1last—0;
(4) f(t)/Vt— 2% ast — +oo;

(5) f(t)/2 < tf'(t) < f(t) forallt > 0;



(6) |f(t)] < 2Y4\/|t] forall t € R;

(7) There is a constant Cy > 0 such that
fOI=Cilt] <1 [fOl =GVt ifft] =1

(8) There are two positive constants cy, ca such that |t| < c1|f(t)| + caf(t)? forallt € R;
9) |f)f'(@)] < %forallt eR;

(10) The function f(t)? is strictly convex;

(11) There is a constant C' > 0 such that f(2t)* < Cf(t)? forallt € R.

We now use the function f to define a change of unknown: we call w the solution of (I.I) that we are
looking for and we set w = f(u), where w is the new unknown, living in a suitable space that we are going

to define. In this way, to get solutions w to (I.I) we will look for solutions u to the equation
= Au+V (|a]) f(u) f'(u) = K(|z)g(f(w))f'(u) inRY, 2.2)

which will be obtained as critical points of the following functional:

1

I =g [ WuPdes g [ Viahfara - [ K6 w) s @3

The critical points of I and their relations with solutions of (II)) will be studied in Section[6] my means of

the following hypotheses on the nonlinearity: g : R — R is a continuous function satisfying
(g1) 30 > 2 suchthat 0 < 20G (t) < g (t)tforallt € R;
(g2) Tto > 0 such that G (t) > 0, where G(t) = fotg(s)ds;

(841.42) there exits a constant C' > 0 such that |g (¢)] < C’mi]a{|t|'h_1 , |t|q2_1} forall t € R.

We notice that these hypotheses imply ¢1, g2 > 20. We also observe that, if ¢; # g2, the double-power
growth condition (g, 4,) is more stringent than the more usual single-power one, since it implies |g(¢)| <
C|t|~ for ¢ = q1, ¢ = q2 and every q in between. On the other hand, we will never require q; # ¢z in
(8¢1.q2 )» S0 that our results will also concern single-power nonlinearities as long as we can take ¢; = ¢o.

In this section and in the following ones, we introduce the function space E in which we will obtain
critical points of I and we study the relevant compactness results for E.

First, we introduce the space D}*? (RN ), which is the closure of C%, (R™) with respect to the norm
ull1,2 == (fpn [Vul*dz) "2 1tis well known that D12 (R™)is a Hilbert space. Then we define a second

Hilbert space
X = {u € D}? (RN) ’ / V(|z])|ul?dz < —i—oo}
RN

1/2
endowed with the norm ||u|| := (||u||%2 + ||u||%2(]RN,V(\z\)dx)) . Finally we introduce the main func-

tion space that we will use, which is

E = {u € D12 (RY) ’ /RN V(|z])f (u)2da < +oo} .



In F, we first define the norm
ullo = inf = |1+ [ V(jaf)f(ku)d
ull, == inf — T w)“dx| ,
>0 k RN
which is an Orlicz norm. Then we introduce the norm
ull == [lul|1,2 + [|ullo-

The space E, endowed with the norm |.||, is an Orlicz-Sobolev space. In the results, we recall its main

properties.
Theorem 2.2. (E,||.||) is a Banach space and the following continuous embedding holds:
E < DI? (RY).

Proof. The fact that IV is a Banach space derives from the general theory of Orlicz spaces, together with
the properties of the function f stated in the above lemma, in particular (10) and (11) (see [31]]). The

embedding is obvious from the definitions of £ and its norm. |

Corollary 2.3. There are constants Sy, Cn > 0 (only depending on N) such that for all u € E it holds:

1/2%
</ |u|? d:c) < Sn ||ull, lu(z)| < CN| |||1Ji||2 ae.x € RV,
RN R

x|z

Proof. These are well known properties of any u € D}»? (RV). O

Lemma 2.4. (1) There exists C > 0 such that for all uw € E one has

fox VDI P _
U+ (fow V(J2]) f (w)2da) />~ '

(2) If up, — win E, then
[ vl £ = Pl de =0 and [ Vial) F0) = ) do 0.

(3) Ifun(z) — u(z) ae. in RN and
[ Vilahsun = [ Ve f) da

then ||u, — ul|, — 0.

Proof. For the proof see [27], [14]], [31]]. We just point out that the proofs also work in our hypotheses,

which are a little different from theirs. O
Corollary 2.5. Assuming (H), we have the continuous embedding X — E.
Proof. This is Corollary 2.1 of [14]. Their proof can be repeated in our case. |

Lemma 2.6. CZ5.(RY) is dense in E.



Proof. The proof is contained in the Master’s degree thesis [23]], which is unpublished and in Italian, so we
give it here. Let u € E and assume first that supp u is bounded. By standard results, there is a sequence
{on}tn C C(RYN) such that ¢, — win D}? (RY) and ¢, (z) — u(z) for ae. z € RY. We have to

prove that ||, — u||, — 0. Thanks to Lemma[2.4] it is enough to prove the following claim:

[ vtasen?ds > [ Vs sw? .
RN RN

By hypothesis, there is M > 0 such that suppu C Bj,. As the sequence {(,, },, is obtained by convolution

of v with a family of mollifiers, we can assume suppy,, C Bjs4 for all n. Hence we have

V([2]) fpn)? do = /

{lz|<1}

V(j2])f(pn)? dz + / V(2 f(on)? da.

RN {(1<|z|<M+1}

We have V (|2|) f(¢on(2))? — V(|2])f(u(x))? ae., and we will apply Dominated Convergence Theorem.
If |z| <1andx # 0, using (H) and Lemma[2.Jlwe have

As ¢, — uin D}? (RY), from Hardy’s inequality we get % — % in L'(R"Y), whence, up to a

2
subsequence, there exists a function h € Lt (RN ) such that ‘i—‘"z < h. This implies

V(|z]) f(en(x))® < Ch

fora.e. z € B;. By Dominated Convergence Theorem we get

[ vlebsenras = [ Vs an
{lz|<1} {lz|<1}

If1 < |z| < M+ 1weget V(|z|)f(pn)? < Cp2. As p, — uin L¥ (RY), we have ¢, — u in
L? (Bary1), whence there exists hy € L' (Bpsy1) such that ¢, (2)? < hq(z) fora.e. * € Bysi1. Hence
V(|z]) f(¢n)? < Chy and by Dominated Convergence

/ V(2]) f (pn)? dz — V(2l) f (u)? da.
{1<]e|<M+1} {1<]a|<M+1}

This concludes the proof if supp u is bounded. In the general case, we choose a sequence of standard
truncation functions {(, },. It is easy to show that {,u — w in E for every u € FE, and combining this

result with the previous one we get the thesis. O
Lemma 2.7. For any r, R such that 0 < r < R, the embedding

E < L*(Br\ B;)
is continuous and compact.

Proof. The embedding result is easily proved for the space D} (RN ), so the thesis derives from the

continuous embedding E — D}% (RY) . O



3 Compactness results for the space &/

Let N > 3 and let V and K be as in (H). In this section we state the main compactness results of this
paper, concerning the space E, defined as above. The compactness results that we state here will be proved

in Sections[ and[3l They concern the embedding properties of E into the sum space
LE+LE ={uy+uy:ur € LE RY), up e LE (RY)}, 1<¢ <oo.

We recall from [§]] that such a space can be characterized as the set of measurable mappings v : RY — R
for which there exists a measurable set A C RY such that u € L% (A) N L% (A°). It is a Banach space

with respect to the norm

lulon oo i= , inf mase{ s ey e ) }

and the continuous embedding L}, — L + L% holds for all ¢ € [min{q¢i1, g2}, max{qi1,g2}]. Our
general embedding result is Theorem 3.1 below. The assumptions of this result are quite general but not so
easy to check, so more handy conditions ensuring these general assumptions will be provided by the next
results.

To state our results we introduce the following functions of R > 0 and g > 1:

So (¢, R) = sup K (|z|) |u|? d, 3.1
w€E, ||ul|=1/Bgr

S (¢, R) :==  sup / K (Jz|) |u|* dz. (3.2)
w€E, ||ul|=1 JRN\Bg

Clearly Sy (g, -) is nondecreasing, S (¢, -) is nonincreasing and both of them can be infinite at some R.

Theorem 3.1. Let q1,q2 > 1.

(i) If
So (1, R1) < oo and S (g2, R2) < oo  for some Ry, Ry > 0, (S’ )

91,92

then E is continuously embedded into LI} (RN ) + L% (RY).

(ii) If
. T _ 11
ngg+ So (1, R) = REIJIFIOO Soo (42, R) = 0, (SQI;QZ)

then E is compactly embedded into LI (RN) + L2 (RY).
It is obvious that (S ) implies (S! . ). Moreover, these assumptions can hold with ¢; = ¢2 = ¢ and

91,92 q1,92

therefore Theorem[B.1lalso concerns the embedding properties of X into L%, 1 < ¢ < co.
We now look for explicit conditions on V' and K implying (S, ) for some g and go. More precisely,
in Theorem[3.2] we will find a range of exponents ¢; such that limp_,q+ So (g1, R) = 0, while in Theorem

B3l we will do the same for exponents g such that lim g, 1 oo Seo (g2, R) = 0.



For a € R, 8 € [0, 1], we define three functions o™ (8), ¢¢ (o, B). ¢ (v, B) by setting

oﬁ(ﬁ)-max{ﬁ?—l g,§(3N—2)—N},
N — 3(N N —
i (0,8) = 22T PNED g o) = O

Notice that a* (8) = %2 —1 - & = ~NH2(1 — B)when0 < < L,anda* (B) =5 (BN —2) - N
when% <p <1

Theorem 3.2. Assume that there exists Ry > 0 such that

K (r
sup ()/30

———— <400 forsome 0 < By <1land ag > o™ (fo). (3.3)
re(0,Ry) 7V (1)

Then lim Sy (q1, R) = 0 for every g1 € R such that
R—0*

max {1,260} < q1 < ¢ (a0, Bo) - (3.4)

Notice that, as § < 1, it holds a* (8) > —N(1 — ). Also notice that the inequality max {1,205} <
q; (ao, Bo) is equivalent to g > a* (fBp), so that such inequality is automatically true in (3.4) and does not

ask for further conditions on ag and 3.

Theorem 3.3. Assume that there exists Ry > 0 such that

K
sup % < 400 forsome(0 < By < 1land ay € R. 3.5)
r>Ry 1Y%V (’I”) s

Then lim So (g2, R) = 0 for every g2 € R such that
R—+o0

q2 > maX{l,Zﬂoo,q;O (aoo;ﬂoo)} (36)

Remark 3.4. 1. We mean V (r)° = 1 for every 7 (even if V (r) = 0). In particular, if V (r) = 0 for
r > Ry, then Theorem[33]can be applied with 5., = 0 and assumption (3.3)) means

K (r)

esssup —— < +oo  for some aq € R.
r>Ry 170

Similarly for Theorem[3.2]and assumption (3.3), if V' (r) = 0 forr € (0, Ry).

2. The assumptions of Theorems 3.2 and 3.3 may hold for different pairs (v, 30), (oo, Boo ). In this
case, of course, one chooses them in order to get the ranges for ¢;, g2 as large as possible. For
example, assume that V' is bounded in a neighbourhood of 0. If condition (33) holds true for a pair
(ao, Bo), then (3) also holds for all pairs (g, 5)) such that of, < ap and ), < SBo. Therefore,
since max {1,203} is nondecreasing in 5 and ¢ (c, 3) is increasing in « and decreasing in £, it is
convenient to choose 5y = 0 and the best interval where one can take ¢; is 1 < ¢1 < ¢ (@, 0) with

@ :=sup {ao L eSSSUP,.¢ (o, g, ) K (1) /770 < —l—oo} (here we mean ¢ (+00,0) = +00).



4 Proof of Theorem 3.1

In this section we assume, as usual, N > 3 and hypothesis (H).

Lemma4.1. Let R > r > O and 1 < q < co. Then there exist C = C (N,r,R,q) > 0andl =1(q) > 0
such that ¢ — 2l > 0 and V'u € E one has

l
~ —21
[ K ultdo < CIE e 0l ( / |u|2dx> SR
Br\B, Br\B;,

Proof. Letu € E and fix ¢t > 1 such that t'q > 2 (where ¢’ = ¢/(t — 1)). Then, by Holder inequality and

the pointwise estimates of Corollary 23] we have

[ E(aulds < (/
Br\B;, Br\B

1
< |Br\ Br|" || Kl e B\ B,) </
1

: Cy Jlul \* " >\
< 1B\ B 1 1Kl 00, (e uffdr)
roz Br\B.

q—2/t'

S
7

()
Bgr\B-

72 u)? dw>

K(|:v|)t dx)

1
7

o+

R\BT

This proves (@), setting | = 1/t' and C' = | B \ BT|% (Cnr=(N=2/2) O

We now prove Theorem 3.1l Recall the definitions (3.1)-(3.2) of the functions Sy and S, and the

following result from [8]] concerning convergence in the sum of Lebesgue spaces.

Proposition 4.2 ([8| Proposition 2.7]). Let {u,} C LY} + L% be a sequence such that Ve > 0 there exist

ne > 0 and a sequence of measurable sets E. ,, C RY satisfying
Y > ne, / K (|z|) |un [P da:—l—/ K (|z|) |up|P? dr < e. 4.2)
Ea,n Eg’n

Then u, — 0in LY} + L.

Proof of Theorem[3_1l We prove each part of the theorem separately.

(i) By the monotonicity of Sy and S, it is not restrictive to assume R; < Ro in hypothesis (S’ ) In

q1,92
order to prove the continuous embedding, let u € E, u # 0. Then we have
@ a1 |U|q1 a1
K (Jal) [ do = ul™ [ K () o < Jull® o (0. ) @43)
B, Br, ]
and, similarly,
K (|2]) [ul® dz < [Jul|** S (g2, R2) - (4.4)

Bj,
We now use @) of LemmaBIland Lemma27lto deduce that there exists a constant C; > 0, independent

from wu, such that

/ K (Jo]) [ul dz < Gy Ju]® . “5)
Bry\Br;
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Hence u € LY (Br,) N L% (Bg,) and thus u € LY + L. Moreover, if u,, — 0 in E, then, using @.3),

@.4) and @.3), we get

K (|a]) [un|" da +/ K (Jz]) [un|® dz = 0 (1), ,
Bry B,

which means u,, — 0in L} 4+ L% by Proposition4.2]

(ii) Assume hypothesis (S[I’h%). Lete > 0 and let u,, — 0 in E. Then {||lu,|/},, is bounded and, arguing

as for (@.3) and (4.4), we can take . > 0 and R, > r. such that for all n one has
€
[ R Gl ™ de < fual™ o (01.72) < (00l ) o072 < 5
B, n

and

Wl ™

[ B i < (s ) S (0 ) <
B, n

Using @) of Lemma ] and the boundedness of {||u, |} again, we infer that there exist two constants

C’g,l > 0, independent from n, such that
l
/ K (|#]) |un|™ dz < Cy / lun|® d |
BRE\B”‘E BRE\B"'E

/ lun|*dz — 0 asn — oo (e fixed)
Br.\Br,

where

thanks to Lemmal[2.7] Therefore we obtain

K (J2]) [n]® d:v—i—/ K (|2]) [un| da < ¢
Br. By,

for all n sufficiently large, which means u,, — 0 in L% + L% (Proposition@.2). This concludes the proof

of part (ii). O

5 Proof of Theorems 3.2 and

Assume as usual N > 3 and hypothesis (H).

Lemma 5.1. Let Ry > 0 and assume

K (J=])

A= IpRTE—Y
a€Bry ||V (|)

< 400 forsome ()< B <1landa € R.

Let u € E and assume that there exist v € R and m > 0 such that

lu(2)] < TT,, almost everywhere in Br,.

e

Then there exists a constant C = C(N, Ry, v, 8) > 0 such that VR € (0, Ry) and Vq > max {1,283}, one

has



IN

11

K () [ul” dx
Br
a— V(q 1) NJ+\I2
ACTI ([, lal Naz) 7 Jull if8=0,

N+2-B(N+2)
2N

AC |ma—1 (IB |$|7Ni;§aq<?vl+)2>2]v dx)
R

B
||u||1ﬂ+RN1ﬂ>+a](f V(a)fw?de) o< <4,

A [ (fy b

a— I/(q

) e Y0l (1, Vel R
if3 <B<1,

AC [ (B, PV (o) tar) ([, VA 00)” By, V) 0] 376 =1

Proof. Letus take R € (0, Ro) and define

Bk =Brn{z e RN ||u(z)| > 1}, B%=Brn{zcRY||u(z) <1}.

Recall that, by Lemma[Z]] there is C; > 0 such that |f(t)| > Cy|t| when |t| < 1 and |f(t)] > Cy|t|'/?
when [¢t| > 1. This implies | f(u(z))| > Ci|u(x)|*/? when z € Bk and |f(u(z))| > Ci|u(x)| when

x € B?%, whence

[, vOabsrae= 0t [ viapdae, [ Vi slae= €2 [ Vil 6

R BR BR

We distinguish several cases, where we will use Holder inequality many times.

2N

Case 3 = 0. We apply Holder inequality with exponents 2* = <=5 and 2N and standard Sobolev

2 N+2°

inequality (Corollary 2.3)), in order to get

1 [e% —1
1] Rl s < [ el s
BR BR
N+2 1
N . 2%
< (/[ (ol R dx) ([ )
Br Br
N e
<ot ([ ) T ).
Br

Case 0 < f < 1/2. We write

1 tgp L vy L :
3 [, Kbl = K (e dw+A/B%K<|x|>|u| d.

Applying Holder inequality first with conjugate exponents and 3 , then with 2* and N +2 , we get

1 N N _
2[Rl s < [ el V() ol de = / el V () " ul”
BL Bl Bl

R

1 1-8 B
« q—1 1-3 Wd v d
(/B (o ) w> (/B VA )
1 e 8
_ 25 || =5 2
<o 1 ) ([ v e o)

IN
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(-85 =L B
< 1 / (|x|ﬁ|u|%)ﬁfz dx B / u|* dx 2 / V (|2]) f(u)?dz
o \Usy BY, B

1
R

g8 s e\ (-2 ’
< D ([ ) = ([ v (el )
1 R

Br

On the other hand, as ¢ > 1 > 23, a > —N(1 — ) and |u(z)| < 1in B%, we get

1-p
. @ - o 1g-26) 158
—/<WMWWMS/IMVmW%WMMWm§L/Oﬂwﬁﬁlwx /
A BY B% B2 B2

R

R

1-p8 B P
25 2 N(1-8)+a 2
o (/BR 2] dw) </B%Vf(u) d:c) < C(N,a, )R (/Bva(u) dw) ,

The thesis follows by summing the two inequalities we have obtained.

Case § = % We have

1 « a _1 1 1
1 Rl s < [ jal v (a)  ulde = [ el a2V (o ol do
Bj By Bj

1 1
2 2
<[ el an) (] Vel uldo
Bg By
mi—1/2 1 1

2a—v(2¢—1) 2 ) 3
Ch (/BR || d:C) ( BRV(|$|)f(u) dx) ,

1 N -
2[Rl dn < [ el V(e ul ol de
B, Bf

while

B
14 |u|2dx>

1/2 1/2 1 1/2 1/2
< (/ |z |u|2(q—1)dx> </ V (|z]) |u|2d:v> < ren (/ || d:c) ( V(|x|)f(u)2d:v>
B%, B%, 1 Br Br

—CMWLWRMNQ<LRV@meym>Ua

As before, the thesis follows from the two inequalities we have obtained.

Case 1/2 < 3 < 1. We will apply Holder inequality with conjugate exponents p = p/ = 1, orp =
Tl—l > landp = 2;

—55- As above, we will estimate separately the two integrals i) B K (|z|) |u|? dx and
fBIQ% K (|z|) |u|* dz. We have

1 q o 81 1q o 261 o1 11
A KD ulfde < [ 2PV (|2)" [uf de = [ 2PV (|2)" 7 [u"2 V([2])? |ul® dz
BL BL L

BR
2 28—1 2q—1
s(le V () m) (@kvmmmmﬂ
L 22 |u2 28y (1)) )P e ’ T w)?dz )
§01<L§” P22 () d) (LIVGDf()d>

=
=

R
R
28—1

1-p 2 %
i xﬁu%x xI|)|ulax x ’U,2.’I]
<\, e d) (A%vu|n|d> <A%def()d>
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On the other hand
1 o o _
1 / K (|2]) [u] dz < / 12V (|2])® fu|? dz = / 12V (2])® [uf?® [ul"? dx
A Jpe B2 2

By

1-8 5 s )
S(/B;'w'ﬁ'“'%dw) </B;V<'””'>'“'2d$> < g () 1mae) () v sopar)

—cwaprYee ([ 4G f(U)2d:v>ﬁ .

As before, the thesis follows from the two inequalities that we have obtained.

Case § = 1. Recall that § = 1 implies ¢ > 2 and o > 0. We have

1 N _
[ Kl de < [ e () 2 (o)) fuf e
Bg Br

1/2
< (/BR |2V (Ja]) Jul™ d:v) (/B}?V(|x|)|u|dx>
1 1/2 1/2
2c0,,129—2 2D lulda " " 2 "
§a</81|x| Jul V(||)||d> (/BlV(H)f()d>

R R

ma—1 1/2 1/2
<2 ([ v e gras) ([ v srar)
1 Br Br
On the other hand

/ K (|z|) |u|qd3:</ ||| u|?™ 2V(|3:|)|u|2das<@RO‘/ V(|a:|)f(u)2d:17

Br

1/2

The thesis easily follows. |

The following lemma is analogous to the previous one, dealing with B% instead of Br.
Lemma 5.2. Let Ry > 0 and assume that

A := sup 7K(|I|)

< 400 forsome (0 < < 1anda € R.
p B ==
veBg, |2|* V (|z])
Let u € E and assume that there exist v,m > 0 such that

u@) <

Set v(m) := m/RY + 1. Then there exists a constant C = C(N, Ry, 3) > 0 such that VR > Ry and
Vg > max {1,208}, one has

/ K (Je]) [u] ™ 3] da
By

m

almost everywhere in BRe.

N42(1—28)

a—v(g—1) B
AC~(m)?Pma—! (IB% || Nratisaay 2N dw) - ||u|\172ﬁ (IB% Vf(u)%l:v) ifo< B < %

IN

AC~(m)?Pma—28 (IB% |9c|M dw) (ch Vf(u)de)ﬁ fy<p<l1

AC’y(m)2mq_2 (IBIC? |x|2(a—u(¢Z—2)) V (|z]) f(u de) (J"BC Viu zdx)% ifB=1.
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Proof. We start by noticing that, thanks to the hypotheses, we have

M« ™ forall |z > Ro.

ulxr) <
u(a)| < o < 7

Since y(m) = m/Rg + 1, we have |u(z)| < y(m) in By and y(m) > 1. Recalling that | f(t)] > C1[t]

when |¢| < 1, and that f(¢)? is even and increasing on R, for all R > Ry we have
u
V (el |
BC

R v(m) de = (Wg':)y B%V(M)f OW(?:TL)DZM

< <@) | Vel w de

! R

V(al) ufds = (m)? [

Bx

Case = 0. Here the argument is exactly the same as in the case 8 = 0 of the previous lemma, so we do
not repeat it. We apply Holder inequality with exponents 2% = 13_1_\72 and J\Qf—ﬂ\rfz, together with the standard
Sobolev inequality, to get

N+2

1 a—v(g—1) N
X/ K (|2|) [u|? dz <m?'C (/ || 2N dﬂ?) [l -
B Be

R

Case 0 < 8 < % Thanks to Holder inequalities with pairs of conjugate exponents % and ﬁ, and

2°(1-8) ,oq 2N(-5)

125 and x5=25y, We obtain

1 S
[ Kbl dn < [ falult 2V (ol)” s
By By

1-p B
:Co‘uqfwﬁx z|) |u|dz
s(/BC(IIII ) d) (/B%V<||>||d>

R

< (2m)” ( | (|x|“|u|q1|u|”5>ﬁdx>l 5 ( L, Vf(U)de>6

R

N42(1—28)

(m))*? R AT N ’
< (28 ([ (el ) T [ o) ([ viwpa
(& B, B g
2p
S(v(m)> Ol e ( /
Ch B

The result follows with C' = C'Jl\fﬁ JCPP.

Case 5 = . We have
1 o _ 1/2
[ Kl de< [ el ) uldo
Bg Bg

N+42(1—28)

B
2N
a—v(g—1)
|x|N+2(1q2B)2Nd:1:> |[u)[1—2° (/ Vf(u)de> .
BC

R

B
2
R
1/2 1/2
< / |22 |20 D g /V|u|2dx
B, Bf,

1/2 1/2
< v(m) mat (/ |x|20‘_2”(q_1)dx> ( Vf(u)2dac> .
Ch B Bg,

c
R
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Case 5 < < 1. We use Holder inequality with exponents p = p’ = § first, and then with p = 55 and

1
!

p = ﬁ.Weget

1 o N 1 B N
[ Kb de< [ el (e do= [ ey (a7 v ) ? fulds
B¢ B, B,

R
1/2 1/2
< / 2V (|2))%° " |ul? 2 da V|ul?da
B By
1/2
g e R
Ch B B
1-8 2 1/2
e I W A T Vf(u)?da
C1 \Us Bs, B;,

28 s 1-5
< (M) mq—2B (/ |x|%d$> (/
Ch BS, B

Case = 1. In this case, hypothesis ¢ > max{1, 23} implies ¢ > 2. Hence

1/2
Vf(u)%l:z:)

c
R

B
Vf(u)%x) .

c
R

1 o N 1 B N
i [ Kbl de< [ felalv ado = [V (o) iV (o)) fulde
Bg Bg B¢

R

1/2 1/2
< ( | |x|2“v<|x|>|u|2“dx> ( [, v |u|2dx>

R

(m) 1/2 1/2
nm 2292V (|2) |ul2de W2z
<A </B%|||| v<||>||d> (/Bch()d>

R

5 1/2 1/2
< (%@) =2 (/BR |gc|2°‘2'/(q2)Vf(u)2dx> <B% Vf(u)Qd:c> .

We can now prove Theorems[3.2]and 3.3

Proof of Theorem[32] Assume the hypotheses of the theorem and let w € E be such that ||u| = 1. Let
0 < R < R;. We will denote by C' any positive constant which does not depend on v and R. Recalling the
pointwise estimates of Corollary[2.3]and the fact that
K (|z K (r
v€Bp || v(|(||a):|)ﬂ° = re(0,R1) TO‘OV((T))BO s

we can apply LemmaBdlwith Ry = Ry, o = v, 8 = o, m = M ||u|| = M and v = ¥2. The argument
will proceed as follows: we will distinguish several cases, as in Lemma[5.1] and we will prove that in any
case we get

/ K (|z]) [u|™ dz < CR® forany0 < R < Ry, (5.2)
Br

with 6 > 0 and C' > 0 independent from R and u. This clearly implies Sy (q1, R) < CR°, and hence
limp_,o+ So (g1, R) = 0. Recall also that if [|u|| = 1 then [;y V(|z|)f(u)*dz < C, for a suitable C' > 0

independent from u.
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If By = 0, we get

N+2

R, -N=2( 1 2N
<C < / p R 2N+N1dp>
0

N+2

ag—v(g1—1) 2N
e
Br

Br
where N
o — 5 (@ —1) N e - B
N g NN =5 200 - (VN =2)(@ - 1)+ N +2] =
N (N —=2) [2a9 + 2N N(N-2) . ,
N +2 [ N —2 1] “TN+2 [a0(c0,0) = q1] >0,

thanks to the hypotheses. Hence, by integration and simple computations, we deduce
K (|2]) [u| dz < CR™ 2 195 (@0.0~a1] — ORS,
Br
If 0 < By < 1/2, we have

(N+2)(1—Bg)
2N

o ,u( —1)
/ K (|z]) [u|™ dz < C / || BT 2N g 4 Reo+N(1—6o)
Br Br

where
N—2

a2 @b,y R 0= (@-Dyn N g
|x| (N+2)(1-80) de = C P (N+2)(1-80) dp
Br 0

Now observe that

a0_¥(Q1_1)2N+N—+(2a +2N — By(N +2) — (N — 2)q1)
(N +2)(1 - Bo) TN+ (1 =By 0 0 s

NN -2) <2ao+2N—ﬁo(N+2)_ )_ N(N -2)
(N +2)(1— Bo) N2 ")
so that

(N+2)0 - Bo) (g5 (0, Bo) — q1) > 0,

N—-2
20—~z (n -1 N2/
/ || N FDI=Eo) 2N g = CR- = (a5 (0,80)—a1)
Br

On the other hand, one has oy + N (1 — B9) > 0 by hypothesis. Hence as R — 0% we have

N—2

So(q1,R) < CR™2

(a5 (@0,f0)=a1) 4 ' Reo+N(1=Bo) < ORS

where § = min {£52 (g5 (a0, 80) — q1) 0 + N(1 = o)} > 0.
If 5y = 1/2, we have
3
(/ |x|2a0—N22(2q1—1)dx> +Rao+% 7
Br

R
/ |I|2aofN;2(2q171)dx _ C’/ p2a07N;2(2q171)+N71dp
Br 0

K (|z|) |u|" dx < C
Br

where

and

N -2 3 200+ 3N — 1
200 — —5— (20~ 1) + N =200 + 5N ~ 1 (N = 2)p1 = (N - 2) <0+—q1)

N -2
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= (N -2 (QS (am %) - q1> > 0.

and, recalling that oy + % > 0 by hypothesis, for R — 0% we have

Hence we get

2 (21— 1)dCC =C o (@o0,1/2)— lh)

So(q1, R) < CR™z (@(eol/D=a) | oot S < OR°

With5:min{¥ (qak (Oéo,%) —Q1) y o + %} > 0.

If1/2 < By < 1, we have
ag—N=2 g 1-fo
(/ |17|70 2 ﬂmdx) 1 Reo+N(1-Bo) | |
Br

/ K (|z|) |u|" dx < C
Br

where
ag-= (ql Bo) 040* (Q1 Bo)
/ |7 TP dx= C/ —tm — Vg,
Br
and N 2( )
ap— ~5=(q1 — Bo B 1 B e
1= 4, N = gy (a0 2N = BN +2) = (N = 2)ar)

N -=2 2009 + 2N — Bo(N +2) _ N-2 .

- 2(1- o) ( N-2 AT (g0 (a0, Bo) — 1) > 0.
So

oo =52 (a1 —Bo) 1=5o N3
(/ |a:|150dx> — CRYFE (5 (a0,p0)-a1)
Br

Then, as R — 01, we obtain
So (QIa ) < CR 2 (a3 (a0,B0)—q1) + C R0+N(1=Po) < CR®

with 6 = min{¥ (¢ (a0, Bo) — q1) a0 + N(1 = By) } > 0.
If g = 1, then we have

(/ |:v|2°‘°_(N_2)(q1_1)Vf(u)2dx) ? 4+ R0
Br
Notice that g > —N(1 — By) means «y > 0, since Sy = 1. Notice also that

2a0+N—2_
T N_—2 q1

K (|z]) [u]" dz < C
Br

200 — (N —2)(1 1) = (N = 2) ( — (V- 2) (@00, 1) — @) > 0

implies

1
(/ |:1:|20‘°(N2)(q11)Vf(u)2dx) : < Rao*Nf;
Br

Hence, as R — 07, we get

2(‘11*1).

* (@ =1) </ Vf(u)Qda:> < CR~ "=
Br

So(q1, R) < CROLOfNQQ(m*l) + CR™ < CRar)*N;z(ql*l)

with g — £2(q1 — 1) =6 > 0.
As a conclusion, in any case, we have Sy (g1, R) < CR? for some § = § (N, o, B0, q1) > 0 and the

proof is thus complete. O
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Proof of Theorem[3.3] Assume the hypotheses of the theorem and let u € E be such that ||u|| = 1. Let
R > Ry. We will denote by C' any positive constant which does not depend on « and R. We will separate

three different cases and we will get, in each one, an inequality of the following form:
/ K (|z]) |u|® dz < CR?
B

with ¢ > 0 and § < 0 independent from R,u. This clearly gives So (g2, R) < CR?, and hence
lim, 4 00 Soo (g2, R) = 0. As in the proof of the previous theorem, by pointwise estimates and the fact

that
K (|x K (r
reBh, |27 1£|(|B|)ﬂ°° =0 TO‘OOV((T))B“’ =
we can apply Lemma3.2 with Ry = Ra, & = Qoo 8 = Boosm = M ||u|| = M and v = % Recall also
that |[u|| = 1 inplies [, V f(u)?dz < C with C independent from w. The computations of the present
proof are essentially the same of those in the proof of Theorem 3 in [[7]]: the function there called ¢* is the
same as the function ¢’ here. Hence, we will be a little sketchy here.

If0 < Boo < 1/2, we get

N+2(1-2800)

N-—2
a0 -5 (127 oy
K (|2]) [u]® dz < C / || N2 dx
By B

c
R

N+2(1—-28c0)
2N

20000 4800 +2N — (N —2)q N)
)

=C (R N+2(1-2Bo0)

since 20toe — 4800 + 2N — (N = 2)g2 = (N — 2) (g% (oo, Boc) — q2) < 0.
On the other hand, if 1/2 < S < 1, then we have

N-—2 1_600
Qoom 75 (92 72cc) 2000 — (N—=2) (42 —2B00) \ 1B
K (|:p|) |u|q2 dx < C / |I| 1—Poo dx =C (R 2(1—Poo) ) ,
B B

c
R

since
20000 — (N = 2)(q2 —280) N —2

Finally, if S, = 1, we obtain

K (J2]) [u]® dz < C </
BIC? B

) (qz;o(aoouﬁoo) - (J2) < 0.

1
2

|$|2a°°_(N_2)(q2_2)V(|;[:|)f(u)2d$> ,

c
R

[N

S C <R2am(N2)(Q22)/ V(|I|)f(u)2dx> S CRW7

R

2000 = (N = 2) (g2 = 2) = (N = 2) (45 (@00 o) — q2) < 0.

So, in any case, we get So. (2, R) < CR? for some § = §(N, p, oo, Boo, ¢2) < 0, anf this completes
the proof. O
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6 Ciritical points in the Orlicz-Sobolev space

In this section we study the relations between the equation (2.2) and the original equation, that is
—Aw+V (|z)) w —w (Aw?®) = K(|z|)g(w) inRY 6.1)

where g satifies the assumptions stated in Section 2l For both the equations, the solutions we get must be
understood in two ways, weak and classical (in RN \{0}). As to (G.I) we will get weak solutions, that is,

functions w € X satisfying, for all h € CZ5. (RM),

/ (1+2w2)Vw-Vhdx+/ 2w|Vw|2hd:c+/ V(|:v|)whd:v:/ K(|z))g(w)h dz, (6.2)
RN RN RN RN

which is obviously a weak formulation of (6.I). We also prove that the solutions that we get are in
C?(RN\{0}) and are classical solutions of (&1)) in R\ {0}.
As we said in the introduction, we will obtain solutions by variational techniques, studying a functional

related to the original problem by a change of variable. Let us define / : & — R by setting

I(u) == %/RN |Vu|*dz + %/RN V(|z]) f(u)*dx — /RN K(|z|)G(f(u)) de. (6.3)

In the following theorem, we state the main properties of 1.

Theorem 6.1. Assume N > 3 and hypothesis (H). Assume that g : R — R is a continuous function

satisfying (g1), (82) and (8q,.q.) With q1, g2 satisfying (81/117112) (see Section3). Then we have:
o [ is well defined and continuous in E.

e lisaC' map on E and, for any u € E, its differential I'(u) is given by
I'(u)h = / Vthd:z:—i—/ V(|z|) f(w)f'(u)hdx — K(|z)g(f(w)f (uw)hdx  (6.4)
RN RN RN
forall h € E.

Proof. Letus define
nw) =g [ VuPde, b =5 [ Viehf@Pe, B = [ K(aDG(r)de
and study these three functionals.
As to I, it is a standard task to get that I is C' in E with differential given by I] (u)h = [px VuVhdz.
As to I3, we notice that, setting h(z,t) = K(|z|)G(f(t)), we have h(z,t) = fot K(|lz))g(f(s))f (s)ds

and

(K (ja)g(£ () /(1)) < CR () min { | 70" 1 )|} < CR (aly min {7 ="}

Then we can apply the results in [§]] (in particular Proposition 3.8) and the fact that £ — L% (RN) +
L%(RN) (see Theorem[3]), to get that also I3 is C'! in E, with differential given by

Bh = [ K(alg(f)f (whdz.
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As to I», we can repeat the arguments of proposition (2.9) of [14]], which work also in our hypotheses, to

get that I, is well defined, continuous and Gateaux differentiable, with differential I} given by

Bk = [ Vilahs)f (whds.

In order to conclude, we need to prove that the map I, : E — E’ is continuous. Let {u, }, be a sequence

in E with u,, — w in E. Define

an = [|Iy(un) =I5 (u)||pr = sup |(I5(un) = I3(u)) h| = sup
[Ihl]<1 [Ihl]<1

/RN V(Jal) (f (un) £ (un) = f () () hda) .

We claim that o, — 0. In proving this, we will use C' to indicate different positive constants, that can
change from line to line but are independent from % and n. We notice as first thing that (1) of Lemma[2.4]
implies

sm>{ANvaﬂm%m}§C.

[All<1

Then we compute

V(|]) (f (un)f (un) = f(u)f'(u)) hdz

RN

< | V(D If () f (un) = f(u)f (w)] |2]da

B

+ [ Vel 1) (n) = F0)f ()] Bl
,

1

Recalling Corollary 23] we get |h(z)| < C in Bf for all h with ||h|| < 1, and we can assume C' > 1.

Hence from (7) of Lemma[2. 1] we derive

|h(z)]

) = B < op (2L < cpgna.

From this, applying Holder inequality, we get

[ VA 1) ) = S0 @) blds < € [ VAal) 17 (00)1 () = )] £ () o

1
1/2

1/2
=0 </B V() ) () = S0 ) da:> ( [ viishs (h)? d:c)

SC(L

As u,, — uin D}? (RN), we can assume, up to a subsequence, that u,, (z) — u(x) fora.e. x € RY. Also,
from (2) of Lemma[24] we deduce that V2 f(u,,) — V2 f(u) in L2(R") and hence, up to a subsequence,
we can assume V f(u,,)? < k € L'(R"). Hence we have V (|z]) | f (un) f' (un) — f(u)f'(u)| — Oa.e. and

1/2
V(i) 1 ) 1) — £ ) (1) d:v)

c
1

V(Jl) [ £ (un) ' (un) = () f'@)]* < CV(|]) [£(un)?f (un)? + f () f()?]
< Ck+CVf(u)? e LYRY),

so, by Dominated Convergence Theorem, we have

[ Vel ) wn) = F@)f @ do =0

1



21

which implies

[All<1

On the other hand, by the hypothesis on V and Lemmal.3] we get

/ V(2l) | () ' () — () /()] || dz < © / e 1|2 | ) 1) — F 1) ()] —omy de =
B B T |ZZ?| 2
! / 1
[ ) ) = 007 0]

As N/2 4+ 1 < N we have |z|~N/2=1 ¢ LY(By), while |f(un)f (un) — f(u)f'(v)] — 0ae. in RV
and |f(un)f'(un) — f(u)f'(u)] < C because of (9) of Lemma2Il Again by Dominated Convergence

Theorem we get

/B ) (1) — £0) ()] ——dd > 0

|2| F+1
and hence
sup [ V(Jal) £ () (wn) ~ F0) ()| ] > .
[[hl|<1/ By
This holds for a subsequence of any sequence u,, — u, and from this it is easy to get the thesis. O

According to the above result, a critical point w of I satisfies I'(u)h = 0, that is
Vavhds+ [ V(e)f) hds~ [ K(sa(f) s hds =0 ©5)
RN RN RN
for all h € E. This is, of course, a weak formulation of equation (2.2). We now want to show that a critical

point u of I is a classical solution of equation (2.2) in R\ {0}.

Theorem 6.2. Assume the hypotheses of Theoreml6.1l Letu be a critical point of I. Thenu € C?(RM\{0})
and u is a classical solution of equation Z.2) in RN \{0}.

Proof. We deal with radial functions and for them, with a little abuse of notation, we will write u(z) =
u(|z|) = u(r) for r = |z|, so identifying u with a function defined a.e. on R . Using this trick, the integral

equation (6.3) becomes an integral equation in dimension 1, that is

—+oo

“+00
/0 o (r)B (r) rN " rdr + ; V(r)f(u) f (u(r)h(r)rN " tdr (6.6)

—+oo

- K(r)g(f () f' (u(r)h(r)r™ = dr =0

0
for all h € E. Of course equation (6.6) can be considered as a weak formulation of the following ODE:

o+ L V) T ()~ KT )f () =0 in R, (6.7)

We will now prove that u is a classical solution of (6.7). To be precise, we will prove the following claim.

Claim: fix any 0 < a < b < +oo and let I = (a,b). Then v € C?(I) and u is a classical
solution of (6.7) in I.
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The proof of the claim in divided in three steps:

() ue HY(I);

(i) u € H*(I);

(iii) w is a classical solution of (6.7) in I.

Step (i) is easily obtained with the same argument of Lemma 27 in [6]. We now prove (ii). Let us take any
@ € C(I). Take 6 > 0 such thata — § > 0 and define Is = (a — d,b + §). Of course p € C°(I5). Let
e C®(R)suchthat 0 < ¢ < 1,9(r) =0ifr <a—9d/2and y(r) = 1if r > a — §/3. Define also

v(r) == /a’” f];(_sz ds = () +(N-1) /aT #(s) ds.

PN—1 SN
Notice that v € C*°(Is) and v(r) = 0if r € (a — d,a). Let € > 0 be such that suppy C (a +€,b — ¢).
Then for r € (b —,b+ 0) one has

b
v(r) =v(b) = (N — 1)/ @ds =:7T.

SN
Define now w(r) = v(r) — o3 (r). Then w € C*(I5) and suppw C [a — §,b — €], whence w € C°(Is).
Hence by the equation (6.6) we easily get that
/ o (r)w (r)rN " tdr = / n(r)w(r)dr,
Is Is
where ) € L% (I5). As w'(r) = ¢ (r)r'*=N — v/ (r), from the above equation we deduce

/ o (1) (r)dr = / n(ryw(r)dr +7 / o () (r) TV = / n(r)fN(i)l dr

I Is Is Is

+(N - 1)/15 n(r) </;%ds> dr+6/ u (r) (r) TN .

Is
It is easy to see that the following estimates hold, with a constant C' > 0 depending on u but not on (:

/16 n(r)fjéi)ldr < Cllell2ny, ‘(N_l)/15 () </:%ds> B

U/IJ o' (r)y (r)dr

< Ollelle2 s

< CllollL2 (-

The last inequality derives from the definition of T and the fact that ‘ S 1, ()¢ (r)dr

< C|ul]|, where

[|u]| is the norm of u in E. Then we get

/1 o (r)¢' (r)dr

As this holds for every ¢ € C2°(I), standard Sobolev space theory gives v’ € H'(I) and hence u € H?(I).

< Ollellz21y-

As to (iii), once we have u € H?(I), it is a standard task to get that u € C?(I) and that the equation (6.7)
is satisfied in the classical sense in I. This concludes the proof of the claim.

Now it is easy to get the thesis of the theorem. The claim holds for every I = (a,b) with0 < a < b <
+00, hence we have that u € C?(IR ) and that it satisfies equation (6.7) in R ;. Coming back to dimension
N, it is then obvious that u € C?(RM\{0}) and

= Au+ V(|al)f () f'(u) = K(|z])g(f () f'(u) in RM\{0}. (6.8)

O
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Now we show that w = f(u) is a classical solution of equation (&.I) in RV \{0}.

Theorem 6.3. Assume the hypotheses of Theorem[6.1l Let u € E be a critical point of I and set w = f(u).
Then w € C? (RV\{0}) and it is a classical solution of equation (6.1) in R¥\{0}.

Proof. From Theorem[6.2and the fact that f € C°°, it is obvious that w € C? (RV\{0}). Direct compu-

tations then show that

Aw + wA (w2) = Au.

1
f'(w)

It is then easy to get the result by substituting in equation (6.7). O

To complete our analysis, we now prove that if w is a critical point of I and w = f(u), then w also

satisfies (6.2)), that is, w is a weak solution of (6.1)).
Theorem 6.4. Assume the hypotheses of Theoreml6.1) Let u € E be a critical point of I and set w = f(u).
Thenw = f(u) € X and for all h € CZ5.(RN) one has

/ (1+2w?) Vw~Vhd:z:+/
RN

2w|Vw|2hdx+/ V(|x|)whd:1::/ K(|z])g(w)hdxz (6.9)
RN RN RN

Proof. Itis obvious by our definitions that [,y V' (|z|) w? dz < +oc. Moreover, we have Vw = f'(u)Vu
and thus [,y [Vw|*dz < [y [Vu|*dz < +oo. This gives w € X. To prove (6.9), we start by noticing

that easy computations give

—1\/ _ 3 I\ B 2t
() ®=vi+2e2,  (f )(t)_im'

Hence, as u = [~ (w), we derive Vu = (f~1)' (w) Vw = /T + 2w? Vaw. Let us now fix h € C(RY)
and define ¢ = (f_l)/ (w) h = /1 + 2w? h. We want to prove that ¢ € E. Of course ¢ is radial, so what

we actually need to prove are the following statements:
f]RN (l=]) f )2 dx < +00;
i) [on [Vol? dz < 400

In order to prove i), we use the properties of f and f? (see lemma[2.]). In particular, from (11) it is
easy to obtain that for all C' > 1 there is a constant k = k(C) > 0 such that f(Ct)? < kf(t)? foral ¢ > 0.
Recalling that h € CZ5.(RY) we can assume |h(z)| < C and supp h C Bg. Hence we can compute

L £ = [ Vi sieh?de= [ v(el) £ (VIR ) do

S/BR () (\/WC) d:z:<kC)/BRV(|x|) f(\/m)de
=Ky [ Vb (Vi) ko) [ V (el £ (ViT20R) dr

Brn{|w|<1}

On the one hand, we easily get

[ v (Vivme) s

BrN{|w|<1}

V(z|) f (\/5)2 dx
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gf(ﬁ)z/B V (ja|) de < +oo.

On the other hand, when |w| > 1 one has v/1 + 2w? < 2|w| and hence

/BRn{w>1}V(|$|) f(\/m) dacg/ V (|z) f(2|w|)2 di

Brnfw|>1}

< k/ V(l2l) £ (lw)?dz < k/ V (2] w2 dz < 400
BrN{|w|>1} Br

because w € X. So 7) is proved.

As to i1), we compute

Vo =1+2w2 Vh+2h——r VY

V14 2w?
and we easily get
w
2h ——Vuw| < C|Vuw| € L* (RY).
T | SO < 2 @)

On the other hand, as w € D} (RY), we have w € L7 . (R") and hence

loc
2
/ [VI+202 VA do<C [ (1420?) do < +oo.
RN Br

So also ii) is proved.
We now conclude the proof of the lemma. As ¢ € E and I’ (u) = 0, exploiting the computations above
we get

2h
O:I/(u)(p:/ V1 + 2w? Vw~\/1+2w2Vhdx+/ VIt 202V ——2 Vwdax
RN RN \/1+2w2

+ [ V@ () (F7Y) (whde — | Kg(f(w)f () (f7) (w)hdz

RN RN
:/ (14 2w?) Vw-Vhd:c—i—/ 2hw |Vw|* dx—i—/ Vwhdr — K g(w) hdx.
RN RN RN RN
Therefore (6.9) is satisfied and the theorem is proved. O

7 Existence of solutions

This section is devoted to our main existence result, which is the following.

Theorem 7.1. Assume N > 3, (H) and that g : R — R is a continuous function satisfying (g1), (g2),
(841 .42 )- Assume the hypotheses of TheoremsB2and3 3\ with q1, g2 satisfying respectively (3.4) and ([3.6).

Then the functional I : E — R has a nonnegative critical point u # 0.

Remark 7.2. In Theorem[Z 1} as we look for non negative solutions, we can assume g(t) =0forall t <O0.
Indeed, if we have a nonlinearity g satisfying the hypotheses, we can replace g with xr, (t) g (t) (xr, is

the characteristic function of R ), and the new nonlinearity still satisfies the hypotheses.

Remark 7.3. Thanks to Theorems[3.2]and[3.3] the hypotheses of Theorem[Z.1]imply that F is compactly

embedded into L% (RY) + L% (RY). This is one of the main devices to get our existence result.
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Remark 7.4. As concerns examples of nonlinearities satisfying the hypotheses of Theorem[7 1} the simplest

g € C (R;R) such that (g, 4,) holds is

g(t) = min {J 2 ¢ 1= 2 e}

which also ensures (g1) if ¢1, g2 > 4 (with § = min {%, L }). Another model example is

|t|ZI2 -2 t '
g(t):w with1 < ¢1 < ¢o,
which ensures (g1) if g1 > 4 (with § = 4). Note that, in both these cases, also (gz) holds true. Moreover,

both of these functions g become g (t) = |t|q_2 tifqp =qa =q.

We will get Theorem[7.1] by applying a version of the well-known Mountain-Pass Lemma (see chapter

2 in [2]]). Let us first recall the so-called Palais-Smale condition.

Definition 7.5 (Palais-Smale condition). Let Y be a Banach space and ® : Y — R a C! functional. We
say that ® satisfies the Palais-Smale condition if for any sequence {xy, },, sucht that ®(z,,) is bounded in R

and ®'(z,,) — 01in Y, there is a subsequence {x, } convergingin Y.

Theorem 7.6 (Mountain Pass Lemma). Let Y be a Banach space and ® : Y — R a C! functional with
®(0) = 0. Assume that ® satisfies the Palais-Smale condition and that there are a subset S C'Y and a

real number o > 0 such that:

(1) Y\S is not arcwise connected;
(2) ®(x) > aforallxz € S;

(3) there existsy € Y\(CoUS) such that ®(y) < 0, where Cy is the connected component of Y\ 'S such
that 0 € C.

Then ® has a critical point v € Y such that ®(u) > .

To prove Theorem [Z.1] we will prove that the functional I : £ — R satisfies the hypotheses of the
Mountain Pass Lemma. It is obvious that 7(0) = 0. The other hypotheses of the Mountain Pass Lemma are
proved in the following lemmas. More precisely, assumptions (/) and (2) are proved in Lemma[Z7] while
assumption (3) is proved in Lemma[Z8 In Lemmas[7.9]and [Z.10l we show that I satisfies the Palais-Smale
condition.

Recall the three functionals I, I>, I3 introduced in the proof of Lemmal6.1land define, for u € E,

J(u) = I (u) + Ix(u) = %/RN |Vul? dz + % /RN V(|z|) f(u)? da.

Then, for any p > 0, define
Sy ={ueE|J()=p}.

Lemma 7.7. Assume the hypotheses of Theorem[Z 1} Then there is p* > 0 such that for all p € (0, p*) the

set E\SS, is not arcwise connected and there exists o = o(p) > 0 such that I(u) > a forallu € S,,.
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Proof. Fix any v € E\{0} and set p; = J(v) > 0. Then for all p € (0, p) the set E\'S, is not arcwise
connected, because J is a continuous functional on £ and any continuous path joining 0 and v must intersect
S,. Toget S = S, and «v as in Mountain Pass Lemma, we recall first that, by Corollary2.3] one has X — E
and therefore there exists C' > 0 such that ||u|| < C||u||x forall u € X. Also, we know that if u € E then
f(u) € X, so that, forall u € E, we have

1f ) < C[If (u)]|x-

In the hypotheses of Theorem [Z1] we can choose 0 < R; < Rs such that Sy(q1, R1) < oo and
Soo(q2, R2) < +00. Hence

K([z))G(f (w))dx

RN

< M/RN K (J]) min {[ f ()|, | f(u)[*} da

<M K(lz)|f(uw)|" dx + M K(lz)|f(uw)|" dx + M K ([[)| f(u)|*dx
Br, Br,\Br, Brg

< MSo(qu, Ru)[[f (W)[|™ + MCry ro |l f ()| + MSoc(g2, R2)||f (w)[|*.

These inequalities derive from the hypotheses on g, the definitions of Sy and S, and Lemmasd.1land 271

So we get

K(|z))G(f (v))dx

RN

< Gil[f )" + Collf ()| < Ca[[f ()| + Callf(w)]I%-

Now we have

Il = [ VraPde+ [ Viahrarar< [ Valde [ Vel lds = 250)

and therefore, for u € S, we get

K (Jz)G(f (u))dz| < C5p™/? + Cop™/2.

RN

Hence, for u € S, we conclude that

I(u) = J(u) — . K(|z))G(f(u))dz > p — CspT/? — Cp®/?.

As 4. 2L > 2 itis obvious that for p > 0 small enough we have a = a(p) = p— C5p?/% — Cep®/? > 0,

and this concludes the proof of the lemma. O
Lemma 7.8. Take p > 0 as in Lemma[ZZ Then there exists v € E such that J(v) > p and I(v) < 0.

Proof. From assumption (g1) and (g2) we infer that G(¢) > 0 for all ¢ and, for every ¢y > to and all
t>ty,

G(t4)
G (t) > P 2% > 0. (7.1)
+
Clearly it is not restrictive to assume ¢y > 1. Now we fix ¢; > 1 such that f(¢1) > ¢o and then we pick
a non negative function ug € C2%.(R™) such that the set {x € R" : ug () > t1} has positive Lebesgue
measure. Hence for every A > 1, using (Z1) with ¢y = f(t1), we get

K ()G (f (Auo)) dz = / K(|2)G (f (o)) da > Z 1))

20
{Duo>t1} f(t1)? /{Auo>t1} K(|z]) (f (Auo))™ dx

RN
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> clx‘)/ K(|z]) ubdz = Ca),
{uo>t1}

where Cy = C} f{ug>t1} K (|z|) u§dz > 0. On the other hand
V(jzl)f(huo)?de < A* | V(|2]) ujde,
RN RN
so that

(o) = %/RN IAVuo|? dz + % /RN V(ll)f o)? der — /RN K(12))G (f (o)) dz < Cs)2 — G\

As 6 > 2, we deduce that I(Aug) — —oo when A — +0c0. As it is obvious that J(Aug) — 400 when

A — +00, the proof is concluded by choosing v = Aug for A large enough. O

Lemma 7.9. Under the assumptions of Theorem[Z1} let {u,}, C E be a Palais-Smale sequence for I,
that is, a sequence such that {I(u,)},, is bounded and I'(u,) — 0 in E'. Then {u,},, in bounded in E.

Proof. We start with the following computation:

—l'uuzl—l u2gc1 z|) f(un)?dx — x Uy))dw
) = g = (5= 5 ) [ IVunlao 5 [ vahsunas = [ K(e)6( )

1

/ 1 ,
5 | Vb s ) s unde+ 5 [ K (g () unund

Since (5) of Lemmal2limplies f(t)? — f(t) f'(t)t > 0 for all ¢, we have

[ V0 (700 = ) ) >0

and this implies

%/}RN V(|2]) f (up)?da — %/}RN V(|2[).f (un) f* (i Junda = <% - %)

g [ V0D () = Fun)f ) do > (% - %) [ VD)

On the other hand, using the hypotheses on g and (5) of Lemma2.]again, we have
1

o[ KUl oz~ [ K ()G ()

RN RN

> 2 [ K (o @) undunde — g [ K (el g(F () ()
RN RN

> 55 | Kelgtr ) suds =55 [ Klel)gF ) (wn)ds o

Therefore we get

I(uy) — %1/(%)% > (% _ %) (/RN Vup [2dz + /RN V(|x|)f(ui)dx) .

By definition, we have [,y [Vun|?de = [|uy|f 5 and [pn V(|2]) f(un)?dz + 1 > |Junlo. Hence, if

[Junll12 < 1 we get

/ |V, [*da +/ V(|2]) f (un)*dz > Junllo =1 > [Junllo + [[unllr2 = 2 = [Jun]| - 2.
RN RN
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On the other hand, if [[uy[|1,2 > 1 then [[un|[F 5 > |[tn|]1,2 and hence

/ Vuundz + / V() f (1) > [funl 12 + [ttnllo — 1> |Jun]] — 2.
RN RN

So in any case we conclude

) = 31 Cundun = (33 ) lunll -2 (5 - 5)-

As {uy,}, is a Palais-Smale sequence, we can assume /(u,) < C and we can fix 6 > 0 such that § <
0 (3 — %) and |I’(un)up| < 8||uy|| for large n’s. Hence we get

1) 1 1 1 1 1
— > — > - — — — - — —
C+ 9||un|| > I(uy) 91 (U )ty > (2 9) |[tn]| — 2 (2 9) ,

1 1 1 1 6
C+2|lz—=]>|z—=—= nll-
+ (2 9) = (2 0 9)”“ I
As 2 — % — 5 >0, this implies that {||u,||},, in bounded. O

Lemma 7.10. Under the assumptions of Theorem[Z1) the functional I : E — R satisfies the Palais-Smale

condition.

Proof. Let {u,}, be asequence in £ such that {I (uy,)}, is bounded and I’ (u,,) — 0 in E’. By Lemma
{un}, is bounded in E and therefore there exists a subsequence, that we still call {u,},, such that
uy, — win D}? (RY) and u,(z) — u(z) for a.e. z. Recall that we have introduced the three functionals
11, I, I3 (see Theorem[6.1) and we have defined J = I; + Iy, so that [ = J — I3. We know that I3 is od
class C' on L% + L%. By compactness of the embedding of E into L% + L%, up to a subsequence we have
that u, — win L% + L%, whence I}(u,,) — I}(u) in the dual space of LY + L% and I} (u,,)(u—u,) — 0

in R. We notice now that, as f 2 is a convex function, .J is a convex functional on E, so that
J(u) — J(up) > I (un)(u — upn) = I'(un) (u — up) + I (wn) (u — uy).
As I'(up,) — 0 in E’ by hypothesis and {u — u,, } is bounded in E, we have I’ (uy,)(u — u,) — 0 and thus
J(u) > J(uy) + o(1).
Taking the liminf, this gives

/ |Vu|2dx+/ V(|z|) f(u)?*dz > liminf (/ |Vun|2d:v—|—/ V(|:E|)f(un)2dx) (7.2)
RN RN n RN RN

> lim inf |Vuy,|?dr + lim inf/ V(|z]) f (un)?da.
n ]RN n RN
By semicontinuity of the norm, we have
lim inf/ |V, |?de > / |Vu|?dz,
n RN RN
so that (Z.2) gives

/ V(|z|) f(u)?*dz > lim inf V(|z|) f(un)*da.
RN " RN
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As Fatou’s Lemma obviously implies [, V'(|#]) f(u)?dz < liminf,, [ V(|2])f(un)?dz, we deduce

/ V(|x|)f(u)2d:c:hn}linf/ V(|z|) f(un)*da. (7.3)
RN

RN

So, passing to a subsequence that we still label {u,, },, we can assume

/ V(|z|) f(u)dx = hm/ (|2)) f (un)?da. (7.4)
RN

Then by (3) of Lemma[2.4] we get ||u — u,||, — 0. Now, repeating the previous argument for this subse-

quence, we get again (Z.2), which now gives

/ |Vu|2dx2hminf/ |V, |?de
RN " RN

/ |Vu|2da::liminf/ |V, |?dz.
RN n RN

Up to a subsequence again, we can assume

/ |Vu|2dx:hm/ |V, |?dz.
RN nJRN

Since u, — win D}? (RY), we obtain that u, — w in D}? (RY), ie., [[u — un||1,2 — 0. Hence

and hence

[lu = unl| = [Ju = unlo + |lu = un[[1,2 = 0. O

Proof of Theorem[Z1] Taking p and v as in Lemmas [7.7] and[Z.8] we have 0 = J(0) < p < J(v), so that
v and 0 are in two distinct connected components of E\S,. Hence, the previous lemmas show that all the
hypoteses of Mountain Pass Lemma[Z.6lare satisfied, and thus we get a critical point u of I, with u # 0. Let
u~ be the negative part of u. It is easy to see that u~ € F, so that I’(u)u~ = 0. The additional assumption

g(t) = 0 for t < 0 implies

0=1"(u)u = — /RN |Vu™ |*de + /RN V(|z)) f(u)f' (u)u™dz, (7.5)

where, by the properties of V" and f, we have
[ viahsswde = [ V(e su)f o de == [ Vija) ) f @ ds <o,
RN RN RN
Hence (Z.3) implies [;y |[Vu~[*dz = 0. One concludes that u~ = 0, because u~ € D;? (RY), and

therefore w is nonnegative. |

8 Examples

In this section we give some examples of application of our results, obtaining some existence results which
are not included, as far as we know, in the previous literature. More precisely, we will make a comparison
between our results and those of [31]], which inspired the present study. In that paper the authors prove
some existence results for equation (1.1}, assuming that g grows like a power and that V, K are controlled
by suitable powers of |x|. Here we show some situations where the results of do not apply, while ours
give existence of solutions.

In all the examples, we will consider the model nonlinearity g(¢) = min{t?*~* t%2~1} for simplicity,

and we will let 4 < ¢ < ¢o. As the throughout the paper, we will also assume N > 3 and hypothesis (H).
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Example 8.1. Assume that there exist ¢y, ¢, c3, ¢4 > 0 such that
eV <K(r)<epr*™ asr— 0T, esm3N < K(r) < ear®™  asr — +oo.

Computing the coefficients b, by in [31]], one gets by = 2N and b > 3N, so the results in cannot be
applied, because they need by > b. If we let By = B0 = 0, ag = 2N and ao, = 3N in Theorems[3.2]and
we get

aw+N 6N a+N 8N
N2 N_2°0 4x(a0) N_2 N_2

45 (0, 0) =2

Hence we can apply our existence results to nonlinearities g(#) = min{t% ~* #9271} with

4 < < 6V < 8N
DSN"9SN_2

< Q2.

Notice that we are not assuming that V' has a power-like behavior at zero or at infinity (in this regard we

just need hypothesis (H)).
Example 8.2. Let N = 3 and assume that there exist c1, co, c3, ¢4 > 0 such that

2 [ N c3 ¢4
mSK(T)Sm asr—>0, mSK(T)Sm asr — +oo.

In this case the coefficients b, by in are by = —% and b > —%, so0 again b > bg and the results of
cannot be applied. If we let By = Bo = 0, g = —% and oioo = —% in Theorems[3.2]and 3.3l we get

ag+ 3 aoo—l—?)_E
3—2 3—-2 3’

75 (0,0) =2

=-146=5, ¢ (xx,0)=2
Hence we can apply our existence results with

4<q1<5<1—36<q2.
As for the previous example, the only assumption we need on the asymptotic behavior of V' is (H).

Example 8.3. Assume that there exist ¢,§ > 0 such that V(r) < ce™®" as r — +oo. The results of

cannot be applied because they require lim inf, _ V(I ) > ( for some a € R. Instead, we can give
pp y req = g

several existence results with different hypotheses on K. For example, assume K (r) = V. Then we take

Bo = Boo = 0and ap = ase = N in Theorems[3.2land 3.3l and we get

AN
5(0,0) = ¢ (a0, 0) = > 4.
05 (010,0) = % (000, 0) = 1=
Hence we get an existence result by choosing
1< < Al <
il N _2 q2.

Assume now K (r) = min {r"V,7*"'} and choose 8y = B = 0, ap = 2N and ce = N in Theorems[3.2]

and 3.3l We get
N g N
N_27 qoo o o} - N—2

where ¢ (o, 0) > ¢ (0o, 0), so that we can choose ¢ = g2 = ¢ and get existence of solutions for power

45 (o, 0) = >4

nonlinearities g(t) = min{t91~1 t2271} = ¢t4=1 with

6N
<q< —.

4<N—2 N -2




31

Example 8.4. Assume that there exist ¢,§ > 0 such that K (r) > ce® as r — +oo. The results in [31]

cannot be applied because they require lim sup,._, . Kr(br ) < 400 for some b € R. To give an explicit

example, assume K (r) = rVe” and V(r) = e". Then we take By = 0, Boo = 1/2and ag = a, = N in
Theorems[3.2land[3.3] and we get

AN 2N -1

= * 00,12:2 4'

45 (0, 0)

So we can choose ¢; = g2 = ¢ and this gives existence results forg(t) = t4=1 with

-1 4N

ON
1< 2 .
SPNZ2 SIS N 2

Example 8.5. Assume that K (r) = o(r™) for all N, as » — 0. For example, K (r) = ce~%/" for r
near zero, with ¢,d > 0. As before, the results of cannot be applied because they need a power-like
behavior of K near zero. Assume also that, for » — 400, it holds K (r) = r*V (r) for some e € R. Notice
that this does not require any specific asymptotic behavior at oo for V' and K, and the only hypothesis on

the behavior of V" at 0 is, again, (H). Fix aeo = @ and 85 = 1 in Theorem[3.2] Hence

N —2 2
o+ . « 4o

; 0071 :2 - .

and we can choose g2 > max {4, % + 2}. Once we have fixed such a g2, we let 5y = 0 and « such
that 2 % > go. This means g («vg, 0) > g2 in Theorem[B3] so that we can take ¢ = ¢; = g2 and get an
existence result with g(¢) = t9~! for any ¢ > max {4, % + 2}. As another example of the same kind,
assume K (r) = e~'/" and V(r) = 1/r? for all » > 0. It is easy to see that the best choice in Theorem[3.3]

1S A = Poo = 0, which gives
2N

qzo(aooaﬁoo) = N_2

As before, for any fixed g2 > max {4, 13_1_\72} we can let Sp = 0 and «p large enough in such a way that

q5 (0, 0) > go, so that we can take g1 = g2 = ¢. Hence we get a solution for g(t) = t9~! with any

q > max{él, ]3—]}2} Notice that this means ¢ > 6 for N = 3 and ¢ > 4 for N > 4.

Example 8.6. Let V(r) = 1/72 for all » > 0, and assume K (r) = cr’¥ for r near zero (¢ > 0) and
K(r) < C forr — +oc. For example K (r) = min {r",1}. Hence the coefficients ag, by of are
given by by = N and a¢p = —2, and the results of cannot be applied because they need ag > by. We
fix ag = N and By = 0 = qioe = B in Theorems[3.2land[B3] so that

. N AN N N 2N
qO(a07BO) = qO(Na O) - N —9 > 47 qoo(aooaﬂoo) = qoo(ovo) - m
Hence we can take ¢ = g1 = ¢o and get existence results for power nonlinearities g(t) = t9=1 with
qe (4, %) if N> 4,and q € (6,12) if N = 3.

Remark 8.7. As a final remark, we observe that most of existence results we can formulate for explicit
potentials concern potentials K ’s decaying fast enough as » — 0. This is the major limitation of our work.
Nevertheless we believe that it might be overcome by a careful analysis of our estimates, and we hope to do

this in a future paper.
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