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On the Benefit of Cooperation in Relay Networks
Oliver Kosut, Michelle Effros, Michael Langberg

Abstract—This work addresses the cooperation facilitator (CF)
model, in which network nodes coordinate through a rate limited
communication device. For independent multiple-access channel
(MAC) encoders, the CF model is known to show significant
rate benefits, even when the rate of cooperation is negligible.
Specifically, the benefit in MAC sum-rate, as a function of
the cooperation rate CCF , sometimes has an infinite slope at
CCF = 0. This work studies the question of whether cooperation
through a CF can yield similar infinite-slope benefits when
applied to internal network encoders in which dependence among
MAC transmitters can be established without the help of the CF.
Towards this end, this work studies the CF model when applied to
relay nodes of a single-source, single-terminal, diamond network
consisting of a broadcast channel followed by a MAC. In
the relay channel with orthogonal receiver components, careful
generalization of the partial-decode-forward/compress-forward
lower bound to the CF model yields sufficient conditions for
an infinite-slope benefit. Additional results include derivation of
a family of diamond networks for which the infinite-slope rate-
benefit derives directly from the properties of the corresponding
MAC component when studied in isolation.

I. INTRODUCTION

The information theory and communication literatures ap-
proach the goal of improving network communication perfor-
mance in a variety of ways. While some studies investigate
how to get the best possible performance out of existing
networks, others seek better designs for future networks. In
practice, the way that networks improve over time is some-
where in between — a combination of adding new resources
and making better use of what is already there. We here seek
new tools for guiding that process, focusing on the questions
of whether and where small changes to an existing network
can have a big impact on network capacity.

One example of a network in which incremental network
modifications can achieve radical network improvement, in-
troduced in [1], employs the multiple-access channel (MAC)
and a node called a cooperation facilitator (CF). In practice, the
CF is any communicating device that can receive information
from multiple transmitters. In any MAC for which dependent
channel inputs from the transmitters would yield a higher
mutual information between the MAC’s inputs and output than
is achievable with the independent channel inputs employed in
calculating the MAC capacity, adding a small communication
link from the CF to either or both of the transmitters yields
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a disproportionately large capacity improvement [1]. Specif-
ically, the curve describing the improvement in MAC sum-
capacity as a function of the capacity CCF of the cooperation-
enabling CF output link has slope infinity at CCF = 0 [1,
Theorem 3]. In some cases, even a single bit — not rate 1,
but a single bit no matter what the blocklength, suffices to
change the network capacity [2], [3].

Since the infinite-slope improvement in the MAC-capacity
results from creating dependence where none could otherwise
be observed, it is tempting to believe that the infinite-slope
phenomenon cannot occur either in cases where dependence
is already attainable or where dependence is not critical to
attaining the best possible performance. In this paper, we
explore these two intuitions — seeking to understand whether
incremental changes can achieve disproportionate channel
benefits in these scenarios.

Toward this end, we investigate a single coding framework
where both scenarios can arise. We pose this framework as a
diamond network in which a single transmitter communicates
to a collection of relays, and the relays work independently to
transmit information to a shared receiver. Since the communi-
cation goal in the diamond network is to transmit information
from a single transmitter at the start of the diamond network
to a single receiver at its end, dependence at the relays may
be available naturally; we investigate whether this availability
precludes the possibility of incremental change with dispropor-
tionate impact. When the links from relays to the receiver are
independent, point-to-point channels, the resulting degenerate
MAC fails to meet the prior condition specifying that input
dependence should increase sum capacity; we investigate
whether this failure precludes the desired small cost, large
benefit tradeoff to incremental network modifications.

The rest of this paper is organized as follows. In Section II,
we set up the problem of the diamond relay network with N
relay nodes and a cooperation facilitator (Fig. 1), which allows
us to pose our main question about the power of cooperation
in a relay network. Our results focus on two special cases
of this network. The first, covered in Section III, is the relay
channel with orthogonal receiver components (Fig. 2). Here,
we present an achievability bound for the CF problem, as well
as sufficient conditions for the infinite-slope phenomenon to
occur. In Section IV, we explore a 3-relay example (Fig. 3)
that allows us to exploit the results of [1] on the MAC to
demonstrate the infinite-slope phenomenon in a larger network
with only one source.

II. PROBLEM SETUP

Notation: For any integer k, [k] denotes the set {1, 2, . . . , k}.
Capital letters (e.g., X) denote random variables, lower-
case letters (e.g., x) denote realizations of the corresponding
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Fig. 1. General diamond relay network with N nodes and a cooperation facilitator (CF).

Fig. 2. Relay channel with orthogonal receiver components and a cooperation
facilitator, a special case of the general diamond relay network.

variable, and calligraphic letters (e.g., X ) denote the corre-
sponding alphabet. Vectors are denoted with superscript (e.g.,
xn = (x1, . . . , xn)). We use standard notation for mutual
information and entropy.

A diamond relay network with N relay nodes and a
cooperation facilitator (CF)—shown in Fig. 1—is given by
a broadcast channel p(y1, . . . , yN |x), followed by a MAC
p(y|x1, . . . , xN ). An (n,R) code for the diamond relay net-
work is composed of

• an encoder f : [2nR]→ Xn,
• a CF-encoder fCF :

∏
j∈[N ] Ynj → [2nCCF ],

• a relay encoder fj : Ynj × [2nCCF ]→ Xnj for each j ∈ [N ],
• a decoder g : Yn → [2nR].

The message M is assumed to be uniformly drawn from
[2nR]. Encoded message Xn = f(M) is transmitted by the
encoder into the broadcast channel, which outputs Y nj at relay
j, j ∈ [N ]. The CF observes all the outputs of the broadcast
channel, and encodes K = fCF (Y

n
1 , . . . , Y

n
N ), which is sent

to each relay. Relay j encodes Xn
j = fj(Y

n
j ,K) and transmits

it into the MAC. Finally, the output signal Y n is received and
decoded to M̂ = g(Y n). The overall probability of error is
given by P (n)

e = P (M 6= M̂). We say a rate R is achievable
if there exists a sequence of (n,R) codes with P (n)

e → 0. The
capacity C(CCF ) is the supremum of all achievable rates for
a given CF capacity CCF . This function is non-decreasing in
CCF , and so its derivative C ′(CCF ) is non-negative.

We are interested in characterizing C(CCF ), but more
specifically, we are focused on the following question:

Main question: For a given network, is C ′(0) =∞?

III. RELAY CHANNEL WITH ORTHOGONAL RECEIVER
COMPONENTS

The first special case of the diamond relay network that
we focus on is the relay channel with orthogonal receiver
components. Here, we specialize the general model described
above in several ways. First, we assume there are only N = 2
relay nodes, and further we assume that the received signal at
the decoder is made up of orthogonal components, one from
each relay. That is, Y = (Ya, Yb), where the MAC model
factors as

p(ya, yb|x1, x2) = p(ya|x1)p(yb|x2). (1)

Given this factorization, the capacity of the overall network
depends on the channels from X1 to Ya and from X2 to Yb
only through their capacities [4]. Thus, we can simplify the
problem by replacing these noisy channels with rate-limited
bit-pipes of capacities C1 and C0 from each relay to the
decoder. Finally, we assume that C1 =∞; i.e., we assume that
Relay 1 is able to transmit all of its information (consisting of
Y n1 as well as the CF signal K) directly to the decoder. These
simplifications yield the network model shown in Fig. 2. Note
that this network only has one relay node, so it makes sense to
call it a relay channel model rather than a diamond network
model. We have also relabelled Y2 as Yr to emphasize that
it is the relay’s received signal; this also makes the notation
consistent with [5], [6].

A. Main Achievability Result

Theorem 1: Consider a relay channel with orthogonal
receiver components with broadcast channel distribution
p(yr, y1|x), capacity C0 from relay to destination, and the CF
capacity CCF . Rate R is achievable if

R ≤ I(U ;Yr) + min{I(X;Y1, Yr|U), I(X;Y1, V |U)},
(2)

R ≤ min{I(U ;Y1), I(U, Yr)}+ I(X;Y1|U)

+ I(V ;X,Y1|U)− I(Yr;V |U) + C0, (3)
CCF ≥ I(X,Y1;V |U, Yr), (4)

for some distribution

p(u, x)p(yr, y1|x)p(v|x, y1, yr, u). (5)

Proof: See Appendix A.
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Remark 1: Thm. 1 reduces to the well-known combined
partial-decode-forward/compress-forward lower bound for the
standard problem (without a CF), which originated in [7]. For
the relay channel with orthogonal receiver components, [5]
showed that this classical bound can be written as follows:
rate R is achievable if

R ≤ I(U ;Yr) + I(X;Y1, V |U), (6)
R ≤ min{I(U ;Y1), I(U ;Yr)}+ I(X;Y1|U) + C0

− I(Yr;V |U,X, Y1) (7)

for some distribution

p(u, x)p(yr, y1|x)p(v|yr, u). (8)

In Thm. 1, removing the CF is equivalent to setting CCF =
0. Thus, (4) implies the Markov chain (X,Y1)− (U, Yr)−V ,
which implies that the variables have a joint distribution
that factors as (8). Thus, by the data processing inequality,
I(X;Y1, V |U) ≤ I(X;Y1, Yr|U), so (2) becomes (6). In
addition,

I(V ;X,Y1|U)− I(Yr;V |U) (9)
= −H(V |U,X, Y1) +H(V |U, Yr) (10)
= −H(V |U,X, Y1) +H(V |U, Yr, X, Y1) (11)
= −I(Yr;V |U,X, Y1), (12)

so (3) becomes (7).

B. Sufficient Conditions for Infinite Slope

The following theorem provides a sufficient condition for
which, given a starting achievable point for the partial-decode-
forward/compress-forward bound without cooperation (i.e., the
bound in (6)–(7)), the achievable rate from Thm. 1 with coop-
eration improves over the starting point and this improvement
has infinite slope as a function of CCF .

Theorem 2: Fix a distribution p(u, x)p(v|yr, u). Let R be
a rate satisfying the no-cooperation achievability conditions
in (6)–(7) for this distribution. Suppose I(X;Y1, V |U) <
I(X;Y1, Yr|U), and there does not exist λ ∈ [0, 1] and
γ(u, x, y1, yr) ∈ R for each x, y1, yr, u such that

p(v|u, x, y1) =
p(v|u, y1)λp(v|u, yr)1−λ

γ(u, x, y1, yr)
(13)

for all u, x, y1, yr, v where p(u, x, y1, yr) > 0, p(v|yr, u) > 0.
Then

lim
CCF→0

C(CCF )−R
CCF

=∞. (14)

Proof: See Appendix B.
Remark 2: We note that there are two ways for (14) to hold:

(1) C(0) > R; that is, the rate R, while achievable without
cooperation, is smaller than the no-cooperation capacity of the
relay channel; (2) C(0) = R, and C ′(0) =∞. Here, the rate
R is the no-cooperation capacity, so (14) indicates that the
CF really can improve the capacity of the relay network in an
infinite-slope manner. Thus, this latter case is the one we are
particularly interested in, as it gives an affirmative answer to
the Main Question. Unfortunately, for any problem instance
for which a matching converse for the no-cooperation setting

is unavailable, even if (14) holds, there is no way to know
which situation we are in. Still, if R represents the best-known
achievable rate for a given network, (14) has a non-trivial
consequence, showing that the state-of-the-art can be improved
disproportionately by a small amount of cooperation.

While the condition in Thm. 2 is sometimes hard to verify,
the following corollary provides a simpler sufficient condition
for the same conclusion.

Corollary 3: Assume that p(y1, yr|x) > 0 for all letters
x, y1, yr. Consider any distribution p(u, x)p(v|u, yr). Let R
be a rate satisfying (6)–(7) for this distribution. Then at least
one of the following possibilities hold:

1) there exists a function g : U × Yr → V where rate R
satisfies (6)–(7) with V = g(U, Yr).

2) (14) holds.
RPD/C(0) p(v|u, yr) is non-deterministic; i.e.,
0 < p(v|u, yr) < 1 for some u, v, yr. Then R′PD/C(0) =∞.

Proof: See Appendix C.

C. Example Relay Channels

For some relay channels, [8] showed that the compress-
forward bound achieves capacity. Thus, it is possible to
definitively answer the Main Question for these channels. The
following example illustrates one such channel.

Example 1: Let X ∈ {0, 1}, Y1 = X ⊕ Z, Yr =
Z ⊕W , where ⊕ indicates modulo-2 addition, Z ∼ Ber(p),
W ∼ Ber(δ), and X,Z,W are mutually independent. For this
channel, the capacity without cooperation is shown in [8] to
be given by

C(0) = max
p(v|yr):I(Yr;V )≤C0

1−H(Z|V ). (15)

Moreover, this rate is achieved by compress-forward by choos-
ing X ∼ Ber(1/2) and setting p(v|yr) to be the distribution
achieving the maximum in (15). Corollary 3 applies to this
channel, since p(y1, yr|x) > 0 for all (x, y1, yr) as long as
p, δ ∈ (0, 1). Moreover, the only deterministic distributions
from Yr to V are where either V is a constant, or V = Yr
(or equivalent). It is easy to see that as long as 0 < C0 <
H(Yr) = H(p⊕ δ), neither of these choices for V is optimal.
Therefore, in all non-trivial cases, C ′(0) =∞ for this channel.

The following relay channel example is one for which the
no-cooperation capacity is not known. However, we can verify
the sufficient condition from Thm. 2, thus showing that an
infinite-slope improvement is possible through cooperation.

Example 2: Let X ∈ {0, 1}, and let p(y1, yr|x) =
p(y1|x)p(yr|x), where each of the two component channels
is a binary erasure channel (BEC) with erasure probability p.
An achievable rate for the no-cooperation case from (6)–(7)
is given by taking U = ∅, X to be uniform on {0, 1}, and
p(v|yr) to be a channel that further erases any un-erased bit
with probability q; that is,

p(v|yr) =


1− q v = yr ∈ {0, 1}
q v = e, yr ∈ {0, 1},
1 v = yr = e,

0 otherwise.

(16)
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This leads to the achievable rate

R = max
q∈[0,1]

min{(1− p)(1 + p(1− q)),

1− p−H((1− p)(1− q)) + (1− p)H(q) + C0} (17)

where H(·) is the binary entropy function.
Note that this channel does not satisfy the conditions of

Corollary 3, since p(y1, yr|x) is not always positive. Instead,
we verify the sufficient condition of Thm. 2 directly. Suppose
that there exists a λ and γ satisfying (13). Note that Y1 −
X − Yr − V is a Markov chain, so p(v|x, y1) = p(v|x). For
x ∈ {0, 1} and any y1 ∈ {x, e}

pV |X(x|x)
pV |X(e|x)

=
(1− p)(1− q)

1− (1− p)(1− q)
(18)

=
pV |Y1

(x|y1)λ(1− q)1−λ

γ′(x, y1, x)
· γ′(x, y1, x)

pV |Y1
(e|y1)λq1−λ

(19)

=

(
1− q
q

)1−λ(pV |Y1
(x|y1)

pV |Y1
(e|y1)

)λ
(20)

=

(
1− q
q

)1−λ

(

(1−p)(1−q)
1−(1−p)(1−q)

)λ
, y1 = x(

1
2 (1−p)(1−q)
1−(1−p)(1−q)

)λ
, y1 = e.

(21)

This cannot hold with equality for both y1 = x and y1 = e
unless p = 0, p = 1, or q = 1. Therefore, except in these
trivial cases, infinite slope improvement occurs.

IV. 3-RELAY NETWORK EXAMPLE

In the analysis of Theorem 1 and C ′(0) for the orthogonal-
receiver setting given in Sections III-A and III-B, relay-
cooperation is governed by the statistics of the broadcast
channel p(y1, yr|x) and, roughly speaking, is designed to
“remove” from Y nr message information that can be obtained
at the receiver from Y n1 . In this aspect, we say that the design
of cooperation information looks backwards and is governed
by the broadcast channel of the diamond network.

In this section, we study a forward form of cooperation, that
takes into account the MAC appearing in the second stage of
the diamond network. For forward-looking cooperation, it is
tempting to treat the MAC “in isolation”, rather than as part
of a larger network, and to design cooperation solely based
on the MAC noise statistics, as done in [1], [3]. In general,
designing cooperation by treating the MAC as an isolated
component may not suffice to improve communication of the
diamond network, because MAC encoders in the diamond
network potentially hold dependent information resulting from
the broadcast stage of communication. Nevertheless, in what
follows, we present a family of 3-relay diamond networks
for which cooperation-gain in the network as a whole is
derived directly from the MAC cooperation-gain when studied
in isolation; the latter is well understood and given in [1]. Our
network family is described below and depicted in Figure 3.

Consider the diamond network defined by broadcast
channel (X , p(y0, y1, y2|x),Y0,Y1,Y2), and MAC
(X0,X1,X2, q(y|x0, x1, x2),Y). More specifically, as
depicted in Figure 3, consider the case in which
X = Y0 = Y1 = X0 = X1 = {0, 1}; Y2 = X2 = {0, 1}2;

X Y1

Y0

Y2 = X2=(X⊕YZ,Z)

X1

X0

Y=(YW,X2)

f0

f1

Y0 ,Y1 , Z ~ Ber(0.5)iid

W

Fig. 3. The 3-relay diamond network of Claim 4.

Y = YW × X2 for a given memoryless 2-user binary MAC W:
(X0,X1, pW(yW|x0, x1),YW); for any x, p(Y0, Y1, Y2|x) induces
(Y0, Y1, Y2) where Y0, Y1, Z are independent Bernoulli(0.5)
random variables and Y2 = (x ⊕ YZ , Z); Xn

0 = f0(Y
n
0 ),

Xn
1 = f1(Y

n
1 ), Xn

2 = f2(Y
n
2 ) for relay encoders f0, f1,

and f2; and q(Y |x0, x1, x2) for which Y = (YW, x2). As Y n

holds the value of Xn
2 ∈ {0, 1}n, which in turn depends

on Y n2 ∈ {0, 1}n through f2, we assume without loss of
generality that Xn

2 = Y n2 .
Using the independent nature of relays Y0 and Y1, in

Claim 4 below we tie the cooperation gain of the 2-transmitter
MAC W with the cooperation gain of the diamond network.

Claim 4: Let Csum(CCF ) be the sum-capacity of the 2-
transmitter MAC W with user cooperation of rate CCF .
Then the capacity C(CCF ) of the diamond network satisfies
C ′(0) =∞ if C ′sum(0) =∞.

Proof: See Appendix D.
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APPENDIX A
PROOF OF THEOREM 1

We denote T
(n)
ε as the robustly typical set. See [9] for

the definition, as well as the formal statement of the packing
lemma, which will be used in the proof.

We employ the following lemma, which is a slight variation
on the covering lemma from [9].

Lemma 5: Let (U,X, X̂) ∼ p(u, x, x̂) and ε′ < ε. Let
(un, xn) ∈ Tε′(U,X) be a pair of fixed sequences, and let
X̂n(m),m ∈ A, where |A| ≥ 2nR, be random sequences,
conditionally independent of each other, each uniformly dis-
tributed on T (n)

ε (X̂|un). Let M? be the smallest m for which

X̂n(m) ∈ T (n)
ε (X̂|un, xn). (22)

If there is no such m, we say M? is undefined. Then,
1) there exists δ(ε) that tends to zero as ε → 0 such that

limn→∞ P (M? is undefined) = 0, if R > I(X; X̂|U) +
δ(ε),

2) conditioning on the event that M? is defined, X̂n(M?)

is uniformly distributed in T (n)
ε (X̂|un, xn).

Proof: For any m ∈ A, we have

P ((un, xn, X̂n(m)) ∈ T (n)
ε |Un = un, Xn = xn) (23)

= P ((un, xn, X̂n(m)) ∈ T (n)
ε |Un = un) (24)

=
∑

x̂n∈T (n)
ε (X̂|un,xn)

1

|T (n)
ε (X̂|un)|

(25)

=
|T (n)
ε (X̂|un, xn)|
|T (n)
ε (X̂|un)|

(26)

≥ 2−n(I(X;X̂|U)+δ(ε)). (27)

The remainder of the proof of statement 1 follows from an
identical argument to that of the standard covering lemma,
i.e., [9, Lemma 3.3].

To prove statement 2, note first that, if M? is defined, then
by definition X̂n(M?) ∈ T (n)

ε (X̂|un, xn). Now, for any x̂n ∈
T

(n)
ε (X̂|un, xn),

P (X̂n(M?) = x̂n|M? is defined) (28)

=
∑
m∈A

P (M? = m|M? is defined)P
(
X̂n(m) = x̂n

∣∣∣
X̂n(m′) /∈ T (n)

ε (X̂|un, xn) for all m′ < m,

X̂n(m) ∈ T (n)
ε (X̂|un, xn)

)
(29)

=
∑
m∈A

P (M? = m|M? is defined)P
(
X̂n(m) = x̂n

∣∣
X̂n(m) ∈ T (n)

ε (X̂|un, xn)
)

(30)

=
∑
m∈A

P (M? = m|M? is defined)
1

|T (n)
ε (X̂|un, xn)|

(31)

=
1

|T (n)
ε (X̂|un, xn)|

(32)

where (30) holds since X̂n(m) are independent for different
m, and (31) since X̂n(m) is uniform on T

(n)
ε (X̂|un), and

T
(n)
ε (X̂|un) ⊂ T (n)

ε (X̂|un). This proves statement 2.

We now proceed to the main proof of the theorem. The fol-
lowing argument combines partial-decode-forward/compress-
forward strategies, as discussed in Remark 1. Fix rates
Ra, Rb, S to be determined, where Ra + Rb = R. Also fix
small constants 0 < ε′ < ε. We construct a code as follows.

Codebook generation:
• For each ma ∈ [2nRa ], generate un(ma) ∼

∏n
i=1 pU (ui).

• For each ma ∈ [2nRa ],mb ∈ [2nRb ], generate
xn(ma,mb) ∼

∏n
i=1 pX|U (xi|ui(ma)).

• For each ma ∈ [2nRa ], ` ∈ [2nS ], k ∈ [2nCCF ],
generate vn(ma, `, k) ∼ Unif

[
T

(n)
ε (V |un(ma))

]
, and

corresponding source coding bins k ∈ [2nCCF ], generate
m0(ma, `, k) ∼ Unif[2nC0 ].

• For each ma ∈ [2nRa ], ynr ∈ Ynr and k ∈ [2nCCF ], let
`(ma, y

n
r , k) be the smallest ` ∈ [2nS ] such that

(un(ma), y
n
r , v

n(ma, `, k)) ∈ T (n)
ε (U, Yr, V ). (33)

If there is no such `, we say `(ma, y
n
r , k) is undefined.

Encoding: At the transmitter, given message m =
(ma,mb), send xn(ma,mb).

CF coding: At the CF, given yn1 and ynr , first find the unique
pair m̂a, m̂b such that

(un(m̂a), x
n(m̂a, m̂b), y

n
1 , y

n
r ) ∈ T (n)

ε (U,X, Y1, Yr). (34)

Next, find the smallest k ∈ [2nCCF ] such that `(ma, y
n
r , k) is

defined, and

(un(m̂a), x
n(m̂a, m̂b), y

n
r , y

n
1 , v

n(m̂a, `(m̂a, y
n
r , k), k))

∈ T (n)
ε (U,X, Yr, Y1, V ). (35)

Send this k. If there is no such k, declare an error.
Relay coding: At the relay, given ynr and k, first find m̂a

such that
(un(m̂a), y

n
r ) ∈ T (n)

ε (U, Yr). (36)

Then let ` = `(m̂a, y
n
r , k), and send m0(m̂a, `, k). If

`(m̂a, y
n
r , k) is undefined, declare an error.

Decoding: At the decoder, given yn1 , m0, and k, find
m̂a, m̂b, ˆ̀ such that

(un(m̂a), x
n(m̂a, m̂b), y

n
1 , v

n(m̂a, ˆ̀, k)) ∈ T (n)
ε , (37)

m0(m̂a, ˆ̀, k) = m0. (38)

Error analysis: Throughout the error analysis, we assume
without loss of generality that ma = mb = 1. To prove that
ma is decoded correctly at both the CF and the relay, and that
mb is decoded correctly at the CF, it suffices to consider the
following error events:

E1 = {(un(1), xn(1, 1), ynr , yn1 ) /∈ T
(n)
ε′ (U,X, Yr, Y1)}, (39)

E2 = {(un(ma), y
n
r ) ∈ T (n)

ε (U, Yr) for some ma 6= 1} (40)

E3 = {(un(1), xn(1,mb), y
n
r , y

n
1 ) ∈ T (n)

ε (U,X, Yr, Y1)

for some mb 6= 1}. (41)

By the law of large numbers P (E1) → 0. By the packing
lemma, P (E2)→ 0 and P (E3)→ 0 if

Ra < I(U ;Yr), (42)



6

Rb < I(X;Y1, Yr|U). (43)

We now show that `(1, ynr , k) is defined for most values of
k. For each k ∈ [2nCCF ], define the event

E4(k) = {(un(1), ynr , vn(1, `, k)) /∈ T (n)
ε (U, Yr, V )

for all ` ∈ [2nS ]}. (44)

Since we have already established that P (E1) → 0, by
Lemma 5, P (E4(k))→ 0 if

S > I(Yr;V |U). (45)

Moreover, Lemma 5 asserts that, given `(1, ynr , k) is
defined, vn(1, `(1, ynr , k), k) is uniformly distributed on
T

(n)
ε (V |un(1), ynr ). Now consider the event

E5 =
{
|{k : `(1, ynr , k) is defined}| < (1− ε)2nCCF

}
. (46)

Since `(1, yr, k) is defined if and only if E4(k) does not occur,
it is straightforward to show that P (E5)→ 0 as n→∞. Now
consider the error event in which the CF cannot find a value
of k to transmit, i.e.,

E6 = {(un(1), xn(1, 1), ynr , yn1 , vn(1, `(1, ynr , k), k)) /∈ T (n)
ε

for all k ∈ [2nCCF ]}. (47)

We may now apply Lemma 5 a second time to find that
P (E6)→ 0 if

CCF > I(X,Y1;V |U, Yr). (48)

Let us further assume without loss of generality that k = 1,
`(1, yn, 1) = 1, and m0(1, 1, 1) = 1. Assuming that error
events E1, E2, E3, E6 do not occur, the relay selects m̂a = ` =
m0 = 1, and

(un(1), xn(1, 1), ynr , y
n
1 , v

n(1, 1, 1)) ∈ T (n)
ε . (49)

Now consider the following decoding error events:

E7 = {(un(1), xn(1,mb), y
n
1 , v

n(1, 1, 1)) ∈ T (n)
ε

for some mb 6= 1}, (50)

E8 = {(un(1), xn(1,mb), y
n
1 , v

n(1, `, 1)) ∈ T (n)
ε ,

m0(1, `, 1) = 1 for some mb 6= 1, ` 6= 1}, (51)

E9 = {(un(ma), x
n(ma,mb), y

n
1 , v

n(ma, `, 1)) ∈ T (n)
ε ,

m0(ma, `, 1) = 1 for some ma 6= 1,mb, `}. (52)

Applying the packing lemma several times, P (E7)→ 0 if

Rb < I(X;Y1, V |U), (53)

P (E8)→ 0 if

Rb + S < I(X;Y1|U) + I(V ;X,Y1|U) + C0, (54)

and P (E9)→ 0 if

Ra +Rb + S < I(U,X;Y1) + I(V ;X,Y1|U) + C0. (55)

We now collect the various rate conditions required for all
of the error event probabilities to vanish. It is advantageous if
S is as small as possible; from the lower limit in (45), we may
assume that S is slightly larger than I(Yr;V |U). We have three
conditions on Rb, namely (43), (53), and (54). Combining each

of these with the condition on Ra in (42), and recalling that
R = Ra +Rb, we need

R < I(U ;Yr) + I(X;Y1, Yr|U), (56)
R < I(U ;Yr) + I(X;Y1, V |U), (57)
R < I(U ;Yr) + I(X;Y1|U) + I(V ;X,Y1|U) + C0

− I(Yr;V |U). (58)

Furthermore, from (55) we need

R < I(U,X;Y1) + I(V ;X,Y1|U)− I(Yr;V |U) + C0 (59)
= I(U ;Y1) + I(X;Y1|U) + I(V ;X,Y1|U)

− I(Yr;V |U) + C0. (60)

Therefore, the conditions in the statement of the theorem
imply that Ra, Rb, S can be found such that all of the above
conditions hold.

APPENDIX B
PROOF OF THEOREM 2

Under the starting distribution

p(u, x)p(y1, yr|x)p(v|u, yr), (61)

I(X,Y1;V |U, Yr) = 0. To show (14), we modify this distribu-
tion slightly, in a way that gives I(X,Y1;V |U, Yr) > 0, which
corresponds to positive CCF , while increasing the achieved
rate. In particular, we leave p(u, x) fixed, but change the
conditional distribution for v to

q(v|u, x, y1, yr) = p(v|u, yr) + α r(v|u, x, y1, yr) (62)

where α ≈ 0. For a variable A ⊂ {U,X, Y1, Yr}, we further
define r(v|a), for example by

r(v|u, yr) =
∑
x,y1

p(x, y1|u, yr)r(v|u, x, y1, yr). (63)

Thus q(v|a) = p(v|a) + α r(v|a). In order for q to be a valid
distribution, we need∑

v

r(v|u, x, y1, yr) = 0 for all u, x, y1, yr. (64)

Thus, these r functions are not really distributions; instead
they satisfy

∑
v r(v|a) = 0 for any variable A. Moreover,

if p(v|u, yr) = 0, then in order for q to be valid, we
need r(v|u, x, y1, yr) ≥ 0; we here make the simplifying
assumption that r(v|u, x, y1, yr) = 0 for any u, yr, v where
p(v|u, yr) = 0. This assumption has the following conse-
quence. Suppose for some (u, x, y1, yr, v), p(u, x, y1, yr, v) =
0. Recalling

p(u, x, y1, yr, v) = p(u, x, y1, yr)p(v|u, yr) (65)

it must be true that either p(u, x, y1, yr) or p(v|u, yr) is zero.
That is, if p(u, x, y1, yr) > 0, then r(v|u, x, y1, yr) = 0, so
q(v|u, y1, yr, u) = 0. In particular

p(u, x, y1, yr)q(v|u, x, y1, yr) (66)

vanishes if and only if p(u, x, y1, yr, v) vanishes.
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We are changing the distribution of V , but not of U , so
many terms in the lower bounds in Thm. 1 do not change
with α. Define the following functions:

f1(α) = Iq(X;V |U, Y1),
f2(α) = Iq(V ;X,Y1|U)− Iq(Yr;V |U),

CCF (α) = Iq(X,Y1;V |U, Yr).

Note that f1 and f2 include all the terms that change
with V in (2) and (3) respectively. Since by assumption,
I(X;Y1, V |U) < I(X;Y1, Yr|U), if f1 increases with α then
so does the right-hand side of (2). Thus, to prove (14), it is
enough for

C ′CF (0) = 0, f ′1(0) > 0, f ′2(0) > 0. (67)

We first show that, given the assumptions we have already
made, C ′CF (0) = 0. We have

CCF (α) = Iq(X,Y1;V |U, Yr) (68)
= D(q(u, x, y1, yr, v)‖q(u, x, y1, yr)q(v|u, yr)) (69)

=
∑

u,x,y1,yr

p(u, x, y1, yr)D(q(v|u, x, y1, yr)‖q(v|u, yr)).

(70)

Note that p(v|x, y1, yr, u) = p(v|u, yr), so CCF (0) = 0. To
find C ′CF (α), consider an arbitrary function of the form

f(α) = D(p(x) + αr1(x)‖p(x) + αr2(x)) (71)

=
∑
x

(p(x) + αr1(x)) log
p(x) + αr1(x)

p(x) + αr2(x)
(72)

where
∑
x ri(x) = 0 for i = 1, 2, and r1(x) = r2(x) =

0 whenever p(x) = 0. Thus, the only relevant terms in the
summation are where p(x) > 0, so

f ′(0) = lim
α→0

f ′(α) (73)

= lim
α→0

∑
x:p(x)>0

[
r1(x) log

p(x) + αr1(x)

p(x) + αr2(x)
+ r1(x)

(74)

− r2(x)
p(x) + αr1(x)

p(x) + αr2(x)

]
(75)

=
∑

x:p(x)>0

(r1(x)− r2(x)) (76)

= 0. (77)

To apply this analysis to the function CCF (α) from (70), given
any u, x, y1, yr, consider

D(q(v|u, x, y1, yr)‖q(v|u, yr)). (78)

Recall that

q(v|u, x, y1, yr) = p(v|u, yr) + α r(v|u, x, y1, yr), (79)
q(v|u, yr) = p(v|u, yr) + α r(v|u, yr). (80)

Moreover, we have made the assumption that
r(v|u, x, y1, yr) = 0 whenever p(v|u, yr) = 0, so we
have a scenario matching the above assumptions on f(α).
Thus, C ′CF (0) = 0.

We now consider the conditions when f ′1(0), f
′
2(0) > 0.

Consider a variable A ⊂ {X,Y1, Yr, U}. Recalling the fact
that if p(a) > 0 and p(v|a) = 0, then q(v|a) = 0, we may
write

Hq(V |A) = −
∑

a,v:q(v|a)>0

p(a)q(v|a) log q(v|a) (81)

= −
∑

u,x,y1,yr,v:
p(u,x,y1,yr)>0,
q(v|u,x,y1,yr)>0

p(u, x, y1, yr)q(v|u, x, y1, yr) log q(v|a)

(82)

= −
∑

u,x,y1,yr,v:
p(u,x,y1,yr,v)>0

p(u, x, y1, yr)q(v|u, x, y1, yr) log q(v|a)

(83)

where we have used the fact that p and q have precisely the
same support. Thus

d

dα
Hq(V |A) (84)

= −
∑

u,x,y1,yr,v:
p(u,x,y1,yr,v)>0

p(u, x, y1, yr)
d

dα
q(v|u, x, y1, yr) log q(v|a)

(85)

= −
∑

u,x,y1,yr,v:
p(u,x,y1,yr,v)>0

p(u, x, y1, yr)

[
r(v|u, x, y1, yr) log q(v|a)

+
q(v|u, x, y1, yr)r(v|a)

q(v|a)

]
(86)

= −
∑

u,x,y1,yr,v:
p(u,x,y1,yr,v)>0

p(u, x, y1, yr)r(v|u, x, y1, yr) log q(v|a)

+
∑
a,v

p(a)r(v|a) (87)

= −
∑

u,x,y1,yr,v:
p(u,x,y1,yr,v)>0

p(u, x, y1, yr)r(v|u, x, y1, yr) log q(v|a).

(88)

In particular,

d

dα
Hq(V |A)

∣∣∣∣
α=0

= −
∑

u,x,y1,yr,v:
p(u,x,y1,yr,v)>0

p(u, x, y1, yr)r(v|u, x, y1, yr) log p(v|a).

(89)

Now we may easily write

f ′1(0) =
∑

u,x,y1,yr,v:
p(u,x,y1,yr,v)>0

p(u, x, y1, yr)r(v|u, x, y1, yr)

· log p(v|u, x, y1)
p(v|u, y1)

, (90)

f ′2(0) =
∑

u,x,y1,yr,v:
p(u,x,y1,yr,v)>0

p(u, x, y1, yr)r(v|u, x, y1, yr)

· log p(v|u, x, y1)
p(v|u, yr)

. (91)
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Recall that we are interested in showing that f ′1(0), f
′
2(0) >

0. Since each of these is a linear function of r, we consider a
generic linear set up. In particular, we are interested in whether
there exists a vector z such that aT z > 0, bT z > 0, and
Az = 0. That is, we are interested in

max
z:Az=0

min{aT z, bT z} (92)

= max
z:Az=0

min
λ∈[0,1]

λaT z + (1− λ)bT z (93)

= max
z

min
λ∈[0,1],γ

λaT z + (1− λ)bT z + γTAz (94)

= max
z

min
λ∈[0,1],γ

(λa+ (1− λ)b+AT γ)T z (95)

= min
λ∈[0,1],γ

max
z

(λa+ (1− λ)b+AT γ)T z (96)

= min
λ∈[0,1],γ

{
0 λa+ (1− λ)b+AT γ = 0

∞ otherwise.
(97)

That is, there exists no z of interest if and only if there exists
λ ∈ [0, 1] and γ where

λa+ (1− λ)b+AT γ = 0. (98)

Applying this principle to our situation, there does not exist
such an r function if and only if there exists λ ∈ [0, 1],
γ(u, x, y1, yr) where

p(u, x, y1, yr)

[
λ log

p(v|u, x, y1)
p(v|y1)

+ (1− λ) log p(v|u, x, y1)
p(v|u, yr)

]
+ γ(u, x, y1, yr) = 0,

for all x, y1, yr, v : p(u, x, y1, yr, v) > 0. (99)

Dividing by p(u, x, y1, yr) and rearranging gives

p(v|u, x, y1) =
p(v|u, y1)λp(v|u, yr)1−λ

γ(u, x, y1, yr)

for all x, y1, yr, v : p(u, x, y1, yr, v) > 0. (100)

APPENDIX C
PROOF OF COROLLARY 3

It is enough to show that either Possibility 1 in the corollary
statement holds, or the sufficient condition in Thm. 2 holds.
Thus, it is enough to prove that, if the sufficient condition
in Thm. 2 does not hold, then Possibility 1 must hold. That
is, we assume (13) holds for all u, x, y1, yr, v such that
p(u, x, y1, yr) > 0, p(v|yr, u) > 0, and we prove the existence
of a function g. We may assume without loss of generality
that U has full support, since if not we may simply delete any
zero-probability letters. Fix any u ∈ U , and let x ∈ Xu, where

Xu = {x ∈ X : p(x|u) > 0}. (101)

Thus, by the assumption of the corollary, for any y1, yr,

p(u, x, y1, yr) = p(u, x)p(y1, yr|x) > 0. (102)

In the following portion of the proof, we will only focus on this
u value, and so for convenience we will drop the dependence

on u in the conditional distributions. That is, we re-write (13)
as

p(v|x, y1) =
p(v|y1)λp(v|yr)1−λ

γ(x, y1, yr)
(103)

which must hold for all x, y1, yr, v where x ∈ Xu and
p(v|yr) > 0.

Consider the graph on vertex set V with edge set given by

E = {(va, vb) : there exists yr ∈ Yr such that
p(va|yr), p(vb|yr) > 0}. (104)

Consider any pair (va, vb) ∈ E . By definition there exists a yr
such that p(va|yr), p(vb|yr) > 0. For any x ∈ Xu, y1 ∈ Y1,
from (103) we have

p(va|x, y1)
p(vb|x, y1)

=
p(va|y1)λp(va|yr)1−λ

γ(x, y1, yr)
(105)

· γ(x, y1, yr)

p(vb|y1)λp(vb|yr)1−λ
(106)

=

(
p(va|y1)
p(vb|y1)

)λ(
p(va|yr)
p(vb|yr)

)1−λ

. (107)

We define the quantity in (107) as β(va, vb, y1). If there is
more than one valid yr, then by (107) they each much produce
the same value. Thus for all x ∈ Xu and y1,

p(va|x, y1)
p(vb|x, y1)

= β(va, vb, y1). (108)

Suppose va and vb are connected in the graph (V, E). That is,
there exists a sequence of letters va = v1, . . . , vk = vb where

(v1, v2), . . . , (vk−1, vk) ∈ E . (109)

Thus, for all x, y1,

p(va|x, y1)
p(vb|x, y1)

=

k−1∏
`=1

p(v`|x, y1)
p(v`+1|x, y1)

=

k−1∏
`=1

β(v`, v`+1, y1).

(110)
We may define the latter as β(va, vb, y1) for any connected
va, vb.

The graph (V, E) splits into connected sub-graphs with
vertex sets V1,V2, . . . ,Vm, where these vertex sets represent
a partition of V . Define a random variable W , with alphabet
{1, . . . ,m}, where W = w whenever V ∈ Vw. Thus W is a
deterministic function of V . Moreover, W is a deterministic
function of Yr, since for any yr, all letters v where p(v|yr) > 0
must be in the same sub-graph Vw for some w. Consider any
w ∈ {1, . . . ,m}. Let vw be a designated element of Vw. For
any v ∈ Vw, we have

p(v|x, y1)
p(vw|x, y1)

= β(v, vw, y1) for all x. (111)

Thus, for any v ∈ Vw

p(v|x, y1, w) =
p(v, w|x, y1)
p(w|x, y1)

(112)

=
p(v|x, y1)
p(w|x, y1)

(113)

=
p(v|x, y1)∑

v′∈Vw p(v
′|x, y1)

(114)
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=
p(v|x, y1)/p(vw|x, y1)∑

v′∈Vw p(v
′|x, y1)/p(vw|x, y1)

(115)

=
β(v, vw, y1)∑

v′∈Vw β(v
′, vw, y1)

. (116)

If v /∈ Vw, then obviously p(v|x, y1, w) = 0. Thus

p(v|x, y1, w) = 1(v ∈ Vw)
β(v, vw, y1)∑

v′∈Vw β(v
′, vw, y1)

. (117)

Since the RHS does not depend on x, we must have

p(v|x, y1, w) = p(v|y1, w). (118)

We now reintroduce the dependence on u. Since the above
analysis holds for any u ∈ U , it must be that

p(v|u, x, y1, w) = p(v|u, y1, w) (119)

That is, X−(U, Y1,W )−V is a Markov chain. Recall that by
assumption, rate R satisfies (6)–(7). We show that replacing
V by W does not reduce the achieved rate in this bound. For
(6), note that

I(X;Y1, V |U) = I(X;Y1,W, V |U) (120)
= I(X;Y1,W |U) + I(X;V |U, Y1,W )

(121)
= I(X;Y1,W |U). (122)

For (7), note that

I(Yr;V |U,X, Y1) = I(Yr;W,V |U,X, Y1) (123)
≥ I(Yr;W |U,X, Y1). (124)

Thus, R must satisfy (6)–(7) with V replaced by W . The proof
is completed by recalling that W is a deterministic function
of U and Yr.

APPENDIX D
PROOF OF CLAIM 4

We first show that C(0) ≤ Csum(0)/2. We then show that
C(CCF ) ≥ Csum(CCF )/2 for any CCF > 0. Together, these
imply our assertion.

Let ε > 0 be an arbitrarily small parameter, and let n be
sufficiently large. To show that C(0) ≤ Csum(0)/2, consider
any functions fn0 (Y

n
0 ) = Xn

0 and fn1 (Y
n
1 ) = Xn

1 . For n
sufficiently large,

C(0)n− εn ≤I(Xn;Y n)

=I(Xn;Y n2 ) + I(Xn;Y nW |Y n2 )

=I(Xn;Y nW |Y n2 )

=I(Xn;Y nW |Xn ⊕ Y nZn , Zn)
≤I(Xn, Xn ⊕ Y nZn ;Y nW |Zn)
=I(Xn, Y nZn ;Y

n
W |Zn)

=I(Y nZn ;Y
n
W |Zn) + I(Xn;Y nW |Y nZn , Zn)

=I(Y nZn ;Y
n
W |Zn)

(a)
=

1

2
(I(Y nZn ;Y

n
W |Zn) + I(Y n(Zn)c ;Y

n
W |Zn))

≤1

2
(I(Y nZn ;Y

n
W |Zn) + I(Y n(Zn)c ;Y

n
W , Y

n
Zn |Zn))

=
1

2
(I(Y nZn ;Y

n
W |Zn) + I(Y n(Zn)c ;Y

n
Zn |Zn)

+ I(Y n(Zn)c ;Y
n
W |Y nZn , Zn))

=
1

2
(I(Y nZn ;Y

n
W |Zn) + I(Y n(Zn)c ;Y

n
W |Y nZn , Zn))

=
1

2
I(Y nZn , Y

n
(Zn)c ;Y

n
W |Zn)

=
1

2
I(Y n0 , Y

n
1 ;Y nW ) ≤ Csum(0)

2
n.

In (a) above we use the equality I(Y nZn ;Y
n
W |Zn) =

I(Y n(Zn)c ;Y
n
W |Zn)) which follows from the independent and

symmetric nature of Zn. Thus, the capacity of the diamond
network above is at most half the sum-capacity of W.

To show that C(CCF ) ≥ Csum(CCF )/2, consider any rate
vector (r0, r1) achievable on the 2-transmitter MAC W with
a cooperation facilitator of rate CCF . Assume that r0 ≥ r1
(a symmetric argument is used otherwise). We construct a
rate r = (r0 + r1)/2 scheme for the diamond network in
which the first two relays cooperate at rate CCF . Consider
any rn bit message M for the diamond network. We treat M
as two messages, an r1n-bit message M1 and an (rn− r1n)-
bit message M2 with rn − r1n = (r0 − r1)n/2. Encode M
to a binary word Xn using a three-part code: the first r1n
bits of Xn equal M1, the next (r0 − r1)n bits of Xn are a
rate-(1/2) erasure encoding of M2, the remaining bits of Xn

are all set to zero. Let message m0 for W be the first r0n bits
of Y n0 . Let message m1 for W be the first r1n bits of Y n1 . Let
Xn

0 = fn0 (Y
r0n
0 ) and Xn

1 = fn1 (Y
r1n
1 ), where fn1 and fn2 are

the encoding functions of W that achieve rate vector (r0, r1).
Now, from the outcome Y nW of W, the first r0n bits of Y n0 and
the first r1n bits of Y n1 can be decoded (using the decoder of
W). This implies, using Y n2 , that the first r1n bits of Xn (and
thus M1) can be decoded. Moreover, roughly speaking, out of
the next (r0−r1)n bits of Y n0 (approximately) (r0−r1)n/2 bits
of Xn (at random locations according to Zn) can be decoded,
implying that M2 can also be decoded using the capacity 1/2
erasure decoder. All in all, M is decoded successfully. To be
more precise, for any ε > 0, in the arguments above one
defines r to be r0+r1

2 − ε, uses a rate 1
2 − ε erasure code,

and, through standard concentration, shows that indeed a rate-
r message M is decoded successfully with probability that
depends on ε and tends to one when ε tends to zero. As ε is
arbitrary, we conclude that C(CCF ) ≥ Csum(CCF )/2.
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