
ar
X

iv
:2

20
2.

01
89

2v
1

 [
m

at
h.

L
O

]
 3

 F
eb

 2
02

2

Univalent foundations
and the equivalence principle

Benedikt Ahrens Paige Randall North

In this paper, we explore the ‘equivalence principle’ (EP): roughly, state-
ments about mathematical objects should be invariant under an appropriate
notion of equivalence for the kinds of objects under consideration. In set
theoretic foundations, EP may not always hold: for instance, the statement
‘1 ∈ N’ is not invariant under isomorphism of sets. In univalent foundations,
on the other hand, EP has been proven for many mathematical structures.
We first give an overview of earlier attempts at designing foundations that
satisfy EP. We then describe how univalent foundations validates EP.

1 The equivalence principle

What should it mean for two objects x and y to be equal? One proposal by Leibniz [11],
known as the “identity of indiscernibles”, states that if x and y have the same properties,
then they must be equal:

∀ properties P, (P (x) ↔ P (y)) → x = y.

For this proposal to be reasonable, then the converse, the “indiscernibility of identi-
cals,” should hold incontrovertibly. That is, if x and y are equal, then they must have
the same properties:

x = y → ∀ properties P, (P (x) ↔ P (y)) . (1)

Indeed, one would be hard-pressed to find a mathematician who disagreed with this
principle. However, in classical mathematics based on set theory, this principle is of
limited usefulness: too few objects are equal. A group theorist, for example, would have
little interest in a principle which required them to suppose that two groups are equal.

Instead, mathematicians are often interested in weaker notions of sameness and those
properties that are invariant under such notions. A group theorist, for example, would
have more interest in an analogous principle that described the properties of any pair of
isomorphic groups G and H:

G ∼= H → ∀ group theoretic properties P, (P (G) ↔ P (H)) .

1

http://arxiv.org/abs/2202.01892v1

Similarly, category theorists would be more interested in a principle that described the
properties of any pair of equivalent categories A and B:

A ≃ B → ∀ category theoretic properties P, (P (A) ↔ P (B)) .

To generalize: mathematicians working in some domain D often utilize a stronger
variant of the principle given in line (1) above, called the equivalence principle: for
all objects x and y of domain D:

x ∼D y → ∀ D-properties P, (P (x) ↔ P (y)) , (2)

where ∼D denotes a suitable notion of sameness for the domain D.
We might consider a still stronger variant of the equivalence principle. A group the-

orist, for example, might not only want properties of groups to be invariant under
isomorphism, but they might also want structures on groups to be invariant under iso-
morphism. For example, if the equivalence principle (2) holds in the domain of group
theory and if two groups G and H are isomorphic, then the statements “G has a rep-
resentation on V ” and “H has a representation on V ” are equivalent (for some fixed
vector space V). However, it is actually the case that the isomorphism G ∼= H induces a
bijection between the set of representations of G on V and the set of representations of
H on V , which we regard as structures on G and H respectively. Such a variant of the
equivalence principle has become known as the Structure Identity Principle (see [6],[15,
Section 9.8], [4]).

Our goal in this paper is to describe how one can find the right notion ∼D of sameness
and the right class of ‘D-properties and D-structures’ for some specific domains D.

This right notion of sameness is not uniformly defined across different mathematical
objects. However, we usually use the one already present in mathematical practice since
we aim for the equivalence principle to capture mathematical practice. As a rule of
thumb, it is usually considered to be

• equality when the objects naturally form a set—numbers, functions, etc.

• isomorphism when the objects naturally form a category—sets, groups, etc.

• equivalence when the objects naturally form a bicategory—e.g., categories.

The hard part will be in determining the right class of D-properties and D-structures
for some specific domain D. In usual mathematical practice, we can state properties
which break the equivalence principle; that is, we can state properties of mathematical
objects that are not invariant under sameness. We will seek to exclude such properties
from our class of D-properties and D-structures.

Exercise 1. Denote by 2N the set of even natural numbers. Find a property of sets that
is not invariant under the isomorphism N ∼= 2N given by multiplying and dividing by 2,
respectively.

Answer:Onesuchstatementisgivenintheabstract.

2

Exercise 2. Find a property of categories that is true for one, but not for the other of
these two, equivalent, categories.

•
##

cc • ≃ •

Answer:Thestatement“ThecategoryChasexactlyoneobject.”issuchastatement.

Thus, to assert an equivalence principle for sets or categories, we need to exclude
these properties from our collection of ‘set theoretic properties’ and ‘category theoretic
properties’. M. Makkai [13] says

The basic character of the Principle of Isomorphism is that of a constraint
on the language of Abstract Mathematics; a welcome one, since it provides
for the separation of sense from nonsense.

Put differently, establishing an equivalence principle means establishing a syntactic cri-
terion for properties and structures that are invariant under sameness.

2 History

Look again at Example 2. There, we violated the equivalence principle for categories
by referring to equality of objects. This might lead one to conjecture (correctly) that
categorical properties which obey the equivalence principle cannot mention equality of
objects.

However, the traditional definition of category mentions equality of objects. It usually
includes the following axiom: for any two morphisms f and g such that the codomain
of f equals the domain of g, there is a morphism gf such that domain of gf equals the
domain of f and the codomain of gf equals the codomain of g.

To avoid mentioning equality of objects, one can express the composability of mor-
phisms of that category via different means, specifically by having not one collection of
morphisms but many hom-sets: one for each pair of objects. This idea, for instance
explained in [12, Section I.8] usually requires asking the hom-sets to be disjoint. This
last requirement is automatic if we work instead in a typed language, where types are
automatically disjoint.

A category is then given by

• a type O of objects,

• for each x, y : O, a type A(x, y) of arrows from x to y,

• for each x, y, z : O and f : A(x, y), g : A(y, z), a composite arrow g ◦ f : A(x, z),
and

• for each x : O, an identity arrow idx : A(x, x)

3

such that

• for each w, x, y, z : O and f : A(w, x), g : A(x, y), h : A(y, z), there is an equality
h ◦ (g ◦ f) = (h ◦ g) ◦ f in A(w, z),

• for each x, y : O and f : A(x, y), there is an equality f ◦ idx = f in A(x, y), and

• for each x, y : O and f : A(x, y), there is an equality idy ◦ f = f in A(x, y).

Note that when stating axioms, the only equality that is mentioned is the equality within
a hom-set of the form A(x, y), that is, between arrows of the same type.

By adding quantifiers, ranging over one type at a time, to this typed language, we
obtain a language for stating properties of, and constructions on, categories. It turns
out that the statements of that language are invariant under equivalence of categories:

Theorem 3 (Théorème de préservation par équivalence [5]). A property of categories
(expressed in 2-typed first order logic) is invariant under equivalence if and only if it can
be expressed in the typed language sketched above, and without referring to equality of
objects.

We do not give here the precise form of the typed language, but refer instead to Blanc’s
article for details. Note that Freyd [9] states a similar result to Blanc’s above, in terms
of “diagrammatic properties”.

Makkai [13] develops notions of signature and theory, to specify mathematical struc-
tures. A theory is a pair (L,Σ) consisting of a signature L (specifying the shape of the
structure) and a set Σ of “axioms” over L (specifying the axioms of the structure). A
theory determines a notion of “model”—which is an L-structure satisfying the properties
specified by Σ—and of “equivalence” of such models, called L-equivalence.

His Invariance Theorem gives a result similar to Theorem 3 for models of a theory:
given an interpretation T = (L,Σ) → S of such a theory in a first-order logic theory,
an S-sentence φ is invariant under L-equivalence if and only if it is expressible in First
Order Logic with Dependent Sorts (FOLDS) over L.

In the following sections, we will see that similar results can be shown in univalent
foundations. Specifically, not only properties but also constructions will be “invariant”
under equivalence, and invariance of properties will be recovered as a special case via
the propositions-as-some-types correspondence.

3 Univalent foundations and transport of structures along
equivalences

Starting in the 1970’s, Per Martin-Löf designed several versions of dependent type the-
ory, which are now called Martin-Löf Type Theories [14]. These were intended to be
foundations of mathematics that, unlike set theory, have an inherent notion of computa-
tion built in. For decades, Martin-Löf type theories have formed the basis of computer
proof assistants such as Coq and Agda.

4

One of the most mysterious features of this kind of type theory is its equality type
a =X b of any two inhabitants a and b of a type X—see [3, Section 4.3]. Inhabitants
of such an equality type behave, in many ways, like a proof of equality; in particular,
they can be composed and inverted, corresponding to the transitivity and symmetry of
equality. In one important respect, however, they behave differently: as explained in [3,
Sections 4.3 and 5.1], one can not show that any two inhabitants e, f of an equality type
a =X b are equal—with their equality now being given by the iterated equality type
e =a=Xb f .

The lack of uniqueness of those terms has given rise to a new way of thinking about
them and interpreting them into the world of mathematical objects. Instead of inter-
preting them as (set-theoretic) equalities between a and b in the set interpreting X, one
can interpret them as paths from a to b in a space interpreting X.

This intuition is made formal in Voevodsky’s simplicial set model [10] which satisfies
an additional interesting property: given two types X and Y , the interpretation of their
equality type X = Y is equivalent to the interpretation of their type of equivalences X ≃

Y (see [3, Section 5.4]). This observation motivated Voevodsky to add this property as
an axiom to Martin-Löf type theory which he called the Univalence Axiom. The addition
of the Univalence Axiom turns Martin-Löf type theory into univalent foundations.

Obtaining an equivalence principle was one of the main motivations for Voevodsky in
designing his univalent foundations:

[. . .] My homotopy lambda calculus is an attempt to create a system
which is very good at dealing with equivalences. In particular it is supposed
to have the property that given any type expression F (T) depending on a
term subexpression t of type T and an equivalence t → t′ (a term of the type
Eq(T ; t, t′)) there is a mechanical way to create a new expression F ′ now
depending on t′ and an equivalence between F (T) and F ′(T ′) (note that to
get F ′ one can not just substitute t′ for t in F – the resulting expression will
most likely be syntactically incorrect). [Email to Daniel R. Grayson, Sept
2006]

In the following sections, we describe how Voevodsky’s goal is realized in univalent
foundations.

3.1 Indiscernibility of identicals in type theory

In Martin-Löf type theory (perhaps without the univalence axiom), identicals—that is,
elements x, y : T with an equality e : x =T y between them—are easily seen to be
indiscernible. That is, for every type T and x, y : T , we can find a function

x =T y → ∀ properties P, (P (x) ↔ P (y)) . (3)

To better formulate this in the language of dependent type theory, (i) we will define
this function for all x, y at once, (ii) we will understand ‘properties P ’ to be functions

5

P : T → Type, and (iii) we replace the logical equivalence P (x) ↔ P (y) with the
type-theoretic equivalence

(P (x) ≃ P (y)) :=

∑

f :P (x)→P (y)

isEquiv(f)

(where isEquiv is defined in Section 5.4 of Altenkirch’s introduction [3]).
Our goal is hence to define a function

transport :
∏

(x,y:T)

x =T y →

∏

P :T→Type

(P (x) ≃ P (y))

 . (4)

To this end, recall that in order to define a map out of an equality type, it suffices to
define its image on reflx : (x =T x) for each x : T . Therefore, it suffices to show that
there is a term

transport(refl) :
∏

(x:T)

∏

P :T→Type

(P (x) ≃ P (x))

 .

But then, for each x : T and P : T → Type, we can set this to be the equivalence
1P (x) : P (x) ≃ P (x) whose underlying function P (x) → P (x) is the identity function:

transport(refl)(x)(P) :≡ 1P (x).

The function transport shows that any ‘property’, or dependent type, P : T → Type

is invariant under equalities in T . In particular, given an equality x =T y, we obtain
functions P (x) → P (y) and P (y) → P (x) which allow us to transport terms of P (x) or
P (y) back and forth along this equality.

3.2 From equality to equivalence

We have just seen that in Martin-Löf type theory, identicals are indiscernible. Now we
investigate how to expand this to get a full-blown equivalence principle from this fact.
In short, we will see that in many circumstances, the equality type x =T y is itself
equivalent to some structured equivalence appropriate for the type T . Then composing
this equivalence with the transport function, we will obtain the equivalence principle (2).

To be precise, fix a type T . Given any notion ∼T of equivalence (or at least a reflexive
relation) in a type T , we immediately obtain a function

idtoequiv :
∏

x,y:T

((x = y) −→ (x ∼T y)) (5)

by setting idtoequiv(x, x)(refl) to the reflexive term on x in x ∼ x (since to define a
function out of an equality type, it is enough to define it just at every occurence of refl).

6

Now we hope that for notions of equivalence ∼T already of interest to us, this function
is actually an equivalence for all terms x, y : T , or more precisely, that the following type
is inhabited.

∏

x,y:T

isEquiv
(

idtoequivx,y
)

If this type is indeed inhabited, then for each x, y : T we can take π1(isEquiv(idtoequiv(x, y))),
the backwards function (x ∼T y) → (x = y), and compose it with transport to obtain a
function

∏

(x,y:T)

x ∼T y →

∏

P :T→Type

(P (x) ≃ P (y))

which is our equivalence principle.
Thus, in the next sections, we just aim to show that for certain types T and notions

of equivalence ∼T , the function idtoequiv is indeed an equivalence.

3.3 The univalence principle

“Equality is equivalence for types” is the slogan made precise by Voevodsky’s univalence
principle. More precisely, the univalence principle asserts part of an equivalence principle
for types: it states that the canonical map

idtoequiv :
∏

A,B:Type

((A = B) −→ (A ≃ B)) (6)

from equalities of types to equivalences of types is itself, for any types A and B, an
equivalence. Then, composing idtoequiv with transport as in the last section, we obtain
an equivalence principle for types.

∏

(A,B:Type)

A ≃ B →

∏

P :Type→Type

(P (A) ≃ P (B))

The univalence principle is not provable in pure Martin-Löf type theory [14], but needs
to be postulated as an axiom—hence it is sometimes also called the “univalence axiom”.
In extensions of Martin-Löf type theory, as in the recently developed cubical type theory
[7], the univalence principle can be derived.

Building upon the equivalence principle for types—whether it is given as an axiom
or as a theorem—one can derive equivalence principles for other kinds of structures.
Establishing that idtoequiv is an equivalence for other types and notions of equivalence
is the subject of the next sections.

4 The equivalence principle for set-level structures

Now we turn our attention away from the type of all types and towards types of more spe-
cific mathematical objects. It turns out that for types of simple objects like propositions,

7

sets, and monoids, the univalence axiom is enough to show the equivalence principle for
these types’ usual notion of equivalence. More precisely, in the presence of the univalence
axiom, the function idtoequiv discussed in the last section is itself an equivalence. For
an exploration and formalization of these ideas, see [8].

4.1 Propositions

We call propositions those types that have at most one inhabitant. We think of propo-
sitions as either being true (when they are inhabited) or false (when they are not in-
habited). What should an equivalence of two propositions P,Q be? Experience might
indicate that such an equivalence should just be two functions

f : P ⇆ Q : g

so that P is inhabited if and only if Q is. In fact, this notion of equivalence is the right
one in the sense that it will validate the equivalence principle.

To be precise, we define

isProp : Type → Type

isProp A :≡
∏

(x,y:A)

x = y

whose inhabitants can be thought of as proofs that a type A is a proposition. A propo-
sition is then a pair (A, p) of a type A and a proof p : isProp A, that is,

Prop :≡
∑

A:Type

isProp A .

Now we have, for P ≡ (A, p) and Q ≡ (B, q),

P = Q ≃ (A, p) = (B, q)

≃

∑

(e:A=B)

(transportisProp(e, p)) = q (7)

≃

∑

(e:A=B)

1 (8)

≃ A = B

≃ A ≃ B (9)

≃ (A → B)× (B → A) (10)

Equivalence (7) above uses the fact that an equality between pairs is the same as pairs
of equalities, where the second equality is “heterogeneous”, i. e., requires a transport
along the first equality to make it well-typed. Equivalence (8) uses the fact that being a
proposition is itself a proposition, so that equality types between proofs of a proposition
are equivalent to the unit type. Equivalence (9) is given by the univalence principle,

8

and equivalence (10) uses that A and B are propositions; a pair of maps back and forth
between types that are propositions automatically forms an equivalence of types.

Altogether, this means that P and Q are equal exactly if their underlying types A and
B are logically equivalent—the expected notion of equivalence for propositions.

4.2 Sets

We call sets those types whose equality types are propositions,

Set :≡
∑

A:Type

∏

x,y:A

isProp(x = y).

Then a set in the type theory is a collection of terms, the equality types among which
are either empty or contractible.

Given two sets X,Y : Set, where X = (A, p) and Y = (B, q), the equivalences of types

(X = Y) ≃ (A ≃ B) (11)

≃

∑

f :A∼=B

isCoherent(f) (12)

≃ (A ∼= B) (13)

can be constructed. Here, A ∼= B :≡
∑

(f :A→B) isIsof is the type of isomorphisms of
types between A and B, and isCoherent(f) states an equality of equalities in A. When
A is a set, the type isCoherent(f) is contractible (see the discussion in [3, Section 5.4]),
and hence we obtain equivalence (13).

4.3 Monoids

The equivalence principle can be shown for many algebraic structures commonly encoun-
tered in mathematics, such as groups and rings. Before presenting a general result to
that extent in Section 4.4, in this section, we study in detail the case of monoids (which
was formalized in [8]). This particular case exemplifies many of the concepts and results
used in general.

A monoid is a tuple (M,µ, e, α, λ, ρ) where

1. M : Set

2. µ : M ×M → M (multiplication)

3. e : 1 → M (neutral element)

4. α :
∏

(a,b,c:M) µ(µ(a, b), c) = µ(a, µ(b, c)) (associativity)

5. λ :
∏

(a:M) µ(e, a) = a (left neutrality)

6. ρ :
∏

(a:M) µ(a, e) = a (right neutrality)

9

Given two monoids M ≡ (M,µ, e, α, λ, ρ) and M′ ≡ (M ′, µ′, e′, α′, λ′, ρ′), a monoid
isomorphism is a bijection f : M ∼= M ′ between the underlying sets that preserves
multiplication and neutral element. We can derive an equivalence between the equality
type and the isomorphism type between any two monoids as follows:

M = M′
≃ (M,µ, e) = (M ′, µ′, e′) (14)

≃

∑

p:M=M ′

(transportY 7→(Y×Y→Y)(p, µ) = µ′)

× (transportY 7→(1→Y)(p, e) = e′)

≃

∑

f :M∼=M ′

(

f ◦m ◦ (f−1
× f−1) = m′

)

(15)

× (f ◦ e = e′)

≃ M ∼= M′

Here, the equivalence of types (14) uses the fact that the axioms of a monoid (the types
of α, λ, and ρ) are propositions (compare also to (8) above). The equivalence (15) uses
the univalence principle for types in the first component, replacing an equality of sets by
a bijection. This translates to replacing “transport along the equality” by “conjugating
by the bijection” in the second component.

The equivalence of types constructed above, from left to right, is pointwise equal to
the canonical map

∏

M,M′

M = M′
−→ M ∼= M′ (16)

defined by equality elimination, which shows that the latter is an equivalence of types.
In other words, we have just proved the equivalence principle (5) for the equivalence
M ∼= M′.

4.4 Univalent categories

We have seen in the preceding sections that the types of propositions, sets, and monoids
all have a certain nice property – they validate the equivalence principle. However, it
is natural to consider such objects as each belonging to a category. In this section, we
discuss those categories whose objects validate the equivalence principle.

In Section 2, we saw that in order to avoid mentioning equality of objects, we can
define a category A to consist of

1. a type A0 of objects;

2. for each a, b : A0, a set A(a, b) of arrows or morphisms;

3. for each a : A0, a morphism 1a : A(a, a);

10

4. for each a, b, c : A0, a function of type

A(a, b) ×A(b, c) → A(a, c)

denoted by (f, g) 7→ f · g;

5. for each a, b : A0 and f : A(a, b), we have ℓf : f = 1a · f and rf : f = f · 1b;

6. for each a, b, c, d : A0 and f : A(a, b), g : A(b, c), h : A(c, d), we have αf,g,h :
f · (g · h) = (f · g) · h.

The reason for asking the types of arrows to be sets rather than arbitrary types is so that
these categories behave as classical categories (and not any kind of higher category) and,
in particular, so that the axioms—which state equalities between arrows—are proposi-
tions, meaning that we do not need to state higher coherence axioms. There is prima
facie no condition of that kind on the type of objects of the category. However, it will
turn out that the objects of a univalent category form a groupoid (meaning that all of
its equality types form sets).

A morphism f : A(a, b) of the category A is an isomorphism if there is a morphism
g : A(b, a) that is left and right inverse to f , that is

isIsof :≡
∑

g:A(b,a)

(f · g = 1a)× (g · f = 1b) .

We call Iso(a, b) :≡
∑

f :A(a,b) isIsof the type of isomorphims from a to b, and for any
a : A0 we have 1a : Iso(a, a). We can define a function

idtoiso :
∏

x,y:A0

(x = y) → Iso(x, y) (17)

by setting idtoisox,x(reflx) to 1x for every x : A0 just as we did to define idtoequiv in
Section 3.2.

Now we call the category A univalent if idtoisox,y is an equivalence of types for every
x, y : A0. To see why the adjective univalent is used, compare the function in Display (17)
above to the one in Display (6) underlying the univalence principle. The univalence
principle asserts that equality and equivalence of types are the same; here, we assert
that equality and isomorphism of objects of a category are the same.

In asserting that a category A is univalent, we assert that the equality types a = b

among its objects are equivalent to the sets Iso(a, b) of isomorphisms among its objects.
Since the property of “being a set” itself obeys the equivalence principle for types the
equality types a = b are themselves sets. When a type’s equality types are sets, we call
the type a groupoid.

A categorical equivalence between univalent categories A and B gives rise to an iso-
morphism between them—indeed, the type A ≃ B of adjoint equivalences is equivalent
to the type A ∼= B of isomorphisms of categories.

With a set-theoretic reading of the univalence condition in mind, one could think that
only skeletal categories are univalent. However, one should keep in mind that in type

11

theory, the equality type x = y between two objects of a category can—and often does—
have more than one element. Consequently, in type theory, a category being univalent
usually signifies that its type of objects has many equalities. This difference is witnessed
by the many examples of univalent categories given below, most of which are not skeletal.

With these definitions in place, the composite equivalence of types shown in Dis-
plays (11) - (13) can be restated as “the category of sets is univalent”. Similarly, the
result of Section 4.3 can be restated as “the category of monoids is univalent”.

Many categories that arise naturally are univalent, in particular,

• the category of sets;

• the categories of groups, rings, etc.;

• the functor category [A,B] if the target category B is;

• a preorder, seen as a category, exactly if it is anti-symmetric.

To extend our list of univalent categories to other algebraic structures beyond monoids,
we could simply redo constructions similar to those for monoids, for groups, rings, and
other structures of interest. However, in doing so, we would observe that we are doing
the same reasoning over and over again. For instance, looking back at monoids, we used
that the category of sets is univalent to show that the category of monoids is univalent,
in step (15). This is due to the fact that “monoids are sets with additional structure”,
and monoid isomorphisms are isomorphisms of sets preserving this structure. Similarly,
“groups are monoids with additional structure”, and we would expect to reuse the equiv-
alence of Display (16) when building an equivalence between the equality types of groups
on the one hand, and of group isomorphisms on the other hand. Displayed categories
as presented in [2] are a convenient tool for such modular reasoning about categories
built step-by-step from simpler ones. In particular, Proposition 43 and Theorem 44 of
[2] allow one to show that a category built from a simpler one using the framework of
displayed categories is univalent, provided the simpler one is univalent and the “extra
data” making the difference between the two categories satisfies some condition. That
result validates the Structure Identity Principle [15, Theorem 9.8.2].

5 The equivalence principle for (higher) categorical structures

We saw in the previous sections that for types of simple structures like propositions, sets,
and monoids, the equivalence principle comes along with the univalence axiom. Now we
see that for more complication structures, like categories, the equivalence principle only
holds for certain well-behaved categories.

The most common notion of equivalence between two categories A and B is unsur-
prisingly called an equivalence A ≃ B. It consists of two functors F : A ⇆ B : G and
natural isomorphisms 1B ∼= FG and 1A ∼= GF (see [12]). An equivalence of categories
“transports” categorical structures, such as limits, between categories, and is hence con-
sidered the right notion of sameness for categories in most contexts. Can we show that

12

the equality type between two categories, A = B, is the same as the type of categor-
ical equivalences A ≃ B? The answer is that while this is not the case for arbitrary
categories, it is the case when A and B are univalent.

For any two categories A and B, the univalence axiom implies that the function from
equalities to isomorphisms (a stricter notion of sameness of categories) given by equality
elimination is an equivalence [1, Lemma 6.16]:

(A = B)
≃

−−−→ (A ∼= B) (18)

Furthermore, if A and B are univalent categories, then the type of isomorphisms between
them is equivalent to that of categorical equivalences [1, Lemma 6.15]:

(A ∼= B)
≃

−−−→ (A ≃ B) (19)

Composing these two equivalences yields the desired equivalence of types between equal-
ities and categorical equivalences.

The example of categories shows that, in order to obtain the equivalence principle for
mathematical structures that naturally form bicategory, one needs to impose a “univa-
lence” condition on those structures. Defining such a univalence condition for general
structures is the subject of active research.

Acknowledgments We are very grateful to Deniz Sarikaya and Deborah Kant for their
editorial work and their encouragement, and to an anonymous referee for providing
valuable feedback. Furthermore, we would like to thank all the organizers of the FO-
MUS workshop—Balthasar Grabmayr, Deborah Kant, Lukas Kühne, Deniz Sarikaya,
and Mira Viehstädt—for giving us the opportunity to discuss and compare different
foundations of mathematics.

This material is based upon work supported by the Air Force Office of Scientific
Research under award numbers FA9550-16-1-0212 and FA9550-17-1-0363.

References

[1] Benedikt Ahrens, Krzysztof Kapulkin, and Michael Shulman. Univalent categories
and the Rezk completion. Mathematical Structures in Computer Science, 25:1010–
1039, 2015.

[2] Benedikt Ahrens and Peter LeFanu Lumsdaine. Displayed categories (conference
version). In Dale Miller, editor, 2nd International Conference on Formal Struc-
tures for Computation and Deduction (FSCD 2017), volume 84 of Leibniz Inter-
national Proceedings in Informatics (LIPIcs), pages 5:1–5:16. Leibniz-Zentrum für
Informatik, 2017.

[3] Thorsten Altenkirch. Näıve type theory. In Stefania Centrone, Deborah Kant, and
Deniz Sarikaya, editors, Reflections on the Foundations of Mathematics: Univalent
Foundations, Set Theory and General Thoughts, pages 101–136. Springer Interna-
tional Publishing, Cham, 2019.

13

[4] Steve Awodey. Structuralism, Invariance, and Univalence. Philosophia Mathemat-
ica, 22(1):1–11, 10 2013.

[5] Georges Blanc. Équivalence naturelle et formules logiques en théorie des catégories.
Arch. Math. Logik Grundlag., 19(3-4):131–137, 1978/79.

[6] Samuel Buss, Ulrich Kohlenbach, and Michael Rathjen. Oberwolfach Reports –
Mathematical Logic: Proof Theory, Constructive Mathematics. pages 2963–3002.
https://doi.org/10.4171/OWR/2011/52.

[7] Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. Cubical Type
Theory: A Constructive Interpretation of the Univalence Axiom. In Tarmo Uustalu,
editor, 21st International Conference on Types for Proofs and Programs (TYPES
2015), volume 69 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 5:1–5:34, Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik.

[8] Thierry Coquand and Nils Anders Danielsson. Isomorphism is equality. Indaga-
tiones Mathematicae, 24(4):1105 – 1120, 2013. In memory of N.G. (Dick) de Bruijn
(1918–2012).

[9] Peter Freyd. Properties invariant within equivalence types of categories. In Algebra,
topology, and category theory (a collection of papers in honor of Samuel Eilenberg),
pages 55–61. Academic Press, New York, 1976.

[10] Chris Kapulkin and Peter LeFanu Lumsdaine. The Simplicial Model of Univalent
Foundations (after Voevodsky). J. Eur. Math. Soc. arXiv:1211.2851.

[11] Gottfried Wilhelm Leibniz. Philosophical Papers and Letters, volume 2 of Synthese
Historical Library. Springer-Verlag, 1989.

[12] Saunders Mac Lane. Categories for the working mathematician, volume 5 of Grad-
uate Texts in Mathematics. Springer-Verlag, New York, second edition, 1998.

[13] Michael Makkai. Towards a categorical foundation of mathematics. In Logic Col-
loquium ’95 (Haifa), volume 11 of Lecture Notes Logic, pages 153–190. Springer,
Berlin, 1998.

[14] Per Martin-Löf. An intuitionistic theory of types. In Giovanni Sambin and Jan M.
Smith, editors, Twenty-five years of constructive type theory (Venice, 1995), vol-
ume 36 of Oxford Logic Guides, pages 127–172. Oxford University Press, 1998.

[15] The Univalent Foundations Program. Homotopy Type Theory: Univalent Founda-
tions of Mathematics. http://homotopytypetheory.org/book, Institute for Ad-
vanced Study, 2013.

14

https://doi.org/10.4171/OWR/2011/52
https://arxiv.org/abs/1211.2851
http://homotopytypetheory.org/book

	1 The equivalence principle
	2 History
	3 Univalent foundations and transport of structures along equivalences
	3.1 Indiscernibility of identicals in type theory
	3.2 From equality to equivalence
	3.3 The univalence principle

	4 The equivalence principle for set-level structures
	4.1 Propositions
	4.2 Sets
	4.3 Monoids
	4.4 Univalent categories

	5 The equivalence principle for (higher) categorical structures

