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TWISTED MOMENTS OF GL(3)×GL(2) L-FUNCTIONS

JAKOB STREIPEL

Abstract. We compute an asymptotic formula for the twisted moment of
GL(3) ×GL(2) L-functions and their derivatives. As an application we prove
that symmetric-square lifts of GL(2) Maass forms are uniquely determined by
the central values of the derivatives of GL(3)×GL(2) L-functions.

1. Introduction

The method of moments has broad applications to the study of L-functions and
the forms attached to them. In her groundbreaking paper [10], Li uses bounds
for moments of GL(3)×GL(2) L-functions to deduce the first subconvexity bound
for degree three L-functions. Using asymptotic formulas for these moments one
can derive nonvanishing results. For example [9, 15, 1] all use asymptotics for
moments of GL(3)×GL(2) L-functions or their derivative to deduce simultaneous
nonvanishing results at the central point of these objects. In a series of papers Liu
([11, 12]) and later Sun ([16, 17]) use asymptotics for these moments twisted by
Fourier coefficients at primes to show that self-dual Maass cusp forms for GL(3)
are uniquely determined by central values of GL(3)×GL(2) L-functions.

In this paper we compute asymptotics for twisted moments of GL(3) × GL(2)
L-functions (Theorem 1) and their derivatives (Theorem 5). As an application of
this we prove an analogue of Liu’s results in the spectral aspect, i.e. we show that
symmetric-square lifts of GL(2) Hecke–Maass forms are uniquely determined by
central values of the derivatives of GL(3)×GL(2) L-functions (Theorem 8).

Let f be a Hecke–Maass form of type (ν1, ν2) for SL(3,Z) with Fourier coefficients
A(m,n), normalized so that the first Fourier coefficient is A(1, 1) = 1. We define
the L-function

L(s, f) =

∞∑

m=1

A(m, 1)

ms

for Re(s) > 1. This has analytic continuation and its completed L-function Λ(s, f)

satisfies Λ(s, f) = Λ(1−s, f̃), where f̃ denotes the dual form of f of type (ν2, ν1) and
Fourier coefficients A(n,m). Let

{
uj
}
be an orthonormal basis of Hecke–Maass

forms for SL(2,Z). We define the Rankin–Selberg L-function

L(s, f × uj) =
∑

m≥1

∑

n≥1

λj(n)A(n,m)

(m2n)s

for Re(s) > 1, where λj(n) are the normalized Fourier coefficients of uj (see
Preliminaries for details).

Our main result is this:
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Theorem 1. Let f be a Hecke–Maass form for SL(3,Z) and let
{
uj
}
be an or-

thonormal basis of even Hecke–Maass forms for SL(2,Z) with Laplacian eigenvalues
1
4 + t2j , tj ≥ 0 and normalized Fourier coefficients λj(n). Fix a prime p≪ T 1−ε.

Then for any ε > 0 and T large with T
3
8+ε < M ≤ T 1−ε, we have

∑′

j

k(tj)ωjλj(p)L
(1
2
, f × uj

)
+

1

4π

∫ ∞

−∞
k(t)ω(t)η

(
p,

1

2
+ it

)∣∣∣L
(1
2
− it, f

)∣∣∣
2

dt

=
L(1, f̃)

(
A(p, 1)p− 1

)
+ L(1, f)

(
A(1, p)p− 1

)

p
3
2π

∫ ∞

0

k(t) tanh(πt)t dt+

+O(M−3T
5
2+εp1+ε +M−1T

3
2+εpε +MT

1
7+εpε),

where ′ means summing over the orthonormal basis of even Hecke–Maass forms,

k(t) = e−
(t−T )2

M2 +e−
(t+T )2

M2 , and the weights ωj and ω(t) as well as η(n, s) are defined
in the Preliminaries.

Remark 2. The integral in the main term is of size

∫ ∞

0

k(t) tanh(πt)t dt ≍ TM.

Remark 3. Without the twist λj(p) (i.e., corresponding to p = 1), the shape of
the asymptotic formula is essentially the same, with main term

L(1, f̃) + L(1, f)

π

∫ ∞

0

k(t) tanh(πt)t dt.

If f is self-dual this becomes

∑′

j

k(tj)ωjλj(p)L
(1
2
, f × uj

)
+

1

4π

∫ ∞

−∞
k(t)ω(t)η

(
p,

1

2
+ it

)∣∣∣L
(1
2
− it, f

)∣∣∣
2

dt

=
2L(1, f)

(
A(p, 1)p− 1

)

p
3
2π

∫ ∞

0

k(t) tanh(πt)t dt +

+O(M−3T
5
2+εp1+ε +M−1T

3
2+εpε +MT

1
7+εpε).

Remark 4. Note that the analysis of the last error term, coming from the diag-
onal, can be refined in the case where f is self-dual (using stronger bounds on the
Ramanujan conjecture in this case), however the improvement in the error term
doesn’t affect our application of it below.

Our approach in proving this, contained in Sections 3–6, is based on [10].
Using the same technology we further compute, in Section 7, asymptotics for the

twisted first moment of the derivative at the central point:

Theorem 5. Let f be a Hecke–Maass form for SL(3,Z) and let
{
uj
}
be an or-

thonormal basis of odd Hecke–Maass forms for SL(2,Z) with Laplacian eigenvalues
1
4 + t2j , tj ≥ 0 and normalized Fourier coefficients λj(n). Fix a prime p ≪ T 1−ε.
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Then for any ε > 0 and T large with T
3
8+ε < M ≤ T 1−ε, we have

∑∗

j

k(tj)ωjλj(p)L
′
(1
2
, f × uj

)

=
3L(1, f̃)

(
A(p, 1)p− 1

)
+ 3L(1, f)

(
A(1, p)p− 1

)

2p
3
2 π

∫ ∞

−∞
k(t) tanh(πt)t log|t| dt+

+
K
(
A(p, 1)p− 1

)
+ K̃

(
A(1, p)p− 1

)

2p
3
2π

∫ ∞

−∞
k(t) tanh(πt)t dt+

+O(M−3T
5
2+εp1+ε +M−1T

3
2+εpε +MT

1
7+εpε)

where ∗ means summing over the orthonormal basis of odd Hecke–Maass forms,
K = 2L′(1, f̃)−3L(1, f̃) log(2π)−L(1, f̃) log p and K̃ = 2L′(1, f)−3L(1, f) log(2π)−
L(1, f) log p are constants, k(t) = e−

(t−T )2

M2 + e−
(t+T )2

M2 , and the weight ωj is defined
in the Preliminaries.

Remark 6. The main term is of size
∫ ∞

−∞
k(t) tanh(πt)t log|t| dt ≍ TM logT.

Remark 7. Without the twist λj(p), the asymptotic is again similar, with main
term

3L(1, f̃) + 3L(1, f)

2π

∫ ∞

−∞
k(t) tanh(πt)t log|t| dt.

This agrees with [1, Theorem 1.1] when taking the average as long as possible (i.e.,
M close to T ), but also allows averaging over shorter intervals.

For self-dual f this becomes

∑∗

j

k(tj)ωjλj(p)L
′
(1
2
, f × uj

)

=
3L(1, f)

(
A(p, 1)p− 1

)

p
3
2π

∫ ∞

−∞
k(t) tanh(πt)t log|t| dt+

+
K
(
A(p, 1)p− 1

)

p
3
2π

∫ ∞

−∞
k(t) tanh(πt)t dt+

+O(M−3T
5
2+εp1+ε +M−1T

3
2+εpε +MT

1
7+εpε).

An application of this is to show that symmetric-square lifts of GL(2) Maass
forms are uniquely determined by the central values L′(12 , f × uj).

Theorem 8. Let f and g be symmetric-square lifts of GL(2) Maass forms. If

L′
(1
2
, f × uj

)
= cL′

(1
2
, g × uj

)

for some constant c 6= 0 and all odd uj, then f = g.

This is an analogue in the spectral aspect of Liu’s results [11, 12] in the weight
and level aspects.
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We quickly sketch the proof of this. Let Af (m,n) and Ag(m,n) denote the
Fourier coefficients of f and g respectively. For each fixed prime p, the assumption
of L′(12 , f × uj) = cL′(12 , g × uj) applied to Theorem 5 tells us

3L(1, f)

π

(Af (p, 1)

p
1
2

− 1

p
3
2

)
TM logT =

3cL(1, g)

π

(Ag(p, 1)

p
1
2

− 1

p
3
2

)
TM logT+Op(TM).

Moreover computing the same kind of moment as in Theorem 5 without the twist
by λj(p) we have

L(1, f)TM logT = cL(1, g)TM logT +Op(TM).

By taking T → ∞ these two together therefore imply Af (p, 1) = Ag(p, 1) for all
primes p. Hence by the strong multiplicity one theorem (e.g. [3, Theorem 12.6.1]),
we have f = g.

2. Preliminaries

Let z = x+ iy and let

E(z, s) =
1

2

∑

c,d∈Z

(c,d)=1

ys

|cz + d|2s

be the Eisenstein series with Fourier expansion

E(z, s) = ys + φ(s)y1−s +
∑

n6=0

φ(n, s)Ws(nz).

Here Ws is the Whittaker function

Ws(z) = 2|y| 12Ks− 1
2
(2π|y|)e(x),

where e(x) = e2πix, Ks is the K-Bessel function,

φ(s) =
√
π
Γ
(
s− 1

2

)

Γ(s)

ζ(2s− 1)

ζ(2s)
,

φ(n, s) = πsΓ(s)−1ζ(2s)−1|n|− 1
2 η(n, s),

and

η(n, s) =
∑

ad=|n|

(a
d

)s− 1
2

.

For a Hecke–Maass form f and the Eisenstein series E = E(z, 12+it) we associate
the Rankin–Selberg L-function

L(s, f × E) =
∑

m≥1

∑

n≥1

η̄
(
n,

1

2
+ it

)
A(n,m)

(m2n)s

for Re(s) > 1. One derives

L
(1
2
, f × E

)
=
∣∣∣L
(1
2
− it, f

)∣∣∣
2

,

see e.g. [3, Theorem 12.3.6].
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For uj in the basis of Hecke–Maass forms for SL(2,Z), we have the Fourier
expansion

uj(z) =
∑

n6=0

ρj(n)Wsj (nz).

The normalization we use to get λj(n) is

ρj(±n) = ρj(±1)λj(n)n
− 1

2 .

From Rankin–Selberg theory one gets
∑∑

m2n≤N

|A(m,n)|2 ≪ N,

which using Cauchy’s inequality gives us
∑

n≤N

|A(m,n)| ≪ N |m|.

2.1. Kuznetsov trace formula. For m,n ≥ 1 and any even test function h(t)
holomorphic in the strip |Im t| ≤ 1

2 + ε and h(t) ≪ (|t|+ 1)−2−ε in the same strip,
we have the Kuznetsov trace formula for even forms (see e.g., [2, Section 3])

∑′

j

h(tj)ωjλj(m)λj(n) +
1

4π

∫ ∞

−∞
h(t)ω(t)η

(
m,

1

2
+ it

)
η
(
n,

1

2
+ it

)
dt

=
1

2
δ(m,n)H +

∑

c>0

1

2c

(
S(m,n; c)H+

(4π√mn
c

)
+ S(−m,n; c)H−

(4π√mn
c

))
.

Here ′ restricts the sum to even Maass forms, δ(m,n) is the Kronecker symbol,

ωj =
4π|ρj(1)|2
cosh(πtj)

,

ω(t) =
4π
∣∣∣φ
(
1,

1

2
+ it

)∣∣∣
2

cosh(πt)
.

H =
2

π

∫ ∞

0

h(t) tanh(πt)t dt,

H+(x) = 2i

∫ ∞

−∞
J2it(x)

h(t)t

cosh(πt)
dt,

H−(x) =
4

π

∫ ∞

−∞
K2it(x) sinh(πt)h(t)t dt,

and

S(a, b; c) =
∑

dd̄≡1 (mod c)

e
(da+ d̄b

c

)

is the classical Kloosterman sum, along with Jν andKν being the standard J-Bessel
function and K-Bessel function respectively.
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2.2. Voronoi formula for GL(3). Let

α = −ν1 − 2ν2 + 1, β = −ν1 + ν2, γ = 2ν1 + ν2 − 1

denote the Langlands parameters of f .
Per Miller and Schmid [13, Theorem 1.18], the Voronoi formula for GL(3) says

that for ψ a smooth compactly supported function on (0,∞), c, d, d̄ ∈ Z with c 6= 0,
(c, d) = 1, and dd̄ ≡ 1 (mod c), we have

∑

n≥1

A(n,m)e
(nd
c

)
ψ(n)

= c
∑

±

∑

n1|cm

∑

n2≥1

A(n1, n2)

n1n2
S(md̄,±n2;mcn

−1
1 )Ψ±

(n2n
2
1

c3m

)
(1)

where

Ψ±(x) =

∫

(σ)

y−sγ±(s)g̃(−s) ds
2πi

and σ > max
{
−1− Re(α),−1 − Re(β),−1− Re(γ)

}
. Here

g̃(s) =

∫ ∞

0

xs−1g(x) dx

is the Mellin transform of g and

γ±(s) = γ0(s)∓ γ1(s)

with

γℓ(s) :=
π−3s− 3

2

2

Γ
(1 + s+ α+ ℓ

2

)
Γ
(1 + s+ β + ℓ

2

)
Γ
(1 + s+ γ + ℓ

2

)

Γ
(−s− α+ ℓ

2

)
Γ
(−s− β + ℓ

2

)
Γ
(−s− γ + ℓ

2

)

for ℓ = 0, 1.
From [10, Lemma 2.1], if ψ in addition to being smooth is compactly supported

on [X, 2X ], then for any fixed integer K ≥ 1 and xX ≫ 1, we have

Ψ±(x) = x

∫ ∞

0

ψ(y)
K∑

j=1

c±j e(3x
1
3 y

1
3 ) + d±j e(−3x

1
3 y

1
3 )

(xy)
j
3

dy +O
(
(xX)

−K+2
3

)
(2)

where c±j and d±j are absolute constants depending on α, β, and γ. In practice we
will only work with the j = 1 term coming from this, since all other terms are lower
order and hence smaller and give even better estimates.

2.3. Approximate functional equations. Now L(s, f ×uj) has an approximate
functional equation (see [6, Theorem 5.3]), namely

L
(1
2
, f × uj

)
=
∑

m≥1

∑

n≥1

λj(n)A(n,m)

(m2n)
1
2

V−(m
2n, tj) +

+
∑

m≥1

∑

n≥1

λj(n)A(m,n)

(m2n)
1
2

V+(m
2n, tj)

where for

F (u) =
(
cos

πu

A

)−3A

,
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with A a positive integer, and for |Im t| ≤ 1000, we have

V∓(y, t) =
1

2πi

∫

(1000)

y−uF (u)
γ∓
(1
2
+ u, t

)

γ−
(1
2
, t
)

du

u

and

γ∓(s, t) = π−3sΓ
(s− it∓ α

2

)
Γ
(s− it∓ β

2

)
Γ
(s− it∓ γ

2

)
×

× Γ
(s+ it∓ α

2

)
Γ
(s+ it∓ β

2

)
Γ
(s+ it∓ γ

2

)
.(3)

Following [6, Proposition 5.4], essentially by Stirling’s formula, the growth of V±(m2n, tj)
limit the sums in L(12 , f × uj) to m

2n≪ |tj |3+ε.
In order to make use of the Kuznetsov trace formula we also need an approximate

functional equation for L(12 , f × E) = |L(12 − it, f)|2. As can be verified by using
the functional equation of L(s, f) itself, this Rankin–Selberg L-function satisfies
the same functional equation as L(s, f × uj) and consequently

∣∣∣L
(1
2
− it, f

)∣∣∣
2

=
∑

m≥1

∑

n≥1

η
(
n,

1

2
+ it

)
A(n,m)

(m2n)
1
2

V−(m
2n, t) +

+
∑

m≥1

∑

n≥1

η
(
n,

1

2
+ it

)
A(m,n)

(m2n)
1
2

V+(m
2n, t).

3. Proof of Theorem 1: The setup

Substituting these approximate functional equations into the spectrally normal-
ized moment we wish to compute we get

∑

m≥1

∑

n≥1

A(n,m)

(m2n)
1
2

(∑′

j

k(tj)ωjλj(p)λj(n)V−(m
2n, tj) +

+
1

4π

∫ ∞

−∞
k(t)ω(t)η

(
p,

1

2
+ it

)
η
(
n,

1

2
+ it

)
V−(m

2n, t) dt

)
+

+
∑

m≥1

∑

n≥1

A(m,n)

(m2n)
1
2

(∑′

j

k(tj)ωjλj(p)λj(n)V+(m
2n, tj) +

+
1

4π

∫ ∞

−∞
k(t)ω(t)η

(
p,

1

2
+ it

)
η
(
n,

1

2
+ it

)
V+(m

2n, t) dt

)
.

Hence computing asymptotics for this spectrally normalized moment proves Theorem 1.
Because V−(y, t) and V+(y, t) are essentially the same, we will suppress the sub-

script in the following discussion and deal with the first sum above, keeping in
mind that the dual sum behaves exactly the same, only its Fourier coefficient has
the arguments reversed.



8 JAKOB STREIPEL

By calling h(t) = k(t)V (m2n, t) we can apply our Kuznetsov trace formula to
the first sum, resulting in

1

2

∑

m≥1

∑

n≥1

A(n,m)

(m2n)
1
2

(
δ(n, p)Hm,n +

∑

c>0

1

c

(
S(n, p; c)H+

m,n

(4π√np
c

)
+

+ S(−n, p; c)H−
m,n

(4π√np
c

)))
,

where this time in particular

Hm,n =
2

π

∫ ∞

0

k(t)V (m2n, t) tanh(πt)t dt,

H+
m,n(x) = 2i

∫ ∞

−∞
J2it(x)

k(t)V (m2n, t)t

cosh(πt)
dt,

and

H−
m,n(x) =

4

π

∫ ∞

−∞
K2it(x) sinh(πt)k(t)V (m2n, t)t dt.

We split the resulting sum into

D +O+ +O−

where

D =
1

2

∑

m≥1

∑

n≥1

A(n,m)

(m2n)
1
2

δ(n, p)Hm,n,

O+ =
1

2

∑

m≥1

∑

n≥1

A(n,m)

(m2n)
1
2

∑

c>0

S(n, p; c)

c
H+

m,n

(4π√np
c

)
,

and

O− =
1

2

∑

m≥1

∑

n≥1

A(n,m)

(m2n)
1
2

∑

c>0

S(−n, p; c)
c

H−
m,n

(4π√np
c

)
.

We will estimate each of these three terms in turn.

4. Proof of Theorem 1: The diagonal terms

We prove the following:

Lemma 9.

D =
1

2

∑

m≥1

∑

n≥1

A(n,m)

(m2n)
1
2

δ(n, p)Hm,n

=
L(1, f̃)

(
A(p, 1)p− 1

)

p
3
2 π

∫ ∞

0

k(t) tanh(πt)t dt+O(MT
1
7+εpε).

The dual sum is identical, only with L(1, f) instead of L(1, f̃) and A(1, p) instead
of A(p, 1).

Since δ(n, p) = 1 if n = p and 0 otherwise, we have

D =
1

2

∑

m≥1

A(p,m)

mp
1
2

Hm,p.
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We can write this sum as

D =
1

2

∑

(m,p)=1

A(p,m)

mp
1
2

Hm,p +
1

2

∑

(m,p)>1

A(p,m)

mp
1
2

Hm,p

=
1

2

∑

(m,p)=1

A(p,m)

mp
1
2

Hm,p +
1

2

∑

m≥1

A(p,mp)

(mp)p
1
2

Hmp,p.

For (m, p) = 1, the multiplicativity of the Fourier coefficients gives us A(p,m) =
A(p, 1)A(1,m), and in the second sum by the Hecke relations (see e.g., [3, Theo-
rem 6.4.11])

A(p,mp) =
∑

d|(p,pm)

µ(d)A
(p
d
, 1
)
A
(
1,
pm

d

)

= A(p, 1)A(1, pm)−A(1, 1)A(1,m)

= A(p, 1)A(1, pm)−A(1,m)

since A(1, 1) = 1 by normalization. Putting these expressions back into D and
rearranging we get

D =
A(p, 1)

2p
1
2

∑

m≥1

A(1,m)

m
Hm,p −

1

2p
3
2

∑

m≥1

A(1,m)

m
Hmp,p.(4)

It remains to estimate the two sums. Recalling now

Hm,p =
2

π

∫ ∞

0

k(t)V (m2p, t) tanh(πt)t dt

and

V (m2p, t) =
1

2πi

∫

(1000)

(m2p)−uF (u)
γ
(1
2
+ u, t

)

γ
(1
2
, t
) du

u
,

we can bring the sum all the way into V (m2p, t), getting

∑

m≥1

A(1,m)

m
Hm,p

=
2

π

∫ ∞

0

k(t) tanh(πt)t

(
1

2πi

∫

(1000)

p−u
(∑

m≥1

A(1,m)

m1+2u

)
F (u)

γ
(1
2
+ u, t

)

γ
(1
2
, t
) du

u

)
dt.

The sum on the inside is just L(1 + 2u, f̃) (keep in mind this means the dual sum
will have L(1 + 2u, f) here instead).

By the Kim–Sarnak bound on the generalized Ramanujan conjecture for GL(n),
see [7, Appendix 2],

|Re(α)|, |Re(β)|, |Re(γ)| ≤ 1

2
− 1

7
.

Hence we can shift the line of integration to d = − 1
7 + ε without hitting any of the

poles of the gamma factors. Doing this we pass the simple pole at u = 0, picking
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up the residue L(1, f̃). Therefore the inner integral becomes

L(1, f̃) +
1

2πi

∫

(d)

p−uL(1 + 2u, f̃)F (u)
γ
(1
2
+ u, t

)

γ
(1
2
, t
) du

u
.(5)

To estimate the inner integral we need to control the gamma factors in terms of
t. By Stirling’s formula (see also [6, Proposition 5.4]) we have

Γ(s+ u)

Γ(s)
≪ |s+ 1|Re(u) exp

(π
2
|u|
)

for Re(s) > 0 and Re(u) > −Re(s), so in t each gamma factor contributes t−
1
7+ε.

The resulting exponential in |u| is controlled by F (u) in the integral, and conse-

quently what we get out of the inner integral (5) is L(1, f̃) +O(p
1
7−εt−

6
7+ε), since

we have six such gamma factors, and from this we get

∑

m≥1

A(1,m)

m
Hm,p = L(1, f̃)

2

π

∫ ∞

0

k(t) tanh(πt)t dt+

+O
(
p

1
7−ε

∫ ∞

0

k(t) tanh(πt)t
1
7+ε dt

)
.(6)

The second term in (4) is treated similarly, the only difference being a factor of
p−3u in the integral instead of p−u, hence

∑

m≥1

A(1,m)

m
Hmp,p = L(1, f̃)

2

π

∫ ∞

0

k(t) tanh(πt)t dt+

+O
(
p

3
7−ε

∫ ∞

0

k(t) tanh(πt)t
1
7+ε dt

)
.

Putting both of these back into (4) we get

D =
L(1, f̃)

(
A(p, 1)p− 1

)

p
3
2π

∫ ∞

0

k(t) tanh(πt)t dt+O(MT
1
7+εpε)

since t is about T and the integral is of length aboutM . Here we have again used the

Kim–Sarnak bound, this time in the form |A(p, 1)| ≪ p
5
14+ε (see [7, Appendix 2])

in the error term.
Working through the exact same calculations for the dual sum we consequently

get

A(1, p)

2p
1
2

∑

m≥1

A(m, 1)

m
Hm,p −

1

2p
3
2

∑

m≥1

A(m, 1)

m
Hmp,p

=
L(1, f)

(
A(1, p)p− 1

)

p
3
2π

∫ ∞

0

k(t) tanh(πt)t dt+O(MT
1
7+εpε)

which means the two diagonal sums put together contribute

L(1, f̃)
(
A(p, 1)p− 1

)
+ L(1, f)

(
A(1, p)p− 1

)

p
3
2 π

∫ ∞

0

k(t) tanh(πt)t dt+

+O(MT
1
7+εpε)

to the moment in Theorem 1.
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5. Proof of Theorem 1: The J-Bessel function terms

For O+, using partition of unity it suffices to consider

R+ =
1

2

∑

m≥1

∑

n≥1

A(n,m)

(m2n)
1
2

g
(m2n

N

)∑

c>0

S(n, p; c)

c
H+

m,n

(4π√np
c

)

where g is a smooth function of compact support on [1, 2] and N is at most T 3+ε.
We prove the following:

Lemma 10.

R+ = O(M−3T
5
2+εp1+ε).

Since the off-diagonal terms will contribute only error terms we will have no
need to keep track of the difference between this sum and its dual version. In
what follows we will again suppress the subscripts on V±(m2n, t), but the dual sum
contributes precisely the same error.

Following [10], the strategy for estimating R+ is to split the c-sum into three
parts,

R+ = R+
1 +R+

2 +R+
3 ,

with

R+
1 =

1

2

∑

m≥1

∑

n≥1

A(n,m)

(m2n)
1
2

g
(m2n

N

) ∑

c≥C1
m

S(n, p; c)

c
H+

m,n

(4π√np
c

)
,

R+
2 =

1

2

∑

m≥1

∑

n≥1

A(n,m)

(m2n)
1
2

g
(m2n

N

) ∑

C2
m

≤c≤C1
m

S(n, p; c)

c
H+

m,n

(4π√np
c

)
,

and

R+
3 =

1

2

∑

m≥1

∑

n≥1

A(n,m)

(m2n)
1
2

g
(m2n

N

) ∑

c≤C2
m

S(n, p; c)

c
H+

m,n

(4π√np
c

)
.

The idea is to tune the cut-offs C1 and C2 in such a way that both R+
1 and R+

2 are
small, meaning negative powers of T , and R+

3 we will handle a bit more delicately
with stationary phase analysis.

Starting with the tail R+
1 , we move the line of integration in

H+
m,n(x) = 2i

∫ ∞

−∞
J2it(x)

k(t)V (m2n, t)t

cosh(πt)
dt

to Im t = − 1
2 . This gives us

H+
m,n(x) = 2i

∫ ∞

−∞
J2iy+1(x)

k
(
−1

2
i+ y

)
V
(
m2n,−1

2
i+ y

)(
−1

2
i+ y

)

cosh
(
π
(
−1

2
i+ y

)) dy

since this shift passes through no zeros of the denominator cosh(πt).
The J-Bessel function has the following integral representation (see for instance

[4, 8.411 4])

Jν(z) = 2

(z
2

)ν

Γ
(
ν +

1

2

)
Γ
(1
2

)
∫ π/2

0

sin(θ)2ν cos(z cos θ) dθ,
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which tells us that for Re ν > − 1
2 ,

Jν(z) ≪
( z

|Im ν|+ 1

)Re ν

e
π
2 |Im ν|.

Using Stirling’s formula to estimate the gamma factors in V (m2n,−di+ y), we get

V (m2n,−di+ y) ≪
( |y + 1|3

m2n

)d
.(7)

Putting this together and back into H+
m,n(x), keeping in mind that this integral

is of length about M because of the exponential decay of k(− 1
2 i+ y), and that y is

about T , this gives us

H+
m,n(x) ≪ xT−1(m2n)−

1
2T

3
2T 1+εM = xT

3
2+ε(m2n)−

1
2M.

Plugging this back into R+
1 , summing trivially over c using Weil’s bound

S(a, b; c) ≪ε c
1
2+ε(a, b, c)

1
2

for the Kloosterman sum, this gives us

∑

c≥C1
m

S(n, p; c)

c
H+

m,n

(4π√np
c

)
≪

∑

c≥C1
m

c
1
2+ε

c

(4π√np
c

)
T

3
2+ε(m2n)−

1
2M

= (4π)(np)
1
2T

3
2+ε(m2n)−

1
2M

∑

c≥C1
m

c
1
2−1−1+ε

= (4π)T
3
2+εm−1p

1
2M

∑

c≥C1
m

c−
3
2+ε.

Hence the c-sum converges. In particular, the sum over c is about (C1

m )−
1
2+ε. By

picking C1 to be an appropriately large power of T , say T 100, we can ensure that
the power of T is 3

2 + ε + 100(− 1
2 + ε) < 0. Hence any power of T larger than

3 will do. In other words, R+
1 contributes a negative power of T , and as such is

admissible.
Moving on to

R+
2 =

1

2

∑

m≥1

∑

n≥1

A(n,m)

(m2n)
1
2

g
(m2n

N

) ∑

C2
m

≤c≤C1
m

S(n, p; c)

c
H+

m,n

(4π√np
c

)

our goal is to choose C2 in such a way that this, too, is a negative power of T , keeping
in mind that C1 = T 100. To do this we will use another integral representation of
the J-Bessel function, namely

J2it(x)− J−2it(x)

cosh(πt)
= −2i

π
tanh(πt)

∫ ∞

−∞
cos(x cosh ζ)e

( tζ
π

)
dζ,
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derived from [4, 8.411 11]. In other words we want to decomposeHm,n(x) as follows:

H+
m,n(x) = 2i

∫ ∞

−∞
J2it(x)

k(t)V (m2n, t)t

cosh(πt)
dt

= 2i

∫ ∞

0

J2it(x)
k(t)V (m2n, t)t

cosh(πt)
dt+ 2i

∫ 0

−∞
J2it(x)

k(t)V (m2n, t)t

cosh(πt)
dt

= 2i

∫ ∞

0

J2it(x)
k(t)V (m2n, t)t

cosh(πt)
dt− 2i

∫ ∞

0

J−2it(x)
k(−t)V (m2n,−t)t

cosh(−πt) dt.

But k(t), V (m2n, t), and cosh(πt) are all even in t, so this becomes

H+
m,n(x) = 2i

∫ ∞

0

J2it(x) − J−2it(x)

cosh(πt)
k(t)V (m2n, t)t dt,

and so we can apply the above integral representation to get

H+
m,n(x) =

4

π

∫ ∞

t=0

tanh(πt)

(∫ ∞

ζ=−∞
cos(x cosh ζ)e

( tζ
π

)
dζ

)
k(t)V (m2n, t)t dt.

We can get rid of e−
(t+T )2

M2 from k(t) = e−
(t−T )2

M2 + e−
(t+T )2

M2 with negligible error,
and similarly tanh(πt) is inconsequential, so we are left with studying

H+
m,n(x) =

4

π

∫ ∞

t=0

∫ ∞

ζ=−∞
cos(x cosh ζ)e

( tζ
π

)
e−

(t−T )2

M2 V (m2n, t)t dζ dt+O(T−A)

where A is an arbitrarily large constant. We make the change of variables u = t−T
M ,

under which our integral becomes

H+
m,n(x) =

4M

π

∫ ∞

u=− T
M

∫ ∞

ζ=−∞
cos(x cosh ζ)e

( (Mu+ T )ζ

π

)
(Mu+ T )e−u2 ×

× V (m2n,Mu+ T ) dζ du +O(T−A).

We only study the term arising from the T part of Mu+T ; the term from Mu can
be handled similarly.

Hence we want to understand

H+,1
m,n(x) =

4MT

π

∫ ∞

u=−∞

∫ ∞

ζ=−∞
e−u2

V (m2n,Mu+T ) cos(x cosh ζ)e
(uMζ

π

)
e
(Tζ
π

)
du dζ,

where we have extended the u-integral to (−∞,∞) with negligible error because of

the exponential decay of e−u2

.
By setting

k∗(u) = e−u2

V (m2n,Mu+ T )

and considering its Fourier transform

k̂∗(ζ) =

∫ ∞

−∞
k∗(u)e(−uζ) du,

we get in particular that

k̂∗
(
−Mζ

π

)
=

∫ ∞

−∞
k∗(u)e

(uMζ

π

)
du.

This lets us rewrite H+,1
m,n(x) as

H+,1
m,n(x) =

4MT

π

∫ ∞

−∞
k̂∗
(
−Mζ

π

)
cos(x cosh ζ)e

(Tζ
π

)
dζ,
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and changing variables to ξ = −Mζ
π , this leaves us studying

H+,1
m,n(x) = 4T

∫ ∞

−∞
k̂∗(ξ) cos

(
x cosh

ξπ

M

)
e
(
−Tξ
M

)
dξ.(8)

Rewriting cosine in terms of exponentials, the phase of this integral is

φ(ξ) = −Tξ
M

± x

2π
cosh

ξπ

M
,

the plus or minus depending on which half of the exponential representation of
cosine we are considering, but the analysis is the same either way:

|φ′(ξ)| ≥ T

M
− x

2M
sinh

ξπ

M
≫ T

M
− x

2M

ξπ

M
=

T

M
− xξπ

2M2

Hence for there to be a stationary phase we must have x about the size TM , and
consequently so long as |x| ≤ T 1−εM , there is no stationary phase, and so by
the First derivative test ([5, Lemma 5.1.2]) H+,1

m,n(x) (and hence H+
m,n(x), being

composed of H+,1
m,n(x) and a similar term) is small in this region.

In particular, since x =
4π

√
np

c , this means that R+
2 is negligible for

4π
√
np

c ≤
T 1−εM , or in other words

c ≥ 4π
√
np

T 1−εM
.

As promised we want to tune C2 in such a way that R+
2 , the c-sum of which ranges

over C2

m ≤ c ≤ C1

m , is small. Remembering that 1 ≤ m2n
N ≤ 2, i.e., n ≫ Nm−2, we

infer from the above that

C2 =

√
Np

T 1−εM
does the job, since in this range the resulting exponential integral has no stationary
phase, and recall that in R+

2 , the c-sum is over C2

m ≤ c ≤ C1

m , hence convergent.
Finally for

R+
3 =

1

2

∑

m≥1

∑

n≥1

A(n,m)

(m2n)
1
2

g
(m2n

N

) ∑

c≤C2
m

S(n, p; c)

c
H+

m,n

(4π√np
c

)
.

we need to be substantially more careful, because this time, for c ≤ C2

m , the integral

H+,1
m,n in (8) has stationary phase for ξ ≍ ± 2MT

πx . We will focus on the stationary

phase near ξ0 = − 2MT
πx from the negative part of ± in the phase φ(ξ) simply to

keep the signs uniform; the positive one is treated similarly. To this end we will
call

H̃+,1
m,n(x) = 4T

∫ ∞

−∞
k̂∗(ξ)e

(
−Tξ
M

− x

2π
cosh

ξπ

M

)
dξ.

Following [10, Proposition 4.1] (or [8, Lemma 5.1] or [14, Proposition 3.1]), we

can extract asymptotics for H̃+,1
m,n(x). This is essentially ordinary stationary phase

analysis, only being quite careful with the computation of the error.
By expanding the cosh in the phase φ(ξ) as a Taylor series we get

H̃+,1
m,n(x) = 4T

∫ ∞

−∞
k̂∗(ξ)e

(
−Tξ
M

− x

2π
− πxξ2

4M2
− π3xξ4

48M4
− π5xξ6

1440M6

)
dξ +

+O
(
T

∫ ∞

−∞
|k̂∗(ξ)| |ξ|

8|x|
M8

dξ
)
.
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Note that the integral in the error is finite in ξ, so the error here is O(T |x|
M8 ). By

expanding the last exponential term e(− π5xξ6

1440M6 ) as a Taylor series of order 1 we
get

H̃+,1
m,n(x) =W+

m,n(x)−
2π6x

1440M6
W−

m,n(x) +O
(T |x|
M8

)
(9)

where

W+
m,n(x) = 4Te

(
− x

2π

) ∫ ∞

−∞
k∗0(ξ)e

(
−Tξ
M

− πxξ2

4M2

)
dξ

with

k∗0(ξ) = k̂∗(ξ)e
(
−π

3xξ4

48M4

)

and

W−
m,n(x) = 4Te

(
− x

2π

)∫ ∞

−∞
ξ6k∗0(ξ)e

(
−Tξ
M

− πxξ2

4M2

)
dξ.

In what follows we will deal withW+
m,n(x) asW

−
m,n(x) can be handled with precisely

the same methods. As detailed in the calculations above [10, Proposition 4.1], by
completing the square in the exponential, applying Parseval’s theorem and then
Taylor’s theorem again, we arrive at the asymptotic

W+
m,n(x) =

TM√
|x|
e
(
− x

2π
+
T 2

πx

) ∑

0≤l≤L1

∑

0≤l1≤2l

∑

l1
4 ≤l2≤L2

cl,l1,l2
M2l−l1T 4l2−l1

xl+3l2−l1
×

× k̂∗
(2l−l1)

(
−2MT

πx

)
+O

(
TM√
|x|

( T 4

|x|3
)L2+1

+ T
( M√

|x|

)2L1+3
)
.

Here cl,l1,l2 are constants depending only on l, l1, and l2, where in particular from
the above calculations c0,0,0 = 1+i√

2
.

Now we are essentially done, because recalling how H̃+,1
m,n(x) in (9) is composed

of W+
m,n, a similar term, and a remainder of O(T |x|

M8 ), we simply take L1 and L2 to

be sufficiently large that the error O(T |x|
M8 ) dominates the error terms in L1 and L2.

It then suffices to study only the leading term l = l1 = l2 = 0, because the rest
are of identical form and can be handled similarly.

From these asymptotics we infer that to study R+
3 it suffices to study

R̃+
3 :=

(1 + i)TM

2πp
1
4

∑

m≥1

∑

n≥1

A(n,m)

mn
3
4

g
(m2n

N

)
×

×
∑

c≤C2
m

S(n, p; c)

c
1
2

e
(2√np

c
− T 2c

4π2√np
)
k̂∗
( MTc

2π2√np
)
.(10)
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The error in this asymptotic expansion is therefore of size

∑

m≥1

∑

n≥1

A(n,m)

mn
1
2

g
(m2n

N

) ∑

c≤C2
m

c−1S(n, p; c)
T |x|
M8

≪
∑

m≥1

∑

n≥1

|A(n,m)|
mn

1
2

g
(m2n

N

) ∑

c≤C2
m

c−
3
2+εTn

1
2 p

1
2

M8

≪ TM−8p
1
2

∑

m≥1

m−2
∑

n≥1

|A(n,m)|g
(m2n

N

)
C2

≪ TM−8Np
1
2
N

1
2 p

1
2

T 1−εM
= T εM−9N

3
2 p.(11)

where we have used the Weil bound on the Kloosterman sum and recalling that

x =
4π

√
np

c and C2 = N
1
2 p

1
2

T 1−εM . Since the main term from D is of size TM , we need

this to be at most T 1−εM . This tells us how long of a sum T a < M ≤ T 1−ε we
are allowed, namely, to use this asymptotic expansion, we need a > 7

20 + ε. We will

have occasion to tune this a more finely later on, when we analyze R̃+
3 itself.

To see that we need to open the Kloosterman sum, notice how if we were to sum
trivially over n, using Weil’s bound of the Kloosterman sum, we get

R̃+
3 ≪ TMC1+ε

2 N
1
4 ≪ N

3
4 ≤ T

9
4+ε,

recalling how N ≤ T 3+ε. Hence to save T
5
4M−1 we open the Kloosterman sum

and sum nontrivially over n using the Voronoi formula for GL(3).
To this end we identify the terms depending on n from the expression (10) for

R̃+
3 , except for the Fourier coefficients A(n,m) and the Kloosterman sums S(n, p; c)

(since those will be handled by the Voronoi formula), as

ψ(y) = y−
3
4 g
(m2y

N

)
e
(2√yp

c
− T 2c

4π2√yp
)
k̂∗
( MTc

2π2√yp
)
.

Opening the Kloosterman sum we get

(12)
∑

n≥1

A(n,m)S(n, p; c)ψ(n) =
∑

dd̄≡1 (mod c)

e
(pd̄
c

)∑

n≥1

A(n,m)e
(nd
c

)
ψ(n).

This is a productive thing to do because the Voronoi formula (1) tells us precisely
how to handle the inner sum, namely

∑

n≥1

A(n,m)e
(nd
c

)
ψ(n) = c

∑

±

∑

n1|cm

∑

n2≥1

A(n1, n2)

n1n2
S(md̄,±n2;mcn

−1
1 )Ψ±

(n2n
2
1

c3m

)
.

Recalling now c ≤ C2

m =
√
Np

T 1−εMm and how N ≤ T 3+ε, the size of the argument
after transforming times the length of the original n-sum is at least

n2n
2
1

c3m

N

m2
≫ T

21
8 −εp−

3
2 ≫ 1

since p ≪ T 1−ε. Consequently the version of [10, Lemma 2.1] in (2) applies and
the size of the integral transform Ψ±(x) reduces to studying

x
2
3 c±1

∫ ∞

0

e(u1(y))a(y) dy + x
2
3 d±1

∫ ∞

0

e(u2(y))a(y) dy,(13)
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where c±1 and d±1 are absolute constants depending on the Langlands parameters
of f ,

u1(y) =
2
√
yp

c
+ 3x

1
3 y

1
3 , u2(y) =

2
√
yp

c
− 3x

1
3 y

1
3 ,

and

a(y) = ψ(y)y−
1
3 = g

(m2y

N

)
k̂∗
( MTc

2π2√yp
)
e
(
− T 2c

4π2√yp
)
y−

13
12 .

As mentioned in the discussion of (2), there are more terms in Ψ±(x), but like in
all our previous analysis they are of lower order and do not contribute anything of
interest.

These are oscillatory integrals with a weight, so they lend themselves to station-
ary phase analysis. In particular, the first integral with phase u1(y) has negligible

contribution, since u′1(y) ≫ c−1y−
1
2 and a′(y) ≪ T 2cy−

31
12 meaning that

u′1(y)a
′(y)−1 ≫ c−2T−2y

25
12 ≫ T−εM2m2N−1y

25
12 ≫ T 2a−ε.

Whatever we tune a to be, this power of T is no doubt positive, and so using
partial integration as many times as we like we can make the contribution of this
first integral bounded by as large a negative power of T as we please.

The second integral is the one that contributes a stationary phase, and conse-
quently the one we have to exercise more care with. This time, because of the
minus sign in the phase, we have

u′2(y) = p
1
2 c−1y−

1
2 − x

1
3 y−

2
3 ,

meaning that if x is bounded away from p
3
2 c−3y

1
2 , in particular x away from

p
3
2 c−3m−1N

1
2 since y = n ∼ Nm−2, then we have no stationary phase, and the

second integral has negligible contribution for the same reason as the first one.
Consequently to have a stationary phase we are looking at x around the size

p
3
2 c−3m−1N

1
2 , or in other words n2 ∼ N

1
2 p

3
2n−2

1 . In this range the relevant integral
∫ ∞

0

e(u2(y))a(y) dy

therefore has a stationary phase point at y0 = p−3c6x2, which using the stationary
phase method ([5, Lemma 5.5.6]) gives us

∫ ∞

0

e(u2(y))a(y) dy =
a(y0)e

(
−xc2p−1 +

1

8

)

√
u′′2(y0)

+O(c
7
2 T 4N− 11

6 m
11
3 p−

7
4 ).(14)

Note for ease of reference later that

u′′2(y) =
2

3
x

1
3 y−

5
3 − 1

2
p

1
2 c−1y−

3
2 ,

so in particular at y0 = p−3c6x2 we have u′′2(y0) =
1
6x

−3c−10p5, so that

1√
u′′2(y0)

=
√
6x

3
2 c5p−

5
2 =

√
6n

3
2
2 n

3
1c

1
2m− 3

2 p−
5
2

for x =
n2n

2
1

c3m .
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In order to now use this to control the error we need to do something about the
Kloosterman sums that remain after using the Voronoi formula. Per (12) and the
Voronoi formula we are left with

∑

dd̄≡1 (mod c)

e
(pd̄
c

)
S(md̄,±n2;mcn

−1
1 ).

To handle this, open the Kloosterman sum and switch the order of summation to
get

∑

uū≡1 (mod mcn−1
1 )

e
( ±n2ū

mcn−1
1

) ∑

dd̄≡1 (mod c)

e
(pd̄
c

)
e
( md̄u

mcn−1
1

)

=
∑

uū≡1 (mod mcn−1
1 )

e
( ±n2ū

mcn−1
1

) ∑

dd̄≡1 (mod c)

e
( d̄(p+ un1)

c

)

=
∑

uū≡1 (mod mcn−1
1 )

e
( ±n2ū

mcn−1
1

)
S(0, p+ un1; c).

The Kloosterman sum in the right-hand side,

S(0, a; c) =
∑

vv̄≡1 (mod c)

e
(av
c

)
,

is really just the Ramanujan sum, which is bounded by (a, c), so the twisted sum
of Kloosterman sums above is bounded by mc1+ε since n1 | mc.

This lets us bound the contribution to (10) from the error term in the stationary
phase analysis by

MTp−
1
4

∑

m≥1

m−1
∑

c≤C2
m

c
1
2

∑

n1|cm

∑

n2∼N
1
2 p

3
2 n−2

1

|A(n1, n2)|
n1n2

(n2n
2
1

c3m

) 2
3

mc1+εc
7
2 T 4N− 11

6 m
11
3 p−

7
4

≪M−3T 1+εN
1
2 p1+ε

using calculations similar to those of the error from the asymptotic expansion in

(11). Remember for this calculation how x =
n2n

2
1

c3m and how by (13) there is an x
2
3

in front of the integral we are estimating with stationary phase analysis.
Since we want this to be dominated by TM , we again need to tune the length

of T a < M ≤ T 1−ε. In particular, for M−3T 1+εN
1
2 ≤ MT−4a+1+ 3

2+ε to be
dominated by TM we need a > 3

8 + ε. Comparing this to a > 7
20 + ε in order to

get an admissible error from the asymptotic expansion before, we see that we have
narrowed the range of M slightly.

This means that, at this point, after using the Voronoi formula once and applying
stationary phase analysis, we have

R̃+
3 =

TMp
3
4

π

∑

m≥1

m−1
∑

c≤C2
m

c−1
∑

±

∑

n1|cm
n−1
1

∑

n2≥1

A(n1, n2)×

×
∑

uū≡1 (mod mcn−1
1 )

S(0, p+ un1; c)e
( ±n2ū

mcn−1
1

)
e
(−n2n

2
1

cmp

)
b(n2)

+O(MT
5
2−4a+εp1+ε)(15)
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where now

b(y) = y−1g
(y2n4

1

Np

)
k̂∗
(MTcmp

2π2yn2
1

)
e
(−T 2cmp

4π2yn2
1

)
.

If at this point we sum trivially over n2, keeping in mind that 1 ≤ n2
2n

4
1

Np ≤ 2,

we find that the main term contributes about TMC2 ≪ TMT
1
2M−1, so we need

to save an additional T
1
2+εM−1 in order for this to be admissible. To do this we

have to once again switch the order of summation and use the Voronoi formula for
a second time.

The relevant n2-sum is

∑

n2≥1

A(n1, n2)e
( ±n2ū

mcn−1
1

)
e
(−n2n

2
1

cmp

)
b(n2).

We rewrite the character as

e
( ±n2ū

mcn−1
1

)
e
(−n2n

2
1

cmp

)
= e
( ±n2ū

mcn−1
1

− n2n
2
1

cmp

)
= e
(±n2ūp− n2n1

mcn−1
1 p

)

= e
(n2(±ūp− n1)

mcn−1
1 p

)
.

Relabeling

±ūp− n1

mcn−1
1 p

=
ū′

c′

with (ū′, c′) = 1 and c′ | mcn−1
1 p, this gives us the following n2-sum, expanded

using the Voronoi formula:

∑

n2≥1

A(n1, n2)e
(n2ū

′

c′

)
b(n2)

= c′
∑

±

∑

l1|c′n1

∑

l2≥1

A(l1, l2)

l1l2
S(n1u

′,±l2;n1c
′l−1
1 )B±

( l2l
2
1

c′3n1

)
.(16)

Here B±(x) are the same integral transforms of b(y) that Ψ±(x) are of ψ(y) in our
first use of the Voronoi formula, and so for the same reason we look at the size
of the argument x compared to the length of the sum prior to using the Voronoi
formula in order to use (2):

l2l
2
1

c′3n1

N
1
2 p

1
2

n2
1

≫ M3 ≫ 1

and so again the asymptotics apply, and we can write the integral transform B±(x)
in terms of

B±(x) = x
2
3 c±1

∫ ∞

0

e(v1(y))q(y) dy − x
2
3 d±1

∫ ∞

0

e(v2(y))q(y) dy

+ lower order terms.(17)

As before, c±1 and d±1 are absolute constants depending on f . The phases are

v1(y) = 3x
1
3 y

1
3 − T 2cmp

4π2yn2
1

and v2(y) = −3x
1
3 y

1
3 − T 2cmp

4π2yn2
1

,
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and

q(y) = y−
4
3 g
(y2n4

1

Np

)
k̂∗
(MTcmp

2π2yn2
1

)
.

We perform the same kind of analysis as we did after the first application of the
Voronoi formula. First,

v′1(y) = x
1
3 y−

2
3 +

T 2cmp

4π2y2n2
1

≫ T 2cmp

y2n2
1

and q′(y) ≪ y−
1
3 T εN−1n4

1p
−1, and hence

v′1(y)q
′(y)−1 ≫ T 2cmp

y2n2
1

y−
1
3 T εN−1n4

1p
−1 ≫ T 2−εcmp

1
2N− 1

2 y
4
3 ≫ T

1
2−ε

since 1 ≤ y2n4
1

Np ≤ 2. Consequently, since that is a positive power of T , we can

integrate by parts as many times as we like to get a sufficiently large negative
power of T , so the integral with v1(y) as its phase is negligible.

Concerning the integral with phase v2(y), we have

v′2(y) = −x 1
3 y−

2
3 +

T 2cmp

4π2y2n2
1

,

so in order to have the same negligible asymptotics as in the previous case we need

|v′2(y)| ≫ T 2cmp
y2n2

1
, or in other words we need x away from

T 6c3m3pn2
1

64π6N2

since y is about N
1
2 p

1
2

n2
1

. Therefore if

x ≥ T 6c3m3pn2
1

10π6N2
or x ≤ T 6c3m3pn2

1

100π6N2

we have, by exactly the same argument as for v1(y), no stationary or small phase
and the integral with phase v2(y) is negligible in this range.

It remains to study the integral with phase v2(y) in the range

T 6c3m3pn2
1

100π6N2
≤ x ≤ T 6c3m3pn2

1

10π6N2

or equivalently the l2-sum in the range

L2

100
≤ l2 ≤ L2

10
with

L2 =
T 6c3m3pn3

1c
′3

π6N2l21
.

Here we have

|v′′2 (y)| ≫
T 2cmp

y3n2
1

≫ T 2cmp−
1
2N− 3

2n4
1.

By the Second derivative test ([5, Lemma 5.1.3]), we deduce from this and (17)
that

B±(x) ≪ x
2
3 (T 2cmp−

1
2N− 3

2n4
1)

− 1
2

(N 1
2 p

1
2

n2
1

)− 4
3

T ε

≪ T 3+εc
3
2m

3
2 p

1
4n2

1N
− 5

4(18)
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since at this point x≪ T 6c3m3pn2
1N

−2.

Combining (15), (16), and (18), along with the Weil bound (n2c
′l−1
1 )

1
2+ε for the

innermost Kloosterman sum and the bound (p + un1, c) for the Ramanujan sum,
we finally have

R̃+
3 ≪MTp

3
4

∑

m≥1

m−1
∑

c≤C2
m

c−1
∑

n1|cm
n−1
1

∑

uū≡1 (mod mcn−1
1 )

(p+ un1, c)

× c′
∑

l1|c′n1

∑

L2
100≤l2≤L2

10

|A(l1, l2)|
l1l2

(n1c
′l−1
1 )

1
2+ε

× T 3+εc
3
2m

3
2 p

1
4n2

1N
− 5

4 +O(MT
5
2−4a+εp1+ε)

≪M−3T εN
3
4 p+O(MT

5
2−4a+εp1+ε)

≪MT
9
4−4a+εp+O(MT

5
2−4a+εp1+ε).

For this to be admissible, namely dominated by TM , we need a > 5
16 + ε in

T a ≤M ≤ T 1−ε, which of course is covered by a > 3
8 + ε from earlier.

6. Proof of Theorem 1: The K-Bessel function terms

Again using partition of unity it suffices for O− to consider

R− =
1

2

∑

m≥1

∑

n≥1

A(n,m)

(m2n)
1
2

g
(m2n

N

)∑

c>0

S(−n, p; c)
c

H−
m,n

(4π√np
c

)

where g is a smooth function of compact support on [1, 2] and N is at most T 3+ε.
We prove the following:

Lemma 11.

R− = O(M−1T
3
2+εpε).

Recall how

H−
m,n(x) =

4

π

∫ ∞

−∞
K2it(x) sinh(πt)k(t)V (m2n, t)t dt.

As with R+ we will split the c-sum, but this time it suffices to split it into only two
parts,

R−
1 =

1

2

∑

m≥1

∑

n≥1

A(n,m)

(m2n)
1
2

g
(m2n

N

) ∑

c≥ C
m

S(−n, p; c)
c

H−
m,n

(4π√np
c

)

and

R−
2 =

1

2

∑

m≥1

∑

n≥1

A(n,m)

(m2n)
1
2

g
(m2n

N

) ∑

c≤ C
m

S(−n, p; c)
c

H−
m,n

(4π√np
c

)
.

As before we will tune the cut-off C carefully in a moment.
The first part we deal with in essentially the same way we dealt withR+

1 involving
the J-Bessel function, after first using an identity to switch from the K-Bessel
function to the I-Bessel function (because we have similar integral representations
for the I-Bessel function and the J-Bessel function). That is to say, we move the
line of integration in H−

m,n(x) carefully and use the integral representation for the
Bessel function to extract bounds.
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In particular, we have

Kν(z) =
π

2

I−ν(z)− Iν(z)

sin(πν)
,

so that

H−
m,n(x) = 2

∫ ∞

−∞

I−2it(x)− I2it(x)

sin(2itπ)
sinh(πt)k(t)V (m2n, t)t dt

= −4

∫ ∞

−∞

I2it(x)

sin(2itπ)
sinh(πt)k(t)V (m2n, t)t dt

since k(t) and V (m2n, t) are even in t.
Moving the line of integration to Im t = −d, which we will tune momentarily,

this becomes

−4

∫ ∞

−∞

I2d+2iy(x)

sin((2d+ 2iy)π)
sinh(π(−di + y))k(−di+ y)V (m2n,−di+ y)(−di+ y) dy +

+ residue terms.

The residue terms come from denominator sin((2u + 2iy)π) with simple zeros at
2u+ 2iy = l, l ∈ Z and l 6= 0, and are of size

≪ Il(x)V
(
m2n,−i l

2

) l
2
.

For fixed d there are only finitely many such residues for l = 1, 2, . . . < d.
Per [4, 8.431 3] we have the integral representation

Iν(z) =

(z
2

)ν

Γ
(
ν +

1

2

)
Γ
(1
2

)
∫ π

0

e±z cos(θ) sin(θ)2ν dθ

so that for Re(ν) > − 1
2 we have the bound

Iν(z) ≪
( z

|Im ν|+ 1

)Re ν

eπ Im νez,

and from (7) we have V (m2n,−di + y) ≪ |y|3d(m2n)−d. This makes the residue
terms bounded by

≪ xd(m2n)−
1
2 ,

and hence we have

H−
m,n(x) ≪ x2dex(m2n)−dT d+1+εM + xd(m2n)−

1
2

since y is about T and the length of the integral is about M , both because of the
exponential decay of k(−di+y). This is the first step in tuning C, the lower bound

on c ≥ C
m . In order for the ex factor to be insignificant we need x =

4π
√
np

c bounded

above, say by c ≥
√
N .

With this we have, using the Weil bound on the Kloosterman sum,

R−
1 ≪

∑

m≥1

∑

n≥1

|A(n,m)|
(m2n)

1
2

g
(m2n

N

) ∑

c≥ C
m

c−1c
1
2+ε ×

×
((4π√np

c

)2d
(m2n)−dT d+1+εM +

(4π√np
c

)d
(m2n)−

1
2

)
.
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The power of c from the first term in the parentheses is 1
2 − 1 − 2d + ε and the

power of c from the second term in the parentheses is 1
2 −1−d+ε, so for the c-sum

to converge we need d > 1
2 when moving the line of integration.

This then makes the c-sum about (Cm)
1
2−2d+ε, so by taking

C =
√
N + T,

the
√
N in casem2 ≪ N is large and T in case m is small, and picking d sufficiently

large we make the entirety of R−
1 bounded by a large negative power of T .

Finally we handle

R−
2 =

1

2

∑

m≥1

∑

n≥1

A(n,m)

(m2n)
1
2

g
(m2n

N

) ∑

c≤ C
m

S(−n, p; c)
c

H−
m,n

(4π√np
c

)

in a way exactly analogous to how R+
2 and R+

3 were handled. We substitute the
integral representation (from [4, 8.432 4])

K2it(x) =
1

2
cosh(tπ)−1

∫ ∞

−∞
cos(x sinh ζ)e

(
− tζ
π

)
dζ

into H−
m,n(x), make the change of variables u = t−T

M we made with R+
2 , extract the

e−
(t+T )2

M2 part of k(t) with negligible error because of exponential decay, identify the

resulting integral in u as the Fourier transformation of k∗(u) = e−u2

V (m2n,Mu+

T ), make a second change of variables ξ = −Mζ
π , and finally reduce all of it to

studying the integral

H−,1
m,n(x) = 4T

∫ ∞

−∞
k̂∗(ξ) cos

(
x sinh

ξπ

M

)
e
(
−Tξ
M

)
dξ.

As with R+
2 there is a second term, the one arising from theMu part of t =Mu+T

instead of the T part, but again like R+
2 that second term can be handled similarly.

The point of this is that we now have a oscillatory integral, so by looking at the
phase

φ(ξ) = −Tξ
M

± x

2π
sinh

ξπ

M

with derivative

φ′(ξ) = − T

M
± x

2M
cosh

ξπ

M

we see that the integral can have a small or stationary phase if |x| is close to T , say
T
100 ≤ |x| ≤ 100T . Hence for x outside this range the integral is negligible, and we
need only concern ourselves with x inside this range.

The approach to get asymptotics for H−,1
m,n(x) (again following [10, Proposi-

tion 5.1]) is the same as that for H+,1
m,n(x), except slightly easier: we expand the

sinh in the phase as a Taylor series, giving us

H̃−,1
m,n(x) = 4T

∫ ∞

−∞
k̂∗(ξ)e

(
−Tξ
M

− x

2π
sinh

ξπ

M

)
dξ

= 4T

∫ ∞

−∞
k̂∗(ξ)e

(
−Tξ
M

+
xξ

2M
+
π2xξ3

12M3
+

π4xξ5

240M5

)
dξ +O

(T |x|
M7

)
.

for the plus part of the ± in the phase; the minus part is similar.



24 JAKOB STREIPEL

Expanding e(π
2xξ3

12M3 + π4xξ5

240M5 ) as a Taylor series of order L this gives us

H̃−,1
m,n(x) = 4T

∫ ∞

−∞
k̂∗(ξ)e

(
− (2T − x)ξ

2M

) ∑

0≤l≤L

∑

0≤l1≤l

dl,l1

(xξ3
M3

)l1(xξ5
M5

)l−l1
dξ +

+O
(T |x|L+1

M3L+3
+
T |x|
M7

)

where dl,l1 are constants from the Taylor expansion. In particular, d0,0 = 1. Iden-
tifying the integral in ξ as a Fourier transform we get

H̃−,1
m,n(x) = 4T

∑

0≤l≤L

∑

0≤l1≤l

d′l,l1
xl

M5l−2l1
k∗(5l−2l1)

(x− 2T

2M

)
+ O

(T |x|L+1

M3L+3
+
T |x|
M7

)

where d′l,l1 = dl,l1(2πi)
−5l+2l1 are relabeled constants. Again in particular d′0,0 = 1.

Hence, like with R+
3 , we take L to be sufficiently large that the second error

term dominates the error, and study the l = l1 = 0 term since the other terms can
be treated similarly.

This means that to study R−
2 it suffices to study

R̃−
2 := T

∑

m≥1

∑

n≥1

A(n,m)

(m2n)
1
2

g
(m2n

N

) ∑
√

Np
100Tm

≤c≤ 100
√

Np
Tm

S(−n, p; c)
c

k∗
( 4π

√
np

c
− 2T

2M

)
.

The error term from these asymptotics on H−
m,n(x) is of size O(

T |x|
M7 ), so to R−

2

as a whole this contributes
∑

m≥1

∑

n≥1

A(n,m)

mn
1
2

g
(m2n

N

) ∑
√

Np
100Tm

≤c≤ 100
√

Np
Tm

S(−n, p; c)
c

T |x|
M7

≪
∑

m≥1

∑

n≥1

|A(n,m)|
mn

1
2

g
(m2n

N

) ∑
√

Np
100Tm

≤c≤ 100
√

Np
Tm

c−
3
2+εTn

1
2 p

1
2

M7

≪ TM−7p
1
2

∑

m≥1

m−1
∑

n≥1

|A(n,m)|g
(m2n

N

)(√Np
Tm

)− 1
2+ε

≪ T
3
2−εM−7N− 1

4+εp
1
4+ε

∑

m≥1

m− 1
2−εm

N

m2
= T

3
2−εM−7N

3
4+εp

1
4+ε.

For this to be admissible we need a > 11
32 + ε, which is satisfied by the requirement

a > 3
8 + ε already established from R̃+

3 .

If at this point we sum R̃−
2 trivially over n using the Weil bound for the Kloost-

erman sum, we get

R̃−
2 ≪ T

1
2N

3
4+ε ≪ T

11
4 +ε.

Hence we must save T
7
4+εM−1, and in order to do so we must repeat what we did

previously: open the Kloosterman sum, apply the Voronoi formula for GL(3), and
analyze the size of the resulting integral transform.

The relevant n-sum in R̃−
2 is

∑

n≥1

A(n,m)S(−n, p; c)ψ(n) =
∑

dd̄≡1 (mod c)

e
(−pd̄

c

)∑

n≥1

A(n,m)e
(nd
c

)
ψ(n)
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where

ψ(y) = g
(m2y

N

)
k∗
( 4π

√
yp

c
− 2T

2M

)
y−

1
2 ,

and the Voronoi formula says the inner sum is

∑

n≥1

A(n,m)e
(nd
c

)
ψ(n)

= c
∑

±

∑

n1|cm

∑

n2≥1

A(n1, n2)

n1n2
S(md̄,±n2;mcn

−1
1 )Ψ±

(n2n
2
1

c3m

)

As before, we look at the size of the argument in the integral transforms times the
length of the original n-sum:

n2n
2
1

c3m

N

m2
≫ n2n

2
1

m3

NT 3m3

N
3
2

≫ T 3

N
1
2 p

3
2

≫ T ε ≫ 1

since now c ≤ 100N
1
2 p

1
2

Tm and p ≪ T 1−ε. Therefore by (2), to study Ψ±(x) for

x =
n2n

2
1

c3m , it suffices to consider

x
2
3

∫ ∞

0

e(φ(y))a(y) dy(19)

with the phase

φ(y) = 3x
1
3 y

1
3 ,

and amplitude

a(y) = ψ(y)y−
1
3 = g

(m2y

N

)
k∗
( 4π

√
yp

c
− 2T

2M

)
y−

5
6 .

The analysis this time is slightly easier than in the case for the J-Bessel function
terms because this time ψ(y) does not involve an exponential causing oscillations.

Since φ′(y) = x
1
3 y−

2
3 and a′(y) ≪ y−

11
6 , we get

φ′(y)(a′(y))−1 ≫ x
1
3 y

7
6 ≫ n

1
3
2 n

2
3
1 c

−1m−3N
7
12

since x =
n2n

2
1

c3m and y = n ∼ Nm−2 because of the factor of g(m
2y
N ) in ψ(y). Now if

n2 ≫ N
1
2 T ε

M3n2
1

,

this is makes

φ′(y)(a′(y))−1 ≫ T ε,

meaning that by integrating by parts many times, the contribution to R̃−
2 from

such n2 is negligible. We therefore turn to

n2 ≪ N
1
2 T ε

M3n2
1

.
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Recalling how k∗(u) = e−u2

V (m2n,Mu+T ) ≪ (1+ |u|)−A for any A > 0, we have
that a(y) is negligible unless the argument

u =

4π
√
yp

c
− 2T

2M

of k∗(u) is about zero, i.e.,

∣∣∣∣∣

4π
√
yp

c
− 2T

2M

∣∣∣∣∣ =
∣∣∣∣∣

2π
√
yp

c
− T

M

∣∣∣∣∣ ≤ T ε.

From this we deduce

1

4π2p
(Tc− T εMc)2 ≤ y ≤ 1

4π2p
(Tc+ T εMc)2.

Therefore the length of the integral (19) is about T 1+εMc2p−1, the integrand is

about y−
5
6 , and there is an x

2
3 in front of the integral, so

Ψ±(x) ≪ x
2
3 y−

5
6T 1+εMc2p−1 ≪ x

2
3 (Nm−2)−

5
6T 1+εMc2p−1.

Plugging this into R̃−
2 , along with the estimates on the Kloosterman sum coming

from the Voronoi formula, we then get

R̃−
2 ≪ T

∑

m≤
√
N

m−1
∑

√
Np

100Tm
≤c≤ 100

√
Np

Tm

∑

n1|cm

∑

n2≪
√

NTε

M3n2
1

|A(n1, n2)|
n1n2

mc1+ε ×

×
(n2n

2
1

c3m

) 2
3

(Nm−2)−
5
6 T 1+εMc2p−1

= T 2+εMN− 5
6 p−1

∑

m≤
√
N

m
∑

√
Np

100Tm
≤c≤ 100

√
Np

Tm

c1+ε
∑

n1|cm
n

1
3
1

∑

n2≪
√

NTε

M3n2
1

n
− 1

3
2 |A(n1, n2)|

≪ T 2+εMN− 5
6 p−1

∑

m≤
√
N

m
∑

√
Np

100Tm
≤c≤ 100

√
Np

Tm

c1+ε
∑

n1|cm
n

1
3
1

(√NT ε

M3n2
1

) 2
3

n1

≪ T 2+εM−1N− 1
2 p−1

∑

m≤
√
N

m1+ε
∑

√
Np

100Tm
≤c≤ 100

√
Np

Tm

c1+ε

≪ T εN
1
2+εM−1pε ≪MT

3
2−2a+εpε,

which is admissible if a > 1
4 , and so covered by a > 3

8 .

This finishes the calculation for R̃−
2 , and hence for R− as a whole, and therefore

of the entire moment. Hence this finishes the proof of Theorem 1.

7. Proof of Theorem 5

The calculations for Theorem 5, the twisted first moment of the derivative L′(12 , f×
uj) for

{
uj
}
an orthonormal basis of odd Hecke–Maass forms for SL(2,Z), are es-

sentially the same as the ones above. The main difference is that of the diagonal
main term, because this time the integral transform in the approximate functional
equation has an order 2 pole instead of a simple pole.
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For the derivative L′(12 , f × uj) we have the approximate functional equation

L′
(1
2
, f × uj

)
=
∑

m≥1

∑

n≥1

λj(n)A(n,m)

(m2n)
1
2

U−(m
2n, tj) +

+
∑

m≥1

∑

n≥1

λj(n)A(m,n)

(m2n)
1
2

U+(m
2n, tj)(20)

where

U∓(y, t) =
1

2πi

∫

(1000)

y−uF (u)
γ∓
(1
2
+ u, t

)

γ−
(1
2
, t
)

du

u2
.

As in the the proof Theorem 1 we will focus on the A(n,m) terms coming from the
first sum, the dual sum one being treated similarly. We consequently suppress the
subscripts ∓ from now on.

We have the Kuznetsov trace formula for odd Maass forms (see [2, Section 3]):

Lemma 12. Let h(t) be even, holomorphic and bounded h(t) ≪ (|t| + 1)−2−ε in
the strip |Im t| ≤ 1

2 + ε. Then
∑∗

j

h(tj)ωjλj(m)λj(n)

=
1

2
δ(m,n)H +

∑

c>0

1

2c

(
S(m,n; c)H+

(4π√mn
c

)
− S(−m,n; c)H−

(4π√mn
c

))
,

where ∗ restricts the sum to odd Maass forms,

ωj =
4π|ρj(1)|2
cosh(πtj)

,

ω(t) =
4π
∣∣∣φ
(
1,

1

2
+ it

)∣∣∣
2

cosh(πt)
.

H =
1

π

∫ ∞

−∞
h(t) tanh(πt)t dt,

H+(x) = 2i

∫ ∞

−∞
J2it(x)

h(t)t

cosh(πt)
dt,

and

H−(x) =
4

π

∫ ∞

−∞
K2it(x) sinh(πt)h(t)t dt.

Applying this and (20) to the twisted moment in Theorem 5 we get

∑∗

j

k(tj)ωjλj(p)L
′
(1
2
, f × uj

)
=

1

2

∑

m≥1

∑

n≥1

A(n,m)

(m2n)
1
2

(
δ(n, p)Hm,n +

+
∑

c>0

1

c

(
S(n, p; c)H+

m,n

(4π√np
c

)
− S(−n, p; c)H−

m,n

(4π√np
c

)))
+

+ dual sum
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where this time

Hm,n =
1

π

∫ ∞

−∞
k(t)U(m2n, t) tanh(πt)t dt,

H+
m,n(x) = 2i

∫ ∞

−∞
J2it(x)

k(t)U(m2n, t)t

cosh(πt)
dt,

and

H−
m,n(x) =

4

π

∫ ∞

−∞
K2it(x) sinh(πt)k(t)U(m2n, t)t dt.

As before we split the resulting sum into diagonal and off-diagonal terms,

D +O+ +O−,

where

D =
1

2

∑

m≥1

∑

n≥1

A(n,m)

(m2n)
1
2

δ(n, p)Hm,n,

O+ =
1

2

∑

m≥1

∑

n≥1

A(n,m)

(m2n)
1
2

∑

c>0

S(n, p; c)

c
H+

m,n

(4π√np
c

)
,

and

O− =
1

2

∑

m≥1

∑

n≥1

A(n,m)

(m2n)
1
2

∑

c>0

S(−n, p; c)
c

H−
m,n

(4π√np
c

)
.

Note that U(y, t) is bounded by log(t3y−1). Since this is a power savings com-
pared to the bound we used for V (m2n,− 1

2 + y) before, we see that exactly the
same calculations for the off-diagonal terms will work out for the derivative, and so
the off-diagonal terms here contribute precisely the same error terms as they did in
Theorem 1.

We hence turn our focus toward the diagonal term. By the same shuffling of
Fourier coefficients using the Hecke relation as in (4), we first have

D =
A(p, 1)

2p
1
2

∑

m≥1

A(1,m)

m
Hm,p −

1

2p
3
2

∑

m≥1

A(1,m)

m
Hmp,p.

Following the same approach as in Section 4, we bring the sum into Hm,p and get
(for the first sum, the second one is handled similarly),

∑

m≥1

A(1,m)

m
Hm,p =

1

π

∫ ∞

−∞
k(t)

(∑

m≥1

A(1,m)

m
U(m2p, t)

)
tanh(πt)t dt.

Note how the remaining exponential in the integral makes the length of the integral
about M , and t is about T .

Next, to estimate the inner sum we bring the sum all the way into the integral
defining U(m2p, t), i.e.,

∑

m≥1

A(1,m)

m
U(m2p, t) =

1

2πi

∫

(1000)

p−uL(1 + 2u, f̃)F (u)
γ
(1
2
+ u, t

)

γ
(1
2
, t
)

du

u2
.

Move the line of integration to Re(u) = − 1
7 + ε, past the order 2 pole at u = 0 and

we pick up the residue

2L′(1, f̃) + 3L(1, f̃) log|t| − 3L(1, f̃) log(2π)− L(1, f̃) log p+O(|t|−1pε).
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By Stirling’s formula and the convexity bound for L(s, f̃) we therefore get

∑

m≥1

A(1,m)

m
U(m2p, t)

= 3L(1, f̃) log|t|+ 2L′(1, f̃)− 3L(1, f̃) log(2π)− L(1, f̃) log p+

+O(|t|−1pε) +O(p
1
7−ε|t|− 6

7+ε)

for t about T .
Plugging this back into the integral for Hm,p, we therefore get

∑

m≥1

A(1,m)

m
Hm,p =

3L(1, f̃)

π

∫ ∞

−∞
k(t) tanh(πt)t log|t| dt+

+K

∫ ∞

−∞
k(t) tanh(πt)t dt +O(T

1
7+εMp

1
7−ε)

where K = 2L′(1, f̃)− 3L(1, f̃) log(2π)− L(1, f̃) log p.
The sum with Hmp,p in place of Hm,p works out precisely the same.
Hence

D =
3L(1, f̃)

(
A(p, 1)p− 1

)

2p
3
2π

∫ ∞

−∞
k(t) tanh(πt)t log|t| dt+

+
K
(
A(p, 1)p− 1

)

2p
3
2π

∫ ∞

−∞
k(t) tanh(πt)t dt+O(T

1
7+εMpε)

with K = 2L′(1, f̃)− 3L(1, f̃) log(2π)− L(1, f̃) log p.

The dual sum consequently works out identically, only with switching f̃ for f
and switching the Fourier coefficients, so

D̃ =
3L(1, f)

(
A(1, p)p− 1

)

2p
3
2π

∫ ∞

−∞
k(t) tanh(πt)t log|t| dt+

+
K̃
(
A(p, 1)p− 1

)

2p
3
2π

∫ ∞

−∞
k(t) tanh(πt)t dt+O(T

1
7+εMpε)

where K̃ = 2L′(1, f)− 3L(1, f) log(2π)− L(1, f) log p.
Together with the previously computed bounds for the off-diagonal terms which

as discussed still apply, this proves Theorem 5.

Acknowledgements

The author would like to thank Sheng-Chi Liu for his tireless support and helpful
insight, comments and encouragement, and the anonymous referee for their detailed
and valuable feedback.

References

[1] G. Chen and X. Yan. Non-vanishing of the first derivative of GL(3) × GL(2) L-functions.
Int. J. Number Theory, 14(3):847–869, 2018.

[2] J. B. Conrey and H. Iwaniec. The cubic moment of central values of automorphic L-functions.
Ann. Math., 151(3):1175–1216, 2000.

[3] D. Goldfeld. Automorphic Forms and L-Functions for the Group GL(n,R). Cambridge Stud-
ies in Advanced Mathematics. Cambridge University Press, Cambridge, UK, 2006.
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