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SCHREIER’S TYPE FORMULAE AND TWO SCALES FOR GROWTH OF LIE

ALGEBRAS AND GROUPS

VICTOR PETROGRADSKY

Dedicated to 70th anniversary of Vesselin Drensky

Abstract. Let G be a free group of rank n and H ⊂ G its subgroup of finite index. Then H is also a free
group and the rank m of H is determined by Schreier’s formula m− 1 = (n− 1) · |G : H|.

Any subalgebra of a free Lie algebra is also free. But a straightforward analogue of Schreier’s formula

for free Lie algebras does not exist, because any subalgebra of finite codimension has an infinite number of
generators.

But the appropriate Schreier’s formula for free Lie algebras exists in terms of formal power series. There
exists also a version in terms of exponential generating functions. This is a survey on how these formulas
are applied to study 1) growth of finitely generated Lie algebras and groups and 2) the codimension growth
of varieties of Lie algebras. First, these formulae allow to specify explicit formulas for generating functions
of respective types for free solvable (or more generally, polynilpotent) Lie algebras. Second, these explicit
formulas for generating functions are used to derive asymptotic for these two types of the growth. These
results can be viewed as analogues of the Witt formula for free Lie algebras and groups. In case of Lie
algebras, we obtain two scales for respective types of growth. We also shortly mention the situation on
growth for other types of linear algebras.

1. Analogue of Schreier’s formula for free Lie algebras

Denote the ground field by K. Let X be an at most countable set supplied with a weight function

wt : X → N, namely we assume that

X =
∞
∪
i=1

Xi; Xi = {x ∈ X |wtx = i}, |Xi| <∞, i ∈ N.

We say that X is finitely graded. Assume that an algebra A is generated by X , then we naturally define the
weight of a monomial a ∈ A. Let Y be a set of monomials in X , then one defines the Hilbert-Poincaré series

of Y (with respect to X), see e.g. [4]

HX(Y ) = HX(Y, t) :=

∞∑

i=1

|Yi|ti; Yi = {y ∈ Y |wt y = i}, i ∈ N.

Consider a subspace V ⊂ A, then we define HX(V ) using a homogeneous basis of grV ; where grV being
the associated graded space.

Next, we introduce the operator E on power series φ(t) =
∑∞

n=1 bnt
n, bn ∈ {0, 1, 2, . . .} (see [25, 27]):

E : φ(t) =

∞∑

n=1

bnt
n −→ E(φ(t)) :=

∞∑

n=0

ant
n =

∞∏

n=1

1

(1− tn)bn
.

Assume that L is a Lie algebra generated by X and U(L) its universal enveloping algebra. Let

HX(L, t) =

∞∑

n=1

bnt
n, HX(U(L), t) =

∞∑

n=0

ant
n.

One has a well-known formula that explains importance of the operator above HX(U(L)) = E(HX(L)) [36].
The following is the natural analogue of Schreier’s formula, introduced by the author. For basic facts on free
Lie (super)algebras see [1, 2].
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Theorem 1 ([27]). Assume that L is a free Lie algebra generated by a finitely graded set X. Let H be a

subalgebra and Y is a set of its free generators. Then

H(Y, t)− 1 = (H(X, t)− 1) · E(H(L/H), t).

Let L be a Lie algebra. One defines the lower central series as L1 = L, Li+1 = [L,Li] for i = 1, 2, . . . .
Now, L is nilpotent of class s iff Ls+1 = {0} while Ls 6= {0}. All Lie algebras nilpotent of class at most s form
the variety denoted by Ns. A Lie algebra L is called polynilpotent with a tuple of integers (sq, . . . , s2, s1) iff
there exists a chain of ideals

{0} = Lq+1 ⊂ Lq ⊂ · · · ⊂ L2 ⊂ L1 = L, Ln/Ln+1 ∈ Nsn , n = 1, . . . , q.

All polynilpotent Lie algebras with a fixed tuple form a variety denoted by Nsq . . .Ns2Ns1 . In the particular
case sq = · · · = s1 = 1, one obtains the variety Aq, consisting of solvable Lie algebras of length at most q.
On the other hand, a polynilpotent Lie algebra is solvable. Moreover, the free polynilpotent Lie algebras,
a tuple being fixed, provide interesting examples of solvable Lie algebras. The definitions in case of group
theory are similar. Let G be a group, denote by {γn(G)|n = 1, 2, . . .}, terms of the lower central series

(warning: below γ has also a different meaning!).
Suppose that L is the free Lie algebra of rank k, L = ⊕∞

n=1Ln its natural grading, and G the free group
of rank k. Then the lower central series factors γn(G)/γn+1(G) are free abelian groups and their ranks are
given by the classical Witt formula [1]:

ψk(n) := rankZ γn(G)/γn+1(G) = dimK Ln =
1

n

∑

a|n

kaµ
(n
a

)
≈ kn

n
, n ∈ N, (1)

where µ(∗) is the Möbius function. Theorem 1 allows to derive the following explicit formulas.

Theorem 2 ([27, 29]). Consider the free polynilpotent Lie algebra L = F (Nsq · · ·Ns1 , k) of finite rank k ≥ 2,
where q ≥ 1. Set β0(z) := 0, α0(z) := kz, and define the following functions recursively

βi(z) := βi−1(z) +

si∑

m=1

1

m

∑

a|m

µ
(m
a

)(
αi−1(z

m/a)
)a
,

αi(z) := 1 + (kz − 1) · E(βi(z)),
1 ≤ i ≤ q.

Then H(L, z) = βq(z).

For example, we have a particular case.

Corollary 3 ([27, 29]). Let L := F (ANd, k). Then

H(L, z) = ψk(1)z + · · ·+ ψk(d)z
d + 1 +

kz − 1

(1− z)ψk(1) · · · (1 − zd)ψk(d)
.

2. Scale 1 and Growth of free solvable (polynilpotent) finitely generated Lie algebras
and groups

Now we describe applications of the analogue of Schreier’s formula for free Lie algebras (Theorem 1 and
its application Theorem 2) to specify the growth of free solvable (more generally, polynilpotent) Lie algebras
and groups of finite rank.

Assume that L is a relatively free algebra of some multihomogeneous variety of (associative, or Lie)
algebras, generated by X = {x1, . . . , xk}. Then we have a natural grading L = ⊕∞

n=1 Ln by degree in X .
One defines the growth function with respect to X as γL(X,n) :=

∑n
s=1 dimK Ls.

Theorem 4 (Berele, [3]). The growth function of a finitely generated associative PI-algebra is bounded by a

polynomial function.

For more details on proofs of this important result see [4, 16]. But the growth of finitely generated Lie
PI-algebras is more complicated. In this case, the author introduced scale (2) of functions of intermediate
growth and suggested that it is complete in the sense of Conjecture 1 below. Define functions

ln(0) x := x, ln(s+1) x := ln(ln(s) x),

exp(0) x := x, exp(s+1) x := exp(exp(s) x),
s = 0, 1, 2, . . .
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Recall standard notations f(x) ≈ g(x), x→ ∞, denotes that lim x→∞ f(x)/g(x) = 1; f(x) = o(g(x)) means
that beginning with some number f(x) = α(x)g(x) and lim x→∞ α(x) = 0. Also, ζ(x) is the zeta function.

Consider the scale 1 consisting of a a series of functions Φqα(n), q = 1, 2, 3, . . . of a natural argument
with a parameter α ∈ R+:

scale 1:

Φ1
α(n) := α,

Φ2
α(n) := nα,

Φ3
α(n) := exp(nα/(α+1)),

Φqα(n) := exp

(
n

(ln(q−3) n)1/α

)
, q = 4, 5, . . . .

(2)

Now, we specify the growth of free solvable (more generally, polynilpotent) Lie algebras of finite rank with
the respect to scale (2) by giving the following asymptotic.

Theorem 5 ([25]). Consider the free polynilpotent Lie algebra L := F (Nsq · · ·Ns1 , k) of finite rank k ≥ 2,
where q ≥ 2, generated by X = {x1, . . . , xk}. Then

γL(X,n) =





A+ o(1)

N !
nN , q = 2,

exp
(
(C+o(1))nN/(N+1)

)
, q = 3,

exp

(
(B1/N+o(1))

n

(ln(q−3) n)1/N

)
, q ≥ 4,

n→ ∞;

where the constants are:

N := s2 dimK F (Ns1 , k), A :=
1

s2

(
k − 1∏s1
q=2 q

ψk(q)

)s2
,

B := s3Aζ(N+1), C := (1 + 1/N)(BN)
1

1+N .

This result has the following application to group theory. Let G be a group. Due to Lazard, one constructs
the related Lie algebra [19]:

LK(G) :=
∞
⊕
n=1

(γn(G)/γn+1(G)) ⊗Z K.

If G is a free polynilpotent group, then LK(G) is the free polynilpotent Lie algebra of the same rank and
with the same tuple, moreover, the lower central series factors are free abelian groups (A. Shmelkin [35]).

Corollary 6 ([25, 29]). Let G = G(Nsq . . .Ns1 , k), q ≥ 2, be the free polynilpotent group of rank k. Consider
ranks of the lower central series factors, namely, denote bn := rankZ γn(G)/γn+1(G), n ≥ 1. Then we get

the asymptotic:

bn =






A+ o(1)

(N − 1)!
nN−1, q = 2,

exp
(
(C+o(1))nN/(N+1)

)
, q = 3,

exp

(
(B1/N+o(1))

n

(ln(q−3) n)1/N

)
, q ≥ 4,

n→ ∞;

where N,A,B,C are the same as in Theorem 5.

Observe that just by setting sq = · · · = s1 = 1, Theorem 5 and its Corollary 6 are turned into results on
the free solvable Lie algebra and group of rank k and length q. A similar observation is valid concerning the
results (e.g. Theorem 20) on the codimension growth below.

M.I.Kargapolov raised problem 2.18 in [17] to specify the lower central series ranks for free polynilpotent
finitely generated groups. Exact recursive formulae were given by Egorychev [6]. We suggest another answer
to this problem by specifying the asymptotic behaviour of that ranks. We consider to view the asymptotic
of Theorem 5 and its Corollary 6 as an analogue of the Witt formula (1), now for the free solvable (more
generally, polynilpotent) Lie algebras and groups.
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Since the growth of finitely generated solvable Lie algebras is intermediate [20], the respective generating
function converges in the unit circle. It is important to study an asymptotic of the generating function when
we approach the unit circumference from inside. Since the coefficients of the series are real nonnegative
numbers, it is sufficient to study this behaviour while z = t → 1 − 0. The crucial step to prove Theorem 5
is the following asymptotic of the generating function HX(L, t).

Theorem 7 ([25]). Let L := F (Nsq · · ·Ns1 , k) be the free polynilpotent Lie algebra of finite rank k ≥ 2,
where q ≥ 2, generated by X = {x1, . . . , xk}. Then

lim
t→1−0

(1− t)NHX(L, t) = A, q = 2,

lim
t→1−0

(1− t)N ln(q−2)(HX(L, t)) = s3 ζ(N+1)A, q ≥ 3;

where N,A are the same as in Theorem 5.

Now, we describe an important idea to prove Theorem 7. The explicit formula of the generating function
(Theorem 2) shows that HX(L, t) is ”roughly speaking” a (q − 1)-iteration of E applied to β1(z). We can
easily describe the first application:

β1(z) = ψk(1)z + ψk(2)z
2 + · · ·+ ψk(s1)z

s1 ;

E(β1(z)) =
1

(1− z)ψk(1) · · · (1− zs1)ψk(s1)
≈ µ

(1− t)M
, as t→ 1−0;

where M = ψk(1) + · · ·+ ψk(s1) = dimK F (Ns1 , k), µ =

s1∏

q=2

q−ψk(q).

Next, we use the fact that E is ”approximately” the exponent, thus HX(L, t) behaves like

exp(q−2)

(
µ̄+ o(1)

(1− t)N

)
, t→ 1−0 .

Another idea in the proof of Theorem 5 is to specify a connection between the growth of a function analytic
in the unit circle with asymptotic of its coefficients [25].

A similar version of Schreier’s formula for free Lie superalgebras was established as well [27, 29]. Also,
the asymptotic of Theorem 5 was extended to the case of free solvable (polynilpotent) Lie superalgebras of
finite rank [13].

Below we see that the scale (4) for the superexponential codimension growth for varieties of Lie algebras
is rather complete (Theorem 12). So, we conjecture that the scale (2) for the intermediate growth of finitely
generated Lie PI-algebras is complete as well.

Conjecture 1 ([22]). Let L be a finitely generated Lie PI-algebra. Then there exist numbers q,N0 such that

γL(n) ≤ exp

(
n

ln(q) n

)
, n ≥ N0.

This bound was confirmed for almost solvable (more generally, almost polynilpotent) Lie algebras [14, 15].

3. Exponential analogue of Schreier’s formula for free Lie algebras

Let us consider complexity functions, refereed to also as exponential generating functions in combinatorics.
Assume that we are given a set A of monomials in X = {xi | i ∈ N}. Consider a set of distinct elements

X̃ = {xi1 , . . . , xin} ⊂ X , denote by Pn(A, X̃) the set of all multilinear elements of degree n on X̃ belonging

to A. Suppose that the number of these elements cn(A, X̃) does not depend on the choice of X̃, but depends

only on n. In this case, we denote cn(A) := cn(A, X̃) and say that A is X-uniform and define the complexity

function with respect to X :

CX(A, z) :=

∞∑

n=1

cn(A)

n!
zn, z ∈ C. (3)

(the sum is taken from n = 0, c0 = 1 for associative algebras and groupoids with unity). Remark that
A need not consist of multilinear elements. We also omit the variable z and (or) the set X and write
CX(A, z) = C(A). These definitions are naturally extended to algebras, subspaces, and their dimensions
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with respect to their generating sets. We illustrate this notion by examples. Let X be a countable set and
A = A(X), L = L(X) the free associative and Lie algebras, respectively. Then

CX(A, z) =

∞∑

n=0

zn =
1

1− z
,

CX(L, z) =

∞∑

n=1

zn

n
= − ln(1− z),

CX(Ns, z) =

s∑

n=1

zn

n
.

The author established an exponential analogue of Schreier’s formula for free Lie algebras as follows.

Theorem 8 ([26]). Assume that L is the free Lie algebra generated by a countable generating set X. Assume

that H is an X-uniform subalgebra. Then H has an X-uniform set of free generators Y and

CX(Y, z)− 1 = (z − 1) · exp(CX(L/H, z)).

4. Scale 2 for the codimension growth of Lie PI-algebras

For the theory of varieties of associative and Lie algebras see [1, 4, 10]. Let V be a variety of Lie
algebras, and F (V, X) its free algebra generated by X = {xi|i ∈ N}. Let Pn(V) ⊂ F (V, X) be the
subspace of all multilinear elements in {x1, . . . , xn} and consider the codimension growth sequence cn(V) =
cn(F (V, X), X) := dimK Pn(V), n = 1, 2, . . . .

In case of associative algebras the fundamental fact is as follows:

Theorem 9 (Regev, [34]; Latyshev [18]). Let an associative algebra A satisfies a nontrivial identical relation

of degree d. Then cn(A) ≤ Cn, n ≥ 1; where C := (d− 1)2.

Another crucial fact on the codimension growth of associative algebras in characteristic zero is that the
exponent, defined as Exp(A) := lim

n→∞

n
√
cn(A) always exists and is integral [8].

Now we start discussing the codimension growth for Lie algebras. The integrality of the exponent of
the codimension growth for finite dimensional Lie algebras over a field of characteristic zero was proved
by Zaitsev [38]. In general, the exponents for Lie algebras are not always integral [39, 9]. Moreover, the
codimension growth in case of Lie algebras is more versatile. Unlike the associative case, the codimension
growth of a rather small variety AN2 is overexponential (Volichenko [37]). On the other hand, the following
upper bound was found.

Theorem 10 (Grishkov [12]). Let L be a Lie algebra satisfying a nontrivial identity. Then for any r > 1
there exists N0 such that

cn(L) ≤
n!

rn
, n ≥ N0.

Razmyslov introduced the complexity functions (3) and reformulated the upper bound as follows.

Theorem 11 (Razmyslov [33]). Let V be a nontrivial variety of Lie algebras. Then the complexity function

C(V, z) is an entire function of complex variable.

The author established a better and optimal general bound for the series that allowed to prove an upper
bound for the codimension growth sequence as well. The estimate of the first item was recently obtained
in [31].

Theorem 12 ([21, 23, 24, 31]). Let L be a Lie algebra satisfying a nontrivial identity of degree m ≥ 4. Then

(1) The following coefficientwise bound for the series holds:

C(L, z) ≺ z exp(z exp(. . . (z exp(z exp︸ ︷︷ ︸
m−2 times exp

(z))) . . .)).

(2) there exists an infinitesimal such that

cn(L) ≤
n!

(ln(m−3) n)n
(1 + o(1))n, n→ ∞.
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Thus, we have a vast area of overexponential growths for Lie algebras, lying between the exponent and
the factorial functions. To describe such a growth we introduce the scale 2 consisting of a series of functions
Ψqα(n), q = 2, 3, . . . , with a real parameter α [21]:

scale 2: Ψqα(n) :=





(
n!
)α−1

α , α > 1, q = 2;
n!

(ln(q−2) n)n/α
, α > 0, q = 3, 4 . . .

(4)

The upper bounds of Theorem 12 are ”adequate” and the scale (4) for the codimension growth of Lie
PI-algebras is complete, because the free solvable Lie algebras do have such an asymptotic behaviour, see
Theorem 20 below. Actually we obtain a more fine scale formed by a series of functions with two real
parameters α, β:

scale 2′: Ψqα,β(n) :=





(
n!
)α−1

α βn/α, α ≥ 1, β > 0; q = 2;

n! · (β/α)n/α

(ln(q−2) n)n/α
, α > 0, β > 0; q = 3, 4 . . .

(5)

Observe that in terms of scale (5) the exponential growth is a subcase of level q = 2 when α = 1.

4.1. The codimension growth for another classes of linear algebras. The codimension growth of ar-
bitrary linear algebras can be weird [7]. The varieties of absolutely free (commutative, or anticommutative)
algebras have Schreier’s type formulae in terms of generating function of both types, the regular generating
functions and exponential generating functions (i.e. complexity functions), i.e. we have natural analogues
of both, Theorem 1 and Theorem 8), see [30]. We describe both, the generating functions and the growth
functions, for two kinds of growth, for different versions of nilpotency and solvability for three types of linear
algebras above [30]. But we do not get an analogue of Theorem 13 and these results do not lead us to
something like scale 1 and scale 2 for the respective types of growth [30].

It was recently shown that the same scale (4) stratifies the ordinary codimension growth of Poisson

PI-algebras, but here it is essential to assume that a Poisson algebra satisfies a nontrivial Lie identical
relation [31]. If a Poisson algebra is satisfying so called mixed identities only, then the ordinary codimension
growth has a factorial behaviour [32, 31].

The codimension growth for Jordan PI-algebras can be overexponential [5, 11]. We conjecture that
something like scale 2 (see (4)) should appear in case of Jordan PI-algebras as well.

5. Explicit formulae for complexity functions and asymptotic for Lie PI-algebras

Let M,V be varieties of Lie algebras. Their product M ·V is the class of all Lie algebras L such that there
exists an ideal H ⊂ L satisfying H ∈ M and L/H ∈ V, see [1]. Using the exponential Schreier’s formula
(Theorem 8) the following explicit formula was proved.

Theorem 13 ([26]). Let M ·V be the product of varieties of Lie algebras, where M is multihomogeneous.

Then

C(M ·V, z) = C(V, z) + C(M, 1 + (z − 1) exp(C(V, z))).
Roughly speaking, the formula says that C(M ·V, z) is ”almost” a composition of three functions C(M) ◦

exp ◦ C(V). The varietyV = Nsq · · ·Ns1 can be viewed as the productV = Nsq · · ·Ns2 ·Ns1 . As application,
the following explicit formula was derived.

Theorem 14 ([26, 29]). Consider the variety of polynilpotent Lie algebras V := Nsq · · ·Ns1 , q ≥ 1. Define

functions

β1(z) :=

s1∑

m=1

zm

m
,

βi(z) := βi−1(z) +

si∑

m=1

(1 + (z − 1) exp(βi−1(z)))
m

m
, 2 ≤ i ≤ q.

Then C(V, z) = βq(z).

Consider particular cases.
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Corollary 15. Fix d ∈ N. Then

C(ANd, z) = z +
z2

2
+ · · ·+ zd

d
+ 1 + (z − 1) exp

(
z +

z2

2
+ · · ·+ zd

d

)
.

Corollary 16 ([23]). Fix q ∈ N. Consider the variety of solvable Lie algebras of length q, denoted as Aq.

Set β1(z) = z, and βi+1(z) = βi(z) + 1 + (z − 1) exp(βi(z)) for i = 1, 2, . . . , q − 1. Then

C(Aq, z) = βq(z).

Corollary 17 ([23]). Fix c ∈ N. Then

C(NcA, z) = z +

c∑

m=1

1

m

(
1 + (z − 1) exp(z)

)m
.

Complexity functions are useful for computation of the codimension growth. For example, the last result
yields an asymptotic.

Corollary 18 ([23]). cn(NcA) ≈ cn−c−1nc, as n→ ∞.

Let f(z) be an entire function of complex variable, denote Mf (r) := max|z|=r |f(z)|. Observe that in case

of complexity functions, we have Mf (r) = f(r), r ∈ R+, since all coefficients are nonnegative.
By Theorem (14), C(Nsq · · ·Ns1 , z) is ”almost” q−1 iterations of exp(∗) applied to β1(z) =

∑s1
m=1 z

m/m,

thus one has something like exp(q−1)(zs1/s1). More, precisely, we derive the following asymptotic.

Theorem 19 ([23]). Consider the variety of polynilpotent Lie algebras V := Nsq · · ·Ns1 , q ≥ 2, and its

complexity function f(z) := C(V, z). Then

lim
r→∞

ln(q−1) Mf (r)

rs1
=
s2
s1
.

Next, we establish a relation between the growth of fast growing entire functions and an asymptotic of
their coefficients. This fact helped us to match the upper bounds in the next result. But a connection
between the lower bounds require more direct estimates.

Theorem 20 ([23]). Consider the variety of polynilpotent Lie algebras V := Nsq · · ·Ns1 , q ≥ 2. Then there

exists an infinitesimal such that

cn(V) =





(n!)
s1−1
s1
(
s2 + o(1)

)n/s1
, q = 2;

n!

(ln(q−2) n)n/s1

(s2 + o(1)

s1

)n/s1
, q = 3, 4, . . . ;

n→ ∞.

In the following two cases we obtain somewhat more precise asymptotic, but they look rather complicated.

Theorem 21 ([26]). Fix d ∈ N. Then

cn(ANd) ≈ µ
(
n!
)1−1/d

exp

( d−1∑

k=1

λkn
1−k/d

)
n

3−d
2d
, n→ ∞, where

λk :=

(
k
d + 1

)
· · ·
(
k
d + k − 1

)

k!(d− k)
, k = 1, . . . , d− 1;

µ := exp

(
− 1

d

d∑

k=2

1

k

)
(2π)

1−d
2d
d−1/2.

It is well known that cn(A
2) = n− 1 ≈ n, this coincides with our asymptotic. The particular cases are.

cn(AN2) ≈
√
n!

exp (
√
n) 4

√
n

4
√
8πe

,

cn(AN3) ≈
(
n!
)2/3 exp

(
1
2n

2/3 + 5
6n

1/3
)

√
3 3
√
2πe5/18

,

n→ ∞.
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Theorem 22 ([26]). Consider the variety A3 of solvable Lie algebras of length 3 and its codimension growth

sequence cn := cn(A
3). Then

cn =
n!

(lnn)n
exp

(
n

lnn

(
2 ln lnn+ 1 +

2(ln lnn)2 − 2 ln lnn− 1

lnn
+ o

(
1

lnn

)))
, n→ ∞.
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