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On singularities of Ericksen-Leslie system in dimension three

Tao Huang∗ Peiyong Wang∗

Abstract

In this paper, we consider the initial and boundary value problem of Ericksen-Leslie system
modeling nematic liquid crystal flows in dimension three. Two examples of singularity at finite
time are constructed. The first example is constructed in a special axisymmetric class with
suitable axisymmetric initial and boundary data, while the second example is constructed for
an initial data with small energy but nontrivial topology. A counter example of maximum
principle to the system is constructed by utilizing the Poiseuille flow in dimension one.

1 Introduction

Nematic liquid crystals are composed of rod-like molecules characterized by the average alignment
of the long axes of neighboring molecules, which have simplest structure among various types of
liquid crystals. The dynamic theory of nematic liquid crystals has been first proposed by Ericksen
[5] and Leslie [12] in the 1960’s, which is a macroscopic continuum description of the time evolution
of both the flow velocity field and the orientation order parameter of rod-like liquid crystals. More
precisely, we would consider the following Ericksen-Leslie system in Ω× (0,∞), where Ω ⊂ R

3 is a
bounded domain with smooth boundary











ut + u · ∇u+∇P = −∇ ·
(

∇d⊙∇d
)

+∇ · (σL(u, d)),

∇ · u = 0,

λ1(dt + u · ∇d− Λd) + λ2Ad = ∆d+ |∇d|2d+ λ2(d
TAd)d,

(1.1)

where u(x, t) : Ω× (0,∞) → R
3 is the fluid velocity field, d(x, t) : Ω× (0,∞) → S

2 is the orientation
order parameter of nematic material at (x, t), and P (x, t) : Ω× (0,∞) → R is the pressure. Denote
u = (u1, u2, u3) ∈ R

3 and d = (d1, d2, d3) ∈ S
2. Then

(

∇d⊙∇d
)

ij
= ∇id · ∇jd,

and

Aij =
1

2

(

∂uj
∂xi

+
∂ui
∂xj

)

, Λij =
1

2

(

∂ui
∂xj

− ∂uj
∂xi

)

, Ni = ∂tdi + u · ∇di − Λijdj.

denote the rate of the strain tensor, the skew-symmetric part of the strain rate, and the rigid
rotation part of the direction changing rate by fluid vorticity, respectively. The left side of the
third equation in (1.1) is the kinematic transport, which represents the effect of the macroscopic
flow field on the microscopic structure. The material coefficients λ1 and λ2 reflect the molecular
shape and the slippery part between the fluid and the particles. The term with λ1 represents the
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rigid rotation of molecules, while the term with λ2 stands for the stretching of molecules by the
flow. The viscous (Leslie) stress tensor σL has the following form (cf. [13])

σL
ij(u, d) = µ1dkdpAkpdidj + µ2Nidj + µ3diNj + µ4Aij + µ5Aikdkdj + µ6Ajkdkdi.

The viscous coefficients µi, i = 1, · · · , 6, are called the Leslie’s coefficients and the following relations
are often assumed in the literature

µ2 + µ3 = µ6 − µ5 (1.2)

λ1 = µ3 − µ2 > 0, λ2 = µ6 − µ5 (1.3)

µ4 > 0, 2µ1 + 3µ4 + 2µ5 + 2µ6 > 0, 2µ4 + µ5 + µ6 >
λ2
2

λ1
. (1.4)

The first relation is called the Parodi’s relation, which has been derived from the Onsager reciprocal
relations expressing the equality of certain relations between flows and forces in thermodynamic
systems out of equilibrium (cf. [20]). The second set of relations are the compatibility condi-
tions. The third empirical relations are necessary to obtain the energy inequality (cf. [13], [23]).
Throughout the paper, we assume that (1.2), (1.3) and (1.4) are valid for system (1.1).

We consider the initial data

u(x, 0) = u0, d(x, 0) = d0 (1.5)

with divu0 = 0 and |d0| = 1, and the boundary data

u(x, t)|∂Ω×[0,∞) = 0, d(x, t)|∂Ω×[0,∞) = e (1.6)

with compatible conditions
u0|∂Ω = 0, d0|∂Ω = e. (1.7)

Here e = (0, 0, 1) is a constant vector.
In dimension two, the existence of global weak solutions to the Cauchy problem of (1.1) has

been established in [9]. The weak solution has been proved to be regular except for finitely many
times (see also [8] for related results). The uniqueness of such a weak solution has been proved in
[14, 22]. We would like to point out that the assumptions of Leslie coefficients in [9] is stronger
than ours, (1.4). However, their results are still valid with weaker assumption (1.4) since we can
prove the similar energy inequality (see Lemma 2.3 below for more details). In dimension three, the
global well-posedness combining with long time behaviors for the system (1.1) around equilibrium
under various assumptions on the Leslie coefficients has been studied in [23, 24, 7].

There is a simplified system that has been first proposed in [15] by neglecting the Leslie stress.
There have been many results on the existence and partial regularity of this simplified system in
[16, 18, 17, 10, 11] and the references therein.

The paper is organized as follows. In Section 2, we will state our main results. In Section
3, a special form of axisymmetric solution will be derived. In Section 4, global existence and
singularities at finite time will be discussed. In Section 5, another example of finite time singularity
will be constructed with an initial data with small energy but with large topology. In Section 6,
we will construct a counter example to show that the maximum principle is not necessarily valid
for Ericksen-Leslie system via the Poiseuille flow in dimension one.
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2 Main results

Let Bn
1 ⊂ R

n denote the unit ball centered at 0. Inspired by the results in [10], we first consider
the domain Ω = B2

1 × [0, 1] and an axisymmetric solution (u, P, d) to the Ericksen-Leslie system
(1.1) in the following special form











u(r, θ, z, t) := v(r, t)er + w(z, t)e3,

d(r, θ, z, t) := sinϕ(r, t)er + cosϕ(r, t)e3,

P (r, θ, z, t) := Q(r, t) +R(z, t).

(2.1)

For any x = (x, y, z) ∈ Ω, we take the initial data as follows

u0(x) = (x, y,−2z), (2.2)

and

d0(x) =
( x
√

x2 + y2
sinϕ0

(

√

x2 + y2
)

,
y

√

x2 + y2
sinϕ0

(

√

x2 + y2
)

, cosϕ0

(

√

x2 + y2
)

)

, (2.3)

with ϕ0 ∈ C∞([0, 1]) and ϕ0(0) = 0. To derive the special axisymmetric form of system (1.1), we
also need to consider the following boundary conditions











u(x, t) = u0(x) x ∈ ∂Ω, t > 0,

d(x, t) = d0(x) x ∈ ∂B2
1 × [0, 1], t > 0,

∂d
∂z (x, t) = 0 x ∈ B2

1 × {0, 1}, t > 0.

(2.4)

Hence the Ericksen-Leslie system (1.1) becomes (see Section 3.1 for details)

v(r, t) = r, w(z, t) = −2z,

λ1(ϕt + rϕr) = ϕrr +
1

r
ϕr −

sin(2ϕ)

2r2
− 3λ2 sinϕ cosϕ (2.5)

Our first result concerns the global existence of the equation (2.5), which implies the global
existence of the Ericksen-Leslie system (1.1).

Theorem 2.1 Suppose φ0 ∈ C∞([0, 1]) satisfies ϕ0(0) = 0 and

0 ≤ ϕ0(r) < π,

for all r ∈ [0, 1]. Then there is no finite time blowup for the smooth solution to (2.5).

We can also construction an example of singularity to the system (1.1) in this axisymmetric
class.

Theorem 2.2 There exists φ0 ∈ C∞([0, 1]), with φ0(0) = 0 and ϕ0(1) > π, such that the short
time smooth solution ϕ to (2.5), with initial and boundary conditions (2.2)-(2.4), must blow up at
T0 for some 0 < T0 = T0(φ0) < +∞. More precisely, ϕr(0, t) → ∞ as t → T−

0 .
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The main idea to prove the Theorems 2.1 and 2.2 is to construct suitable supersolution and
subsolution, which has been first utilized in the breakthrough work [1] when the authors studied
the singularity of harmonic heat flows. Similar results have been proved for simplified Ericksen-
Leslie system in [10]. However, there are still two difficulties for the full Ericksen-Leslie system
(1.1). The first one is that the comparison principle and maximum principle may not be valid for
the system (1.1) because of the terms related to the skew-symmetric part Λ of the strain rate and
the symmetric part A. Fortunately, it holds Λ = 0, and A is a diagonal matrix for our special
axisymmetric solution (2.1) (cf. Section 3.1). Therefore, we still have comparison and maximum
principles for equation (2.5) (cf. Section 3.2). The second difficulty comes from the nonlinear
term −3λ2 sinϕ cosϕ in (2.5). It is not hard to see that this term will not produce any singularity.
However, since we don’t know the sign of λ2, it brings more technique difficulties to the construction
of a supersolution and a subsolution.

We also want to point out that the special class of axisymmetric solutions may not satisfy the
following energy inequality, which has been proved in [23] and [3].

Lemma 2.3 Suppose that (u, d) is a regular solution to the system (1.1) with the initial and bound-
ary conditions (1.5) and (1.6) under the assumptions (1.2), (1.3) and (1.4). For any t ∈ (0,∞),
the following energy equality holds

d

dt

1

2

∫

Ω

(

|u|2 + |∇d|2
)

≤ −
∫

Ω

(

α0|∇u|2 + 1

λ1

∣

∣∆d+ |∇d|2d
∣

∣

2
)

, (2.6)

for some constant α0 > 0.

Therefore, we would like to construct another example of finite time singularity of (1.1) for a generic
initial data, in which the solution satisfies the energy dissipation inequality. For simplicity, we take
Ω = B3

1 , the unit ball in dimension three, and denote

C∞
0,div(B

3
1 ,R

3) :=
{

v ∈ C∞(B3
1 ,R

3)
∣

∣ ∇ · v = 0
}

,

C∞
e
(B3

1 ,S
2) :=

{

d ∈ C∞(B3
1 ,S

2)
∣

∣ d = e on ∂B3
1

}

.

For continuous maps f, g ∈ C
(

B3
1 ,S

2
)

, with f = g on ∂B3
1 , we say that f is homotopic to g relative

to ∂B3
1 if there exists a continuous map Φ ∈ C

(

B3
1 × [0, 1],S2

)

such that Φ(·, t) = f(·) = g(·) on
∂B3

1 , for all 0 ≤ t ≤ 1, and Φ(·, 0) = f(·) and Φ(·, 1) = g(·) in B3
1 . Now we are ready to state our

main result.

Theorem 2.4 There exists ǫ0 > 0 such that if u0 ∈ C∞
0,div(B

3
1 ,R

3) and d0 ∈ C∞
e
(B3

1 ,S
2) satisfy

that d0 is not homotopic to the constant map e : B3
1 → S

2 relative to ∂B3
1 , and

E(u0, d0) :=
1

2

∫

B3

1

(|u0|2 + |∇d0|2) ≤ ǫ20. (2.7)

Then the short time smooth solution (u, d, P ) : B3
1 × [0, T ) → R

3 × S
2 × R to the Ericksen-Leslie

system (1.1), with the initial-boundary condition (1.5) and (1.6) under the assumptions (1.2), (1.3)
and (1.4) must blow up before time T = 1.

Due to the energy estimate (2.6), the proof of Theorem 2.4 is quite similar to those in [10] for
the simplified system. For completeness, we will briefly sketch the main steps of the proof in Sec 5.
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We would like to remark that there does exist (u0, d0) ∈ C∞
0,div(B

3
1 ,R

3)×C∞
e
(B3

1 ,S
2) satisfying

the conditions of Theorem 2.4 which has been previously used by [10] in construction of finite time
singularity of simplified liquid crystal flows (see also [19], [4] for other applications). More precisely,
let H(z, w) = (|z|2 − |w|2, 2zw) : S3 ≡

{

(z, w) ∈ C×C : |z|2 + |w|2 = 1
}

→ S
2 ⊂ R×C be the Hopf

map. Let Dλ(x) = λx : R3 → R
3 be the dilation map for λ > 0, Π : S3 → R3 be the stereographic

projection map from e, and Ψλ = Π−1 ◦Dλ ◦Π : S3 → S
3. Then direct calculations imply that the

Dirichlet energy of H ◦Ψλ : S3 → S
2 satisfies

lim
λ→∞

∫

S3

∣

∣∇(H ◦Ψλ)
∣

∣

2
dσ = 0.

Moreover, it is easy to see that H ◦ Ψλ is not homotopic to the constant map e : S3 → S
2. Let

Φ ∈ C∞(

B3
1 ,S

3
)

such that Φ : B3
1 → S

3 \ {e} is a diffeomorphism and Φ = e on ∂B3
1 . Now we can

check that for any u ∈ C∞
0,div(B

3
1 ,R

3), since

lim
λ→∞

E(λ−1u,H ◦Ψλ ◦Φ) = 0,

we can find a sufficiently large λ0 > 0 depending on u, H, and Φ such that

(u0, d0) := (λ−1
0 u,H ◦Ψλ0

◦Φ) : B3
1 → R

3 × S
2

satisfies the condition (2.7) of Theorem 2.4, and d0 is not homotopic to the constant map e relative
to ∂B3

1 .
It is also an interesting topic to investigate more on the homotopic condition of d0 in Theorem

2.4. If we assume that d0 is homotopic to the constant map e relative to ∂B3
1 , then the angle

ϕ between d0 and e should belong to [0, π). Because the maximum principle (cf. Lemma 3.4)
may not be valid for the system (1.1), it is natural to ask if d0 is homotopic to the constant map
e relative to ∂B3

1 and the initial energy of the system is small, whether the angle ϕ between d0
and e can go beyond π at some time t. If this happens, d(·, t) is not homotopic to the constant
map e relative to ∂B3

1 , which, combined with the energy inequality (2.6) and Theorem 2.4, implies
the finite time singularity. Unfortunately, we can’t verify this argument in dimension three due
to technical difficulties. However, utilizing the Poiseuille flows in dimension one, we can construct
a counter example of the maximum principle (cf. Lemma 3.4), which does imply the maximum
principle may not be valid in the general case of Ericksen-Leslie system (1.1) (see Section 6 for
more details).

3 Axisymmetric solutions

Let (r, θ, z) denote the cylindrical coordinates of R3, and set

er = (cos θ, sin θ, 0)T , eθ = (− sin θ, cos θ, 0)T , e3 = (0, 0, 1)T

as the canonical orthonormal base of R3 in the cylindrical coordinates. For α ∈ [0, 2π], let Rα ∈
SO(3) denote the rotation map of angle α with respect to the z-axis. Recall that a vector field
v : R3 → R

3 is axisymmetric if

R−1
α ◦ v ◦Rα = v, ∀ α ∈ [0, 2π].

Hence any axisymmetric vector field v can be written as

v(r, θ, z) = vr(r, z)er + vθ(r, z)eθ + v3(r, z)e3. (3.1)
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If, in addition, vθ ≡ 0, we say v is axisymmetric without swirls. A solution (u, d, P ) to the Ericksen-
Leslie system (1.1) is said to be axisymmetric without swirls, if it holds that











u(r, θ, z, t) = ur(r, z, t)er + u3(r, z, t)e3,

d(r, θ, z, t) = sinϕ(r, z, t)er + cosϕ(r, z, t)e3,

P (r, θ, z, t) = P (r, z, t).

A domain Ω ⊂ R
3 is axisymmetric if it is invariant under a rotation map Rα for any α ∈ [0, 2π].

3.1 Derivation of a special axisymmetric system

It is not hard to see that the initial condition (2.2) for (v,w, φ) reduces to











v|t=0 = r, 0 ≤ r ≤ 1,

w|t=0 = −2z, 0 ≤ z ≤ 1,

ϕ|t=0 = ϕ0(r), 0 ≤ r ≤ 1,

(3.2)

for some ϕ0 ∈ C∞([0, 1]), with ϕ0(0) = 0. The boundary condition (2.4) becomes
{

v(0, t) = 0

v(1, t) = 1,

{

w(0, t) = 0

w(1, t) = −2,

{

ϕ(0, t) = 0

ϕ(1, t) = ϕ0(1).
(3.3)

Lemma 3.1 For 0 < T ≤ +∞, suppose that v,w ∈ C∞([0, 1] × [0, T )) satisfies

1

r
(rv)r + wz = 0, (r, z) ∈ [0, 1] × [0, 1], (3.4)

and
{

v(0, t) = 0

v(1, t) = 1,

{

w(0, t) = 0

w(1, t) = −2.
(3.5)

Then v(r, t) = r for any (r, t) ∈ [0, 1] × [0, T ), and w(z, t) = −2z for any (z, t) ∈ [0, 1] × [0, T ).

Proof. Differentiating (3.4) with respect to z yields

wzz(z, t) = 0

so that w(z, t) = a1(t)z + a2(t) for some functions a1(t) and a2(t). Since w(0, t) = 0 and w(1, t) =
−2, we see that a2(t) ≡ 0 and a1(t) ≡ −2. Thus w(z, t) = −2z.

Similarly, differentiating (3.4) with respect to r yields

(1

r
(rv)r

)

r
(r, t) = 0,

which implies that rv(r, t) = b1(t)r
2 + b2(t) for some functions b1(t) and b2(t). Since v(0, t) = 0

and v(1, t) = 1, we see that b2(t) ≡ 0 and b1(t) ≡ 1. Thus v(r, t) = r. The proof is complete. ✷

Hence we have

u = (x, y,−2z), A =





1 0 0
0 1 0
0 0 −2



 , Λ = 03×3.
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Ad =
(

cos θ sinϕ, sin θ sinϕ,−2 cosϕ
)T

(dTAd)d = (sin2 ϕ− 2 cos2 ϕ)
(

cos θ sinϕ, sin θ sinϕ, cosϕ
)T

.

Then
(dTAd)d−Ad = −3 cosϕ sinϕ

(

cos θ cosϕ, sin θ cosϕ,− sinϕ
)T

,

∆d+ |∇d|2d =
(

ϕrr +
1

r
ϕr −

sin(2ϕ)

2r2
)(

cos θ cosϕ, sin θ cosϕ,− sinϕ
)T

,

dt + u · ∇d = (ϕt + rϕr) (cos θ cosϕ, sin θ cosϕ,− sinϕ)T .

Combining all above, the equation of d in system (1.1) becomes

λ1(ϕt + rϕr) = ϕrr +
1

r
ϕr −

sin(2ϕ)

2r2
− 3λ2 sinϕ cosϕ (3.6)

If we assume λ2 = 0, this is exactly the equation in [10] for the simplified liquid crystal flows. In
this paper, we would investigate the more general case when λ2 6= 0.

The proof of the existence of a local smooth solution to equation (3.6) proceeds similarly as in
[10] with minor modification to take care of the extra (smooth) external force term 3λ2 sinϕ cosϕ.
Therefore, we omit the proof here.

3.2 Apriori estimates

In general, we can not expect the energy inequality like (2.6) for the equation (3.6) with the initial
and boundary conditions (3.2) and (3.3). However, the following apriori estimate is still valid for
(3.6).

Lemma 3.2 For any smooth solution ϕ(r, t) : [0, 1]× [0, T ) → R to the equation (3.6) with initial
and boundary conditions (3.2) and (3.3), we have the following estimate

∫ 1

0

(

|ϕr|2 +
sin2 ϕ

r2

)

r dr +

∫ T

0

∫ 1

0
|ϕt|2r dr ≤ C(ϕ0, T ). (3.7)

Proof. Multiplying the equation (4.1) by ϕtr and integrating with respect to r over [0, 1], we
obtain

d

dt

1

2

∫ 1

0

(

|ϕr|2 +
sin2 ϕ

r2

)

r dr + λ1

∫ 1

0
|ϕt|2r dr

=− λ1

∫ 1

0
ϕrϕtr

2 dr − 3λ2

∫ 1

0
sinϕ cosϕϕtr dr

≤λ1

2

∫ 1

0
|ϕt|2r dr + C

∫ 1

0

(

|ϕr|2 +
sin2 ϕ

r2

)

r dr.

Standard Gronwall arguments should give us the desired energy estimates.
✷

We also need the following lemma.
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Lemma 3.3 (comparison principle) Suppose the functions ϕ, f and g are a smooth solution, sub-
solution and supersolution to (3.6) on [0, 1] × [0, T ) respectively, and

f(r, t) ≤ ϕ(r, t) ≤ g(r, t) on ([0, 1] × {0}) ∪ ({0, 1} × (0, T )).

Then we have
f(r, t) ≤ ϕ(r, t) ≤ g(r, t), ∀ (r, t) ∈ [0, 1] × [0, T ). (3.8)

Proof. Set f̄ = f − ϕ. Then f̄ satisfies

f̄t + rf̄r ≥ f̄rr +
f̄r
r

+ p2(r, t)f̄ ,

where

p2(r, t) := −sin(2f(r, t)) − sin(2ϕ(r, t))

2r2(f(r, t)− ϕ(r, t))
− 3λ2

sin(2f(r, t)) − sin(2ϕ(r, t))

2(f(r, t) − ϕ(r, t))
,

and
f̄(r, t) ≤ 0 on ([0, 1] × {0}) ∪ ({0, 1} × (0, T )).

For any t ∈ (0, T ), there exists a small r2 ∈ (0, 1) such that p2(r, τ) < 0 on (r, τ) ∈ (0, r2)× (0, t).
Combining it with the fact that p2(r, τ) is bounded on (r2, 1) × (0, t), we conclude that p2(r, τ) is
bounded from above on (r, τ) ∈ (0, 1)× (0, t). By the standard maximum principle (see [6] or [21]),
we conclude that f̄ ≤ 0 or ϕ ≥ f on [0, 1] × (0, T ). Similarly, one can prove ϕ ≤ g.

✷

A natural corollary of the comparison lemma is the following maximum principle.

Lemma 3.4 (maximum principle) Suppose that ϕ(r, t) : [0, 1]× [0, T ) → R is a smooth solution to
equation (3.6). If

ϕ0(0) = 0, 0 ≤ ϕ0(r) ≤ π, ∀ r ∈ [0, 1],

then it holds
0 < ϕ(r, t) < π, ∀ r ∈ (0, 1) and t ∈ (0, T ). (3.9)

4 Existence and singularity of axisymmetric solutions

In this section, we mainly concentrate on the equation

λ1(ϕt + rϕr) = ϕrr +
1

r
ϕr −

sin(2ϕ)

2r2
− 3λ2 sinϕ cosϕ (4.1)

and provide the proof of Theorem 2.1 and Theorem 2.2.

Proof of Theorem 2.1. We argue by contradiction. Suppose ϕ has the first singularity at finite
time 0 < T1 < ∞. For any r0 ∈ (0, 1) and t1 ∈ (0, T1), by the standard regularity theory of
parabolic equations, we can prove

∥

∥ϕ
∥

∥

Ck([r0,1]×(t1,T1))
≤ Cr−k

0 , ∀k ≥ 1. (4.2)

This implies that the possible singularity of the solution ϕ can only happen at r = 0. Combining
this fact with the blowup criterion, Theorem 1.4 in [9], it holds for any 0 < R < 1

lim inf
t→T−

1

∫ R

0
|ϕr(r, t)|2 rdr ≥ 4. (4.3)
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We can choose rm → 0+ and t1 < tm → T−
1 as m → ∞ and consider the blowup sequence

ϕm(r, t) = ϕ
(

rmr, tm + r2mt
)

. (4.4)

The rescaling functions ϕm(r, t) are smooth solutions to the following equation

λ1

(

ϕm
t + r2mϕm

r

)

= ϕm
rr +

1

r
ϕm
r − sin(2ϕm)

2r2
− 3λ2r

2
m sinϕm cosϕm, (4.5)

on [0, 1/rm]× [(t1− tm)/r2m, 0]. By the blowup criterion (4.3), we conclude that ϕm is not constant.
By the energy estimates in Lemma 3.2, we have

∫ 1/rm

0
|ϕm

r |2 rdr =
∫ 1

0
|ϕr(r, tm + r2mt)|2 rdr < ∞, (4.6)

and for any fixed T > 0

∫ 0

−T

∫ 1/rm

0
|ϕm

t |2 rdrdt =
∫ tm

tm−Tr2m

∫ 1

0
|ϕr(r, t)|2 rdrdt → 0 (4.7)

as m → ∞. It is not hard to see that

r2m|ϕm
r |+ 3r2m|λ2|| sinϕm cosϕm| → 0, in L2

loc([0,∞) × (−∞, 0))

as m → ∞. Therefore, there is a nonconstant smooth function ω(r) : [0,∞) → R with finite energy
such that

ϕm(r, t) → ω in C2
loc([0,∞) × (−∞, 0]),

and ω(r) is a solution to the axisymmetric harmonic maps in dimension two

ωrr +
1

r
ωr −

sin(2ω)

2r2
= 0.

Combining the fact 0 ≤ ϕ0 < π with the lemma 3.4, we obtain

0 < ϕ(r, t) < π, r ∈ [0, 1], tm ≤ t < T,

which implies
0 ≤ ω(r) ≤ π for any r ∈ [0,∞).

Hence, we conclude that

d∞ = (sinω cos θ, sinω sin θ, cosω) : R2 → S
2

is a nontrivial harmonic map with finite energy.
To secure a contradiction, we need to construct suitable supersolutions and subsolutions to

(4.1). Denote

ϕ(r, t, c) = 2 arctan

(

rebt

c

)

and ϕ(r, t, c) = 2 arctan

(

−rebt

c

)

,

for some positive constant c and b = 3|λ2|/λ1. It is easy to see that ϕ(r, c) and ϕ(r, c) are smooth
functions. Direct calculation implies

λ1(ϕt + rϕr)− ϕrr −
ϕr

r
+

sin(2ϕ)

2r2
+

3λ2

2
sin(2ϕ) =

2rcebt

c2 + r2e2bt
(λ1(1 + b) + 3λ2 cosϕ) ≥ 0,
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where we have used the facts λ1 > 0 and |cosϕ| ≤ 1 in the last inequality. Thus ϕ is a supersolution
of (4.1). Denote

η0 = π − max
0≤r≤1

|ϕ0(r)|.

By the assumption on ϕ0, we have η0 ≥ 0 and |ϕ0| ≤ π − η0. Since ϕr(0, 0, c) =
2
c and ϕ(0, t, c) =

ϕ0(0) = 0, we can find a sufficiently small c > 0 such that

ϕ(r, 0, c) ≥ ϕ0(r)

for any r ∈ [0, 1], with equality holds iff r = 0. Similarly, we can prove that ϕ(r, t, c) is a subsolution
to (4.1) and

ϕ0(r) ≥ ϕ(r, 0, c) in[0, 1]

for a sufficiently small c > 0. By lemma 3.3, we conclude that ϕ(r, t, c) ≥ ϕ(r, t) ≥ ϕ(r, t, c) for
r ∈ [0, 1] and t > 0.

Now by the definition of ϕ(r, t, c), ϕ(r, t, c), it is not hard to see that

0 < ϕ(r, t) < π − c0, r ∈ [0, 1], tm ≤ t < T,

for some fixed constant c0 > 0. Thus we have

0 ≤ ω(r) < π for any r ∈ [0,∞),

which implies that
d∞ = (sinω cos θ, sinω sin θ, cosω) : R2 → S

2

is a nontrivial harmonic map with finite energy and degree zero, which is impossible. Therefore,
there is no finite time singularity for this case. ✷

Now, we will construct the suitable subsolution and initial data to show the existence of finite
time singularity of (4.1), by modifying the arguments in [10] and [1] .

Proof of Theorem 2.2. We first consider the following potential subsolution to the equation
(4.1)

η(r, t) = 2 arctan

(

r

β(t)

)

,

where β(t) satisfies the following ODE

dβ

dt
= −β

2

3 , β(0) = β0, (4.8)

where β0 is a positive constant that will be determined later. It is not hard to see that

β
1

3 (t) =
1

3
(3β

1

3

0 − t) (4.9)

Setting T0 = 3β
1

3

0 , we see that β → 0 as t → T−
0 . Direct computation implies

λ1(ηt + rηr)− ηrr −
1

r
ηr +

sin(2η)

2r2
+ 3λ2 sin η cos η

=
2r

β2 + r2
(

λ1β
′ + λ1β + 3λ2β cos η

)

≤ 2r

β2 + r2

(

−λ1β
2

3 + (λ1 + 3|λ2|)β
)

=
2rβ

2

3

β2 + r2

(

−λ1 + (λ1 + 3|λ2|)β
1

3

)

.

(4.10)
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If we choose β
1

3

0 < λ1

λ1+3|λ2| , then for any (r, t) ∈ (0, 1) × (0, 3β
1

3

0 ) it holds

λ1(ηt + rηr)− ηrr −
1

r
ηr +

sin(2η)

2r2
+ 3λ2 sin η cos η ≤ 0. (4.11)

Since η(1, 0) < π, we can find initial data ϕ0(r) such that ϕ0(0) = 0, ϕ0(1) > π and

η(r, 0) ≤ ϕ0(r) (4.12)

for any r ∈ [0, 1]. By the definition of η, it is easy to see that for any t ∈ (0, 3β
1

3

0 )

η(0, t) = ϕ0(0) = 0, η(1, t) ≤ π < ϕ0(1). (4.13)

Combining the facts (4.11)-(4.13) with Lemma 3.3, we conclude that η(r, t) ≤ ϕ(r, t) for any

(r, t) ∈ [0, 1] × [0, 3β
1

3

0 ). Direct computation implies

ηr(0, t) =
2

β(t)
→ ∞, as t → T−

0 .

This combined with the fact η(0, t) = ϕ(0, t) = 0 implies the finite time blowup of ϕ(r, t), which
completes the proof of Theorem 2.2. ✷

5 Second example of singularity

We first need the following result on the existence of local smooth solution to (1.1) with the initial
and boundary conditions (1.5) and (1.6) under the assumptions (1.2), (1.3) and (1.4).

Theorem 5.1 For (u0, d0) ∈ C∞
0,div(B

3
1 ,R

3) × C∞
e
(B3

1 ,S
2), there exist T0 = T0(u0, d0) > 0 and

a unique smooth solution (u, d) ∈ C∞(

B3
1 × [0, T0),R

3 × S
2
)

to the system (1.1) along with the
initial-boundary conditions (1.5) and (1.6). Moreover, the energy dissipation inequality

d

dt

1

2

∫

B3

1

(

|u|2 + |∇d|2
)

≤ −
∫

B3

1

(

α0|∇u|2 + 1

λ1

∣

∣∆d+ |∇d|2d
∣

∣

2
)

, (5.1)

holds for 0 ≤ t < T0 and some α0 > 0.

Proof. The existence of local smooth solution has been proved in [7], and the energy inequality
has been given by Lemma 2.3.

✷

Now we would like to proceed to the proof of Theorem 2.4. Due to the energy estimate (2.6),
the proof is quite similar to that in [10] for the simplified system. For the sake of completeness, we
include a brief sketch of the main steps.

Proof of Theorem 2.4. Assume T0 > 0 is the end of the maximal time interval for the short time
smooth solution (u, d) from lemma 5.1. Our goal is to show that If ǫ0 > 0 is sufficiently small, then
T0 < 1.

We argue by contradiction. Suppose for any ǫ > 0 we can find (u0, d0) ∈ C∞
0,div(B

3
1 ,R

3) ×
C∞
e
(B3

1 ,S
2) satisfying the assumption of Theorem 2.4, and a smooth solution (u, d) ∈ C∞(

B3
1 ×

[0, 1],R3 × S
2
)

to the Ericksen-Leslie system (1.1) with the initial-boundary conditions (1.5) and
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(1.6) under the assumptions (1.2), (1.3) and (1.4). Integrating (5.1) over t yields that (u, d) satisfies
the energy inequality

E(u(t), d(t)) +

∫ t

0

∫

B3

1

(

α0|∇u|2 + 1

λ1
|∆d+ |∇d|2d|2

)

≤ E(u0, d0) ≤ ǫ2, (5.2)

for all 0 ≤ t ≤ 1. Applying Fubini’s theorem to (5.2), we find that there exists t1 ∈ (12 , 1) such that

E(u(t1), d(t1)) +

∫

B3

1

(

|∇u(t1)|2 + |∆d(t1) + |∇d(t1)|2d(t1)|2
)

≤ 8ǫ2. (5.3)

From (5.3) and ǫ-apriori estimate Lemma 6.2 in [10] on approximate harmonic maps, we conclude
that there exists a constant C > 0 such that

[

d(t1)
]

C
1

2 (B3

1
)
≤ C

√
ǫ. (5.4)

Thus d(t1)(B
3
1) ⊂ B3

C
√
ǫ
(e) ∩ S

2 and hence d(t1) is homotopic to e relative to ∂B3
1 , provided ǫ > 0

is chosen to be sufficiently small. Since d ∈ C∞(

B3
1 × [0, t1],S

2
)

and d = e on ∂B3
1 × [0, t1], we see

that d(t1) is homotopic to d0 relative to ∂B3
1 and hence d0 is homotopic to e relative to ∂B3

1 , which
is a contradiction. This completes the proof of Theorem 2.4. ✷

6 Counter example on maximum principle

In this section, we will construct a counter example to show that the maximum principle is not
necessarily valid for Ericksen-Leslie system. To this end, we consider the following Poiseuille flows
for Ericksen-Leslie system (1.1) in dimension one, i.e., for (x, t) ∈ R× (0,∞)

{

wt + a = (g(ϕ)wx + h(ϕ)ϕt)x,

λ1ϕt = ϕxx − h(ϕ)wx,
(6.1)

where g(ϕ) and h(ϕ) are defined as following

g(ϕ) :=µ1 sin
2 ϕ cos2 ϕ+

µ5 − µ2

2
sin2 ϕ+

µ3 + µ6

2
cos2 ϕ+

µ4

2
,

h(ϕ) :=µ3 cos
2 ϕ− µ2 sin

2 ϕ =
λ1 + λ2 cos(2ϕ)

2
.

(6.2)

The system (6.1) can be derived from the Ericksen-Leslie system (1.1) by using the Poiseuille flows
(see Appendix in [2] for details)

u = (0, 0, w(x, t)), d = (sinϕ(x, t), 0, cos ϕ(x, t)).

We consider a simplified case of (6.1) by letting

a = 0, µ1 = µ5 = µ6 = 0, µ2 = −1, µ3 = 1, µ4 = 3, λ1 = µ3 − µ2 = 2.

By the Onsager-Parodi relation (1.2), one has

λ2 = µ6 − µ5 = µ2 + µ3 = 0,
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which implies
g(ϕ) = 2, h(ϕ) = 1.

Then the system (6.1) becomes
{

wt = 2wxx + ϕtx,

2ϕt = ϕxx − wx.
(6.3)

The energy inequality is as follows

d

dt

1

2

∫

R

|w|2 + |ϕx|2 dx+

∫

R

|wx|2 + |ϕt|2 + |wx + ϕt|2 dx = 0.

Denote v(x, t) =
∫ x
−∞w(y, t) dy. Then it holds by the first equation of (6.3)

vt = 2wx + ϕt = 2vxx + ϕt.

Therefore the system (6.3) can be written into a system of v, ϕ

{

vt = 2vxx + ϕt,

2ϕt = ϕxx − vxx.
(6.4)

Adding these two equations, we should have

(v + ϕ)t = (v + ϕ)xx.

Thus

(v + ϕ)(x, t) = H(x, t) ∗ (v0 + ϕ0)(x) =
1√
4πt

∫

R

exp

(

−|x− y|2
4t

)

(v0 + ϕ0)(y) dy

where H(x, t) is the fundamental solution of heat equation in dimension one, and (v0, ϕ0) is the
initial data of the system (6.3). Plugging in this back to the equation of ϕ, we should have

2ϕt = 2ϕxx − (H(x, t) ∗ (v0 + ϕ0)(x))xx = 2ϕxx −H(x, t) ∗ (v0 + ϕ0)xx(x).

We may take the smooth initial data v0 and ϕ0 such that

v0(x) = −x2, ϕ0(x) = 0.

Then
H(x, t) ∗ (v0 + ϕ0)xx = −2,

and
ϕ(x, t) = t,

which does not satisfy the maximum principle in the form of Lemma 3.4.
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