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Abstract

A PSCA(v, t, λ) is a multiset of permutations of the v-element alphabet {0, . . . , v − 1} such that every
sequence of t distinct elements of the alphabet appears in the specified order in exactly λ of the permutations.
For v > t > 2, we define g(v, t) to be the smallest positive integer λ such that a PSCA(v, t, λ) exists. We
show that g(6, 3) = g(7, 3) = g(7, 4) = 2 and g(8, 3) = 3. Using suitable permutation representations of
groups we make improvements to the upper bounds on g(v, t) for many values of v 6 32 and 3 6 t 6 6. We
also prove a number of restrictions on the distribution of symbols among the columns of a PSCA.

1 Introduction

For positive integers v and t with v > t, we let [v] = {0, . . . , v − 1}, Sv be the set of permutations of [v] and
Sv,t be the set of ordered sequences of t distinct elements of [v]. For π ∈ Sv and s = (s0, . . . , st−1) ∈ Sv,t we
say that s is covered by π if π−1(si) < π−1(si+1) for 0 6 i 6 t − 2. A perfect sequence covering array with
order v, strength t and multiplicity λ, denoted by PSCA(v, t, λ), is a multiset X of permutations in Sv such
that every sequence in Sv,t is covered by exactly λ permutations in X . If we let T be a t-subset of [v], then
there are t! orderings of the symbols of T , each of which must be covered by λ permutations in a PSCA(v, t, λ).
Furthermore, every permutation in a PSCA(v, t, λ) covers exactly one ordering of T , so a PSCA(v, t, λ) must
consist of t!λ permutations.

Perfect sequence covering arrays were introduced by Yuster [9] in 2020 as a variant of sequence covering
arrays. Sequence covering arrays, denoted by SCA(v, t), are sets of permutations in Sv in which every sequence
in Sv,t is covered by at least one permutation in the set. The study of SCAs dates back to Spencer [8] in 1971.
They are useful for constructing test suites for situations where the order of operations may be important.

For v > t define g(v, t) to be the smallest positive integer λ such that a PSCA(v, t, λ) exists. Observe
that Sv is a PSCA(v, t, v!/t!) so g(v, t) is well defined and g(v, t) 6 v!/t!. Note that if v > t and we remove
the symbol v − 1 from every permutation of a PSCA(v, t, λ), then we obtain a PSCA(v − 1, t, λ) and hence
g(v, t) > g(v − 1, t). For 2 6 t′ 6 t, a PSCA(v, t, λ) is also a PSCA(v, t′, λ

(

t
t′

)

) so g(v, t′) 6
(

t
t′

)

g(v, t).
The question of when g(v, t) = 1 has received particular attention. Not only would a PSCA(v, t, 1) be the

smallest possible SCA(v, t), but it is also an object of interest in coding theory. A (v − t)-deletion correcting

code is a set X of permutations in Sv such that every sequence in Sv,t is covered by at most one permutation in
X . Hence, a PSCA(v, t, 1) would be the largest possible (v − t)-deletion correcting code. For more on deletion
correcting codes, see [3, 4]. Note that Sv forms a PSCA(v, v, 1). At the other end of the spectrum, if t = 2, then
we can take any permutation in Sv and its reverse to form a PSCA(v, 2, 1). Therefore, g(v, v) = g(v, 2) = 1.
Levenshtein [4] proved that g(t + 1, t) = 1 for t > 3. Mathon and van Trung [5] proved that a PSCA(5, 3, 1)
does not exist (we provide a new proof of this fact in §2). As demonstrated above, g(v, t) > g(v − 1, t) so it
follows that a PSCA(v, 3, 1) does not exist for v > 5. Therefore, when t = 3, we have g(v, t) > 1 for v > t+ 1.
It was initially conjectured by Levenshtein that this property would hold for any t > 3, however that was later
shown to be false for t = 4 by Mathon and van Trung [5], who presented a PSCA(6, 4, 1). On the other hand,
Mathon and van Trung computationally proved that neither a PSCA(7, 5, 1) nor a PSCA(8, 6, 1) exists, thus
confirming Levenshtein’s conjecture for t ∈ {5, 6}. They also found that a PSCA(7, 4, 1) does not exist. A
combinatorial proof of this last fact was later given by Klein [3]. Chee et al. [1] proved that g(2t, t) > 1 for
t > 3.

Yuster [9] proved that g(5, 3) = 2. In §3, we show that g(6, 3) = g(7, 3) = g(7, 4) = 2, g(8, 3) = 3 and
g(8, 4) > 3. We state here a definition which we expand upon further in §2.

Definition 1.1. For a multiset X of permutations of [v], a symbol w ∈ [v], and for 0 6 i 6 v − 1, we define

dw(i) :=
∣

∣{π ∈ X : π(i) = w}
∣

∣.

We refer to the vector dw =
(

dw(0), . . . , dw(v − 1)
)

as the distribution vector of w.
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In §2, we derive restrictions on distribution vectors of symbols in PSCAs. These restrictions facilitate the
computer searches that we use to exhaustively catalogue PSCA(v, t, λ) for different sets of parameters. These
searches and their results are described in §3. All computational results reported in this paper were checked by
both authors using independent computations.

Although there are still few parameters (v, t) for which g(v, t) has been determined exactly, there are known
lower bounds for g(v, t) for t > 3 and known upper and lower bounds for g(v, 3), each of which are due to Yuster
[9]. The first is proved by a matrix rank argument and states that if t/2 is a prime, then for v > t,

g(v, t) >

(

v
t/2

)

−
(

v
t/2−1

)

t!
.

The upper bound for g(v, 3) comes from a general construction for a PSCA with (v, t) = (3n, 3) for n > 1 that
is built from an affine plane. The lower bound is proved using a similar matrix rank argument to the more
general case above. Combining these bounds, we have that for an absolute constant C,

v

6
6 g(v, 3) 6 Cv(log v)log 7.

In §4, we explore the relationship between groups and PSCAs and use this relationship to construct PSCAs
with strengths 3 and 4, thereby improving upon the best known upper bounds for g(v, 3) for 9 6 v 6 32 and
providing the first non-trivial bounds for g(v, t) for v 6 24 and 4 6 t 6 6. Table 1 summarises the improvements
to bounds on g(v, 3) while Table 2 summarises the new results for 4 6 t 6 6. The tables also incorporate the
exact bounds shown in §3.

v New bound Old bound
6–7 2* 8
8 3* 8
9 6 8

10–12 6 160
13–14 7 160
15–16 16 160
17–19 19 160
20–32 96 160

Table 1: Improvements to known bounds on g(v, 3). An asterisk denotes that the new bound is exact.

v t New bound
7 4 2*

8–12 4 18
13 4 234

14–21 4 5040
22 4 18 480
23 4 425 040
24 4 10 200 960

7–11 5 66
12 5 792

13–22 5 3696
23 5 85 008
24 5 2 040 192

8–12 6 132
13–24 6 340 032

Table 2: New bounds for g(v, t) for 4 6 t 6 6. An asterisk denotes that the new bound is exact.

Independently, and using different methods, Na, Jedwab and Li [7] have also considered the problem of
determining g(v, t). They find that g(6, 3) = g(7, 3) = g(7, 4) = 2, while also demonstrating that g(8, 3) 6 3,
g(9, 3) 6 4 and g(7, 5) 6 4. They also show that for (v, t) ∈ {(5, 3), (6, 3), (7, 3), (7, 4)} a PSCA(v, t, λ) exists if
and only if λ > 2 while a PSCA(8, 3, λ) exists for any λ > 3. Several of these results were originally reported
in Na’s Masters thesis [6]; in particular, he reported that g(7, 4) = 2 before we computed our catalogue of
PSCA(7, 4, 2).
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2 Distribution vectors

Recall the definition of distribution vectors given in Definition 1.1. The distribution vector of w records the
number of times a symbol w appears in each column across a multiset of permutations. In this section, we will
derive several restrictions on distribution vectors for symbols in PSCAs. We begin with the following lemma
which limits the number of occurrences of each symbol in a PSCA across sets of consecutive columns.

Lemma 2.1. Let X be a PSCA(v, t, λ) with v > t > 2 and λ > 1. Then, for w ∈ [v] and for 0 6 i 6 t− 1,

λ(v − 1)!

(v − t)!
=

v−1
∑

j=0

dw(j)

(

j

i

)(

v − 1− j

t− 1− i

)

.

Proof. Let X be a PSCA(v, t, λ), let i ∈ {0, . . . , t − 1} and let w ∈ [v]. Let S = {s ∈ Sv,t : s(i) = w}. Note
that |S| = (v − 1)!/(v − t)! and each sequence in S is covered by λ permutations in X . For some j ∈ [v], let
π ∈ X be one of the dw(j) permutations in X such that π(j) = w and consider how many sequences in S are
covered by π. There are j symbols that appear before w and v − 1 − j symbols that appear after w in π. For
every sequence in S, there are i symbols appearing before w and t− 1− i symbols appearing after w. Hence, π
covers

(

j
i

)(

v−1−j
t−1−i

)

sequences in S. The result follows.

We can now use Lemma 2.1 to prove the following theorem.

Theorem 2.2. Let X be a PSCA(v, t, λ) with v > t > 2 and λ > 1. Then for w ∈ [v] and for 1 6 s < t,

1

t!λ

v−1
∑

j=0

jsdw(j) =
1

v

v−1
∑

i=0

is. (1)

Proof. Fix s ∈ {1, . . . , t − 1} and w ∈ [v]. Let αk(w) =
∑v−1

j=0 j
kdw(j) for k ∈ {1, . . . , s}. Now, X is a

PSCA(v, k + 1, λ
(

t
k+1

)

) and so, using Lemma 2.1 with i = k, we find that αk(w) is a function of λ, v, t, k
and α1(w), . . . , αk−1(w). So, proceeding by induction on k, we have that αk(w) is independent of w for each
k ∈ {1, . . . , s}. Thus,

vαs(w) =
∑

w∈[v]

αs(w) =
∑

π∈X

v−1
∑

i=0

is = t!λ

v−1
∑

i=0

is

and hence (1) holds.

We call a distribution vector that satisfies (1) for parameters (v, t, λ) a (v, t, λ)-feasible distribution. We
now prove some more facts about distribution vectors when certain restrictions on v and t are imposed. The
following theorem demonstrates more stringent restrictions on the distribution vector whenever t is an odd
prime. Intuitively, it states that in a PSCA whose strength is an odd prime p and whose order is not divisible
by p, the number of occurrences of a symbol across all columns of a given equivalence class modulo p is itself
divisible by p.

Theorem 2.3. Let X be a PSCA(v, p, λ) with p an odd prime and with v 6≡ 0 mod p. For w ∈ [v] and

0 6 j 6 p− 1, let yw(j) =
∑

i≡j mod p dw(i). Then, yw(j) ≡ 0 mod p.

Proof. Let w ∈ [v]. By Theorem 2.2, if X is a PSCA(v, p, λ), then for 1 6 i 6 p− 1,

v−1
∑

j=0

jidw(j) =
p!λ

v

v−1
∑

j=0

ji.

As v is not divisible by p, the right hand side of the equation above must be divisible by p. Therefore, for
1 6 i 6 p− 1,

0 ≡

v−1
∑

j=0

jidw(j) ≡

p−1
∑

j=1

jiyw(j) mod p.

This gives a system of p− 1 linear equations in p− 1 variables over the field Fp. We can restate this system as

A











yw(1)
yw(2)

...
yw(p− 1)











=











0
0
...
0
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where A is a (p− 1)× (p− 1) matrix over Fp with Ai,j = ji. Therefore, A is a Vandermonde matrix and thus,
A is non-singular. Hence, the only solution to this system is yw(j) ≡ 0 mod p for all j ∈ {1, . . . , p− 1}. As the
number of permutations in X is p!λ ≡ 0 mod p, it also follows that yw(0) ≡ 0 mod p.

When v = t + 1 and t is even, the following lemma proves that all (v, t, λ)-feasible distribution vectors are
palindromic.

Lemma 2.4. Let t be even and dw be a (t + 1, t, λ)-feasible distribution. Then, dw(t/2 − i) = dw(t/2 + i) for

0 6 i 6 t.

Proof. With v = t+ 1, Lemma 2.1 implies that

λt! = (t− i)dw(i) + (i+ 1)dw(i+ 1)

for 0 6 i 6 t− 1. Therefore, for even t,

dw

(

t

2
− i

)

=
λt!−

(

t
2 − i+ 1

)

dw
(

t
2 − i+ 1

)

t
2 + i

dw

(

t

2
+ i

)

=
λt!−

(

t
2 − i+ 1

)

dw
(

t
2 + i− 1

)

t
2 + i

for 0 6 i 6 t/2. Then induction on i shows that dw(t/2− i) = dw(t/2 + i) for 0 6 i 6 t/2.

We continue with the case where v = t + 1. The only possible PSCA(t, t, λ) is a multiset containing λ
copies of Sv. Therefore, this is exactly the PSCA we obtain by deleting any symbol from a PSCA(t + 1, t, λ)
(throughout the paper, whenever we delete a symbol from a PSCA with ground set [v], we assume the remaining
symbols get relabelled to [v − 1] in an order preserving way). We use this fact to derive further restrictions for
a PSCA(t+1, t, λ). Let X be a PSCA(v, t, λ). For w ∈ [v] and I ⊆ [v]\{w} with |I| = i, let dI,w be the number
of permutations π ∈ X such that π(i) = w and I = {π(j) : 0 6 j 6 i− 1}.

Theorem 2.5. Let X be a PSCA(t+1, t, 1), let w ∈ [v], and let 0 6 i 6 t. Then for any i-subset I ⊆ [v]\{w},

dI,w =
dw(i)
(

t
i

) .

Proof. Let w ∈ [v]. We proceed by induction on i. Note that the statement is trivially true for i = 0.
Suppose the statement is true for some i with 0 6 i 6 t − 1 and consider the statement for i + 1. Let
I = {u1, . . . , ui+1} ⊆ [v]\{w} and let J = I\{ui+1}. The array formed by removing ui+1 from each permutation
of X is St. The number of permutations τ ∈ St for which τ(i) = w and {τ(j) : 0 6 j 6 i − 1} = J is
i!(t− 1− i)!. These permutations exactly correspond to the permutations π ∈ X such that either π(i) = w and
{π(j) : 0 6 j 6 i− 1} = J or π(i + 1) = w and {π(j) : 0 6 j 6 i} = I. Thus,

i!(t− 1− i)! = dJ,w + dI,w.

By the inductive hypothesis, dJ,w = dw(i)/
(

t
i

)

. Therefore, for any two (i + 1)-subsets of [v]\{w}, I and I ′,

dw(I) = dw(I
′). The sum of dI,w as I ranges over all

(

t
i+1

)

possible (i+1)-subsets of [v]\{w} must be dw(i+1).

Therefore dI,w = dw(i+ 1)/
(

t
i+1

)

, completing the induction.

Corollary 2.6. Let X be a PSCA(t+ 1, t, 1), and let 0 6 i 6 t. Then dw(i) is divisible by
(

t
i

)

for all w ∈ [v].

In general, if it could be shown that there are no (v, t, λ)-feasible distributions for some choice of v, t and
λ, then it would imply that a PSCA(v, t, λ) does not exist. However, it is possible to find (v, t, λ)-feasible
distributions for infinitely many choices of v, t, and λ. For example, if t!λ is divisible by v, then a distribution
vector with dw(i) = t!λ/v for 0 6 i 6 v − 1 is (v, t, λ)-feasible.

On the other hand, it is possible to use (v, t, λ)-feasible distributions to disprove the existence of a PSCA(v, t, λ)
even when such distributions do exist. For example, consider the (5, 3, 1)-feasible distributions. By Theorem 2.3,
for such a distribution, dw(2) ∈ {0, 3, 6}. If dw(2) = 6, then dw = (0, 0, 6, 0, 0) which violates (1) for s = 2.
Now suppose dw(2) = 3. Again, by Theorem 2.3, {dw(0) + dw(3), dw(1) + dw(4)} = {0, 3}. As the reverse of
a PSCA is also a PSCA, we can without loss of generality suppose dw(0) + dw(3) = 0. Then, for s = 2, (1)
reduces to dw(1)+ 16dw(4) = 24. As dw(1) and dw(4) must be nonnegative integers that sum to 3, we find that
this equation has no solutions. Therefore, in any (5, 3, 1)-feasible distribution, dw(2) = 0. This means that if a
PSCA(5, 3, 1) exists, then it would be impossible to place any symbol in column 2. This contradiction provides
an alternate proof of the non-existence of a PSCA(5, 3, 1). See [5] for an earlier proof.

In the proof of Theorem 2.5, we were able to enforce restrictions on a PSCA(t + 1, t, λ) by considering the
new array formed by deleting a symbol from this PSCA. We consider this kind of symbol deletion in a more
general setting with the following theorem.
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t v = 3 4 5 6 7 8 9 10
λ = 1 3 1/1 2/2 2/3 0/1 0/3 0/4 0/5 0/9

4 - 1/1 3/3 6/6 8/13 19/30 36/57 61/119
5 - - 1/1 5/5 21/27 117/127 570/689 3359/3620

λ = 2 3 1/1 3/3 6/8 8/12 16/28 30/55 44/99 67/165
4 - 1/1 5/5 17/17 59/74 261/291 1034/1128 3940/4235
5 - - 1/1 9/9 79/93 900/910 9267/9908 106859/107947

λ = 3 3 1/1 4/4 11/14 32/37 84/99 224/252 547/609 1315/1409
4 - 1/1 7/7 35/35 195/221 1246/1296 7243/7341 38781/39486
5 - - 1/1 13/13 179/199 2933/2951 46160/48150 790491/793171

Table 3: Number of feasible distributions. Each entry r/s indicates that there are s distributions that are
(v, k, λ)-feasible, and that r of these cannot be ruled out using Theorem 2.7.

Theorem 2.7. Let dw =
(

dw(0), . . . , dw(v−1)
)

be the distribution vector for a symbol w in X, a PSCA(v, t, λ).

Let d′

w =
(

d′w(0), . . . , d
′

w(v − 2)
)

be the distribution vector of w in the PSCA X ′ obtained by deleting a symbol

w′ 6= w from X. Then

δk =

k
∑

i=0

(

d′w(i)− dw(i)
)

satisfies 0 6 δk 6 d′w(k) for 0 6 k 6 v − 2.

Proof. Define ci =
∣

∣{π ∈ X : π−1(w) = i < π−1(w′)}
∣

∣ and c′i =
∣

∣{π ∈ X : π−1(w) = i > π−1(w′)}
∣

∣ for
0 6 i 6 v−1. Then ci+c

′

i = dw(i) and ci+c
′

i+1 = d′w(i). Now c′0 = 0 and c′i+1−c
′

i = d′w(i)−ci−c
′

i = d′w(i)−dw(i).
So it follows by induction on i that δi = c′i+1 for 0 6 i 6 v− 2. The result then follows from the fact that ci > 0
and c′i > 0 for each i, by definition.

We say that dw and d
′

w are compatible if they satisfy Theorem 2.7. This test can be used to eliminate
some distributions from consideration. If dw is (v, t, λ)-feasible, it may be the case that there is no (v− 1, t, λ)-
feasible distribution d

′

w compatible with dw. It may even happen that there is a compatible d
′

w, but that
all such candidates can themselves be ruled out because they are not compatible with a (v − 2, t, λ)-feasible
distribution, and so on. A concrete example is that (2, 6, 1, 1, 6, 2) is a (6, 3, 3)-feasible distribution. The only
(5, 3, 3)-feasible distribution that it is compatible with is (3, 6, 0, 6, 3). However (3, 6, 0, 6, 3) is not compatible
with any of the four (4, 3, 3)-feasible distributions, which are (3,9,0,6), (4,6,3,5), (5,3,6,4) and (6,0,9,3). Hence
(2, 6, 1, 1, 6, 2) and (3, 6, 0, 6, 3) can be eliminated from consideration.

Table 3 records the number of (v, t, 1)-feasible distributions for different values of v and t, as well as incor-
porating information about how many distributions cannot be ruled out using Theorem 2.7 in the manner just
described.

3 Exhaustive search algorithm

We have seen in the previous section the relationship between a PSCA(v, t, λ) and the smaller array that
results from deleting a symbol from this PSCA. Specifically, we have seen that by deleting a symbol from a
PSCA(t + 1, t, λ), we are left with λ copies of St. We can extend this argument to say that by deleting v − t
symbols from a PSCA(v, t, λ), we obtain λ copies of St. In this sense, every PSCA contains λ copies of St. This
relationship between smaller and larger PSCAs with the same strength and multiplicity allows for the design
of an algorithm that can exhaustively search for a PSCA(v, t, λ) by first cataloguing all possible PSCA(v′, t, λ)
for t 6 v′ < v. Such an algorithm is further aided by the results proved in the previous section. In order
to catalogue all possible PSCAs for a particular choice of parameters, we must first establish a definition of
isomorphism for PSCAs.

Definition 3.1. Two multisets of permutations, X and Y , are isomorphic if Y can be obtained from X by
permuting the symbols and/or reversing every permutation.

In searching for PSCA(v, t, λ) for v > t, we employed two different methods. Both of these methods relied
on a catalogue of isomorphism class representatives of PSCA(v − 1, t, λ). For each array in this catalogue, we
tested every possible way of inserting a new symbol into each permutation of the array. In the first method, we
assigned a (v, t, λ)-feasible distribution for this new symbol and found all possible PSCAs that can be formed
when the new symbol obeys that distribution, before moving on to the next (v, t, λ)-feasible distribution. In
the second method, we did not fix a distribution. Instead, we maintained a list of (v, t, λ)-feasible distributions
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that were consistent with the positions so far chosen for the new symbol. If that list ever became empty then
we knew the current placements were unviable. Using these two search methods, we were able to independently
count the number of isomorphism classes of PSCA(v, t, λ) for different sets of parameters, as shown in Table 4.
In some cases it was not feasible to perform an exhaustive enumeration. In such cases, the number of PSCAs
that we found before abandoning the search is given with a + symbol indicating that the search was incomplete.
In each such case we believe that the true number of PSCAs is much higher than the number that we quote.

In the cases when (v, t, λ) ∈ {(5, 3, 1), (7, 4, 1), (7, 5, 1), (8, 3, 2), (8, 4, 2)} our enumeration was exhaustive,
and demonstrated that no PSCA with these parameters exists. For the first three of these parameter sets this
was already known, but the last two are new results. Our computations have discovered several new values of
the function g.

Theorem 3.2. g(6, 3) = g(7, 3) = g(7, 4) = 2 and g(8, 3) = 3. Additionally, g(8, 4) > 2.

Proof. Given the nonexistence results just mentioned, it suffices to display a PSCA(7, 3, 2), a PSCA(8, 3, 3) and
a PSCA(7, 4, 2):

PSCA(7, 3, 2) PSCA(8, 3, 3) PSCA(7, 4, 2)
0123465 0642315 04712563 05672341 0123465 0254163 0351264 0432165
1540362 1634052 06432157 07351462 0621435 0634125 0651432 0652341
2405163 2610543 16547203 17453026 1045263 1254063 1432560 1530264
3054261 3625401 17630245 25476301 1632045 1635402 1640253 1652043
4312560 4651230 26751043 27410365 2045361 2103564 2341560 2530164
5231064 5603124 31526074 34675102 2601534 2635104 2643015 2645103

37206154 42351067 3015462 3214065 3402561 3520461
46051327 50213476 3604521 3610254 3614520 3625401
53764201 61234075 4015362 4123065 4351062 4520163

4610352 4620351 4621530 4653012
5103462 5214360 5341260 5402361
5603214 5604123 5612340 5643210

There are 260 664 isomorphism classes of PSCA(5, 3, 3). We took the one which has the largest automorphism
group and extended it in all possible ways. Doing so produced 3072, 481 765 and 51448 isomorphism classes
of PSCAs with parameters (6,3,3), (7,3,3) and (8,3,3) respectively. However, none of these extended to a
PSCA(9,3,3). We also performed a search for all PSCA(6,3,3) in which every symbol has distribution vector
(3, 3, 3, 3, 3, 3). Using Theorem 2.7, we were able to find all (5,3,3)-feasible distributions that are compatible
with this uniform distribution and thus could determine the PSCA(5,3,3) that could potentially extend to
such a PSCA(6,3,3). From them we found 1 053 700 PSCA(6,3,3) up to isomorphism. These arrays extend
to 35 872 460 PSCA(7,3,3) and 1 992 709 PSCA(8,3,3) up to isomorphism. Again, none of these arrays extend
to a PSCA(9,3,3). We also built some other PSCA(8,3,3) via several other routes, but were unable to find a
PSCA(9,3,3).

The last column of Table 4 lists the number of isomorphism classes in our catalogue which contain a PSCA
for which the corresponding set (ignoring multiplicity of repeated permutations) of permutations forms a group.
To test if a PSCA is isomorphic to a group it suffices to permute the symbols to ensure that one permutation
(it does not matter which) is the identity, and then check that the resulting set of permutations is closed under
composition. PSCAs that form groups will be studied further in the next section, which will provide details of
all of the groups included in Table 4 (except the trivial cases when v = t).

In Table 3 we showed how many distributions might be achieved by symbols in PSCAs. In the “realised
distributions” column of Table 5 we show how many of these distributions are actually realised within some
PSCA. For comparison, the column headed “compatible distributions” repeats the smaller of the two bounds
we had computed in Table 3. Table 5 covers all cases where we computed (non-empty) exhaustive catalogues.
It also covers the case (v, t, λ) = (6, 3, 3), where we were able to rule out 6 distributions with targeted searches,
assisted by Theorem 2.7. The 6 unrealised distributions were (0,9,1,3,0,5), (2,6,0,4,3,3), (3,1,8,0,2,4) and their
reverses. The other 26 distributions from Table 3 appeared in our partial catalogue.

4 PSCAs from permutation groups

In this section, we consider PSCAs which can be constructed from permutation groups. For permutations
f, g ∈ Sv, the composition f ◦ g is the permutation (f ◦ g)(x) = f(g(x)). For a subgroup H 6 G and for g ∈ G,
the right coset Hg is the set {hg : h ∈ H} whereas the left coset gH is the set {gh : h ∈ H}. If H is a subgroup
of Sv, then the right coset Hg permutes the columns of H according to g while the left coset gH permutes the
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t λ v PSCAs groups
3 1 3 1 1
3 1 4 1 0
3 1 5 0 0
3 2 3 1 1
3 2 4 12 1
3 2 5 314 0
3 2 6 1957 5
3 2 7 146 0
3 2 8 0 0
3 3 3 1 1
3 3 4 37 0
3 3 5 260 664 0
3 3 6 29 100 897+ 0+
3 3 7 14 943 804+ 0+
3 3 8 2 111 540+ 0+
4 1 4 1 1
4 1 5 4 0
4 1 6 2 1
4 1 7 0 0
4 2 4 1 1
4 2 5 12 351 0
4 2 6 32 507 2
4 2 7 1826 0
4 2 8 0 0
5 1 5 1 1
5 1 6 3461 0
5 1 7 0 0

Table 4: Number of PSCAs generated by adding one symbol at a time.

v t λ Realised Distributions Compatible Distributions
3 3 1 1 1
4 3 1 2 2
3 3 2 1 1
4 3 2 3 3
5 3 2 6 6
6 3 2 4 8
7 3 2 2 16
3 3 3 1 1
4 3 3 4 4
5 3 3 11 11
6 3 3 26 32
4 4 1 1 1
5 4 1 3 3
6 4 1 1 6
4 4 2 1 1
5 4 2 5 5
6 4 2 10 17
7 4 2 16 59
5 5 1 1 1
6 5 1 5 5

Table 5: Number of realised distributions for different parameter sets.
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symbols of H according to g. Throughout this section, for s ∈ Sv,t, we use the notation s = (s0, . . . , st−1).
Moreover, G will always denote a group such that if G has order v, then the elements of G are {0, . . . , v − 1},
and ψ will denote an injective homomorphism ψ : G → Sv, g 7→ ψg. We can then consider the action of G on
Sv,t where, if s = (s0, . . . , st−1) ∈ Sv,t and g ∈ G, then gs = (ψg(s0), . . . , ψg(st−1)).

Mathon and van Trung [5] found that there are exactly two non-isomorphic PSCA(6, 4, 1); one forms a
group isomorphic to S4, the other forms three cosets of a group isomorphic to D8. While noting the connection
between their PSCAs and groups, their search methods did not focus on building PSCAs from groups (the
same is true of our work in §3). However, several connections between PSCAs and groups have been formalised
by Na, Jedwab and Li [7] and they found a number of examples of PSCAs based on groups. Note that the
permutation composition convention used in [7] differs from the convention used here.

Lemma 4.1. Let G be a group, ψ : G→ Sv be an injective homomorphism, T be the image of ψ and let Th be

a right coset of T . If x and y are sequences belonging to the same orbit under the action of G on Sv,t, then x
and y are covered by the same number of permutations in Th.

Proof. Let x and y be elements of Sv,t that belong to the same orbit under the action of G. Then gx = y for
some g ∈ G. Let 0 6 c0 < · · · < ct−1 6 v − 1 and let f ∈ Th such that f(ci) = xi for 0 6 i 6 t − 1. Then, f
covers x. Now consider ψg ◦ f . As f(ci) = xi, (ψg ◦ f)(ci) = ψg(xi) for 0 6 i 6 t− 1. Therefore, ψg ◦ f covers
y. Therefore, for every permutation in Th that covers x, we can find a corresponding permutation that covers
y. So, the number of permutations in Th that cover y is at least the number of permutations in Th that cover
x. By reversing the argument, and noting x = g−1y, we find that the number of permutations in Th that cover
x is at least the number of permutations in Th that cover y. Thus, x and y are covered by the same number of
permutations in Th.

A consequence of Lemma 4.1 is that in a right coset of a permutation group ψ(G), we can determine the
number of permutations covering each sequence in the orbit of a sequence x under the action of G on Sv,t by
simply finding the number of permutations in the coset that cover x. We will develop this point further in the
context of transitive permutation groups with the following lemma.

Lemma 4.2. Let G be a group, let ψ : G → Sv be an injective homomorphism such that the image, T , of ψ
is a transitive permutation group and let X be an array constructed from right cosets of T . Furthermore, let

w ∈ [v], 0 6 i 6 t − 1 and let S = {s ∈ Sv,t : si = w}. If every sequence in S is covered by λ permutations in

X, then X is a PSCA(v, t, λ).

Proof. Let s ∈ Sv,t. Then, as T is transitive, there is a g ∈ G such that ψg(si) = w. Therefore, the orbit of
s contains a sequence in S. As every orbit of the action of G on Sv,t contains a representative from S, then
by Lemma 4.1, if every sequence in S is covered by λ permutations in X , then every sequence in Sv,t is also
covered by λ permutations in X .

Elementary abelian 2-groups

Throughout this subsection, we use Ev to denote an elementary abelian 2-group on the set [v] with identity 0
and operation ⊕. Then for a group Ev, we fix ψ : Ev → Sv to be the homomorphism that maps g 7→ ψg where
ψg(x) = g ⊕ x. We then let T be the image of ψ. Under this homomorphism, gs = (g ⊕ s0, . . . , g ⊕ st−1) for
g ∈ Ev and s ∈ Sv,t. By construction, T is a sharply transitive set of permutations, a fact that will be critical
in what follows. We begin our analysis of elementary abelian 2-groups with an overview of PSCAs built from
E4. Within S4, there are several subgroups isomorphic to E4. However, the only one of these subgroups that
is sharply transitive (and hence may be represented within T ) is the following:

0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0

The cosets of this group within S4 are shown in Figure 1. We refer to the cosets on the left as having Type A
coverage, the cosets in the middle as having Type B coverage and the cosets on the right as having Type C
coverage. Cosets of the same type cover the same set of triples. Each coset covers 16 triples of S4,3 exactly
once, leaving 8 triples uncovered. These uncovered triples are recorded in Table 6.

Observe that the sets of triples uncovered by Type A, Type B and Type C cosets partition S4,3. Suppose
X is a PSCA(4, 3, λ) which is built from a combination of cosets of our E4 permutation group. As the number
of permutations in X is 6λ, the total number of cosets that make up X is 3λ/2. Consider the triple 012. This
triple is covered by Type A and Type C cosets but is not covered by Type B cosets. Given that the number of
permutations that cover 012 is λ, there must be λ/2 Type B cosets. Similar arguments involving other triples
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0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0

0 2 1 3
1 3 0 2
2 0 3 1
3 1 2 0

0 3 1 2
1 2 0 3
2 1 3 0
3 0 2 1

0 1 3 2
1 0 2 3
2 3 1 0
3 2 0 1

0 2 3 1
1 3 2 0
2 0 1 3
3 1 0 2

0 3 2 1
1 2 3 0
2 1 0 3
3 0 1 2

Type A Type B Type C

Figure 1: Three types of cosets of E4

Type A Type B Type C
021 012 013
031 032 023
120 103 102
130 123 132
203 210 201
213 230 231
302 301 310
312 321 320

Table 6: Triples uncovered by cosets of Type A, B and C.

(e.g. 021 and 013) demonstrate that X must be built from λ/2 of each type of coset. Furthermore, because of
the coverage properties of each coset type, any combination of λ/2 Type A cosets, λ/2 Type B cosets and λ/2
Type C cosets will form a PSCA(4, 3, λ). Therefore, an array built from a combination of cosets of E4 will form
a PSCA(4, 3, λ) if and only if the array contains an equal number of each type of coset.

We use this characterisation to aid us in our search for PSCAs from cosets of permutation representations of
the elementary abelian 2-group of order v with v > 4. Obviously these larger groups contain many subgroups
isomorphic to E4. As in the general case above, we isolate a subset of triples of Sv,3 such that balanced coverage
on these triples implies balanced coverage for every triple in Sv,3.

Lemma 4.3. Let H be the set of order 4 subgroups of Ev and let S be the set of triples defined by

S =
{

(s0, s1, s2) ∈ Sv,3 : {s0, s1, s2} ⊂ H for some H ∈ H
}

Let X be an array constructed from right cosets of T in Sv. If every triple in S is covered by λ permutations in

X, then X is a PSCA(v, 3, λ).

Proof. First, we observe that if {x, y, z} is a 3-subset of an elementary abelian 2-group, then {x, y, z, x⊕ y⊕ z}
is a coset of the order 4 subgroup {0, x ⊕ y, x ⊕ z, y ⊕ z}. Furthermore, x ⊕ y ⊕ z is the only element we can
include with {x, y, z} in order to form an order 4 coset.

Let (x, y, z) ∈ Sv,3. If ψx acts on (x, y, z), we obtain the triple (0, x ⊕ y, x ⊕ z). As per the previous
paragraph, {0, x⊕ y, x⊕ z} forms a subset of an order 4 subgroup so (0, x⊕ y, x⊕ z) ∈ S. Hence, each orbit of
Sv,3 under the action of Ev contains a triple from S. Therefore, by Lemma 4.1, if every triple in S is covered
by λ permutations in X , then X is a PSCA(v, 3, λ).

Definition 4.4. Let X ⊆ Sv be a multiset of permutations. For W ⊆ [v], the reduced array of X on W ,
denoted by X [W ], is the array we obtain by removing every symbol of [v]\W from X .

Let Y be a right coset of T in Sv, let H be an order 4 subgroup of Ev and consider the reduced array Y [H ].
If we partition the rows of Y [H ] according to the cosets of H , then each part will form a coset of the sharply
transitive E4 permutation group. By taking X to be a collection of right cosets of T , we can determine whether
X [H ] forms a PSCA by analysing the coverage type of each coset of E4 that appears in X [H ]. As a result of
Lemma 4.3, if the reduced array X [H ] is a PSCA of strength 3 for each H ∈ H, then X will be a PSCA of
strength 3.
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Lemma 4.5. Let f be an order n automorphism of Ev and let X be the array

X =

n−1
⋃

i=0

Tf i.

Let H be an order 4 subgroup of Ev. If the reduced array X [H ] is a PSCA(4, 3, λ), then X [f i(H)] will also be

a PSCA(4, 3, λ) for 1 6 i 6 n− 1.

Proof. First we show that T = f−1Tf . Let g ∈ Ev. Then, we can consider ψg ∈ T and the composition
f−1ψgf . Let x ∈ Ev. Then, f

−1ψgf(x) = f−1(g⊕ f(x)). As f is an automorphism of Ev, so too is f−1. Hence
f−1(g ⊕ f(x)) = f−1(g) ⊕ x. Therefore, f−1ψgf = ψf−1(g) and hence, f−1Tf ⊆ T . Now, ψg = ψf−1(f(g)) =
f−1ψf(g)f by the above argument. So, T ⊆ f−1Tf and thus, T = f−1Tf . Therefore, fT = Tf and so we
can consider Tf as being an array in which the symbols of T have been permuted according to f . As a result,
the reduced array T [H ] is isomorphic to Tf [f(H)]. More generally, the reduced array Tf i[H ] is isomorphic to
Tf i+1[f(H)] for 0 6 i 6 n− 1. Moreover, the isomorphism in each case is the restriction of f to H . Therefore,
X [H ] is isomorphic to X [f(H)]. Applying this argument to the subgroups f i(H) and f i+1(H) for 0 6 i 6 n−1,
we find that X [H ] is isomorphic to X [f i(H)] for 1 6 i 6 n− 1. Therefore, if X [H ] is a PSCA(4, 3, λ), then so
is X [f i(H)] for 1 6 i 6 n− 1.

Essentially, Lemma 4.3 demonstrates that in a collection of right cosets of T , it suffices to check the coverage
of triples whose elements form a subset of an order 4 subgroup Ev in order to determine whether the cosets form
a PSCA. When these cosets are related by an automorphism of Ev, we are able to further restrict what triples
need to be checked by allowing us to consider only certain subgroups, depending on the automorphism f . In
each case, the reduced array on any order 4 subgroup H will form a collection of cosets of E4 and so we can use
the characterisation at the start of this section to determine whether these reduced arrays form PSCAs. Using
these methods, we have been able to find PSCAs of orders 4, 8, 16 and 32 with strength 3. The following are
examples of a PSCA(4, 3, 2) and a PSCA(8, 3, 4) (note that Na, Jedwab and Li [7] also found a PSCA(8, 3, 4)).

PSCA(4, 3, 2) PSCA(8, 3, 4)
0123 01234567 42671053
1032 10543276 53106742
2301 25076143 60435217
3210 34701652 71342506
0231 43610725 07245316
1320 52167034 16532407
2013 67452301 23061754
3102 76325410 32716045
0312 06253471 45607132
1203 17524360 54170623
2130 24017635 61423570
3021 35760124 70354261

The PSCA(4, 3, 2) forms a permutation group isomorphic to the alternating group A4. The PSCA(8, 3, 4)
forms a permutation group isomorphic to A4 × C2. We also have the following PSCAs of orders 16 and 32.

Theorem 4.6. g(v, 3) 6 16 for v 6 16 and g(v, 3) 6 96 for v 6 32.

Proof. To prove the first part of the theorem, we need only present a PSCA(16, 3, 16). We let G be the group
isomorphic to E16 generated by the permutations

(0 1)(2 3)(4 5)(6 7)(8 9)(10 11)(12 13)(14 15),
(0 2)(1 3)(4 14)(5 15)(6 12)(7 13)(8 10)(9 11),
(0 4)(1 5)(2 14)(3 15)(6 10)(7 11)(8 12)(9 13),
(0 8)(1 9)(2 10)(3 11)(4 12)(5 13)(6 14)(7 15).

We then let f =(1 8 9)(2 4 15 11 5 7)(3 12 6 10 13 14). Then,

X =
5
⋃

i=0

Gf i

forms a PSCA(16, 3, 16). The 96 permutations of this PSCA also form a group which can be generated by

(1 8 9)(2 4 15 11 5 7)(3 12 6 10 13 14),
(0 4 7)(1 13 15)(2 3 10)(5 14 8)(6 9 12).
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As a result of Lemma 4.3, in order to check whether X forms a PSCA, we need only check that the reduced
arrays of X corresponding to the 35 order 4 subgroups of G form PSCA(4, 3, 16). As the cosets of G from
which X is constructed are related by an automorphism, we can use Lemma 4.5 to further limit the number of
reduced arrays of X that we need to check in order to verify that X is a PSCA. The orbits of the 35 order 4
subgroups of G under f are as follows.

{

{0, 1, 2, 3}, {0, 4, 8, 12}, {0, 6, 9, 15}, {0, 1, 10, 11}, {0, 5, 8, 13}, {0, 7, 9, 14}
}

{

{0, 1, 6, 7}, {0, 2, 8, 10}, {0, 4, 9, 13}, {0, 1, 14, 15}, {0, 3, 8, 11}, {0, 5, 9, 12}
}

{

{0, 2, 4, 14}, {0, 3, 4, 15}, {0, 11, 12, 15}, {0, 5, 6, 11}, {0, 5, 7, 10}, {0, 2, 7, 13}
}

{

{0, 2, 6, 12}, {0, 4, 6, 10}, {0, 10, 13, 15}, {0, 11, 13, 14}, {0, 3, 5, 14}, {0, 3, 7, 12}
}

{

{0, 1, 4, 5}, {0, 7, 8, 15}, {0, 2, 9, 11}
}

{

{0, 1, 12, 13}, {0, 6, 8, 14}, {0, 3, 9, 10}
}

{

{0, 2, 5, 15}, {0, 4, 7, 11}
}

{

{0, 3, 6, 13}, {0, 10, 12, 14}
}

{

{0, 1, 8, 9}
}

Hence, by Lemma 4.5, we need only check the reduced array of one subgroup from each of these 9 orbits to
verify that X is a PSCA.

For the second part of the theorem, we present a PSCA(32, 3, 96). We let G32 be the group isomorphic to
E32 generated by the permutations

(0 1)(2 3)(4 5)(6 7)(8 9)(10 11)(12 13)(14 15)(16 17)(18 19)(20 21)(22 23)(24 25)(26 27)(28 29)(30 31),
(0 2)(1 3)(4 28)(5 29)(6 30)(7 31)(8 10)(9 11)(12 20)(13 21)(14 22)(15 23)(16 18)(17 19)(24 26)(25 27),
(0 4)(1 5)(2 28)(3 29)(6 26)(7 27)(8 14)(9 15)(10 22)(11 23)(12 18)(13 19)(16 20)(17 21)(24 30)(25 31),
(0 8)(1 9)(2 10)(3 11)(4 14)(5 15)(6 12)(7 13)(16 24)(17 25)(18 26)(19 27)(20 30)(21 31)(22 28)(23 29),
(0 16)(1 17)(2 18)(3 19)(4 20)(5 21)(6 22)(7 23)(8 24)(9 25)(10 26)(11 27)(12 28)(13 29)(14 30)(15 31).

We then let f1 be the following order 2 automorphism of G32:

(2 8)(3 9)(4 6)(5 7)(12 28)(13 29)(14 30)(15 31)(18 24)(19 25)(20 22)(21 23).

We then let G64 = G32 ∪G32f1. Observe that G64 also forms a group. Then, we let f2 be the following order 3
automorphism of G32:

(2 12 24)(3 13 25)(4 6 10)(5 7 11)(8 18 28)(9 19 29)(20 22 26)(21 23 27).

We then let G192 = G64 ∪G64f2 ∪G64f
2
2 . Again, G192 forms a group. Finally, we let f3 be the following order

3 automorphism of G32:

(1 16 17)(3 18 19)(5 20 21)(6 7 23)(9 24 25)(11 26 27)(12 13 29)(15 30 31).

Then G192 ∪ f3G192 ∪ f
2
3G192 is a PSCA(32, 3, 96). Although this construction is not of the form described in

Lemma 4.5, it is a collection of right cosets of G32. Therefore, we can use Lemma 4.3 to check that this array
is indeed a PSCA.

We remark that even though G32, G64 and G192 are groups, the PSCA(32, 3, 96) described in Theorem 4.6
is not a group. We also note that while f3 is an automorphism of G32, it is not an automorphism of G192. As
such, the shift to left cosets in the final step of the construction is significant as taking right cosets would not
form a PSCA.

Motivated by those PSCAs that we had earlier found which turned out to be permutation representations
of groups, we decided to search for such objects directly. Fix v, t and λ. We sought a representation in Sv

of some group of order n = t!λ. We began by deciding on positive integers g1, g2 and possibly g3. We then
chose permutations of orders g1, g2 (and possibly g3) and checked whether they generate a group of order n.
For each group that we discovered in this way, we then tried to find a conjugate that was a PSCA. This was
done by building up the PSCA one column at a time, backtracking whenever some t-sequence would be covered
too many times. As the conjugate h−1Gh of a group G is isomorphic in terms of sequence coverage to Gh,
searching over all column permutations of G for a PSCA is equivalent to searching over all conjugates of G.
Since we checked all conjugates of each group that we found, we were free to insist that the generator of order
g1 that we chose was lexicographically maximal amongst all of its conjugates. In particular, this meant we
only had to consider one choice for each possible cycle structure of that generator. Note that this method did
not prejudge which group it was going to build. Many non-isomorphic groups of order n may have generators
of the specified orders. For example, there are 15 groups of order 24, but they all have a generating set with
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(v, λ) Group Generators
(4,2) A4 〈(1, 2, 3), (0, 1, 2)〉

(6,2)

A4 〈(0, 5, 4)(1, 2, 3), (0, 5, 1)(2, 3, 4)〉

D12

〈(0, 5, 4, 2, 1, 3), (0, 5)(1, 2)(3, 4)〉
〈(0, 4, 5, 2, 1, 3), (0, 4)(1, 2)(3, 5)〉
〈(0, 3, 1, 5, 4, 2), (0, 5)(1, 3)(2, 4)〉
〈(0, 3, 1, 4, 5, 2), (0, 4)(1, 3)(2, 5)〉

(6,4)

C2 ×A4 〈(0, 5, 1, 2, 3, 4), (0, 5, 4)(1, 2, 3)〉

S4

〈(0, 2)(1, 3)(4, 5), (0, 4, 5)(1, 3, 2)〉
〈(0, 2)(1, 3)(4, 5), (0, 4, 5)(1, 2, 3)〉
〈(0, 5)(1, 3)(2, 4), (0, 2, 4)(1, 3, 5)〉

〈(1, 3)(4, 5), (0, 1, 5)(2, 4, 3)〉
〈(1, 3)(2, 4), (0, 1, 4)(2, 3, 5)〉

(8,4)

SL(2, 3)
〈(0, 7, 4, 2)(1, 5, 3, 6), (0, 7, 1)(2, 3, 4)〉
〈(0, 7, 6, 4)(1, 3, 2, 5), (0, 7, 3)(4, 5, 6)〉

S4

〈(0, 5, 4, 2)(1, 7, 3, 6), (0, 7, 4)(1, 3, 2)〉
〈(0, 5, 4, 2)(1, 6, 3, 7), (0, 7, 4)(1, 3, 5)〉
〈(0, 5, 6, 3)(1, 4, 7, 2), (0, 7, 6)(2, 4, 5)〉
〈(0, 5, 7, 3)(1, 4, 6, 2), (0, 7, 6)(2, 5, 4)〉
〈(0, 5, 7, 4)(1, 3, 6, 2), (0, 7, 6)(2, 5, 3)〉
〈(0, 5, 6, 4)(1, 3, 7, 2), (0, 7, 6)(2, 3, 5)〉
〈(0, 6, 4, 3)(1, 7, 5, 2), (0, 5, 4)(2, 7, 6)〉
〈(0, 7, 3, 6)(1, 2, 4, 5), (0, 5, 3)(1, 4, 7)〉
〈(0, 7, 3, 6)(1, 5, 4, 2), (0, 5, 3)(1, 4, 6)〉
〈(0, 7, 4, 3)(1, 6, 5, 2), (0, 5, 4)(2, 6, 7)〉
〈(0, 7, 4, 6)(1, 3, 5, 2), (0, 5, 4)(2, 3, 7)〉
〈(0, 7, 5, 2)(1, 6, 4, 3), (0, 5, 4)(2, 3, 6)〉

C2 ×A4

〈(1, 4, 7)(2, 5, 3), (0, 1)(2, 7)(3, 6)(4, 5)〉
〈(1, 4, 6)(2, 5, 3), (0, 1)(2, 6)(3, 7)(4, 5)〉
〈(1, 2, 5)(4, 7, 6), (0, 1)(2, 7)(3, 6)(4, 5)〉
〈(1, 2, 5)(4, 6, 7), (0, 1)(2, 6)(3, 7)(4, 5)〉
〈(1, 6, 7)(2, 5, 4), (0, 2)(1, 5)(3, 6)(4, 7)〉
〈(1, 6, 7)(2, 4, 5), (0, 2)(1, 5)(3, 7)(4, 6)〉
〈(1, 6, 7)(2, 5, 3), (0, 2)(1, 5)(3, 7)(4, 6)〉
〈(1, 6, 7)(2, 3, 5), (0, 2)(1, 5)(3, 6)(4, 7)〉

(12,6)

C6 × S3 〈(0, 11, 9, 10, 1, 4)(2, 7, 6, 3, 8, 5), (0, 8, 9, 2, 1, 6)(3, 4, 5, 11, 7, 10)〉
S3 × S3 〈(0, 11, 9, 10, 1, 4)(2, 5, 8, 3, 6, 7), (0, 8, 9, 2, 1, 6)(3, 4, 7, 10, 5, 11)〉

C3 ×A4

〈(2, 5, 9)(3, 6, 8)(4, 10, 11), (0, 2, 4)(1, 10, 8)(3, 9, 7)(5, 11, 6)〉
〈(2, 5, 9)(3, 6, 8)(4, 11, 10), (0, 2, 4)(1, 11, 8)(3, 9, 7)(5, 10, 6)〉
〈(2, 5, 9)(3, 6, 8)(4, 7, 11), (0, 2, 4)(1, 7, 8)(3, 9, 10)(5, 11, 6)〉
〈(2, 5, 9)(3, 6, 8)(4, 7, 10), (0, 2, 4)(1, 7, 8)(3, 9, 11)(5, 10, 6)〉
〈(2, 5, 9)(3, 6, 8)(4, 11, 7), (0, 2, 4)(1, 11, 8)(3, 9, 10)(5, 7, 6)〉
〈(2, 5, 9)(3, 6, 8)(4, 10, 7), (0, 2, 4)(1, 10, 8)(3, 9, 11)(5, 7, 6)〉
〈(1, 7, 9)(2, 6, 5)(4, 10, 8), (0, 1, 8)(2, 7, 10)(3, 5, 9)(4, 6, 11)〉

(14,7) C7 ⋊ C6
〈(1, 4, 7)(2, 11, 5)(3, 9, 13)(6, 8, 12), (0, 2)(1, 11)(3, 10)(4, 8)(5, 13)(6, 7)(9, 12))〉
〈(1, 4, 7)(2, 11, 5)(3, 9, 12)(6, 8, 13), (0, 2)(1, 11)(3, 10)(4, 8)(5, 12)(6, 7)(9, 13))〉

(16,16) (E16 ⋊ C2)⋊ C3
〈(1, 8, 9)(2, 4, 15, 11, 5, 7)(3, 12, 6, 10, 13, 14),
(0, 4, 7)(1, 13, 15)(2, 3, 10)(5, 14, 8)(6, 9, 12)〉

(19,19) C19 ⋊ C6
〈(1, 11, 5, 18, 15, 9)(2, 7, 12, 8, 3, 13)(4, 6, 10, 14, 16, 17),
(0, 1, 2, 3, 4, 13, 16, 5, 11, 10, 17, 15, 9, 6, 12, 14, 7, 8, 18)〉

Table 7: Strength 3 PSCAs that are permutation groups

(g1, g2) ∈ {(12, 4), (12, 2), (8, 3), (6, 4), (3, 2)} or (g1, g2, g3) = (6, 6, 2). Similarly, the 5 groups of order 18 all
have a generating set with (g1, g2) ∈ {(9, 2), (6, 6)} or (g1, g2, g3) = (3, 3, 2). Of course, groups will typically
have many different generating sets with suitable orders, and hence will be built multiple times. But we could
be confident that every group of order n that has some representation in Sv would be built, and thus that our
catalogue of PSCAs that are groups is exhaustive for v 6 14 and n 6 42.

In an alternative computation, we used GAP [2] to generate representatives of conjugacy classes of subgroups
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(v, λ) Group Classes Example
(6,1) S4 1 〈(1, 3)(4, 5), (0, 1, 4)(2, 5, 3)〉
(6,2) C2 × S4 1 〈(0, 5, 2, 1), (0, 1, 3, 2, 5, 4)〉
(7,7) PSL(3, 2) 9 〈(0, 2, 3, 4, 6, 5, 1), (0, 5, 4)(2, 6, 3)〉
(8, 56) E8 ⋊ PSL(3, 2) 22 〈(0, 7, 4, 2, 3, 1, 5), (0, 1, 3, 4)(2, 6, 7, 5)〉
(9, 18) ((E9 ⋊Q8)⋊ C3)⋊ C2 38 〈(0, 8)(1, 3)(4, 5), (0, 3, 8)(1, 6, 4)(2, 7, 5)〉

(10, 30)
S6 102 〈(0, 7)(2, 9)(3, 4), (0, 7, 5, 9, 1)(2, 3, 6, 8, 4)〉

A6.C2 51 〈(0, 7, 3)(1, 2, 6)(4, 8, 5), (0, 5, 1, 6, 2, 4, 7, 3)(8, 9)〉
(12, 18) ((E9 ⋊Q8)⋊ C3)⋊ C2 24 〈(2, 8)(3, 11)(6, 9)(7, 10), (0, 1, 9)(2, 4, 11)(3, 7, 5)(6, 10, 8)〉
(13, 234) PSL(3, 3) 130565 〈(3, 9)(5, 7)(8, 10)(11, 12), (0, 1, 2, 3)(4, 11, 9, 8)(5, 12)(6, 10)〉

(21, 5040) PSL(3, 4)⋊ S3 ?
〈(0, 16, 8, 9)(1, 4, 3, 20, 5, 13, 18, 19)(2, 6, 10, 7, 14, 17, 11, 12)
(0, 17, 7, 11, 10, 5, 4, 19)(1, 2, 16, 14, 15, 9, 12, 3)(8, 13, 18, 20)〉

Table 8: Strength 4 PSCAs that are permutation groups

of Sv and used the backtracking process described above in order to search over each conjugacy class. We have
also performed ad hoc computations on some doubly transitive permutation groups. Some of those groups
had too many conjugates to search exhaustively, so we randomly sampled conjugates instead. Our results are
recorded in two tables. The first, Table 7, records permutation groups that are strength 3 PSCAs but not
strength 4 PSCAs. The second table, Table 8, records permutation groups that are strength 4 PSCAs but not
strength 5 PSCAs. In Table 7, a representative of each PSCA-isomorphism class of each group is presented. As
a crosscheck, we note that these results agree with those presented in Table 4, which were found by a completely
separate method. For reasons of space, in Table 8 we do not list representatives of each PSCA-isomorphism
class. Rather, we just give the number of such classes (or a ? when random sampling of conjugates was used
instead of an exhaustive search).

We know of few permutation groups that are PSCAs of strength 5, other than symmetric and alternating
groups. These necessarily include the 5-transitive Mathieu groups M12 and M24. Perhaps more interestingly,
we also found that

〈(1, 7)(2, 8)(3, 4)(6, 9), (0, 2, 10, 6)(3, 7, 5, 8)〉 (2)

is one of 108 presentations of the (4-transitive) Mathieu group M11 in S11 that form PSCAs of strength 5. No
subgroup of S11 forms a PSCA of strength 4, other than those isomorphic to M11, A11 or S11. Similarly,

〈(2, 11, 8, 6)(3, 10, 4, 5), (0, 1, 2, 3, 4, 5, 11, 6, 7, 10, 8), (0, 9)(1, 8)(2, 5)(3, 6)(4, 7)(10, 11)〉 (3)

is one of 161 presentations of the (5-transitive) Mathieu group M12 in S12 that form PSCAs of strength 6.
The presentations of M11 are conjugates of each other, and similarly for M12. If we let r ∈ Sv be the reverse
permutation, i.e. r(i) = (v − 1 − i), then for a permutation group G 6 Sv, we will find that G and rGr are
isomorphic in terms of sequence coverage. Hence it is plausible that we may find presentations of the same group
that are isomorphic as PSCAs. Indeed, this is the case for M11 where the 108 presentations that form PSCAs
of strength 5 can be reduced to 54 isomorphism classes. Meanwhile, the presentation of M12 given in (3) is the
only one of the 161 strength 6 PSCAs for which conjugation by r leaves the underlying set of permutations
unchanged. Thus, these 161 presentations that form PSCAs of strength 6 reduce to 81 isomorphism classes.

For the larger Mathieu groups we were unable to do exhaustive computations and again relied on random
sampling. We found that

〈(0, 1, 20, 4, 2)(3, 8, 9, 12, 13)(5, 16, 10, 11, 18)(6, 7, 15, 19, 14),

(0, 13, 16, 5, 10)(1, 14, 19, 4, 2)(3, 18, 7, 12, 15)(9, 21, 11, 20, 17)〉
(4)

is a presentation of the (3-transitive) Mathieu group M22 in S22 that forms a PSCA of strength 5. Also

〈(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22),

(0, 23)(1, 22)(2, 11)(3, 15)(4, 17)(5, 9)(6, 19)(7, 13)(8, 20)(10, 16)(12, 21)(14, 18),

(2, 16, 9, 6, 8)(3, 12, 13, 18, 4)(7, 17, 10, 11, 22)(14, 19, 21, 20, 15)〉

(5)

is a presentation of the (5-transitive) Mathieu group M24 in S24 that forms a PSCA of strength 6. Its point
stabilisers provide PSCAs of strength 5 in S23 that are presentations of M23.

Table 7 also includes the PSCA(16, 3, 16) found earlier in the section, and a PSCA(19, 3, 19). Exhaustive
searches were not undertaken for either of these parameter sets. However, a partial search found 17116 and 232
isomorphism classes, respectively, of PSCA(16, 3, 16) and PSCA(19, 3, 19) that are conjugate to the examples
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given in the table. Note that since isomorphism includes the option to freely permute symbols, the only material
effect of conjugation in this context is to permute the columns of a PSCA.

A striking feature of results summarised in Table 7 and Table 8 is that there are a number of cases of non-
isomorphic PSCAs being produced by similar sets of generators. For example, starting from the PSCA(6, 4, 1), if
we conjugate the generating set by the transposition (2, 5) we reach a PSCA(6, 3, 4). A similar thing happens if
we use the transposition (4, 5). Conjugating the generating set by a transposition has the effect of interchanging
two columns of the PSCA (and then exchanging two symbols to once again achieve the property of having one
row equal to the identity permutation).

Summarising our bounds on g(v, t) derived from group presentations, we have:

Theorem 4.7.

• For v 6 11, we have g(v, 5) 6 66,

• For v 6 12, we have g(v, 4) 6 18, g(v, 5) 6 792 and g(v, 6) 6 132,

• For v 6 13, we have g(v, 4) 6 234,

• For v 6 21, we have g(v, 4) 6 5040, and

• For v 6 22, we have g(v, 5) 6 3696 and hence g(v, 4) 6 18 480.

• For v 6 23, we have g(v, 5) 6 85 008 and hence g(v, 4) 6 425 040.

• For v 6 24, we have g(v, 6) 6 340 032 and hence g(v, 5) 6 2 040 192 and g(v, 4) 6 10 200 960.

Proof. Examples of a PSCA(12, 4, 18), a PSCA(13, 4, 234) and a PSCA(21, 4, 5040) are given in Table 8. Also, we
gave a PSCA(11, 5, 66) in (2), a PSCA(12, 6, 132) in (3), a PSCA(22, 5, 3696) in (4) and a PSCA(24, 6, 340 032)
in (5), from which we derived a PSCA(23, 5, 85 008).
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