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COMPLEXITY CLASSES OF POLISHABLE SUBGROUPS

MARTINO LUPINI

ABSTRACT. In this paper we further develop the theory of canonical approzimations of Polishable subgroups of
Polish groups, building on previous work of Solecki and Farah—Solecki. In particular, we obtain a characterization of
such canonical approximations in terms of their Borel complezity class. As an application we provide a complete list
of all the possible Borel complexity classes of Polishable subgroups of Polish groups or, equivalently, of the ranges of
continuous group homomorphisms between Polish groups. We also provide a complete list of all the possible Borel
complexity classes of the ranges of: continuous group homomorphisms between non-Archimedean Polish groups;
continuous linear maps between separable Fréchet spaces; continuous linear maps between separable Banach spaces.

1. INTRODUCTION

The goal of this paper is to exactly pin down the possible Borel complexity classes of Polishable subgroups of
Polish groups. Most of the equivalence relations studied in the context of Borel complexity theory (and mathematics
in general) arise as orbit equivalence relations associated with continuous actions of Polish groups on Polish spaces.
Many of these actions can be seen as the (left) translation action associated with a continuous group homomorphism
¢ : H — G between Polish groups. In such a case, the image ¢ (H) of ¢ inside of G is Borel, and the potential
complezity class (in the sense of Louveau [Lou94]) of the orbit equivalence relation associated with the translation
action of H on G is essentially the same as the Borel complexity class of ¢ (H) of ¢ inside of G; see Theorem 3.3
for a precise statement. It is thus an interesting problem to determine what are the possible values for the Borel
complexity class of such a subgroup.

The study of Polishable subgroups of Polish groups, which are precisely the ranges of continuous homomorphisms
between Polish groups, has been undertaken by several authors over a number of years. The problem of determining
their complexity has been considered as early as the 1970s, when Saint-Raymond proved that there exist Polishable
subgroups of RY that are arbitrarily high in the Borel hierarchy [SR76]. A construction of arbitrarily complex
non-Archimedean Polishable subgroups of Z) was presented by Hjorth, Kechris, and Louveau in [HKL98]. Hjorth
constructed in [HjoO6] arbitrarily complex Polishable subgroups of any uncountable abelian Polish groups. Farah
and Solecki in [FS06], building on previous work of Sain-Raymond in the context of separable Fréchet spaces [SR76],
related the least multiplicative Borel class containing a given Polishable subgroup to the length of the canonical
approximation of that Polishable subgroup as in [Sol99, Sol09].

In this paper, we refine the analysis from [FS06] by considering not only the multiplicative classes in the Borel
hierarchy, but also the additive and difference classes. By relating the Borel complexity class of a Polishable subgroup
to its canonical approximation, we completely characterize the possible Borel complexity classes of Polishable
subgroups of Polish groups.

Theorem 1.1. If H is a Polishable subgroup of a Polish group G, then the Borel complexity class of H is one of
the following: H(1J+>u 2(1)+>\+17 D(H?+A+n+1), H?H\Jrnﬁ for X < w either zero or a limit ordinal, and n < w.
Furthermore, each of these classes is the Borel complezity class of a Polishable subgroup of ZN.

Theorem 4.1 from [HKL98, Section 5] shows that the complexity class D(IT{ 4+ap1) where X is either zero or a
countable limit ordinal cannot arise in the context of Theorem 1.1 if one demands H to be non-Archimedean. In
this case, we have the following characterization.
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Theorem 1.2. If H is a non-Archimedean Polishable subgroup of a Polish group G, then the Borel complexity
class of H in G is one of the following: H(1J+>u E(1J+>\+17 D(H?JFAHLH), H?H\JFHH for X < w, either zero or a limit
ordinal, and n < w. Furthermore, each of these classes is the complexity class of a non-Archimedean Polishable
subgroup of ZN.

The existence assertions in Theorem 1.1 and Theorem 1.2 are proved by providing a unified approach to the
constructions in [SR76] and [HKL98, Section 5] of arbitrarily complex Polishable subgroups, together with a careful
analysis of their canonical approximations in the sense of Solecki [Sol99, Sol09].

Theorem 1.1 entails in particular a negative answer to a Question 6.3(1) from [Dinl7]. Let X be a separa-
ble Banach space with a Schauder basis (z5),cy. Then the collection coef(X, (z,)) of (An)nen € RY such that
> nen AnTn converges in X is a Polishable subgroup of RY. Question 6.3(1) asks whether there is an example of
such a Polishable subgroup that is Ag and not D(Eg). By Theorem 1.1, a Ag Polishable subgroup of a Polish
group must be D(X9).

We also apply the techniques of this paper to provide a complete characterization of the Borel complexity classes
of the ranges of continuous homomorphisms between separable Fréchet spaces and between separable Banach spaces.

Theorem 1.3. The complexity classes in Theorem 1.1 form a complete list of all the Borel complexity classes of
the ranges of continuous linear maps between separable Fréchet spaces.

Theorem 1.4. The following is a complete list of all the Borel complezity classes of the ranges of continuous linear
maps between separable Banach spaces: TIY, 2(1)+/\+1, D(H(l)+/\+n+1), H(l)+)\+n+2 for A < wy either zero or a limit
ordinal, and n < w.

Continuous linear maps with arbitrarily complex range, with a fixed separable Banach space or separable Frechet
space as target, were constructed in [DG08, Mal08§].

The rest of this paper is organized as follows. In Section 2 and Section 3 we recall some definitions and known
results concerning Polishable subgroups and their Borel complexity class. In Section 4 we recall the definition of the
canonical approximation of a Polishable subgroup, whose elements we call Solecki subgroups as they were originally
described by Solecki in [Sol99]. In Section 5, building on the work of Farah and Solecki, we refine the analysis
from [FS06] to characterize the Solecki subgroups in terms of their Borel complexity class. This is then applied in
Section 6 to obtain the characterization of complexity classes of Polishable subgroups as in Theorem 1.1. Section 7
shows that the length of the canonical approximation, called the Polishable rank in [FS06], coincides with a notion
of rank originally considered by Saint-Raymond in [SR76] in the context of separable Fréchet spaces. The existence
assertions in Theorem 1.1 and Theorem 1.2 are proved in Section 8. Finally, Section 9 and Section 10 contain a
proof of Theorem 1.3 and Theorem 1.4, respectively.

Notation. In this paper, we use N to denote the set of positive integers excluding zero. As usual, we let w be the
first infinite ordinal, which can also be seen as the set of positive integers including zero.

Acknowledgments. We are grateful to Su Gao, Alexander Kechris, André Nies, and Stawomir Solecki for useful
comments and remarks on a preliminary version of this manuscript.

2. POLISHABLE SUBGROUPS

A Polish space is a second countable topological space whose topology is induced by a complete metric. A
Polish group is a group in the category of Polish spaces, namely a Polish space that is endowed with a continuous
group operation such that the function that maps each element to its inverse is also continuous (in fact, the latter
requirement holds automatically; see the remark after [Kec95, Corollary 9.15]). A subgroup H of a Polish group G
is Polishable if it is Borel and there exists a Polish group topology on H whose open sets are Borel in G. Notice
that such a Polish topology on H, if it exists, it is unique by [Kec95, Theorem 9.10]. In the following, we will regard
H as a Polish group with respect to its unique Polish group topology, which is in general finer than the subspace
topology induced from G. Equivalently, H is a Polishable subgroup of GG if and only if there exists a Polish group H
and a continuous group homomorphism ¢ : H — G with image equal to H. Noticing that one can assume without
loss of generality that ¢ is an injection, the equivalence of the two definitions follows from [Kec95, Theorem 9.10]
and the fact that if f: X — Y is an injective Borel function between standard Borel spaces, then f(A) is a Borel
subset of Y and f|4 is a Borel isomorphism between A and f(A) [Kec95, Theorem 15.1]. If G is a Polish group
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and H is a Polishable subgroup of G, then G is a Polish H-space with respect to the left translation action of H
on G [BK96, Section 2.2]. We will denote by EIG{ the corresponding orbit equivalence relation. Recall that a Polish
group G is non-Archimedean if it admits a basis of neighborhoods of the identity consisting of open subgroups; see
[Gao09, Theorem 2.4.1] for equivalent characterizations.

Lemma 2.1. Suppose that G is a Polish group. Let (G), ., be a sequence of Polishable subgroups of G. Then
Gu = (yew Gn is a Polishable subgroup of G. If Gy is non-Archimedean for every n € w, then G is non-
Archimedean as well. If A C G, is such that A is dense in G, for every n € w, then A is dense in G, .

Proof. We have that G, is the image of the Polish group

7 = {(In)new IS H Gp:Vnew, o, —xn+1} C HG”

new new
under the continuous injective group homomorphism Z — G, (z,),,.,, — 2o. This shows that G, is Polishable. If
G, is non-Archimedean for every n € w, then Z is non-Archimedean, and hence G, is non-Archimedean as well.
By the above, the sets of the form W NG, where W is a neighborhood of the identity in G,, for some n € w, form a
basis of neighborhoods of the identity in G,. Thus, if A is dense in G,, for every n € w, then A is dense in G,,. 0O

3. POTENTIAL COMPLEXITY

A complezity class T' is a function X +— I' (X) that assigns to each Polish space X a collection I' (X') of Borel
subsets, such that if X,V are Polish spaces and f : X — Y is a continuous function, then f~1(A) € I' (X) for every
A eT (Y). For a complexity class T, we let D (T') be the complexity class consisting of differences between sets in
I'; see [Kec95, Section 22.E] where it is denoted by Dy (I'). We let T' be the dual complexity class of T', such that
I' (X) comprises the complements of the elements of T' (X). We say that T is self-dual if I' = I". If T" is a complexity
class that is not self-dual, then we say that T is the complexity class of A C X if A € I'(X) and A ¢ T'(X). We
will be mainly interested in the complexity classes =%, TI2, A% and D(ITY) for a € wi; see [Kec95, Section 11.B].

If X is a standard Borel space and F is an equivalence relation on X, then E has potential complexity I' if
there exists a Polish topology 7 on X that induces the Borel structure of X such that £ € T'(7 x 7) [Lou94].
This is equivalent to the assertion that there exists a Borel equivalence relation F' on a Polish space Y such that
F eT (Y xY) and E is Borel reducible to F; see [Gao09, Lemma 12.5.4]. The following result is essentially proved
in [HKL98, Section 5].

Proposition 3.1 (Hjorth-Kechris—Louveau). Suppose that G is a Polish group, and X is a Polish G-space. For
x € X, denote by [x] the corresponding G-orbit. Let T’ be a complexity class, and assume that the orbit equivalence
relation Eé is potentially T'. Suppose that « is a countable ordinal.
(1) If T is the class TIS for a > 2, X for a > 3, or D(I1Y) for a > 2, then {x € X : [z] € T} is comeager in
X.
(2) IfT is the class D(TIY) for o > 3, then {x € X : [x] is either TIO, or B2} is comeager in X.

Proof. Fix a countable open basis {U; : i € w} of G. Below we adopt the Vaught transform notation as in [Gao09,
Section 3.2]. By [Kec95, Theorem 8.38], there exists a dense G set W C X such that E& N(W x W) € T (W x W).
Notice that W* is also a dense G5 subset of X. Fix € W N W*. Thus, we have that [z] "W € T(W). If I = X9
for a > 3, then [z] "W = AN W for some A € X% (X). Then we have that [z] = ([z] " W)* = (AnW)* is 0
in X. fT' =T for @ > 2, then [z] N W = BNW for some B € I (X). Then [z] = (WN[z])* = (BNW)"
is T2 in X. If ' = D(IT2) for a > 2, then WN[z] = ANBNW where A € 32 (X) and B € TI%(X). Thus,
[z] = AAN(BNW)* € D(IT?).

If T' = D(ITY) for a > 3, then W N [z] = (ANW) U (BNW), where A € X2 (X) and B € TI° (X). Thus,
[2] = (ANW)® or [z] = (BNW)". Hence, either [z] is X0 or [2] is TI. If T' = D(I1Y), then AN W as above is
D(II9) in X, and hence [z] is D(IT3) in X. O

A similar proof as Proposition 3.1 gives the following.

Lemma 3.2. Suppose that G is a Polish group, and H is a Polishable subgroup of G. Let o be a countable ordinal.
If H is D(ITI2), then H is either TI°. or 0.



4 MARTINO LUPINI

Proof. Adopt the notation of the Vaught transform with respect to the left translation action of H on G. We have
that H = AU B where A is 3° and B is TI.. If x € H, then we have that either x € A® or x € B*. Since A® and
B* are H-invariant, we have that either H C A% or H C B*. Since A® and B* are contained in H, we have that
either H = A® or H = B*. This concludes the proof. O

Applying Proposition 3.1 to the left translation action associated with a Polishable subgroup of a Polish group,
we obtain Items (1) and (3) of the following result. The proof of Item (2) is postponed to Section 6.

Theorem 3.3. Suppose that G is a Polish group, and H is a Polishable subgroup of G. Denote by ESG the
corresponding coset equivalence relation.
(1) ES is potentially Hg if and only if H is closed G.
(2) E$ is potentially 9 if and only if H is D(II9) in G.
(8) Let T be one of the following complexity classes: Eg for a # 2, Hg, and D (Hg). Then E$ is potentially
' in G if and only if H is T in G.

Proof. (1): Suppose that ES is potentially I1I). By [Gao09, Lemma 12.5.3] we have that E§ is smooth. Thus, H
is closed by [Sol09, page 574].

(2): The forward implication is a particular instance of Proposition 3.1, while the converse implication follows
from Lemma 6.5 in Section 6.

(3): Only the forward implication requires a proof. If I' = 39 then E$ has countably many classes by [Gao09,
Lemma 12.5.2]. Thus, H has countable index in G, and hence it is nonmeger. Therefore, H is open by [Gao09,
Theorem 2.3.2]. If I' is II{ or ITJ or D (II}), then H € II{ (G) C T (G) by Part (1). If T is II), or B, for a > 3, or
D (Hg) for a > 2, the conclusion follows from Proposition 3.1. 0

We now recall some results concerning the possible complexity classes of Polishable subgroups. The following
proposition is a reformulation of [FS06, Corollary 3.4].

Proposition 3.4 (Farah—Solecki). Suppose that G is a Polish group, and H is a Polishable subgroup of G. If
A < wi 18 either zero or a limit ordinal, and H is H?JFAH in G, then H is H(1J+>\ in G.

The following proposition is a consequence of [HKL98, Theorem 4.1] and Proposition 3.1.

Proposition 3.5 (Hjorth-Kechris—Louveau). Suppose that G is a Polish group, and H is a non-Archimedean
Polishable subgroup of G'. Suppose that A < wy is either zero or limit. If H is 2(1)+)\+2, then H is E?JFAJA.

4. SOLECKI SUBGROUPS

Suppose that G is a Polish group, and H is a Polishable subgroup of G. Then H admits a canonical approximation
by Polishable subgroups indexed by countable ordinals. As these were originally described by Solecki in [Sol99], we
call them Solecki subgroups of G associated with H. They have also been considered in [Sol09, FS06].

Lemma 2.3 from [Sol99, Lemma 2.3] implies that G has a smallest Hg Polishable subgroup containing H, which
we denote by s (G). One can explicitly describe s (@) as the II3 subgroup of G defined by

ﬂ U ZQVG n VGZl
V zo,z1€H
where V ranges among the open neighborhoods of the identity in H, and V< is the closure of V inside of G. Tt is
proved in [Sol99, Lemma 2.3] that s(G) satisfies the following properties—see also [Tsa06, Lemma 4.5] and [FS06,
Section 3]:
e H is dense in s (G);
e a neighborhood basis of z € sf(G) consists of sets of the form Wz n sH(G) where W is an open neigh-

borhood of the identity in H;
e if A C G is II3 and contains H, then AN s (G) is comeager in the Polish group topology of s (G).

Lemma 4.1. Suppose that G is a Polish group, and H is a non-Archimedean Polishable subgroup of G. Then

a neighborhood basis of the identity in si(G) consists of the sets of the form wen sH(G) where W is an open
subgroup of H. In particular, st (G) is non-Archimedean.
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Proof. Since H is non-Archimedean, the first assertion follows from the remarks above. If W is an open subgroup
of H, then wen sH(Q) is a subgroup of si(G) with nonempty interior, whence it is an open subgroup by Pettis’
Theorem [Pet50, Corollary 3.1]. Therefore, the second assertion follows from the first one. g

A similar argument as in the proof of [Sol99, Lemma 2.3] gives the following,.

Lemma 4.2. Suppose tha G is a Polish group, and N is a Polishable subgroup of G. Let H be a Polishable subgroup
of G such that:

(1) N C H and N is dense in the Polish group topology of H;
(2) for every open neighborhood V' of the identity in N, VG N H contains an open neighborhood of the identity
i H.
IfACG is Hg and contains N, then AN H is comeager in H. In particular, H C s (G). If H is furthermore
13, then H = sV (Q).

Proof. Tt suffices to consider the case when A is X9. In this case, there exist closed subsets Ly, of G for k € w such
that A = (J,c,, Lx. Suppose that U C H is a nonempty open set. Since N is dense in H, U N N is a nonempty
open subset of N. By the Baire Category Theorem, there exists ko € w such that Ly, NU N N is not meager in N.
Thus, there exist x € N and an open neighborhood V' of the identity in IV such that

Va C Ly, NUNN.

Since Ly, is closed in G, we have that vz© C Lyi,. By (2), there is an open neighborhood W of the identity in H
such that Wx C WG C Ly,. This shows that x € U is in the interior of Ly, " H C AN H. Since this holds for
every nonempty open subset of H, we have that AN H contains a dense open subset of H, and hence it is comeager
in H. This concludes the proof. O

H
a

The sequence of Solecki subgroups st (G) for a < wy of G associated with H is defined recursively by setting:

o sil(@)=H"
o s (G) =5l (sH(Q)) for a < wy;

o si(G) = MNp<x s§ (G) for a limit ordinal A < w;.

Using Lemma 2.1 at the limit stage, one can prove by induction on a < wy that s (G) is a Polishable subgroup of
G, and H is dense in s2 (G). Furthermore, by Lemma 4.1, if H is non-Archimedean, then sZ (G) is non-Archimedean
for every 1 < o < wy. It is proved in [Sol99, Theorem 2.1] that there exists o < w; such that s (G) = H. We call
the least countable ordinal o such that sX(G) = H the Solecki rank of H in G.

One can define the Polish groups s (G) solely in terms of H endowed with the subspace topology inherited from
G. Indeed, si(G) can be seen as the completion of H with respect to a suitable metric that induces the subspace
topology inherited from G; see [S0l99, Section 2.1]. Using Lemma 4.2 one can describe the Solecki subgroups of

products, as follows.

Lemma 4.3. Suppose that, for every n € N, G,, is a Polish group, and N, is a Polishable subgroup. Define
G = HnEw G, and N =] N,,. Then we have that

new

for every v < wi.
Proof. Tt suffices to consider the case when v = 1. In this case, set
H, = sV (G,)

for n € w, and

H::HHn.

necw
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Then we have that H is a Hg Polishable subgroup of G, N C H, and N is dense in H. If V' is an open neighborhood
of the identity in N, then there exist n € w and open neighborhoods V; of the identity in N; for i < n such that V'
contains

HVi:{xEN:Vi<n, x; € Vit

<n
For ¢ < n, we have that Vl-Gi N H; contains an open neighborhood W; of the identity in H;. Therefore, we have that
VG N H contains

HWi:{xEH:Vi<n, x; € Wi,

<n
which is an open neighborhood of the identity in H. The conclusion thus follows from Lemma 4.2. O

5. COMPLEXITY OF SOLECKI SUBGROUPS

Suppose that G is a Polish group, and H is a Polishable subgroup of G. For a complexity class I', we define
I'(G)|u to be the collection of sets of the form ANH for A € T'(G). The following results are essentially established
in [FS06]. In the statements and proofs, we adopt the Vaught transform notation in reference to the action of H
on G by left translation; see [Gao09, Section 3.2].

Lemma 5.1. Suppose that G is a Polish group, H is a Polishable subgroup of G, and o, f < wy are ordinals. Then
2(1)+B (Sg(G)) < 2(1)+a+B(G)|sg(G)

and

09, 5 (s2(@)) ST, 5(G)lsm ()

Proof. Tt is proved in [FS06, Theorem 3.1] by induction on « that X (sH(@)) ¢ 20,.(G sz (ay- By taking

complements, we have that II{ (sZ(G)) C H?+Q(G)|ng(g). This is the case § = 0 of the statement above. The rest
follows by induction on . O

Lemma 5.2. Suppose that G is a Polish group, H is a Polishable subgroup of G, a, B < wr, andU C H is open i H.
IfAe 2(1)+a+[3(G) and B € H1+Q+B(G), then ARV NsH(G) € 214—,8 (sH(@)), and BV N s (G) € Hl_,_,@ (sH(@)).

Proof. When 8 = 0, the assertion about A is the content of Claim 3.3 in the proof of [FS06, Theorem 3.1]. The
assertion about B follows by taking complements. This concludes the proof when 8 = 0. The case of an arbitrary
B is established by induction on 8 using the properties of the Vaught transform; see [Gao09, Proposition 3.2.5]. O

Corollary 5.3. Suppose that G is a Polish group, H is a Polishable subgroup of G, and a,f < wy1. Let L be a
Polishable subgroup of G containing H. If L € El+a+ﬁ(G), then LN s (G) € 21+ﬁ ( @) IfLe HHaJrﬁ(G)
then LN s (G) € H1+5 (sH(@). If L € D(HHaJrﬁ) (@), then LN sH(GQ) € D(H1+5) (sH(@)).

Proof. Observe that L = L* = L. Thus, the first two assertions follow immediately from Lemma 5.2. If L = ANB
where Ais 39, 5., in G and BisII{, 5, in G, then we have that LNs (G) = AANB*NsH (G) where A2NsH (G) €

21+B (sH#(G)) and BN sH(G) € H?Jﬁ@ (sH(G)) by Lemma 5.2. Hence, LN sf(G) € D(HH,@) (sH(@)). O

Recall that, by Proposition 3.4, if a is either zero or a countable limit ordinal, and H is a TI) +aqt1 Polishable
subgroup of a Polish group, then H is 1'[(1) tar

Theorem 5.4. Suppose that G is a Polish group, H is a Polishable subgroup of H, and o < wy1. Then s (Q) is
the smallest H(1)+a+1 Polishable subgroup of G containing H .

Proof. Tt is established in the proof of [FS06, Theorem 3.1] that s, (G) is a II{, ,; Polishable subgroup of G. We
now prove the minimality assertion by induction on a. For a = 0 this follows from the fact that s}(G) = "e.

Suppose that the conclusion holds for . We now prove that it holds for o + 1. Let L be a IT{ +ato Polishable
subgroup of G containing H. Thus, L N s (G) is a H(1)+a+2 Polishable subgroup of s(G). Then by Corollary 5.3
we have that LN s#(G) € II3 (s (H)). As sH 1 (G) = s (s2(G)) is the smallest I} (sZ (G)) Polishable subgroup
of sf(G), this implies that s ,(G) C LN sH(G) C L.
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Suppose that « is a limit ordinal and the conclusion holds for every 8 < «. Fix an increasing sequence («;,) in
a such that o = sup,,a,. Suppose that L is a H(l) 1o Polishable subgroup of GG containing H. Since L is H(l) Lo in

G, we can write L =, . A, where, for every n € w, 4,, € 1'[(1)+an (G). Then by Lemma 5.2 we have that

necw
A Nsg (G) €Y (50, (G)) -

Since H C L C A, we have that H C A;, N st (G). Since H is dense in sq,, (H), this implies that s¥ (G) C A%,
Therefore, we have that
sl =sf@c N4, =L =L
new new

This shows that sX(G) C L, concluding the proof. O

Lemma 5.5. Suppose that G is a Polish group, H is a Polishable subgroup of G, and o < wy. Let L be a Polishable
subgroup of sH(G).

(1) If L € TI9 (%g (@), then L € H$+a+2§c).

(2) If L € D(IL)(s{(G)), then L € D(IT{ o 1)(G).

(3) If L € X9 (sH(G)) and « is either zero or limit, then L € 2001 (G).

Proof. By Lemma 5.1 we have that
Hg (SE(G)) < H?+Q+Q(G)|55(G)
and
D(I03) (5 (@) € D (MY 041) (G)]sr -
Furthermore, s (G) € I}, | (G) by Theorem 5.4. Therefore, we have that

Hg (sf(G)) - H(1)+a+2(G)|sg'(G) - H(1)+a+2(G)
and
D(IL) (s (G)) € D (T 041) (G () € D (I 1041) (G).
This concludes the proof of (1) and (2).

When « is either zero or limit, we have by Theorem 5.4 and Proposition 3.4 that s (G) € TIY_ . (G) C =Y. (G).
Therefore, in this case we have that

Z3(2) (Sg(G)) C 2(1)+a+1(G)|s§(G) - 2(1)-|-a-|-1(G)-
This concludes the proof of (3). O

Lemma 5.6. Suppose that, for every k € w, Gy, is a Polish group and Hy, is a Polishable subgroup of Gy. Define
G =[liew, Gk and H =[], ., Hi. Assume that, for every k € w, Hy, is 10 in Gy, and for every 3 < a there exist
infinitely many k € w such that Hy, is not Hg in Gy. Then Hg is the complezity class of H in G.

Proof. Write H = [],c, Hx € [, G- Clearly, H is I°. By [Kec95, Theorem 22.10], for every k € w and 8 < «
such that Hy, is not H%, Hy is Eg—hard [Kec95, Definition 22.9]. Therefore, H is £%-hard, and hence H is not X%
by [Kec95, Theorem 22.10] again. O

Lemma 5.7. Suppose that, for every k € w, Gy is a Polish group, Hy, is a Polishable subgroup of Gy, and o < wy.
Define G =[], Gr and H = [],c,, Hr. If Hy has Solecki rank o in Gy for every k € w, then H(l)-l-a-i-l is the
complezity class of H in G if a is a successor ordinal, and H?Jra is the complezity class of H in G if « is either
zero or a limit ordinal.

Proof. Define A = 14+ a+ 1 if « is a successor ordinal, and A = 1 + « if « is either zero or a limit ordinal. By
Lemma 4.2, for every k € w, Hy, is Hg but not H% for 8 < Xin Gg. Therefore, by Lemma 5.6, H()J\ is the complexity
of H in G. O
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6. COMPLEXITY OF POLISHABLE SUBGROUPS

The goal of this section is to establish the following theorem, characterizing the possible values of the complexity
class of a Polishable subgroup of a Polish group.

Theorem 6.1. Suppose that G is a Polish group, and H is a Polishable subgroup of G. Let « = A+n be the Solecki
rank of H in G, where A < wy s either zero or a limit ordinal and n < w.

(1) Suppose that n = 0. Then II,  is the complexity class of H in G.
(2) Suppose that n > 1. Then:
(a) if H € TIJ (s¥,,_1(@)) and H ¢ D(II3) (s8.,,_1(@)), then I, .1 18 the complezity class of H in
G;
(b) if n>2 and H € D(II9) (s8,,_1(G)), then D(I1Y,,.,) is the complexity class of H in G;
(c) ifn =1, H € D(I19) (s¥(@)), and H ¢ =) (s8(G)), then D (H(1)+>\+1) is the complexity class of H
in G;
(d) ifn=1and H € Y (s¥(G)), then £Y,,,, is the complezity class of H in G.
Furthermore, if H is non-Archimedean then the case (2c) is excluded.
Theorem 1.1 and Theorem 1.2 are immediate consequences of Theorem 6.1. We will obtain Theorem 6.1 as a
consequence of a number of complexity reduction lemmas. We fix a Polish group G and a Polishable subgroup H
of G. We adopt the Vaught transform notation, in reference to the left translation action of H on G.

Lemma 6.2. If H is AS, then H is D(II3).

Proof. Since H is I in G, we have that H = s (G). Thus, H has a countable basis {V}, : n € w} of neighborhoods
of the identity such that VS NH =1V, for every n € w. Indeed, if {W,, : n € w} is a countable basis of open
neighborhood of the identity in H, then {Wf NH :n € w} is a countable basis of neighborhoods of the identity in
H.ItV, :WSQH, then we have that W,, CV,, QWS and hence VS :Wf and V,, :VS NH.

Let also {Up: £ € w} be a countable basis for the Polish group topology of H. Since H is Eg, we can write
H = Uy, Fr where Fy is I3 in G. Thus, we have that H = Uk rew F;U where, by Lemma 5.2, F;'¥ is closed

in H and Hg in G. Hence, without loss of generality we can assume that Fj is closed in H for every k € w. By
the Baire Category Theorem, we can assume without loss of generality that V) C Fy. Fix a countable dense subset
{zm :m €w} of H. Since H = s (@), we have that, for + € G, x € H if and only if for every k € w there exist

—G =G
mg, m1 € w such that xzp,, € V), and z,,,x € V..
. . . =G
We claim that, for z € G, x € H if and only (1) there exists m € w such that zz,, € V|, and (2) for all m € w,

it vz, € Vf, then 2, € Fy. This will witness that H is D(IL9) in G.
Indeed, since {2, : m € w} is dense in H, if z € H, then we have that there exists m € w such that zz,, € Vj C

—G . . —G —G

V. Furthermore, if m € w is such that zz,, € V, then we have zz,, CVy N H =V, C Fy. Conversely suppose
. —G . —=G

that there exists mg € w such that zz,,, € V;, and for all m € w, if zz,, € Vj then x € Fy. Then we have that

TZm, € Fo € H and hence z € H. ]

Lemma 6.3. If H is Hg in G, then H has a countable basis of neighborhoods of the identity consisting of sets that
are in TI3 (G) |u.
Proof. Define H = s (G). By Theorem 5.4 we have that H = s’ (G) = sH(H). Thus a neighborhood basis of the

identity in H consists of sets of the form Wz A H where W is an open neighborhood of the identity in H. We
have that, by Lemma 5.1,

——H
Wz eIL] (s(G)) C I (G) |-
Therefore, i
Wz nH eIl (G)|n.
This concludes the proof. O

Lemma 6.4. Suppose that H is 3 in G, and define H = s (G). Then we have that:



COMPLEXITY CLASSES OF POLISHABLE SUBGROUPS 9

(1) H = s{'(H);

(2) We can write H as the union of an increasing sequence (Fy,)
for every k € w;

(8) H has a countable family of neighborhoods of the identity consisting of sets that are in TI9 (G) N IIY(H).

rew Such that Fi is I1) in G and closed in H

Proof. (1): This is a consequence of Theorem 5.4.
(2): We can write H = J,, Fr where Fj, is ITJ in G. Fix a countable basis {V;, : n € w} for the topology of H.

Let also {zm, : n € w} be a countable dense subset of H. Then we have that H = {J, ,.c.,

5.2, Fy, Y is closed in H and Hg in G. Thus, without loss of generality we can assume that Fy, is closed in H for
every k € w.

(3): Let (Fi),e,, be as in (2). By the Baire Category Theorem, we can assume without loss of generality that
there exists an open neighborhood V' of the identity in H such that V C Fj.

Fix an open neighborhood W of the identity in H contained in V. By Lemma 6.3, there exists a neighborhood
U of the identity in H that belongs to II3 (G) | and such that U C W. Since U C W C V C Fy and F € TI9 (G),
we have that U e II3 (G).

Let now U; C U be an open neighborhood of the identity in H such that U1U; C U and Uy € Hg (G). Then we
have that U; € U*Ut and U*V € TS (G) NTIY(H) by Lemma 5.2. This concludes the proof that H has a countable
basis of neighborhoods of the identity consisting of sets that are in TI3 (G) N TIY(H). O

Fy Vo where, by Lemma

Lemma 6.5. If H is Zg in G, then the coset equivalence relation Eg is potentially Zg, and H 1is D(Hg) n G.

Proof. By Lemma 6.4, we can fix a countable basis {V,, : m € w} of neighborhoods of the identity in H that are
1) in G and closed in H. Fix also a countable dense subset {hy : k € w} of H. Let (Un),c., be an enumeration
of the countable set {V,,hi : m, k € w}. We have that for every nonempty open subset W of H there exists n € w
such that U,, C W.

Let H x G be the product Polish group. By [BK96, Theorem 5.1.8] applied to the continuous action a : HxG ~ G
defined by (h,g) -z = hxg~?!, together with [BK96, Theorem 5.1.3], there exists a Polish topology t of G such that
the action a : Hx G ~ (G, t) is continuous, U, is t-closed for every n € w, t is finer than the Polish group topology of
G, and it generates the same Borel structure as the Polish group topology of G. Since the action a : H x G ~ (G, t)
is continuous, we have that the left translation action H ~ (G,t) and the right translation action (G,t) v~ G are
continuous.

Fix a metric d on G compatible with ¢. For a closed subset C of G and = € G we define

d(z,C) =1inf{d(z,c):ce€ C}.

Let K (G,t) be the space of t-closed subsets of G. We regard K (G, t) as endowed with the Wijsman topology, which
is obtained by declaring a net (C;) to converge to C' if and only if, for every z € X, (d (C;, x)) converges to d (C, x)
in R. This turns K (G,t) into a Polish space; see [Bee91, Theorem 4.3]. The Borel o-algebra on K (G, t) is the
o-algebra generated by sets of the form

{CeK(G,t):CNW # &},

where W is some t-open subset of G [Kec95, Section 12.C]. The relation Cy C C; for closed subsets Cy, Cy of G is
closed in K (G, t), since we have that Cy C C; if and only if d (Cy,z) < d(Cy, z) for every z € G.
Define the Borel function G — K (G, 1)
= (UnZ)new-

Notice that this function is indeed Borel: if W C G is t-open, then

{z e G:UpznW # 2} = U W
u€Uy,
is t-open, and hence Borel, for every n € w.
We have that, for z,y € G, EGy if and only if 3¢ € w, Uyz C Upy. Indeed, if xEGy then we have that Hz = Hy.

Thus, Upyz~* C H is closed and nonmeager in the Polish topology of H, and hence there exists £ € w such that
Ur C Upyxz~!. Conversely if there exists ¢ € w such that Uyz C Upy then we have that Hx N Hy # @ and 2EGy.
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This shows that E$ is potentially »9 and in particular potentially D(IT9). It now follows from Proposition 3.1
that H is D(II9) in G. O

Lemma 6.6. If \ is a limit ordinal and H is 23 in G, then there exists p < \ such that H is Hg in G.

Proof. Let a be the Solecki rank of H in G. If a < A then H is IT{ tat1 in G and hence the conclusion holds.
Suppose that a > X\. We have that H = J,,, Fr where, for k € w, F} is ng in G for some pr < A. In this case,
as in the proof of Lemma 6.2, by Lemma 5.2 we can assume without loss of generality that Fj is closed in H for
every k € w. By the Baire Category Theorem, without loss of generality we can assume that Fy is nonmeager in
H. Thus, we have that H = F£ is 220 and in particular H?erl in G. O

Lemma 6.7. If H is A(1)+/\+n+1 in G for somel <n <w and A < w either zero or limit, then H is D(H?H\Jrn)
inG.

Proof. Fix a countable open basis {V,, : n € w} for H. We have that

H = Sf\{+n(G) =51 (3§I+n—1(G)) €11y (Sf\{+n—1(G)) :
Furthermore, we can write H = (J,,, Fr where Fy is ) tasn in G for every k € w. Thus, we have that
H = Uy rcw FVe) where FyY € TI9 (s#.,_1(G)) by Lemma 5.2. Thus, we have that H € =9 (s, 1(@)).
Hence, by Lemma 6.5 we have that H € D(IT3) (sf.,_1(G)). Furthermore, D(I19) (s¥.,_1(@)) is contained in
D(I{,,,,)(G) by Lemma 5.5, concluding the proof. O

Lemma 6.8. If H is 39,1 in G for some 1 <n <w and A\ < wy either zero or limit, then H is D(II, )
inG.

Proof. Fix a countable open basis {V;, : n € w} for H. Let o be the Solecki rank of H in G. Since H is II{, , ., we
have that o < A+n+1 by Theorem 5.4. If o < A+n then we have that H is AJ, ., and hence H is D(IT{. ,,,)
by Lemma 6.7. Suppose that a = A +n + 1. Thus, we have that H = s# (sﬁ_n(G)). We can write H = ;. Ik
where F}, is H?JFAJF” in G for every k € w. Thus we have that H = Uk,éew F,:Ve, where, by Lemma 5.2, F,:V" is Hg
in sfL | (G). Thus, H € X3 (s,,,_1(G)). By Lemma 6.5, this implies that # € D(II9) (s{,,_;(G)). By Lemma
5.5, we have that D(IIJ) (sf, | (G)) € D(IIY, ,,,,)(G), concluding the proof. O

We have now all the ingredients to present a proof of Theorem 6.1.

Proof of Theorem 6.1. (1) We have that H is closed if and only if its Solecki rank is zero. Suppose now that A is
a limit ordinal and n = 0. By Theorem 5.4 we have that H is 1_[9\ and not 1_[2 for p < A. Thus, H is not 29\ by
Lemma 6.6.

(2a) By Lemma 5.5 we have that H is TI7, , 1. It remains to prove that H is not 39, ,,, ;. Suppose that H
is 29, 1 n41- Then by Lemma 6.8 we have that H is D(I1}, ). Thus, by Corollary 5.3, H € D(Hg)(sf+n_1(G)),
contradicting the hypothesis. §

(2b) By Lemma 5.5 we have that H is D(II{, ,,,,). It remains to prove that H is not D(II{,,,,,). Suppose by
contradiction that H is D(II}, ,,,). Then by Lemma 3.2 we have that H is either II{ ,,, or 39, ,,,. If H is
H(1)+/\+n then by Theorem 5.4 and Proposition 3.4 we have that A+n —1 is the Solecki rank of H in G, contradicting
the hypothesis. If H is (. ,,, then H € Eg(sﬁ_n_l(G)) by Corollary 5.3, contradicting the hypotl}esis.

(2c) By Lemma 5.5 we have that H is D(II{, ,,,,). The same proof as (2b) shows that H is not D(IL}, ,,,,).

(2d) By Lemma 5.5 we have that H is £, . The same proof as (2b) shows that H is not IT] .

When H is non-Archimedean, the case (2c) is excluded by Proposition 3.5. O

7. THE SAINT-RAYMOND RANK

Saint-Raymond introduced in [SR76, Definition 18] a notion of rank (therein called degree) for Fréchetable
subspaces of Fréchet spaces; see Section 9. We consider in this section the natural generalization of such a notion
to Polishable subgroups of Polish groups. Recall that for a complexity class I', and a Polishable subgroup H of a
Polish group G, we define I'(G)| g to be the collection of sets of the form AN H for A € T'(G).
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Definition 7.1. Suppose that G is a Polish group, and H C G is a Polishable subgroup. The Saint-Raymond rank
of H is the least countable ordinal « such that every open subset in the Polish group topology of H belongs to
2(1)+o¢ (G) |H'

Suppose that X,Y are Polish spaces, and « is a countable ordinal. As in [SR76, page 216], one can define
B, (X,Y) to be the set of Borel functions that have class a as in [Kur66, Section 31], namely are X,  -measurable;
see [Kec95, Definition 24.2]. By definition, the Saint-Raymond rank of H is the least countable ordinal « such
that the identity function of H belongs to B, (X,Y’), where X is equal to H endowed with the subspace topology
inherited from G, and Y is equal to H endowed with its Polish group topology. Adapting an argument of Tsankov
from [Tsa06], we now show that the Saint-Raymond rank and the Solecki rank of a Polishable subgroup of G
coincide.

Theorem 7.2. Suppose that G is a Polish group, and H C G is a Polishable subgroup. Then the Saint-Raymond
rank is equal to the Solecki rank.

Proof. By Lemma 5.1 we have that the Saint-Raymond rank is less than or equal to the Solecki rank. We prove
the converse inequality as in the proof of [Tsa06, Proposition 4.6]. If H has Saint-Raymond rank «, then every
open set in H belongs to E?Jra (G)|m. Suppose that U is an open neighborhood of the identity in H, and let V
be an open neighborhood of the identity in H such that V='V C U. Then there exists A € 2(1)+a (G) such that
ANH =V. Thus, 1 € A2V, where A2V N sH(G) is open in sZ(G) by Lemma 5.2. Furthermore, we have that
AV N H C V='WV C U. This shows that U contains a neighborhood of the identity with respect to the topology
on H induced by s(G). This shows that the Polish topology on H is the subspace topology induced by s (G),
whence H is closed in sZ(G). As H is dense in s(G), we have that H = s (G). O

[0} «

8. POLISHABLE SUBGROUPS IN EACH COMPLEXITY CLASS

The goal of this section is to prove the following theorem. Recall that a Polish group is CLI if it admits a
compatible complete left-invariant metric or, equivalently, its left uniformity is complete [Malll].

Theorem 8.1. Let T" be one of the possible complexity classes of Polishable subgroups from Theorem 1.1. Suppose
that G is a nontrivial CLI Polish group. Then there exists a CLI Polishable subgroup of G whose complexity class
s I,

Remark 8.2. After replacing G with G, we can assume that G is not discrete. We will assume that G is not
discrete in the rest of this section.

Recall that a pseudo-length function on a group H is a function L : H — [0, +00) such that, for h,h’ € H:
o L (1H) = O;
o« L(h"Y) =L (h):
o L(hhW)< L(h)+ L(K).

A length function is a pseudo-length function L such that L (h) = 0= h = 1y for h € H. A (pseudo-)length
function L gives rise to a left-invariant (pseudo-)metric d defined by setting d (h, h') = L (h='h’), and every left-
invariant metric arises in this fashion.

Suppose that G is a CLI Polish group, and let L be a length function on G that induces the Polish topology
on G. We define the length functions L; and Lo, on GV, with corresponding left-invariant metrics d; and doo, by
setting

L1((9n) pen) = Z Lc (9n)
neN
and
LOO((gn)neN) = sup,enLa (gn) -
for a sequence (gn),cy € G". We say that (g5),,cy is Le-summable if L1 ((gn),cy) < 00, and has bounded (left)
Lg-variation if ) 7, La(g,+19n) < 00. Welet ¢4 (G, Lg) € GN to be the CLI Polishable subgroup of Lg-summable

sequences, bvg (G, Lg) € GY to be the CLI Polishable subgroup of vanishing sequences of bounded Lg-variation,
and ¢ (G) C G" be the CLI Polishable subgroup of convergent sequences.
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Fix, for each limit ordinal A < w;, an increasing cofinal sequence (\;),cyy in A. If v = 0 + 1 is a successor
ordinal, define «; = § for every i € N. Define by recursion on a < wy, I§ = {(&, @)} where @ is the empty tuple.,
and I§ to be the set of tuples (no,...,nq4; Bo,-..,Baq) for d € w, no,...,ng €N, 0= 5y < -+ < fg = an,, and
(’no, ey d—1; 8o, - - - ,ﬁd_l) S Ignd.

Similarly for a fixed v < wy we define I} by recursion on a > =, by setting I = {(2, @)}, and I to be the set of
tuples (ng, . ..,nd;Bo, .-, B4) ford € w, ng,...,ng EN,vy= 5y < -+ < Bg = an,, and (no,...,nd-1; B0, -, Pd—1) €
If;"d. Notice that, by definition, if (no, ..., n4; B0, - - -, Ba) € I3 for some vy > 1, then (m, no, . .., 7a; Ym, Bos - - -, Ba) €
IS for every m € N.

Thus, for example we have that, for 1 < k < w, I;YJF’“ is the set of tuples

(n()a"-;nk*1;777+17"'57+k_1)
for ng,...,nxg—1 € N, and I;“L” is the set of tuples

(no,...,n(v+w)d;757+15"'7(7+w)d)

for d € w such that (y+w),; > v, and no, . .. My +w), €N

We also define I = {(&;2)}. We denote by I* the union of I for v < a. If v < a, we denote by /2. the union
of I§* for § <, and by I2, to be the union of I§' for 6 <. For (n;3) and (m;7) in I* we define (n; 8) < (m;7) if
and only if there exist 70 <71 < a such that (n; ) € I5;, (m;7) € IS, m is a tail of n, and 7 is a tail of 3, i.e. we
have that, for some ¢ < d < w, (n;8) = (no, ..., n4; Boy---,Bd), (Mm;7) = (Mo,...,mg;70,...,70), and for 0 < ¢ < £,
m; = Nyrqg—e and 7, = Birq—¢ . We regard I as an ordered set with respect to this order relation. Observe that
I2, and IZ, are downward-closed. For a subset F' of I, we denote by F) its downward closure. Notice also that
if ' C I is finite, and (n; 8) € I$ for some v > 1 is such that (k,n;y,8) € F for infinitely many & € N, then
(n; ﬁ) S Fi'

Fix a countable ordinal a. We define, by recursion on 7 < «, a decreasing sequence (PAY)V <o ©f CLI Polishable
subgroups of G'. Furthermore, for z € P,, we define the values x (n;3) € G for (n;8) € Ig. If v > 1 and
(n; B) € I3, then we let « (n; 8) be the convergent sequence (z (k, n; Vi, 8)) ¢, in G with limit = (n; 8). If (n; 8) € I,
then we let @ (n; 8) be the sequence constantly equal to = (n; 5).

Define Py to be G0, This is a CLI Polish group with topology induced by the pseudo-length functions

Lg" (@) = L (e (n; 8))

for (n; ) € I§'. Suppose that 1 < < «, and that Ps has been defined for every § < . Define Pey = (;_, s,
and P, C P to contain those x € P, such that, for every (n; 3) € I, the sequence x (n; 8) := (x (4,77, B));en
is convergent. For x € P, and (n;8) € I3, we define x (n;3) to be the limit of @ (n;3). Then we have that
the Polish topology on P, is induced by the restriction to P, of the continuous pseudo-length functions on Fs for
§ < v, together with the pseudo-length functions L") (z) = Lo ( (n; B)) for (n;B) € I, This concludes the
recursive definition of the CLI Polishable subgroups P, of G0 for v < a. Notice that in particular P, contains the
elements x € P, such that the sequence x (a) := (x (n,ax)), cy belongs to ¢ (G). We also define S, and D, to
be the subgroups of P, containing the elements z € P., such that the sequence x () belongs to ¢ (G, Lg) and
bvg (G, Lg), respectively. Theorem 8.1 will be a consequence of the following.

kew

Theorem 8.3. Fira=1+4+ X+ n < w1, where X\ is a limit ordinal or zero and n < w:
(1) if n =0 and X is limit, then P-x has Solecki rank X\ in G, and complexity class H()J\;
(2) if n = 0, then Siyx, Diyx, and P11y have Solecki rank X\ + 1 in G, and complezity class 2(1)+>\+17
D(H(l)+>\+1), and H(1)+>\+1 respectively;
(3) if n > 1, then Siyxin, Ditrin, and Piyxyn have Solecki rank X +n + 1 in G, and complezity class
D(H?+A+n+1)7 D(H?+A+n+1); and H?+A+n+1 respectively.
We will obtain Theorem 8.3 as a consequence of a number of lemmas.

Lemma 8.4. Suppose that v < a, F is a finite subset of 12, and x € P,. Define y € G0 by setting, for
(n; B) € I,
z (n; if (n;08) € F;
y (n; B) :_{ (n; B) if (n;B) { (1)

1la otherwise.
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Then we have that y € Sy, and (1) holds for every (n;B) € I*.

Proof. We prove by induction on o < « that y € P,, and that (1) holds for every (n;8) € I$. For ¢ = 0, this
holds by definition. Suppose that the conclusion holds for every § < o. Fix (n;8) € I¢. If (n;8) € F| then
necessarily o < v, and for every k € N, (k,n;ox, ) € I3 N F, and hence by the inductive hypothesis, we have
that y (k,n; ok, 8) = = (k,n; 0k, 3). Since x € P, C P,,, we have that the sequence y (n; ) = x (n; 3) converges
to  (n;B). Thus, y(n;B) = x(n;B). If (n;8) ¢ F| then we have that there exists ko such that, for all £ > ko,
(k,n;op, B) ¢ F|. Therefore, we have that the sequence y (n; §) is eventually equal to 1¢, and thus y (n; ) = 1.
This shows that y € P,. This concludes the proof by induction.

By the above, we have that y € P,. For k € N such that o > 7 we have that y (k,ar) = 1¢ and hence
Yy € Sq. O

Lemma 8.5. For every v < a, S, is dense in P,.

Proof. Suppose that x € P,, and let V' be a neighborhood of z in P,. Then we have that there exist ¢ > 0 and a
finite subset F' of 12, such that

ﬂ {z € Py id(z(n;8),2 (n; ) <e}
(n;B)EF
is contained in V. Define z € G0 by setting, for (n; ) € I,
2(7%6) _ { I(n,ﬂ) if (naﬂ) S

1g otherwise.

Then by Lemma 8.4, we have that z € S, and, for (n; 8) € I* we have that
x (n; if (n;pB) € Fy;

la otherwise.

In particular, we have that z € V. ]

Lemma 8.6. For every v < «, for every open neighborhood V' of the identity in Sa, 7 n P, contains an open
neighborhood of the identity in P, .

Proof. Let V' be a neighborhood of the identity in S,. Fix a finite subset F' of I* and € > 0 such that
{we S, : Li(w(a)) <e}n m {w € Sy : Loo(w (n; B)) < e}
(n;B)EF

is contained in V. Define
= 0, <
N max max {neN:d, <~}
FNIg#2
Define also the finite subset
B = (Fﬁ]%v) U{(k,n;01,8):v<d <a,k<N,(n;8) € FNI}

of 12, . Consider the open neighborhood W of the identity in P, defined by

W=<qxz€eP,: Z Le(z(nyjap)) <ep N ﬂ {r € Py: Loo(x (n;8)) <€}
n<N (n;8)eB

7P<~

We claim that W C V N P,. Suppose that x € W. Let U be an open neighborhood of z in P.,. Then there
exist a finite subset A of Ig‘,y containing B N Ig‘,y and g1 > 0 such that

ﬂ {z € Py :dos(x(n;8),2(n; B)) <e1}
(n;B)€A
is contained in U. We need to prove that U NV # .
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We define z € G0 by setting, for (n; ) € I§,
oy (s B) if (n;B) € Ay
z(n; B) = { 1c otherwise.
Then by Lemma 8.4, we have that z € S, and, for (n;8) € I¢, we have that
oy (s B) if (n;B) € Ay
z(n; ) = { 1a otherwise.
In particular, we have that z € U. We need to show that z € V, i.e., that L1(z (o)) < € and if (n,8) € F, then

Lo (z(n;B)) < e. We have that
a)) = ZLg(z (n; ) Z La(z (n;am))
neN n<N

If (n,8) € FNIZ, then z(n;8) = x(n;8). As (n;8) € B and v € W, this implies that Loo(z (n;8)) =
Loo(z (m; B)) <e. If (n,8) € F NI, then we have that
Loo(z (n7ﬁ)) = SupkENLG(Z (kunv’ykaﬁ))
< suppenLa(z (k159 B)) = Loo(x (3 8)) < &
since (n; 8) € B and x € W. If (n; ) € F NI for some ¢ >+, then
Loo(z(n;5)) = supgenLla(z (k,n; 0k, )
< Lol (ks 60, ) < mias Lol (5,560, 5) < =

since (k,n;dx,8) € B for k < N, and « € W. This shows that z € V| concluding the proof. a

Proposition 8.7. For v < o we have that
SSQ (GI(?) — SDQ (GIS‘) — SPQ (GIS‘) — SP<D((GI(‘))L) = P<(1+V)

Proof. Since S, € Do € Po € P<(14+), it suffices to prove that s « (G0 = P_(14~). We do this by induction on

v < a. For v = 0, we have that S, is dense in G = Py by Lemma 8.5, and hence SO (G'3') = Py. Suppose that
the conclusion holds for every 0 < . If 7y is limit, then we have that

(G = ﬂ s551( (G1) = m Prys = Pey = Pe(14)-
o<y o<y

Suppose that v = § + 1 is a successor ordinal. Then we have that, by the inductive hypothesis

(Gl ) = 55+1(G1a) = 515 (55 (Gla)) = 51 (P<(1+5))
Thus, it remains to prove that

T (P<(146)) = Piys.

Notice that Py is a Hg subspace of P.(14s). Thus, the conclusion follows from Lemma 4.2, in view of Lemma 8.5
and Lemma 8.6. g

Lemma 8.8. For every v < «, there exists a continuous group homomorphism @ : Gl = P, such that
@ (2) (k,n5 9, B) = 2 (k,n; i, B) for every z € G'<+, (n; B) € IS, and k € N.
Proof. For z € G'<+, define ® (z) := xz € G0 by setting, for (m;7) € I§,
2 (mi7) = z (k,n;yg, 8) if (m,T) < (k,n; vk, B) for some k € N and (n;3) € I3;
1la otherwise.

It is clear that ® : G'<+ — G is a continuous group homomorphism. One can prove by induction on § <  that
x € P, and for (m,7) € I,

(m; ) = z (k,n; vk, 8) if (m,7) < 2 (k,n;7x, B) for some k € N and (n; 3) € I7;
LA T) = 1c otherwise.

This concludes the proof. O
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Lemma 8.9. We have that:
(1) X9 is the complezity class of /1 (G, Lg) in GN;
(2) D(I19) is the complexity class of bvo (G, Lg) in GN;
(8) TI3 is the complexity class of ¢ (G) in GV,
Proof. (1): Tt is clear that ¢; (G, Lg) is X3 in GN. Since ¢ (G, Lg) is a dense, proper subgroup of GV, it is not
closed.
(2): We have that (g,),cy € bvo (G, Lg) if and only if

D Lo (gnta9n) < +00
neN

and for all ¢ > 0 and ny € N there exists n > ng such that Lg (g,) < &. This shows that bvo (G, Lg) is D(II9) in
GN. It remains to prove that it is not 23. Suppose by contradiction that

bvo (G, Lg) = U Fy
kEN

where F, C G" is closed for every k € N. By the Baire Category Theorem, we can assume without loss of generality
that Fy contains a neighborhood of the identity. Thus, there exists € > 0 such that

{(gn)neN € bvo (G, Lg) : Z Lg (g;ilgn) < € and sup,cnLa (gn) < 5} C Fyp.
neN

Since we are assuming that G is not discrete—see Remark 8.2—there exists g € G such that 0 < Lg(g) < . Define
for N € N, 2V) € by (G, Lg) by setting

™ _ g HESN;
Tk T l¢ otherwise.

Then we have that z(N) € Fy for every N € N. The sequence (x(N))NGN converges in GV to the element z € GY
that is the sequence constantly equal to g. Since Fy is closed in GY, we have that @ € bvg (G, Lg), which is a
contradiction to the fact that Lg (g) > 0.

(3): By definition, we have that ¢ (G) is TI3 in GY. By Theorem 3.3, it suffices to prove that ¢ (G) is not potentially
Eg. Let Ey be the relation of tail equivalence in 2N, and let EY) be the corresponding product equivalence relation
on (2N)N = 28NXN_ Then we have that Hg is the potential complexity class of E}), for example by Lemma 5.7 and
Theorem 3.3.

Thus, it suffices to define a Borel function 28N — GN that is a Borel reduction from E} to the coset relation
of ¢ (G) inside GN. We argue as in [Gao09, Lemma 8.5.3]. Fix a bijection (-,-) : N x N — w such that, if n < n/
and m < m/, then (n,m) < (n/,m’). Fix also a sequence (gy),,cy in G such that 0 < L¢ (g,,) < 27"V for every
n € N. Define = : 2N — G« s a by setting

a >_{ In  p(n,m)=1;
Hm 1l ¢(n,m)=0.
Fix ¢,9 € 2N, Define Z () = a and Z () = b.

Suppose that pE)9. Thus we have that for every n € N there exists M,, € N such that ¢ (n,m) = ¢ (n,m) for

m > M,,. Fix e > 0 and fix N € N such that 2=V < . Define then

M =max{M, :n < N}.

We claim that for k > (N, M) we have that L¢ (aj, 'by) < e. Indeed, suppose that k > (N, M). Then k = (n,m)
for some n,m € N. If n > N then we have that

Lg (a;'by) < La(ak) + Le (by)
< 2Lg(gn) <2 "<2 V<o

If n < N then we must have that m > M > M, and hence ¢ (n,m) = ¥ (n,m) and ay = bg. This shows that
a"lb € c(G).



16 MARTINO LUPINI

Conversely, suppose that a='b € ¢(G). Fix ng € N. Then we have that there exists kg € N such that for
k > ko, Lg (a,;lbk) < LG (gng)- Thus, for k > ko, if & = (ng,m) for some m € N, we must have ax = by and
¢ (no, m) =1 (ng,m). Thus, if mg € N is such that (ng, mg) > ko, we must have that ¢ (ng,m) = ¢ (ng, m) for all
m > mg. As this holds for every ng € N, pE}, concluding the proof. ]

Corollary 8.10. For every v < «, P, is a proper subgroup of P<. The complezity class of So, Do, Pn, respectively,
inside P, is X9, D(TI3), and TI3, respectively.

Proof. Fix v < a and (n; 8) € I. By Lemma 8.8 there exists z € P, such that  (n; ) is not convergent. Such
an x does not belong to P,, thus showing that P, is a proper subgroup of P,.
We now prove the assertion about P,, as the other assertions are proved in a similar fashion. Recall that
I = {(@;2)}. Define
H= {x € G" (2 (k; k) ey € © (G)} .

By Lemma 8.9 we have that IT§ is the complexity class of H in G" and of ¢ (G) in GV.

By Lemma 8.8 there exists a continuous group homomorphism ® : GI* — P_,, such that ® (z) (k; ax) = x (k; o)
for every k € N, and hence ®~! (P,) = H. Similarly, the function ¥ : P, — G", 2+ x (a) is a continuous group
homomorphism such that ¥~ (¢ (G)) = P,. Thus, IT§ is the complexity class of P, in P,. O

We are now in position to present the proof of Theorem 8.3.

Proof of Theorem 8.3. By the first assertion in Corollary 8.10 and Proposition 8.7, we have that S, Dy, P, have
Solecki rank a+ 1 in Py, and P., has Solecki rank « in P if « is limit. The conclusion now follows by applying
Theorem 6.1 and the second assertion in Corollary 8.10. O

Recall that a (pseudo-)ultralength function on a group H is a (pseudo-)length function L such that L (hh') <
max {L (h),L (W)} for h,h' € H. A Polish group G is non-Archimedean if and only if it admits a compatible
ultralength function [Gao09, Theorem 2.4.1]. In a similar fashion as above, one can prove the following statement;
see also [HKL98, Section 5.

Theorem 8.11. Let ' be one of the possible complexity classes of non-Archimedean Polishable subgroups from
Theorem 1.2. Suppose that G is a countable discrete group. Then there exists a non-Archimedean CLI Polishable
subgroup of GN whose complexity class is T.

Define H := GY. This is a non-Archimedean CLI group. The topology on H is induced by the ultralength
function
Ly ((g")neN) =exp(—min{n e N:g, # 1g}).
Notice that the subgroup c (H) of HY convergent sequences is a non-Archimedean CLI Polishable subgroup of HY
of complexity class Hg with topology induced by the ultralength function

Loo ((hn)pen) = max{Ly (hy) : n € N}.

The subgroup o (H) of HY consisting of sequences (hy,),,cy such that the sequence (hy (0)),,cy in G is eventually
equal to 1g is a non-Archimedean CLI Polishable subgroup of HY of complexity class 23.

Fix o < wy. We define by recursion on v < « a decreasing sequence (F"Y)W <o Of non-Archimedean Polishable

subgroups of H0. We also recursively define, for z € F, and (n;B) € IOB, the values z (n;8) € H. We set
Fy = H'0. If Fs has been defined for every § < , define Fo, = ﬂ(kV Fs, F, to contain those x € F, such that,
for every (n; ) € I3, the sequence x (n; 8) := (@ (k,n; Yk, 8))e, is convergent in H. For z € F, and (n; 3) € 17,
we define = (n; 8) to be the limit of  (n; ). Then we have that the non-Archimedean Polish group topology on
F, is induced by the restriction of the continuous pseudo-ultralength functions on Fs for § < 7 together with the
pseudo-ultralength function
L) (2) = Lo (2 (n: 9))

for (n;8) € IY. This concludes the recursive definition of the non-Archimedean Polishable subgroups F, of H 5
for v < a. Notice that in particular F,, contains the elements x € F, such that x (o) := (z (n, an)),cy belongs
to ¢(H). Define Z, to contain those elements x € F., such that x («) belongs to o (H). The same argument as
above, gives the following.



COMPLEXITY CLASSES OF POLISHABLE SUBGROUPS 17

Theorem 8.12. Adopt the notations above. Suppose that o =1+ X+ n where A < wy is either limit or zero and
n<w.

(1) If n =0 and X is limit, then F<x has Solecki rank \ and complezity class H()J\ in H .

(2) If n =0, then Zyyx and Fiyx have Solecki rank A+ 1 in H'O | and complexity class 2(1)+)\+1 and 1_[(1)+)\+2,
respectively;

(3) if n> 1, then Zyx and Fy .y have Solecki rank \+n+ 1 in H'S | and complexity class D(H?+A+n+1) and
H?+)\+n+2, respectively.

9. FRECHETABLE SUBSPACES

In this and the following section, we assume all the vector spaces to be over the reals. Similar considerations
apply to complex vector spaces. Recall that a Fréchet space is a locally convex topological vector space whose
topology is given by a complete, translation-invariant metric. Thus, the additive group of a separable Fréchet space
is a Polish group. In analogy with the notion of Polishable subgroup of a Polish group, we consider the notion of
Fréchetable subspace of a separable Fréchet space.

Definition 9.1. Suppose that X is a separable Fréchet space, and Y is a subspace of X. Then we say that Y is
Fréchetable if it is Borel, and there exists a separable Fréchet space topology on Y whose open sets are Borel in X.

This notion was considered by Saint-Raymond in [SR76]: a subspace Y of X is Fréchetable if and only if i
has a separable model according to [SR76, Definition 1]. Notice that a Fréchetable subspace of X is, in particular,
a Polishable subgroup of the additive group of X. Thus, if it exists, the separable Fréchet space topology on Y
as in Definition 9.1, is unique; see also [Osb14, Corollary 4.38]. A subspace Y of a separable Fréchet space X is
Fréchetable if and only if there exists a separable Fréchet space Z and a continuous linear map ¢ : Z — X with
image equal to Y [SR76, Proposition 4]. If Y is a Fréchetable subspace of X, then the separable Fréchet space
topology on Y is the finest locally convex topological vector space topology on Y that makes all the Borel linear
functionals on Y continuous [SR76, Theoreme 9]. Furthermore, we have a subspace Y of X is Fréchetable if and only
if it is a Polishable subgroup of the additive group of X, and the Polish topology on Y has a basis of neighborhoods
of zero consisting of convex, balanced sets; see [Osb14, Proposition 3.33 and Corollary 3.36]

Lemma 9.2. Suppose that X is a separable Fréchet space, and Y a Fréchetable subspace of X. The first Solecki
subgroup s¥ (X) of X relative to Y, where X and Y are regarded as additive groups, is a Fréchetable subspace of
X.

Proof. By definition, we have that, for z € X, x € Y if and only if for every open neighborhood V' of zero in Y
there exists z € Y such that x + z € VG. If x €Y, XA € R is nonzero, and V is an open neighborhood of zero in Y,

G _
then there exists z € Y such that © + z € A=V, whence Az + Az € V. This shows that Az € s¥ (X), whence
s¥ (X) is a subspace of X.

We now show that s1 (V) is Fréchetable. Since Y is a separable Fréchet space, by the remarks above it has a
basis (V7,),,¢., of neighborhoods of zero consisting of convex, balanced sets. Thus, (VS N sY (X))new is a basis of

neighborhoods of zero in s1 (V) consisting of convex, balanced sets. Thus, s’ (X) is a Fréchetable subspace of X
by the remarks above again. 0

As an immediate consequence of Lemma 9.2 and Theorem 5.4 by induction on o < w; we have the following.

Theorem 9.3. Suppose that X is a separable Fréchet space, Y is a Fréchetable subspace of X, and o < wi. Then
the a-th Solecki subgroup sY (X) of X relative to Y, where X and Y are regarded as additive groups, is the smallest
H(1)+a+1 Fréchetable subspace of X containing Y .

A similar proof as Theorem 8.1 gives the following.

Theorem 9.4. Let T" be one of the possible complexity classes of Polishable subgroups from Theorem 1.1. Suppose
that X is a nontrivial separable Fréchet space. Then there exists a Fréchetable subspace of X~ whose complexity
class is I'.
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10. BANACHABLE SUBSPACES

Let V be a separable Fréchet space. A subspace X C V is Banachable if it is the image of a continuous linear
map T : Z — V for some separable Banach space Z. Equivalently, X is a Borel subspace of V that is also a
separable Banach space such that the inclusion map Y — V is continuous. We have that the Solecki subgroups
whose index is a successor associated with a Banachable subspace of a separable Fréchet space are also Banachable.

Proposition 10.1. Suppose that V is a separable Fréchet space, X C V 1is Banachable. Then ng—l-l (V) CVis
Banachable for every a < wy.

Proof. Tt suffices to consider the case o = 0. Suppose that ||-|| is a compatible norm on X and B is the corre-

sponding unit ball. Define C' := B n sy (V). As (27"B),,.,, is a basis of neighborhoods of the identity in X,
(27"C),,c., is a basis of neighborhoods of the identity in s3* (V). Thus s (V) is a normed space, and hence Banach
space (being complete). O

In this section we will prove using the methods from Section 8 and Theorem 8.3 the following characterization
of the possible complexity class of Banachable subspaces.

Theorem 10.2. The following is a complete list of all the possible complexity classes of Banachable subspaces of
separable Fréchet spaces: 1_[(1), H(1)+>\+n+1, D(H(1)+>\+n)’ and 2(1)+)\+1 for A < w1 either zero or limit and 1 < n < w.
Furthermore, for every complexity class I' in this list and nontrivial separable Banach space Z, there exists a
Banachable subspace of co (N, Z) that has complezity class T'.

We begin with showing that a Banachable subspace of a separable Fréchet space cannot have complexity class
TTS for some countable limit ordinal \.

Proposition 10.3. Suppose that V' is a separable Fréchet space, and X C V is a Fréchetable subspace. Suppose
that sX (V) is Banachable for some limit ordinal o. Then X has Solecki rank less than a.

Proof. Without loss of generality, we can assume that X = sX (V). Since X is Banachable, there exists B C X
such that (27"B), ., forms a basis of neighorhoods of zero in X. Since X = 5, sff (V), there exists 8 < «
and a neighborhood C of 0 in sff (V) such that B = C N sX (V). Thus, X is endowed with the subspace topology
inherited from s3 (V). Whence, X is closed in s3 (V). Since X is also dense in s5 (V), we have that X = s3 (V).

Hence, X has Solecki rank at most 3. O

Corollary 10.4. Suppose that V is a separable Fréchet space, and X C V is a Banachable subspace. If X is 1_[9\
for some limit ordinal A < w1, then X is H% for some B < A.

Proof. By Theorem 6.1 we have that X = s (V) is Banachable. Thus, by Proposition 10.3 we have that X has
Solecki rank ( for some 8 < A, and hence X is H? +p+1 by Theorem 6.1 again. O

In order to conclude the proof of Theorem 10.2 it remains to prove that all the complexity classes from the
statement of Theorem 10.2 can arise. Fix a countable ordinal o. We adopt the notation from Section 8. We regard
I3 as a set fibred over v, with respect to the map I — «, (n; B) — ~y such that (n;3) € I For v < o we define

Jy ={(k,o) eNx(a+1):0p,<y<o<a}

We also regard J' as a set fibred over « with respect to the function JJ — a, (k,0) — o. We then define the fibred
product

I 1% = {((kh,0), (m5B)) : (k,o) € J2, (3 B) € IS}
Notice that the projection map Jg* + [* — [ is finite-to-one. Indeed, suppose that ((k, o), (n;38)) € J§ * I*. Then

we have that v < o, and hence {k € N: o, <~} is finite.
Fix a nontrivial separable Banach space Z. We denote the norm of z € Z by |z|. We consider the Banach spaces

2 (Z) = {(xn) c ZN : Z |:17n| < +OO}

neN
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and

bvo (Z) = {(:En) e ZN. Z |2n — 2Zng1]| < +00 and (zn),cy is Vanishing} .
neN

Define Xo = co (I§', Z). We now define by recursion on v < «, Banachable subspaces X, and Fréchetable
subspaces X<, of X such that X, € X, C X for 6 < v < a. Furthermore, for z € X, we define the values
z(n;B) € Z for (n;8) € I, such that the linear functional z — =z (n;3) on X, is continuous. If v > 1 and
(n; B) € I, then we let x (n; 8) be the convergent sequence (kz (k, n;Vk, 8)) e, With limit z (n; 8). If (n; 8) € g,
then we let @ (n; 8) be the sequence constantly equal to z (n; 8). Suppose that 1 < v < «a, and that Xs has been
defined for 0 < 7, in such a way that X; is a separable Banach space with norm [|-[| y,

Define X, to be the intersection of X5 for § < . Consider the continuous linear map

T0: X, — (2M)%
defined by
T$ (2) = (= (n;ﬁ))(n;ﬁ)e]gW ‘
Consider also the continuous linear map
T : Xoy— 2750
defined by
T; (z) = (kx (kvn;Uk7ﬂ))((k,a—)7(n;ﬂ))eJ$*1a .
Define X, € X~ to be the intersection of the preimage of
o (12,0 (N, 2)) € (2%)"
under T% and the preimage of
co (JO* 1%, Z) C Z75+ 1"

under T,%. It follows from Lemma 10.6 below that X, is a separable Banach space with respect to the norm

_ 0 1
HUCHX7 = maX{HTv (x)Hco(ng,c(N,z)) g HT’Y (‘T)HCO(J‘;*IQ»Z)}
for x € X,,. Observe that in particular
Xo={r€Xcn:x(a) €c(N,2)}
and
I, = masx {sup, o lallx. -2 (@)l }
for x € X4, where x (a) := (kx (k; ag)) - Define also S, € Dy € X, by setting
So = {;v € Xca 18UP, g [|2]lx, < 400 and z (o) € & (Z)}
and
D, = {;v € Xca 18UP, 4 [l2]ly, < +o0 and x (@) € bvo (Z)}
where
w(a) = (2 (k; ar))pen -
Then we have that S, is a separable Banach space with respect to the norm
lells, = max {lall, |2 (@), iz }

and D, is a separable Banach space with respect to the norm
Jallp, = max{lzllx. |2 (@)lpyyiz) }
The existence statement in Theorem 10.2 will be a consequence of the following result.

Theorem 10.5. Fiz a =1+ A+ n < wi, where X is a limit ordinal or zero and n < w:
(1) if n =0 and X is limit, then X<y has Solecki rank \ in Xg, and complezity class H()J\;
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(2) if n = 0, then Siyx, Ditx, and X145 have Solecki rank A + 1 in Xy, and complexity class 2(1)+)\+1,
D(TI), 1), and IIY ., , ., respectively;

(8) if n > 1, then S14rtn, Ditxtn, and Xiixyn have Solecki rank X +n + 1 in Xg, and complezity class
D(H?+A+n+1)a D(H(1J+A+n+1); and H?+A+n+1 respectively.

The rest of this section contains the proof of Theorem 10.5.

Lemma 10.6. We have that
Izl x, < llzllx,
foré <y<aandz e X,.
Proof. 1t suffices to prove that
1
HT6 (x)Hco(Jg*la,Z) < ||gC”Xv
Suppose that ((k,0),(n;5)) € J§ « I*. Then we have that o, < § < o and (n;8) € I¥. Suppose initially that
o <. Then we have that (n; ) € I2_ and hence
[k (K, n; o, B)] < llz (n; B)lloo < llzllx, -
Suppose now that v < o. Then we have that ((k,0), (n;3)) € J3 * [* and hence

|k$ (kvn;o'kvﬂﬂ S HT')% (x)HcD(J,‘;‘*IO‘,]R) S ||17||XﬂY .

This concludes the proof. 0
Lemma 10.7. Fizy <o and v € X,. Let F' C IZ  be a finite set. Define z € Z15 by setting, for (n;B) € Ig,

sy = { p 059 <P 2

otherwise.
Then we have that z € S, and (2) holds for every (n; ) € I*.
Proof. We prove by induction on o < « that z € X, and (2) holds for every (n; 8) € I¢. Define

F={(m;7) € I*:3(n; f) € F.(n; 8) < (m; )}
Case o = 0: We have that (2) holds for (n; ) € I§ by definition of z. As x € X, for every € > 0 there exists a
finite subset E' of I2_ such that ||z (n; 8)|,, < e for (n;3) € I2, \ E. Thus, if (n; 8) € I§ \ E, then

2 (7 B)ll oo = |2 (n; B)] < |2 (03 B)| < e.
Case 1 <o <~: Fix (n; 8) € I?. If (n; 8) € F| then (k,n;ox,3) € F| for every k € N. Thus, by the inductive
hypothesis,
kz (k,n; o, 8) = kx (k,n; ox, 8)
for every k € N, and hence
z(n; B) =z (n; B) .
Since by assumption x (n; ) is a convergent sequence with limit x (n; ), we have that z (n;f) is a convergent
sequence with limit z (n; 8) = x (n; B). If (n; 5) ¢ F) then there exists N € N such that for k > N, (k,n;ox,5) ¢ F|.
By the inductive hypothesis, we have that kz (k,n;ox,3) = 0 for kK > N. Thus, z (n;f) is a sequence eventually
zero with limit z (n; 8) = 0.
Fix € > 0. Since z € X, there exist a finite subset £ C I2_ such that |z (n; 8)|,, <€ for (n;8) € IZ,\ E, and
a finite subset B’ C J% * I* such that |kz (k,n; 7y, 8)| < e for ((k,7), (n; 8)) € (J§*I*)\ E'. Define
E" = E'U{((k,7),(n; 8)) € (Jg *I%) : (n; B) € E}
If (n; B) € I2_ \ E then we have that
I (25 8)l < Nl (3 D)l < e
If (k,7),(n;B8)) € (J¥«I*) \ E” then we have that 7, < 0 < 7 and (n;3) € I¢. If 7 < + then we have that
(n;B) € 12, \ E and hence
|kz (k,n; 7k, B)] < o (n; B) o <.
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If v < 7 then ((k,7),(n; 8)) € (J$* 1)\ E' and hence
|kz (K, n; i, B)] < |k (kym; 7, B)] < e

Case o > ~: Fix (n;8) € I2. Then by the inductive assumption we have that z (k,n;ox,3) = 0 for k > N.
Thus, the sequence z (n; 3) is eventually zero, and z (n; 3) = 0.
Fix € > 0. Since x € X, there exist a finite set £ C I%»y such that

[l (n; B)]l o <€
for (n; B) € 12, \ E, and a finite set £’ C (J§ % I*) such that
|kx (k,n; 7, B)| < &

for ((k,7),(n; ) € (J$ % I%) \ E'. Define

E=FEUF

E’:FUE’U{((k,T),(n;B)) € J %1% : (n; f) eE}.
Fix (n; 8) € 12, \ E. Fix § < o such that (n; 8) € I¢. If § < 7, then we have that (m; ) € 12\ E and hence
12 (7; B)ll oo < [l (75 B)[l o <&

Suppose that § > v, and fix k € N. If z (k, n; 6y, 8) # 0 then we have that (k,n;dy, 8) € F, whence (n;3) € F C E,
contradicting the hypothesis. Thus, z (n; 8) is the sequence constantly equal to zero. Fix ((k,7), (n; 8)) € (J3 * I?)
E'. Thus, 7, < o < 7 and (n; 8) € I¢. If 73, <, then ((k,7), (n; 8)) € (J$ % I%) \ E" and hence

|kZ (ka 15 Tk 6)| < |I€$ (kv n; Tk, 6)| <e.
Suppose that 73, = v. If z (k,n; 7%, ) is nonzero, then (k,n; 7y, 3) € F and hence (n; ) € F C E, contradicting the
assumption that (k,n;7g, 8) ¢ E'. If 7, > 7 then we have that (k,n; 7k, 3) ¢ F| and hence z (k,n; 7%, 3) = 0. This

concludes the inductive proof.
Finally, to see that z € S, observe that if N = max{k € N: a <~} then we have that

Skl <€ 3 fa (ks )] < +oe.

keN k<N
O

The next lemma is similar to the previous one, with the difference that the finite set F' is supposed to be a subset
of IZ, instead of Iz,

Lemma 10.8. Fiz v <« and x € X,. Let FF C 12, be a finite set. Define z € 715 by setting, for (n; ) € I,
oy L e B) if (ns ) € Fy;
2(n; B) = { 0 otherwise. (3)

Then we have that z € Sa, ||zl x, < ||zl x_ . and furthermore (3) holds for every (n; ) € I*. Furthermore

I2]ls, <max{ Yl (ks ar)], 2]«
k<N

where N = max {k € N: o, < 7v}.

Proof. Tt follows from Lemma 10.7 that z € S, and (3) holds for every (n; 8) € I$. We now prove by induction on
o < athat |2y, < ||a:||XW Suppose that the conclusion holds for every § < o.

Case o = 0: If (n; 8) € I§, then we have that [z (n; 8)| < |z (n; 8)|. This shows that |z x, < [zl x, < ||a:||XW
Case 1 <o <~: For (n; 8) € IZ,, we have
12 (75 B)ll oo < Il (n; Bl < [l -
Fix ((k,7),(n; ) € J3 * 1. Thus, we have that 7, <o <7 and (n; 8) € I7. If 7 <, then (n; 3) € IZ and hence
k2 (k,n; 7, B)| < [k (B, ns 7k, B)| < oo (n; B) o < llllx, -
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If v < 7, then ((k,7),(n;8)) € J3 * [* and hence

|kz (kyn; 7k, B)| < [k (K, s 7w, B)] <l x -

Case o > . Suppose that (n; ) € I§ for some § < o. If § <+, then
12 (7: B)ll oo < Il (n; Bl < [l x, -

If v < § then for every k € N we have that either d; <+, in which case ((k,9), (n;3)) € J$ * I* and hence

|kz (k,n; 0k, B)| < [k (K, n; 65, B)] < [l x|
or v < 0k, in which case (k,n;d,3) ¢ F| and

z(k,n; 0, 8) = 0.
Thus
2 (2 8) . < Nzl -

Suppose now that ((k,7),(n,8)) € J3 *I*. Thus 7, <o < 7. If 7, <y then we have that ((k,7),(n,8)) € J3*I¢
and hence

k2 (k,n; 7, B)| < [k (R, ns 7, B)] < [l x|

If v < 73 then (k,n; 7k, 3) ¢ F| and hence
z (k,n; 1, B) = 0.

This concludes the inductive proof that [[z[[y < ||a:||XW for every o < a.

Finally, we have that
Y olzkan) <> fa (ks on)|-
kEN k<N
This shows that z € S, and

Izlls, = maX{HZHXQ > |Z(k;ak)|} < max q [z, , Y |z (kx|

kEN k<N

This concludes the proof. O
Lemma 10.9. For every v < a, S, 1s dense in X,,.

Proof. Suppose that z € X, and € > 0. We need to prove that there exists z € S, such that ||z — z||X7 < e. Since
z € X, there exists a finite subset E' C I2. such that |z (n;B)|,, < € for (n;B) € I, \ E, and a finite subset
E' C J¢ % I* such that |kx (k,n; 7, B)| < e for ((k,7),(n;B)) € (J$ *I*) \ E.

Suppose that z € X,, is obtained from = € X, and

F=(EnI2,)U{(kn;wB): ((k,7),(n;8)) € E'}

as in Lemma 10.7.

Fix (n;B) € Ig,. It (n; ) € F| then z (n; ) = @ (n; ), while if (n; ) ¢ F|, then

[z (n;8) =2 (n; B)ll o < Nl (n: Bl < e
Consider ((k,7),(n;8)) € J¢ xI*. Thus 7, < v < 7 and (n;3) € I2. If (k,n;7,8) € F then kz (k,n; 7y, 8) =
kx (k,n; 7k, B). If (k,n; 7%, B) € F, then (k,n; 7, ) € (JS % I*) \ E’ and hence
|kz (k,n; 1, B) — kx (k,n; 1, B)| < |kx (K, n; 11, B)] < .

This concludes the proof that ||z — a:||XW <e. O

Lemma 10.10. Fiz v < . If V is a neighborhood of zero in Sq, then 7N X, contains an open neighborhood
of zero in X,.
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Proof. Define
N =max{k € N:ay <~}.

Suppose that V is a neighborhood of zero in X,. Without loss of generality, we can assume that

V= {zeSa Szl SE,Z|Z(/€§O%)| SE}-

keN

—X
We claim that V™ =" N X, contains

Wi=SweX,:|lz)x <& Y |z(kar) <e
k<N

Indeed, suppose that x € W. Let U be an open neighborhood of = in X.,. Without loss of generality, we can
assume that
U={ze€Xey:|lz—zlyx, <e1}
for some ¢ < v and €1 > 0. We need to prove that U NV # @.
Since z € X,,, there exists a finite subset E of X, such that ||z (n; 8)[|,, < e1 for (n;8) € 12, \ E, and a finite

subset E’ of J¢ x I* such that |kx (k,n; 7, 8)| < e1 for ((k, 1), (n; 8)) € (J§ * I%) \ E'. Define
E'=FU {((k,T) y(n;B)) € J3 + I (n;B) € E}
Let z € X, be obtained from z and
F .= (E N Ig(;) U{(k,n;7%,8) : (k,7),(n;8)) € E"}U{(k;ax) : k< N}
as in Lemma 10.8. Then we have that z € S,

I2llx, <llelly, <.

Yo letkan)l < Y le(kan)| < e

k<N k<N
and hence z € V. It remains to prove that ||z — z[|x, <e1. For (n; 8) € IS5, if (n; 8) € I then

z(n;B) =z (n; )
while if (n; 8) ¢ F', then (n; 8) € I2, \ E and we have that
12 (n; B) =2 (n; Bl oo < Nl (n; 8)]l o < €1

and

by the choice of E.
For ((k,7),(n;B)) € J¢ = I*, we have that 7, < § < 7 and (n; ) € I. Suppose that v < 7, in which case we
have that (( 7),(n; B)) € Jg I If ((k,7),(n; B)) € F, then

kz (k,n; 7, B) = kx (k,n; 7k, B8) ;

if ((k,7),(n; B)) ¢ F then ((k,7),(n; 8)) € (JS = I*) \ E' and hence
|kz (k,n; 1, B) — kx (k,n; i, B)| = |k (K, n;mx, B)] < e1.

Suppose now that 7 < v, in which case 7, < § <7 <. If ((k,7),(n;8)) € F, then

kz (k,n; 1, B) = kx (k,n; 1, B) ;
while if ((k,7), (n; 8)) ¢ F, then we have that (n; 8) € 12, \ E and hence

(k2 (ky 5 m, B) = ke (ks s i, B)] < [k (Ky s 7, B)] < |22 (03 B) || o < €1

This concludes the proof that ||z — x|y, < e1. O

Using Lemma 10.10 and Lemma 10.9, one can prove Proposition 10.11, similarly as Proposition 8.7 is proved
from Lemma 8.6 and Lemma 8.5
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Proposition 10.11. For v < a we have that
3% (Xo) = 82 (Xo) = s3°(X0) = 55 °*(X0) = X<(14+)

Recall that, for (n; 8) and (m;7) in I%, we define (n;3) < (m;7) if and only if there exist vo < 1 < « such

that (n;B) € IS, (m;7) € IS, m is a tail of n, and 7 is a tail of 3, i.e. we have that, for some ¢/ < d < w,
(n;8) = (noy - .-, nd; Bo, - - -, Ba), and (m;7) = (Ng—g, ..., ng; Ba—s, - - -, B4). In this case, we set
B W S
(ms7) no - Ng—o—1

Lemma 10.12. Fiz v < o and (m;7) € IS. There exists a continuous group homomorphism ® : co (N, Z) — X,
such that ® (t) (k,m; vk, 7) = tg for every t € co (N, Z) and k € N.

Proof. For e > 0, let K. € N be such that, for £ > K, one has that |t;| <e. Fort € (ZN)I'C’X, define ® (t) := 2 € Z%0
by setting, for (n;8) € I,

(4)

(n;B)
0

2 (n; B) = w(k’mw’“’ﬂtk if (n;B) < (k,m;~g,7) for some k € N;
e otherwise.

It is clear that ® : ZN — Z10 is a continuous group homomorphism. We now prove by induction on o < 7 that
x € X,, and that (4) holds for every (n; 3) € I*. Suppose that the conclusion holds for all § < o.

Case 0 = 0: We need to prove that = € cg (I§, Z). Fix € > 0. Consider

F={(n;B8)eI§:(n;B) < (k,m;vy,7) for some k < K.}
Then F C I§ is finite and for (n;8) € I§ \ F one has that either
z(n;B) =0
or (n;8) < (k,m;~k,7) for some k > K., in which case
k,m;vi,T
| (n; B)| = W&;@)W M| <kl < e

Case 1 <o < 7: Fix (n;8) € I§ for some 6 < . If (n;8) < (k,m;~,7) for some k € N, then we have that for
every £ € N, (€,1;6, 8) < (k,m; . 7). Thus,

k,m;yy, T
x (é, n; dg, ﬂ) = ng,n;(?zkﬁ) )tk

and

lx (6, n; 5[, ﬂ) = WE:;ZL);’WC’T)tk

Thus, the sequence x (n; 3) is constantly equal to wgzzg;Wk’T)tk. This shows that
7 (3 B) = iy ™
Suppose that there does not exist k € N such that (n; 8) < (k,m; vk, 7). Fix £ € N. If (¢,n;d,, 8) < (k, m; g, 7) for
some k € N, then we have that (k,m) is a tail of (¢,n) and (v, 7) is a tail of (d¢, ). If the length of (k, m) is strictly
less than the length of (¢,n), then m is a tail of n and 7 is a tail of 8, and hence (n; 3) < (k, m;~g, 7), contradicting
the assumption. Therefore, we have that (¢,n;d¢, 3) = (k, m; 7%, 7). In particular, we have that (n; 8) = (m;7) € I
contradicting the assumption that (n; ) € I§ and 6 < o < . Thus, the sequence z (n; ) is constantly zero, and
hence z (n; 8) = 0.
We now prove that x € X,,. Fix € > 0. Define

N = max{K., max{k e N: vy, <o}}.
Consider
E={(mB)ell,: (n;B) < (k,m;y,7) for some k < N}.
If (n;8) € I2, \ E and z (n; 8) # 0 then, by the argument above, (n; 3) < (k, m;vx, ) for some k > N > K. and

hence
|z (n; B)] < [te| < e
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Consider the finite set
E' ={((t,p);(n; B)) € Jg xI*: (€,n;p0, B) € E}
If (¢, p;(n; B)) € (J& «I*)\ E' and z (¢, n; pg, B) # 0, then py < 0 < p and
(4, m; pe, B) < (k,m; vk, 7)
for some k € N. Since (¢, p; (n;8)) ¢ E’, we have that k¥ > N and hence v, > o > py and

M <
Thus,
[z (€, pe, B)] < [emie ™ V| < |ti| < e
since k > N > N.. This concludes the proof. 0

Lemma 10.13. Consider the continuous function co(N,Z) — ZN, (x4),cn = (n@n),cn- We have that:

o X9 is the complexity class of 7=' (¢1(Z)) in co(N, Z);
o D(T19) is the complexity class of 71 (bvo(Z)) in co (Z);
e II3 is the complexity class of 7' (co (N, Z)) and of 7 (¢ (N, Z)) in co(N, Z).

Proof. (1) Since ¢, (Z) is 39 in ZV, we have that 7! (£1) is a 35 Polishable subgroup of co(N, Z) that is not closed.
Thus, X9 is the complexity class of 7= (¢ (Z)).
(2) Since bvg (Z) is D(IT3) in ZY, and 7= (bvg (Z)) is a Polishable subgroup of co (N, Z), by Theorem 3.3 it

suffices to prove that 71 (bvq (2)) is not 29 in co (N, Z). Suppose by contradiction that 71 (bvo (2)) = Uy, Fr
where Fj, C ¢o (N, Z) is closed. Observe that a compatible norm on bvg (Z) is given by

1% vy z) = D [#nt1 = | + SUDery |7l
neN

By the Baire category theorem without loss of generality we can assume that
{aer! (bvo (2)) : [IT ((an))llyy, <2} € Fo.
Define then for N € N, a™ € 771 (bvy (Z)) by setting

1. .
oM o ifns= N
n 0 otherwise.

Then we have that ||T (a(N))HbVO(Z) < 2 and aV) € F, for every N € N. Furthermore, the sequence (a™))yey

converges in ¢g (N, Z) to the sequence a defined by a,, = % for every n € N. Since Fj is closed in ¢ (N, Z), we must
have that a € Fy C 77! (bvg (Z)). However, 7 (a) is not vanishing, and so 7 (a) ¢ bvg (2).

(3) Since ¢ (N, Z) is I3 in ZY, and 7! (¢ (N, Z)) is a Polishable subgroup of ¢, by Theorem 3.3 it suffices to
prove that 7= (¢ (N, Z)) is not potentially £9. Let Ey be the relation of tail equivalence in 2V, and let E) be the
corresponding product equivalence relation on (2N)N = 2N Then we have that Hg is the potential complexity
class of EY, for example by Lemma 5.7 and Theorem 3.3.

Thus, it suffices to define a Borel function 28N — ¢4 (N, Z) that is a Borel reduction from E}' to the coset
relation of 771 (¢ (N, Z)) inside co (N, Z). Fix a bijection (-,-) : N x N — N such that, if n < n’ and m < m/,
then (n,m) < (n’,m’). Define 2N — ZN 2 s a by setting Aln,m) = ﬁ2‘"wn,m. Then the argument
in [Gao09, Lemma 8.5.3] shows that zE)2’ if and only if 7(a) — 7(a’) = 7(a —a’) € c¢(N, Z), if and only if
a—a €7t (c(N,2)).

The same argument shows that IT is the complexity class of 771 (co (N, Z)) in cq (N, Z). O

The same proof as Corollary 8.10, where Lemma 10.13 replaces Lemma 8.9, gives the proof of Corollary 10.14
below.

Corollary 10.14. For every v < o, X, is a proper subspace of X.. The complexity class inside X<o of Sa, Da,
X, respectively, is 9, D(I19), and Hg, respectively.



26

MARTINO LUPINI

Finally, Theorem 10.5 is proved using Corollary 10.14 and Proposition 10.11 similarly as Theorem 8.3 is proved
using Corollary 8.10 and Proposition 8.7.
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